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An Inf-Convolution BV type model for dynamic reconstruction. ∗

Mäıtine Bergounioux† and E. Papoutsellis †

Abstract. We are interested in a spatial temporal variational model for image sequences. The model involves
a fitting data term to be adapted to different modalities such as denoising, debluring or emission
tomography. The regularizing term acts as an infimal-convolution type operator that takes into
account the respective influence of time and space variables. We give existence and uniqueness
results and provide optimality conditions via duality analysis. In a forthcoming paper, see [5], we
deal with the numerical realisation of the proposed model and focus on dynamic Positron Emission
Tomography (PET) reconstruction.
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1. Introduction. In this paper, we are interested in describing a variational model for
denoising/debluring and/or emission tomography (ET) reconstruction of vector-valued im-
ages. What we call vector-valued images are usually color images, muti-spectral images,
images acquired at different time intervals as videos. We focus on dynamic medical imaging
as PET or functional MR images. There are many methods that handle videos or dyna-
mical processes and the majority of them focus on the numerics. Here we aim to describe a
variational model in an infinite dimensional setting, which, to our knowledge, has not been
done yet. In a the dynamical setting, spatial and temporal components contribute differently,
therefore we proceed with a non global description for both of them. Though, we have in
mind a specific application to dynamic PET, we present a model flexible enough to address
many applications.

We cannot quote the numerous papers on videos, since there is a huge literature, even if
we restrict ourselves to variational methods. Let us mention however the paper by Holler and
Kunisch [15], where the authors consider the model we investigate in a semi-discrete setting. In
addition, for dynamical PET applications, an active contour method with gradient vector flow
has been developped in [17, 18] but the underlying variational model has not been explored. In
this work, we do not address numerical issues since our concern is purely theoretical: we aim
to describe a powerful variational model and perform mathematical analysis (well-posedness
and optimality conditions). We will present numerical tests together with comparison with
classical semi-discrete models/methods in the PET context in a forthcoming paper [5].

Let us denote u : (0, T ) × Ω → R, the dynamic image with respect to the space domain
Ω ⊂ Rd with d ≥ 1 and with T > 0. In the following, we write Q ⊂ Rd+1 instead of (0, T )×Ω.
We focus on variational methods applied on a spatial-temporal domain and more precisely we
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2 M. BERGOUNIOUX AND E. PAPOUTSELLIS

consider the following generic minimization problem:

(1.1) inf
u∈X

N (u) +H(g,Au) ,

where,
• X is a suitable space where the minimization is well defined.
• N (u) is the regularizing term, that imposes a prior structure on the solution u
• H(g,Au) is the fitting data term and is determined by the modality and the induced

noise. We assume that the input data g ∈ L∞(Q) is degraded through a continuous
and linear operation A and with an additional random noise. In the forthcoming
analysis, we consider two cases of the linear operator A. We set A = A, a general
bounded and linear operator

(1.2) A ∈ L(Lp(Q),Lq(Q)) with 1 ≤ p ≤ d+ 1

d
and 1 ≤ q <∞.

Moreover, we set A = R, i.e., the Radon transform. Depending on the choice of the
noise and the operator A, we have the following fidelity terms:

– Gaussian/Impulse noise. If the noise follows a Gaussian distribution, it is
known that a suitable distance is the squared L2 norm, namely

H(g,Au) =

∫
Q
|g −Au|2 dx dt.

In the case of impulse noise or “salt and pepper noise”, a non-smooth fidelity
term is appropriate, see [24],[25], that is

H(g,Au) =

∫
Q
|g −Au| dx dt

( i.e. the L1 norm). Here, we consider a more general case:

H(g,Au) =
1

q
‖Au− g‖qLq(Q).

– Poisson noise. In the case where the input data g follows a Poisson distri-
bution, we use the so-called Kullback-Leibler (KL) divergence DKL : L1(Q)×
L1(Q)→ R+, see for instance [8],[21], defined by

(1.3) DKL(u, v) =

∫
Q

(
u log

(u
v

)
− u+ v

)
dx dt, ∀u, v ≥ 0 a.e .

We briefly recall some of the basic properties of KL-functional which can be
found in [9],[27] and will be used later:

Lemma 1. (a) Since lnx ≤ x − 1, for x > 0 the function DKL(u, v) is non-
negative and equal to 0 if and only if u = v.

(b) The function (u, v) 7→ DKL(u, v) is convex.
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(c) For fixed u ∈ L1(Q) (resp. v ∈ L1(Q) ), the function DKL(u, ·) (resp.
DKL(·, v)) is weakly lower semicontinous with respect to L1 topology.

(d) The following estimate is true:

(1.4) ‖u− v‖2L1(Q) ≤
(

2

3
‖u‖L1(Q) +

4

3
‖v‖L1(Q)

)
DKL(u, v).

Poisson data occur in a plethora of applications where images are obtained by
means of counting particles e.g. photons, that arrive to a measuring equip-
ment device. In medical imaging for instance we have the Positron Emission
Tomography (PET), Single-photon emission computed tomography (SPECT),
see [31] or in a general context [32]. Moreover, some astronomical images are
characterized by this kind of behaviour, see [7, 20].
Here, we focus on reconstructing dynamic raw data that appear in Emission To-
mography (PET, SPECT). Raw data are usually corrupted with Poisson noise
(or commonly referred as the photon counting noise) and they are connected
through an integral (projection) operator known as the Radon transform R,
see [23]. For every t ∈ (0, T ), we have that

(1.5)
(
Ru(θ, s)

)
(t) =

∫
x·θ=s

u(t, x) dx ,

where
{
x ∈ Rd : x · θ = s

}
is the hyperplane perpendicular to θ ∈ Sd−1 with

distance s ∈ R from the origin. For every t ∈ (0, T ), the Radon transform(
Ru(θ, s)

)
(t) lies on the

{
(θ, s) : θ ∈ Sd−1, s ∈ R

}
a cylinder of dimension d

and is often referred as projection space or sinogram space.
In a dynamic framework, we set Σ = (0, T )×

{
(θ, s) : θ ∈ Sd−1, s ∈ R

}
and the

Radon transform is a continuous linear operator with

(1.6) R : L1(Q)→ L1(Σ), ‖Ru‖L1(Σ) ≤ C ‖u‖L1(Q) .

We refer the reader to [26] for general continuity results of the Radon transform
in Lp spaces. Recall that, if p ≥ d+1

d ,the Radon transform is Lp discontinuous,

since the function u(x) = |x|−
d+1
p 1

log(|x|) belongs to Lp(Q), for x ∈ Q but is not

integrable over any hyperplane, see [22, Th. 3.32]. Now, the fidelity term in
the case of Poisson noise is a reduced version of the KL-divergence, since we
can neglect the terms that are independent of u ∈ X . Indeed, we write

(1.7) H(g,Ru) =

∫
Σ
Ru− g logRu dθ ds dt

since the g log g, −g do not count on the minimization problem (1.1). Finally,
let us mention that the above expression is well-defined since u ≥ 0 implies
that Ru ≥ 0 and this constraint is essential on (1.1).

Overall, we may consider different problems depending on the choice of the operators A and
R. For instance, if A = Id (the identity operator) we focus on the denoising model of data
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corrupted by Gaussian (q=2), impulse (q=1) or Poisson noise i.e., R = Id. In addition, if
Au = h ? u with h ∈ L∞(Q) is a convolution operator, we are interested on the debluring
process.

We have already discussed about the different fidelity terms in (1.1) and now we turn our
attention to the choice of the regulariser. For instance, in the work by Schaeffer and al. [29],
a space-time total variation term is considered as a regularizer. However, the authors focus
on the approximation schemes and deal with semi-discretized minimizers. Most of the papers
on dynamic and/or video image analysis focus on numerical realization and algorithms as [19]
in a MRI context, or [16] with the use of high order differentiation for compressed sensing.
Besides these classical methods we propose to use the following regularization term:

(1.8) Nλ,µ(u) = Fλ#Fµ(u) := inf
v∈X

Fλ(u− v) + Fµ(v) ,

where X is a suitable functional space and Fλ, Fµ are total variation type functionals on
space and time weighted by some time dependent parameters λ, µ. Regularization via inf-
convolution is a classical tool, since it is closely related to dual formulation (see [4, 13] for
example). The concept of an infimal convolution penalisation on a spatial-temporal domain
has been introduced (in a slightly different form) in [15] within a semi-discrete (with respect
to time) framework. We also refer the reader to [30], a recent work on a spatial-temporal
infimal convolution using high-order regularisers. However, the authors in [15] investigate
inf-convolution of n-th order and its connection with Total Generalized Variation (TGV), see
[10], while we have restricted ourselves to n = 2.

The paper is organized as follows: we first recall general results and give useful tools to
deal with the dynamic framework. Then we focus on the infimal-convolution regularizing
term and provide lower semi-continuity results. We prove also that the functional we consider
is equivalent to the total variation on (0, T ) × Ω. We next give an existence theorem in the
restrictive case where the parameters are constant as well as some stability results. Last section
is devoted to the dual formulation in an extended framework: this allows to generalize the
previous existence theorem to time dependent parameters and derive the optimality conditions.

2. Preliminaries. In this section, we recall some basic notations related to functions of
bounded variation (BV) extended to a spatial-temporal space. Recall that Ω ⊂ Rd, d ≥ 1 is
a bounded open set with smooth boundary and Q = (0, T )× Ω; then we define,

L1(0, T ; BV(Ω)) ={u : (0, T )× Ω→ R | u(t, ·) ∈ BV(Ω) a.e. t ∈ (0, T )

and t 7→ TVx(u)(t) ∈ L1(0, T )}
L1(Ω; BV(0, T )) ={v : (0, T )× Ω→ R | v(·, x) ∈ BV(0, T ) a.e. x ∈ Ω

and x 7→ TVt(v)(x) ∈ L1(Ω) },

where TVx (respectively TVt) stands for the standard total variation with respect to the space
variable (respectively the time variable). Precisely, we set

(2.1) Kx :=
{
ξ = divx(ϕ) | ϕ ∈ C1

c (Ω,Rd), ‖ϕ‖∞,x ≤ 1
}
,
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(2.2) Kt :=

{
ξ =

dϕ

dt
| ϕ ∈ C1

c (0, T,R), ‖ϕ‖∞,t ≤ 1

}
,

and write respectively for a.e. t ∈ (0, T ) and x ∈ Ω

(2.3)

TVx[v](t) = sup

{∫
Ω
ξ(t, x)v(t, x) dx | ξ ∈ Kx

}
,

TVt[v](x) = sup

{∫ T

0
ξ(t, x)v(t, x) dt | ξ ∈ Kt

}
.

Note that ‖ · ‖∞,t (resp. ‖ · ‖∞,x) norms stand for the norm of L∞(0, T ) (resp. L∞(Ω)). For a
function of bounded variation on the spatial-temporal domain Q, we write

(2.4) BV(Q) =
{
u ∈ L1(Q) | TV (u) <∞

}
where

(2.5) TV [v] = sup

{∫
Q
ξ(t, x)v(t, x) dx dt | ξ ∈ K

}
.

with

(2.6) K :=
{
ξ = div(t,x)(ϕ) | ϕ ∈ C1

c (Q,R× Rd), ‖ϕ‖∞ ≤ 1
}
.

In the following theorem, we recall some useful properties on the BV(O) space, where O is an
bounded, open set of RN (practically O = Ω with N = d or O = Q with N = d+ 1.)

Theorem 2.1. Let O ⊂ RN , N ≥ 1. The space BV(O) endowed with the norm

‖v‖BV(O) := ‖v‖L1(O) + TV (v)

is a Banach space.
• The mapping u 7→ TV[u] is lower semi-continuous from BV(O) endowed with the L1(O)
topology to R+.

• BV(O) ⊂ Lp(O) with continuous embedding, for 1 ≤ p ≤ N

N − 1
and

• BV(O) ⊂ Lp(O) with compact embedding, for 1 ≤ p < N

N − 1
.

The lemma below is essential for the forthcoming analysis. It is based on the definitions
above as well as of some tools in the proof of [14, Theorem 2, Section 5.10.2]. A similar result
but in a different context can be found in [6, Lemma 3].

Lemma 2. We have L1(0, T ; BV(Ω)) ∩ L1(Ω; BV(0, T )) = BV(Q).

Proof. We start with the first inclusion,

L1(0, T ; BV(Ω)) ∩ L1(Ω; BV(0, T )) ⊂ BV(Q).
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Let be u ∈ L1(0, T ; BV(Ω)) ∩ L1(Ω; BV(0, T )). For any ξ ∈ K there exists ϕ = (ϕ1, ϕ2) ∈
C1
c (Q,R× Rd) such that ‖ϕ‖∞ ≤ 1 and

ξ =
∂ϕ1

∂t
+ divxϕ2 := ξ1 + ξ2

Note that for every t ∈ (0, T ) , ξ2(t, ·) : x 7→ ξ2(t, x) belongs to Kx so that∫
Ω
ξ2(t, x)u(t, x) dx ≤ TVx(u)(t) a.e. t ∈ (0, T ) ,

and ∫ T

0

∫
Ω
ξ2(t, x)u(t, x) dx dt ≤

∫ T

0
TVx(u)(t)dt .

Similarly, ∫
Ω

∫ T

0
ξ1(t, x)u(t, x) dt dx ≤

∫
Ω
TVt(u)(x)dx .

Then, for every ξ ∈ K∫
Q
ξ(t, x)u(t, x) dt dx =

∫ T

0

∫
Ω
ξ2(t, x)u(t, x) dx dt+

∫
Ω

∫ T

0
ξ1(t, x)u(t, x) dt dx

≤
∫ T

0
TVx(u)(t)dt+

∫
Ω
TVt(u)(x)dx.

The right hand side is finite independently of ξ since u ∈ L1(0, T ; BV(Ω)) ∩ L1(Ω; BV(0, T )).
Thefore, u ∈ BV (Q) and

(2.7) TV (u) ≤
∫ T

0
TVx(u)(t)dt+

∫
Ω
TVt(u)(x)dx .

Let us prove the converse inclusion. We first assume that u ∈W 1,1(Q). Then with Fubini’s
theorem we get

t 7→
∫

Ω
|∇t,xu|(t, x) dx ∈ L1(0, T ) , and x 7→

∫ T

0
|∇t,xu|(t, x) dt ∈ L1(Ω) .

Recall that

|∇t,xu| =

√√√√(∂u
∂t

)2

+
d∑
i=1

(
∂u

∂xi

)2

,

so that

max (|∇tu(t, x)|, |∇xu(t, x)|) ≤ |∇t,xu(t, x)| ≤ |∇tu(t, x)|+ |∇xu(t, x)| .

Therefore

t 7→
∫

Ω
|∇xu|(t, x) dx ∈ L1(0, T ) , and x 7→

∫ T

0
|∇xu|(t, x) dt ∈ L1Ω) ,
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and we get u ∈ L1(0, T ; BV(Ω)) ∩ L1(Ω; BV(0, T )) with

max

(∫ T

0
TVx(u)(t) dt,

∫
Ω
TVt(u)(x) dx

)
≤ TV (u)(2.8)

≤
∫ T

0
TVx(u)(t) dt+

∫
Ω
TVt(u)(x) dx.

We now consider u ∈ BV (Q) and show that u ∈ L1(0, T, BV (Ω). The other inclusion can be
proved similarly. As W 1,1(Q) is dense in BV (Q) in the sense of the intermediate convergence
[4], there exists a sequence of functions uk ∈ W 1,1(Q) such that uk converges to u in L1(Q)
and TV (uk) → TV (u). With Fubini’s theorem we infer that uk(t, ·) converges to u(t, ·) in
L1(Ω, for almost every t ∈ (0, T ) (up to a subsequence). Moreover, TV (uk) → TV (u) is

bounded. Using (2.8) we claim that

∫ T

0
TVx(uk)(t) dt is bounded as well and with Fatou’s

Lemma we get ∫ T

0
lim inf
k→∞

TVx(uk)(t) dt ≤ lim inf
k→∞

∫ T

0
TVx(uk)(t) dt

≤ lim inf
k→∞

TV (uk) = TV (u) < +∞(2.9)

and lim inf
k→∞

TVx(uk)(t) <∞ a.e t ∈ (0, T ). Now, for a.e t ∈ (0, T ) we get

∀ξ ∈ Kx

∫
Ω
uk(t, x)ξ(x) dx ≤ TVx(uk)(t) .

So , for every ξ ∈ Kx∫
Ω
u(t, x)ξ(x) dx = lim

k→+∞

∫
Ω
uk(t, x)ξ(x) dx ≤ lim inf

k→+∞
TVx(uk)(t) < +∞.

Therefore

TVx(u)(t) = sup
ξ∈Kx

∫
Ω
u(t, x)ξ(x) dx ≤ lim inf

k→+∞
TVx(uk)(t) < +∞.

This means u(t, ·) ∈ BV(Ω) a.e t ∈ (0, T ). Using (2.9), we get∫ T

0
TVx(u)(t) dt ≤

∫ T

0
lim inf
k→+∞

TVx(uk)(t) dt ≤ TV (u) .

This ends the proof, and the inequality (2.8) is also valid for every u ∈ BV (Q). �

Remark 2.1. The second inclusion of the previous lemma can be seen as a generalization
of a function of bounded variation “in the sense of Tonelli” denoted by TBV, see [12, 3]. For
instance, a function of two variables h(x, y) is TBV on a rectangle [a, b]× [c, d] if and only if
TVxh(·, y) <∞ for a.e y ∈ [c, d], TVyh(x, ·) <∞ for a.e x ∈ [a, b] and TVxh(·, y) ∈ L1([a, b]),
TVyh(x, ·) ∈ L1([c, d]).

Remark 2.2. Note that in Lemma (2), we prove also

TV (u) ≤
∫ T

0
TVx(u)(t)dt+

∫
Ω
TVt(u)(x)dx ≤ 2TV (u).
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2.1. The Fλ#Fµ regularizer . In this section, we proceed with the analysis of the proposed
regularizer, that is

(2.10) Nλ,µ(u) = Fλ#Fµ(u) := inf
v∈X

Fλ(u− v) + Fµ(v).

In the sequel we always deal with functions α such that

(2.11) α ∈W 1,∞(0, T ) and 0 < αmin ≤ α(t) ≤ αmax < 1 a.e. t ∈ (0, T ),

where αmin and αmax are real numbers. Indeed, it is important to allow time dependent
parameters since acquisition snapshots may not be uniformly distributed. This is the case,
for example, for a dynamical TEP process. Once the problem is discretized, these parameters
involve the time step which is not constant.

We define Φα(u) (in space) as the L1(0, T )-norm of t 7→ α(t)TVx[u](t), i.e.,

(2.12) ∀u ∈ L1(0, T ; BV(Ω)), Φα(u) =

∫ T

0
TVx[αu](t) dt =

∫ T

0
α(t)TVx[u](t) dt,

and for a penalization on the temporal domain, we define Ψα as

(2.13) Ψα(v) =

∫
Ω
TVt[αv](x) dx, ∀v ∈ L1(Ω; BV(0, T ))

Using Lemma 2 and equations (2.12),(2.13) we have the following:

Definition 2.1. Let X = BV(Q) and α = (α1, α2) ∈ W 1,∞(0, T ) ×W 1,∞(0, T ). We define
Fα on X as

(2.14) Fα(u) = Φα1(u) + Ψα2(u), ∀u ∈ X

that is

Fα(u) =

∫ T

0
TVx[α1u](t) dt+

∫
Ω
TVt[α2u](x) dx.

Moreover, for λ = (λ1, λ2) and µ = (µ1, µ2) where λi, µi, i = 1, 2 satisfy (2.11) we define

Fλ#Fµ(u) := inf
v∈X

Fλ(u− v) + Fµ(v)

Remark 2.3. Note that if α is a constant function then

∀m ∈ R Fα(u+m) = Fα(u) .

Proposition 2.1. The functionals Φα1 and Ψα2 are convex and lower semi-continuous
on L1(0, T ; BV(Ω)) and L1(Ω; BV(0, T )) respectively, with respect to the L1(Q) topology. In
particular, for any α = (α1, α2) such that αi satisfies (2.11), the functional Fα is lower
semi-continuous on BV(Q) with respect to the L1 topology. In particular, they are both lower
semi-continuous on BV(Q) for any Lp(Q) topology with p ≥ 1.
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Proof. We start with the lower semicontinuity of Φα1 . The proof is similar for the lower
semicontinuity of Ψα2 . Let un ∈ L1(0, T ;BV (Ω)) such that un → u in L1(Q) and un(t, x) ∈
BV(Ω) a.e. t ∈ (0, T ) and TVx(un)(t) ∈ L1(0, T ). If lim inf

n→+∞
Φα1(un) = +∞ then the lower

semi-continuity inequality is obviously satisfied. Otherwise, one can extract a subsequence
(still denoted un) such that

sup
n

Φα1(un) = sup
n

∫ T

0
TVx[α1un](t) dt < +∞ ,

Fatou’s Lemma applied to the sequence TVx(α1un) gives∫ T

0
lim inf
n→+∞

TVx[α1un](t) dt ≤ lim inf
n→+∞

∫ T

0
TVx[α1un](t) dt = lim inf

n→+∞
Φα1(un) < +∞.

Moreover, for a.e. t ∈ (0, T ) we get

∀ξ ∈ Kx, TVx[α1un](t) ≥
∫

Ω
α1(t)ξ(x)un(t, x) dx.

As un strongly converges to u in L1(Q) then un(t, x)→ u(t, x) in L1(Ω) a.e. t ∈ (0, T ) up to
a subsequence. Therefore

∀ξ ∈ Kx, a.e. t ∈ (0, T ), lim inf
n→+∞

TVx[α1un](t) ≥
∫

Ω
α1(t)ξ(x)u(t, x) dx,

and , for almost every t ∈ (0, T )

lim inf
n→+∞

TVx[α1un](t) ≥ sup
ξ∈Kx

∫
Ω
α1(t)ξ(x)u(t, x) dx = TVx[α1u](t).

Finally,

Φα1(u) =

∫ T

0
TVx[α1u](t) dt ≤

∫ T

0
lim inf
n→+∞

TVx[α1un](t) dt ≤ lim inf
n→+∞

Φα1(un) .

Eventually, the functional Fα is lower semicontinuous on BV(Q) as the sum of two lower
semicontinuous functionals. �

Next result provides an equivalence relation between the spatial-temporal total variation
regularization and the functional Fα. We have already an equivalence relation in the case
where α1 = α2 = 1, see Remark 2.2.

Proposition 2.2. Assume that α = (α1, α2) satisfies (2.11). The functional Fα is equivalent
to the total variation in BV(Q) and there exists constants C1, C2 such that, for every u ∈
BV(Q),

C1TV (u) ≤ Fα(u) ≤ C2TV (u) .

Proof. From (2.11) and Remark 2.2, we obtain that

Fα(u) = Φα1(u) + Ψα2(u) ≥ αmin
(∫ T

0
TVx(u)(t) dt+

∫
Ω
TVt(u)(x) dx

)
≥ αmin TV (u).

Similarly, for the right hand side we have that Fα(u) ≤ 2αmaxTV (u). �
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Remark 2.4. 1. We just prove that Fα is equivalent to the total variation, so that the model
we investigate is a classical ICTV (Infimal Convolution Total Variation) one. However, the
use of Fα allows to take the different roles on the time and space variable into account, with
parameters acting as weight functions. This give some freedom to the model , allowing to
adapt these parameters to the discretization steps, as in [15] for example where the authors
have a similar approach, using an inf-convolution process to take time and space information
into account. Using our notations they consider the time-discretized formulation of∫ T

0
TVx(κ(u− v))(t) dt+

∫
Ω
TVt((u− v))(x) dx

and

∫ T

0
TVx(v)(t) dt+

∫
Ω
TVt(κv)(x) dx

where κ > 1. This coincides with (2.10) when λ = (κ, 1) and µ = (1, κ).
Furthermore, the use of Fα allows to consider many discretization processes. As an ex-

ample, a classical approximation of the total variation is

TV (u) '
∫
Q
|∇t,xu|dt dx =

∫
Q

√√√√(∂u
∂t

)2

+

d∑
i=1

(
∂u

∂xi

)2

dt dx,

while Fα may be approximated by

Fα(u) '
∫
Q

|∇tu|+
√√√√ d∑

i=1

(
∂u

∂xi

)2
 dt dx

whose behavior is different from the numerical point of view.
2. Practically speaking, we set α1 = a and α2 = 1− a with a ∈ (0, 1). In the limit case where
a = 1 we have

F(1,0)(u) =

∫ T

0
TVx[u](t) dt and F(0,1)(u) =

∫
Ω
TVt[u](x) dx.

Finally, a similar result is also true for the infimal-convolution regularizer (2.10).

Proposition 2.3. There exists constants C1, C2 > 0 such that

∀u ∈ X C1TV (u) ≤ Nλ,µ(u) ≤ C2TV (u).

Proof. Let be u ∈ X . Then for any v ∈ X

C1TV (u) ≤ C1TV (u− v) + C1TV (v) ≤ Fλ(u− v) + Fµ(v)

Passing to the infimum gives C1TV (u) ≤ Nλ,µ(u) . On the other hand,

Nλ,µ(u) = inf
v∈X

Fλ(u− v) + Fµ(v) ≤ Fµ(u) ≤ C2TV (u).

�



AN INF-CONVOLUTION BV TYPE MODEL FOR DYNAMIC RECONSTRUCTION. 11

3. Well posedness results. In this section, we are interested in the well-posedness of the
minimization problem (1.1).
Recall that Q = (0, T ) × Ω ⊂ Rd+1, X = BV(Q) with 1 ≤ p ≤ d+1

d . Also, we fix two linear
and continuous operators with A ∈ L(Lp(Q),Lq(Q)), 1 ≤ q < ∞ and R ∈ L(L1(Q),L1(Σ))
for the Radon transform. A general fidelity term covering both cases is defined below

(3.1) H(g,Au) =


1

q
‖Au− g‖qLq(Q), if A = A,

DKL(g,Ru) + 1{u≥0}(u), if A = R.

Note that for the second case we assume that infΣ g > 0. Using (3.1),(2.10), then (1.1)
becomes

(P) inf
u∈X

Fλ#Fµ(u) +H(g,Au)

which is equivalent to

(3.2) inf
(u,v)∈X×X

Fλ(u− v) + Fµ(v) +H(g,Au).

We begin by verifying the existence and uniqueness of (3.2) using some classical arguments of
[1] adapted to the spatial-temporal framework. In terms of the Kullback-Leibler data fidelity
we follow [27], [28].

Theorem 3.1. Assume that λ, µ are constants and g ∈ L∞(A(Q)) with AχQ 6= 0. Then,
the minimization problem (3.2) admits (at least) a solution pair (u∗, v∗) ∈ X × X .

Proof. Let (un, vn) ∈ X × X a minimizing sequence and set

(3.3) J(un, vn) = Fλ(un − vn) + Fµ(vn) +H(g,Aun).

Since g ∈ L∞(A(Q)) the infimum is finite and there exists a constant C > 0 such that
J(un, vn) ≤ C and we get Fλ(u − vn), Fµ(v) ≤ C as well. In the following, we use the same
constant C > 0. Using Proposition 2.2 there exists C > 0 such that TV (vn) ≤ C. Since, λ, µ
are constants, we assume without loss of generality that

∫
Q v = 0. Indeed, we have that

Fλ(u− v + c) + Fµ(v + c) = Fλ(u− v) + Fµ(v).

From the Poincaré inequality, see [2], we obtain that ‖vn‖L1(Q) ≤ TV (vn) ≤ C and that (vn)

is BV-bounded. Then, there exists v∗ ∈ BV(Q) such that, up to subsequence, vnk
w∗
⇀ v∗. It

suffices to prove that un is BV-bounded. From the Poincaré inequality, we have that

‖un − un‖Lp(Q) ≤ CTV (un) ≤ CTV (un − vn) + CTV (vn)

≤ CFλ(un − vn) + Fµ(vn) ≤ C
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where un is the mean value of un. Moreover, we have that

(3.4) ‖un‖Lp(Q) ≤ ‖un − un‖Lp(Q) +
∣∣ ∫

Q
un dx dt

∣∣ ≤ C +
∣∣ ∫

Q
un dx dt

∣∣.
We consider two cases with respect to the choice of the fidelity term.

• If A = A: Since AχQ 6= 0, we have the following estimate∣∣∣∣∫
Q
un dx dt

∣∣∣∣ ‖AχQ‖Lq(Q)

|Q|
= ‖Aun‖Lq(Q) ≤ ‖Aun−Aun+Aun−g + g‖Lq(Q)

≤ ‖A‖ ‖un− un‖Lp(Q)+ ‖Au−g‖Lq(Q)+‖g‖Lq(Q)

≤ C

• If A = R: In this case, we have an additional constraint on un, that is un ≥ 0 and therefore it
suffices to bound

∫
Q un dx dt = |Q| ‖un‖L1(Q). We use the estimate in (1.4) and set un− un =

wn. Then

‖Rwn +Run− g‖2L1(Σ)≤
(

2

3
‖g‖L1(Σ)+

4

3
‖Rwn+Run‖L1(Σ)

)
DKL(g,Run)

≤
(

2

3
‖g‖L1(Σ)+

4

3
‖A‖C+

4

3
‖Aun‖L1(Σ)

)
C.(3.5)

On the other hand,

‖Rwn+Run− g‖2L1(Σ) ≥
(
‖Rwn − g‖L1(Σ) − ‖Run‖L1(Σ)

)2
(3.6)

≥ ‖Run‖L1(Σ)

(
‖Run‖L1(Σ) − 2 ‖Rwn − g‖L1(Σ)

)
≥ ‖Run‖L1(Σ)

(
‖Run‖L1(Σ)− 2 (‖A‖C+‖g‖L1(Σ))

)
.

Similar to the previous case, one has

(3.7) ‖Run‖L1(Q) =

∫
Q
un dx dt

|Q|
‖RχQ‖L1(Σ)⇔‖Run‖L1(Σ)=C ‖un‖L1(Q)

Combining (3.5),(3.6) using (3.7), we derive that

C ‖un‖L1(Q)

(
C ‖un‖L1(Q) − 2(‖A‖C + ‖g‖L1(Σ))−

4

3
C

)
≤
(

2

3
‖g‖L1(Σ) +

4

3
‖A‖C

)
C(3.8)

Let B = C ‖un‖L1(Q) − 2(‖A‖C + ‖g‖L1(Σ))−
4
3C. If B ≥ 1, it is immediate from (3.8), that

‖un‖L1(Q) is bounded. Otherwise, we have that

‖un‖L1(Q) ≤
2(‖A‖C + ‖g‖L1(Σ)) + 4

3C + 1

C

which is again bounded.
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For both cases (un) is Lp-bounded with 1 ≤ p ≤ d+1
d . Then, it is also BV bounded and there

exists unk
w∗
⇀ v∗ in BV, unk

w
⇀ u∗ in Lp, 1 ≤ p ≤ d+1

d . Now, using the continuities of A and

R, we obtain that Aunk
w
⇀ Au∗ in Lq and Runk

w
⇀ Ru∗ in L1. Equivalently, we have that

1

q
‖Au∗ − g‖qLq(Q) ≤ lim inf

k→∞

1

q
‖Aunk − g‖

q
Lq(Q)

and also using Lemma 1

DKL(g,Ru∗) ≤ lim inf
k→∞

DKL(g,Runk).

Finally, due to the lower semicontinuity of Fλ, Fµ we conclude that

J(u∗, v∗) ≤ lim inf
k→∞

J(unk , vnk).

�
We continue with the uniqueness of the minimizers of (3.2). It suffices to prove that objective
functional J(u, v) in (3.3) is strictly convex in X × X . By the definition of the fidelity term
(3.1) this is true for every 1 < q <∞. Furthermore, the Kullback-Leibler divergence is strictly
convex since inf

Σ
g > 0 and the Radon transform is injective on L1, see for instance [22]. Hence,

we need only an injectivity assumption on A. Moreover, if (u, v) ∈ X ×X is a minimizer then
also (u, v + c) ∈ X × X with c ∈ R. Therefore, we have proved the following:

Theorem 3.2. If A ∈ L(Lp(Q),Lq(Q)), with 1 < q < +∞, is an injective operator then
Problem (3.2) with constants λ, µ admits a unique minimizer (u, v) ∈ X × X except in the
direction (0, c), c ∈ R.

To conclude, we focus on the stability of minimizers of (3.2) with respect to a small pertur-
bation on the data g. Let (gn) be a perturbed data sequence with H(gn, g)→ 0 and (un, vn)
be a solution to

(3.9) inf
(u,v)∈X×X

Jn(u, v) with Jn(u, v) := Fλ(u− v) + Fµ(v) +H(gn, Au).

Theorem 3.3. The problem (3.2) is stable with respect to g perturbations. Precisely, if (u, v)
and (un, vn) are solutions to (3.2) and (3.9) respectively, there exist subsequences (denoted
similarly) converging to (u, v) in BV-w∗ and un

w
⇀ u in Lp with 1 ≤ p ≤ d+1

d . Note that for
the Kullback-Leibler case, we have to assume also that inf

Σ
gn > 0 and logRu ∈ L∞(Σ).

Proof. Since (un, vn) ∈ X × X is a solution of (3.9), then

(3.10) Jn(un, vn) ≤ Jn(u, v), ∀(u, v) ∈ X × X .

• If A = A, there exists M > 0 such that

Fλ(un − vn) + Fµ(vn) +
1

q
‖Aun − gn‖qLq(Q) ≤ Fλ(u− v) + Fµ(v) +

1

q
‖Au− gn‖qLq(Q)

≤ CTV (u) + 2CTV (v) +
1

q
‖Au− gn + g − g‖qLp(Q)

≤ CTV (u) + 2CTV (v) +
2q

q
(‖Au− g‖qLq(Q) + ‖gn − g‖qLq(Q)) ≤M.
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As in the previous proofs, we obtain subsequences still denoted (un), (vn) and (u∗, v∗) ∈ X×X
such that (un, vn)

w∗
⇀ (u∗, v∗) in BV and un

w
⇀ u∗ in Lp with 1 ≤ p ≤ d+1

d . Then, Aun − gn
w
⇀

Au∗ − g in Lq; using (3.10) and the lower semicontinuity of the corresponding functionals we
conclude that

Fλ(u∗ − v∗) + Fµ(v∗) +
1

q
‖Au∗ − g‖qLq(Q)

≤ lim inf
n→∞

Fλ(un − vn) + Fµ(vn) +
1

q
‖Aun − gn‖qLq(Q)

≤ lim sup
n→∞

Fλ(un − vn) + Fµ(vn) +
1

q
‖Aun − gn‖qLq(Q)

≤ lim sup
n→∞

Fλ(u− v) + Fµ(v) +
1

q
‖Au− gn‖qLq(Q)

= Fλ(u− v) + Fµ(v) +
1

q
‖Au− g‖qLq(Q) for all (u, v) ∈ X × X .

Equivalently (u∗, v∗) is a minimizer of (3.2).

• If A = R, we get DKL(gn, g)→ 0 and ‖gn − g‖L1(Q) → 0 by (1.4); so

(3.11) Fλ(un − vn) + Fµ(vn) +DKL(gn,Run) ≤ Fλ(u− v) + Fµ(v) +DKL(gn,Ru),

for all (u, v) ∈ X × X with a.e. u ≥ 0. Furthermore,

|DKL(gn,Ru)−DKL(g,Ru)−DKL(gn, g)| ≤ ‖logRu−log g‖L∞(Σ) ‖gn−g‖L1(Σ) .

Since g, logRu ∈ L∞(Σ) we pass to the limit and obtain

lim
n→∞

DKL(gn,Ru) = DKL(g,Ru);

so the right hand side of (3.11) is bounded.

As before, there exists (un, vn)
w∗
⇀ (u∗, v∗) in BV and un

w
⇀ u∗ in Lp with 1 ≤ p ≤ d+1

d . Here,
we use both the strong convergence in L1 (that is Run → Ru∗ and gn → g) and the pointwise
convergence almost everywhere.
Applying Fatou’s Lemma to (gn log gn − gn logRun − gn +Run)n, one gets

DKL(g,Ru∗) ≤ lim inf
n→∞

DKL(gn,Run).

The end of the proof is similar to the previous case. �
Finally, let us address the importance of the additional conditions on the data g and the

perturbed data gn for the Kullback-Leibler divergence case. In theory, conditions such as
infΣ g, infΣ gn > 0 are necessary in order to the KL fidelity terms to be well defined. In
practice, these are not significantly restrictive. In emission tomography for instance, this can
be achieved if we confine ourselves to the lines of the Radon transform intersecting the support
of u. In addition, under a finite time acquisition process the requirement that g ∈ L∞(Σ) is
also a valid assumption.
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4. Optimality conditions via duality .

4.1. Extension to Lp(Q). Here, we choose p such that 1 < p <
d+ 1

d
so that BV(Q) ⊂

Lp(Q) with compact embedding. We denote 〈·, ·〉p,p′ the duality product between Lp(Q) and

its dual Lp
′
(Q) (with

1

p
+

1

p′
= 1). Note that

∀u ∈ Lp(Q), ∀v ∈ Lp
′
(Q) 〈u, v〉p,p′ =

∫
Q
u(t, x) v(t, x) dt dx .

We start by extending Φα1 , Ψα2 and Fα from their respective domains to Lp(Q) as follows:

Φ̃α1(u) =

{
Φα1(u) if u ∈ L1(0, T ; BV(Ω))
+∞ else.

,

Ψ̃α2(u) =

{
Ψα2(u) if u ∈ L1(Ω; BV(0, T ))
+∞ else.

and

F̃α(u) =

{
Fα(u) if u ∈ BV(Q)
+∞ if u ∈ Lp(Q)\BV(Q)

.

Proposition 4.1. The functionals Φ̃α and Ψ̃α are convex and lower semi-continuous on
Lp(Q) with respect to the L1(Q) topology.

Proof. Let (un)n≥0 in Lp(Q) be a L1(Q)-strongly convergent sequence to u ∈ L1(Q).
If lim inf
n→+∞

Φ̃α(un) = +∞ then the lower semi-continuity inequality is obviously satisfied. Other-

wise, one can extract a subsequence (still denoted un) such that Φ̃α(un) = Φα(un) is bounded.
This means that un ∈ L1(0, T ; BV(Ω)) for every n. The end of the proof is the same as the
proof of Proposition 2.1 �

Corollary 4.1. For any α = (α1, α2) such that αi satisfies (2.11), the functional F̃α is lower
semi-continuous on Lp(Q) with respect to the L1 topology.

Now, we prove that the extended infimal-convolution Ñλ,µ(u) = F̃λ#F̃µ(u) is lower semi-
continuous with respect to the Lp(Q) topology using the following

Theorem 4.1 (Proposition 15.1.7 [4]). Let V be a reflexive space and f, g : V →]−∞,+∞]
be two proper convex lower semicontinuous functions. Assume
(i) compactness: if tn → +∞, un and vn converge weakly, un+vn → 0 strongly, and f(tnun)+
g(tnvn) is bounded from above, then un and vnconverge strongly;
(ii) compatibility: if f∞(v) + g∞(−v) ≤ 0 then f∞(−v) + g∞(v) ≤ 0.
Then the inf-convolution f#g is lower semicontinuous.

Here f∞ denotes the recession function of f ([4] p. 555), where f is lsc. It is defined as
following

f∞(v) = lim
t→+∞

f(v0 + tv)

t
,

where v0 is any element such that f(v0) < +∞. Here we can choose v0 = 0.
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Theorem 4.2 (Ñλ,µ semi-continuity). For every λ, µ whose components satisfy (2.11),
F̃λ#F̃µ(u) is lower semi-continous with respect to the Lp(Q)- topology.

Proof. We choose V = Lp(Q) in Theorem 4.1, f = F̃λ and g = F̃µ. We have seen in
Proposition 4.1 that for any α satisfying assumption (2.11) then F̃α is lsc on Lp(Q) with re-
spect to the Lp(Q). As Fα is positively homogoneous we get F̃α(tv) = |t|F̃α(v) and F̃∞α = F̃α.
Moreover Fα is even so point (ii) of Theorem 4.1 is ensured.
Now consider tn → +∞, un and vn that converge weakly in Lp(Q) such that un + vn → 0
strongly, and F̃λ(tnun) + F̃µ(tnvn) is bounded from above. So tnun and tnvn are in BV(Q)
and with Proposition 2.2, this means that TV (tnun) and TV (tnvn) are bounded from above
and (since tn → +∞) TV (un) → 0 and TV (vn) → 0. Moreover un and vn converge weakly
in Lp(Q) so they are bounded in Lp(Q) and in L1(Q). So un and vn are bounded in BV(Q).
Therefore they strongly converge in Lp(Q) since BV(Q) is compactly embedded in Lp(Q). �

In the previous section, we showed an existence result under the assumption that the
parameters λ and µ are constant. Here, working with the extended functionals we may
neglect this assumption. Moreover, we obtain a uniqueness as well.

Theorem 4.3. Assume λ = (λ1, λ2) and µ = (µ1, µ2) are such that λi, µi satisfies (2.11)

and X = Lp(Q) with 1 < p <
d+ 1

d
. Then (3.2) has a unique solution.

Proof. Let un ∈ Lp(Q) be a minimizing sequence : Ñλ,µ(un) + H(g,Aun) converges to

inf(P). Therefore Ñλ,µ(un) is bounded, which means that un ∈ BV(Q) and that TV (un) is
bounded as well, see Proposition 2.2. It remains to prove that (un) is bounded in Lp(Q),
hence BV bounded. The rest of the proof is identical to Theorem 3.1 if we consider again
two different cases with respect to the data fitting term i.e., A = A,R. The uniqueness is
guaranteed if A ∈ L(Lp(Q),Lq(Q)) is an injective operator with 1 < q < ∞ and infΣ g > 0
for the Kullback-Leibler case.

4.2. Fenchel conjugate of Ñλ,µ = F̃λ#F̃µ. In order to derive the optimality conditions
of (3.2), we have to compute the subdifferentials of each term. A useful tool to achieve this
goal is to compute the conjugate functionals. Indeed, we know

Theorem 4.4. [4, Theorem 9.5.1.] If V is a normed space with dual space V ′, and f : V →
R ∪ {+∞} is a lower semi-continuous convex and proper function, then

∀(u, u∗) ∈ V × V ′ u∗ ∈ ∂f(u)⇐⇒ u ∈ ∂f∗(u∗) ,

where f∗ is the Fenchel conjugate of f and ∂f(u) is the sub-differential of f at u:

∂f(u) = {u∗ ∈ V ∗ | ∀v ∈ V f(v)− f(u) ≥ 〈u∗, v − u〉V ′,V } .

The first step is to compute the Fenchel conjugate of Ñ = F̃λ#F̃µ starting by F̃λ. Let us
focus on the computation of the Fenchel-conjugate of Φ̃λ. We set

Kx :=
{
ξ = divx φ |φ ∈ L∞(0, T ; C1

c (Ω,Rd)), ‖φ‖∞ ≤ 1
}
.
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Note that Kx ⊂ L∞(Q). In what follows, we identify functions defined on Ω with functions
defined on (0, T )× Ω which are constant with respect to time :

∀t ∈ (0, T ) ξ(t, x) = ξ(x) a. e. x ∈ Ω.

With this identification, we get the following result that will be used in the next proof.

Lemma 3. We get

Kx ⊂ Kx ,

where Kx is given by (2.1).
Conversely, any ξ ∈ Kx verifies ξ(t, ·) ∈ Kx, for almost every t ∈ (0, T ).

Proof. Let be ξ ∈ Kx. There exists ϕ ∈ C1
c (Ω,Rd) such that ξ = divx ϕ and ‖ϕ‖∞,x ≤ 1.

Let ϕ̃ ∈ C1
c (Q,Rd)) be defined as ϕ̃(t, x) = ϕ(x), (t, x) ∈ Q. Then ‖ϕ̃‖∞ ≤ 1 and ξ = divx ϕ̃ =

divx ϕ. This ends the proof. �

Theorem 4.5 (Φ̃α Conjugate). For every function α such that (2.11) is satisfied, we get

Φ̃∗α = 1αKx

where, 1C is the indicatrix function of the set C and Kx is the Lp
′
-closure of Kx.

Proof. We first remark that, for every u∗ ∈ Lp
′
(Q)

Φ̃∗α(u∗) = sup
v∈Lp(Q)

〈v, u∗〉p,p′ − Φ̃α(v) = sup
v∈BV(Q)

〈v, u∗〉p,p′ − Φα(v).(4.1)

Recall that, for any u ∈ BV(Q),

TVx(u)(t) = sup
ξ∈Kx

∫
Ω
ξ(x)u(t, x) dx a.e. t .

Let be ξ ∈ Kx, then ξ(t, ·) ∈ Kx for almost every t ∈ (0, T ).∫
Ω
ξ(t, x)u(t, x) dx ≤ sup

ζ∈Kx

∫
Ω
ζ(x)u(t, x) dx = TVx(u)(t).

So

(4.2) Φα(u) ≥ sup
ξ∈αKx

∫ T

0

∫
Ω
ξ(t, x)u(t, x) dx = sup

ξ∈αKx
〈ξ, u〉p,p′ .

As Φ̃α is positively homogeneous, then Φ̃∗α is the indicatrix of some closed subset K̃ of Lp
′
(Q).

• We first prove that αKx ⊂ K̃. Let u∗ be in αKx. Using (4.1),

Φ̃∗α(u∗) = sup
u∈BV(Q)

〈u∗, u〉p,p′ − Φα(u) .
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Equation (4.2) gives that Φα(u) ≥ 〈u∗, u〉p,p′ for any u ∈ BV(Q) and so Φ̃∗α(u∗) ≤ 0. As Φ̃∗α
is an indicatrix function this means that Φ̃∗α(u∗) = 0. So u∗ ∈ K̃ and αKx ⊂ K̃. As K̃ is
Lp
′
-closed this gives αKx ⊂ K̃ .

• Let us prove the converse inclusion. Assume there exists u∗ ∈ K̃ such that u∗ /∈ αKx. One
can separate u∗ and αKx, see [11], there exists ω ∈ R and u0 ∈ Lp(Q) such that

〈u∗, u0〉p,p′ > ω ≥ sup
v∗∈αKx

〈v∗, u0〉p,p′ .

Hence, we have that

(4.3) sup
v∗∈αKx

〈v∗ − u∗, u0〉p,p′ < 0 .

On the other hand, one can proceed with the following: as Φ̃α is convex and lower semi-
continuous with respect to the Lp-topology, we get Φ̃∗∗α = Φ̃α. This gives in particular

∀u ∈ BV(Q), Φα(u) = sup
v∗∈Lp′ (Q)

〈v∗, u〉p,p′ − Φ̃∗α(v∗).

As u∗ ∈ K̃ then Φ̃∗α(u∗) = 0 and we obtain

(4.4) ∀u ∈ BV(Q), Φα(u) ≥ 〈u∗, u〉p,p′ .

Let us fix t ∈ (0, T ). We get

∀ξ ∈ Kx α(t)ξ(x)u(t, x) ≤ sup
ζ∈Kx

α(t)ζ(x)u(t, x) a. e. x ∈ Ω .

Then,

∀ξ ∈ Kx

∫
Ω
α(t)ξ(x)u(t, x) dx ≤

∫
Ω

sup
ζ∈Kx

α(t)ζ(x)u(t, x) dx ,

sup
ξ∈Kx

∫
Ω
α(t)ξ(x)u(t, x) dx ≤

∫
Ω

sup
ζ∈Kx

α(t)ζ(x)u(t, x) dx ,

TVx(αu)(t) ≤
∫

Ω
sup
ζ∈Kx

α(t)ζ(x)u(t, x) dx

TVx(αu)(t)−
∫

Ω
u∗(t, x)u(t, x) dx ≤

∫
Ω

[
sup
ζ∈Kx

α(t)ζ(x)− u∗(t, x)

]
u(t, x) dx.

Integrate over (0, T ), we obtain∫ T

0
TVx(αu)(t) dt−

∫ T

0

∫
Ω
u∗(t, x)u(t, x) dx dt ≤∫ T

0

∫
Ω

[
sup
ζ∈Kx

α(t)ζ(x)− u∗(t, x)

]
u(t, x) dx dt.
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Then,

Φα(u)− 〈u∗, u〉p,p′ ≤
∫ T

0

∫
Ω

[
sup
ζ∈αKx

ζ(x)− u∗(t, x)

]
u(t, x) dx dt

≤
∫ T

0

∫
Ω

[
sup
ξ∈αKx

ζ(x)− u∗(t, x)

]
u(t, x) dx dt,

since αKx ⊂ αKx (with Lemma 3). With relation (4.4) this implies

∀u ∈ BV(Q)

∫ T

0

∫
Ω

(
sup
ξ∈αKx

ξ(t, x)− u∗(t, x)

)
u(t, x) dx dt ≥ 0.

As BV(Q) is dense in Lp(Q) with respect to the Lp-norm (since it includes C1(Q) ) we get

∀u ∈ Lp(Q)

∫
Q

(
sup
ξ∈αKx

ξ(t, x)− u∗(t, x)

)
u(t, x) dx dt ≥ 0.

In a similar way, choosing −u instead of u we conclude that

sup
ξ∈αKx

ξ − u∗ = 0 .

Therefore,
sup
ξ∈αKx

〈ξ − u∗, u0〉p,p′ = 0.

As αKx ⊂ αKx then
sup
ξ∈αKx

〈ξ − u∗, u0〉p,p′ ≥ 0 .

which gives a contradiction. with equation (4.3). �
We can prove similarly the following

Theorem 4.6 (Ψ̃α Conjugate). For every αα such that (2.11) is satisfied, we get

Ψ̃∗α = 1αKt

where,

Kt :=

{
ξ =

dψ

dt
| ψ ∈ L∞(Ω, C1

c (0, T,R)), ‖ψ‖∞ ≤ 1

}
.

Corollary 4.2. For every λ = (λ1, λ2) such that (2.11) is satisfied for each component, we
get

F̃ ∗λ (u∗) = 1Kλ(u∗)

for every u∗ ∈ Lp
′
(Q), where

Kλ =

{
ξ = λ1 divx ϕ+ λ2

dψ

dt
|(4.5)

ϕ ∈ L∞(0, T ; C1
c (Ω,Rd)), ψ ∈ L∞(Ω, C1

c (0, T,R), ‖ϕ‖∞ ≤ 1, ‖ψ‖∞ ≤ 1
}
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Proof. As F̃λ = Φ̃λ1 + Ψ̃λ2 which are convex, lower semicontinuous, we get [4, Th. 9.4.1]

F̃ ∗λ = Φ̃∗λ1#Ψ̃∗λ2 = 1λ1Kx#1λ2Kt = 1λ1Kx+λ2Kt = 1Kλ ,

where Kλ = λ1Kx + λ2Kt. We have already observed that F̃ ∗λ = F ∗λ on Lp
′
(Q).

�

Corollary 4.3 (Ñλ,µ Conjugate). For every λ, µ such that (2.11) is satisfied, we get

Ñ ∗λ,µ = 1Kλ∩Kµ .

4.3. Optimality conditions for (P) . Now we are ready to use Theorem 4.4 with V =
Lp(Q). Since the problem (3.2) is (strictly) convex we get that u is the solution to this problem
if and only if 0 ∈ ∂J (u) where

J (u) := Ñλ,µ(u) +H(g,Au) .

Clearly, dom Ñλ,µ = BV(Q), domH(g,Au) = Lp(Q) and domH(g,Ru) = L1
+(Q). Since,

Q ⊂ Rd+1 is bounded, we have that ‖Ru‖L1(Σ) ≤ C ‖u‖L1(Q) ≤ C̃ ‖u‖Lp(Q) with 1 < p < d+1
d .

Recall that the Radon transform is not necessarily defined for p ≥ d+1
d , see the introduction.

We may also write that domH(g,Au) = Lp(Q) or Lp+(Q) with 1 < p < d+1
d . Therefore,

Theorem 9.5.4 of [4] may be applied and

∂J (u) = ∂Ñλ,µ(u) + ∂H(g,Au).

Any u∗ of ∂J (u) writes u∗ = u∗1 +u∗2 where u∗1 ∈ ∂Ñλ,µ(u) and u∗2 ∈ ∂H(g,Au). In the sequel,
we characterise the elements u∗1, u

∗
2.

Starting with the Ñλ,µ- subdifferential, it is easy to check that for every u ∈ BV(Q) ↪→
Lp(Q), we get

(4.6) u∗1 ∈ ∂Ñλ,µ(u) ⊂ Lp
′
(Q)⇐⇒ u∗1 ∈ Kλ,µ and ∀v∗ ∈ Kλ,µ 〈v∗ − u∗1, u〉p,p′ ≤ 0 .

where Kλ,µ := Kλ ∩ Kµ is a closed convex subset of Lp
′
(Q). Indeed, we use Theorem 4.4,

Corollary 4.3 and that Ñλ,µ is convex and lower semi-continuous, to get

u ∈ ∂Ñ ∗λ,µ(u∗1) = ∂1Kλ,µ(u∗1).

Morevoer, it is well known that the subdiffferential of 1Lp+
is the normal cone, namely

N+(u) = {v∗ ∈ Lp
′
(Q) | ∀v ∈ Lp+, 〈v∗, v − u〉p,p′ ≤ 0 }

= {v∗ ∈ Lp
′
(Q) | ∀v ∈ Lp+, 〈v∗, v〉p,p′ ≤ 0 };

indeed, as u ≥ 0, for any v∗ ∈ N+(u) choosing v = 0 and v = 2u gives

〈v∗, u〉p,p′ = 0.
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Since 〈v∗, v〉 ≤ 0 and v ∈ Lp+ then it is immediate that v∗ ≤ 0 and so N+(u) ⊂ Lp−. For
the distance term, recall that 1 ≤ q <∞ and

H(g,Au) =


1

q
‖Au− g‖qLq(Q), if A = A,∫
Σ

(Ru− g logRu)(t, x) dx dt+ 1Lp+
(u), if A = R.

• In the case where q > 1, H(g,Au) it is differentiable on its domain and

∂H(g,Au) =

{
A∗(Au− g)q−1, if A = A,
R∗
(
1Σ −

g

Ru

)
+ ∂1Lp+

(u), if A = R,

where 1Σ is the characteristic function of Σ. In the case where A = R, we have applied once
again Theorem 9.5.4 of [4] since the functional

u 7→
∫

Σ
(Ru− g logRu)(t, x) dx dt

is continuous on Lp+(Q).
• If q = 1, then H(g,Au) = Ng(Au− g) where Ng(v) = ‖v − g‖L1(Q); we get

H(g,Au) = A∗∂Ng(Au).

Let us compute ∂Ng(v) for any v ∈ L1(Q):

∂Ng(v) =
{
z ∈ L∞(Q) | ‖w−g‖L1(Q) ≥ ‖v−g‖L1(Q)+〈z, w − v〉 , ∀w ∈ L1(Q)

}
=
{
z ∈ L∞(Q) | ‖v‖L1(Q) ≥ ‖v−g‖L1(Q)+〈z, w−(v−g)〉 ,∀w ∈ L1(Q)

}
= ∂(‖·‖L1(Q))(v − g).

It is well known that

∂(‖·‖L1(Q))(v) = {z ∈ L∞(Q) | ‖z‖L∞(Q) ≤ 1, 〈z, v〉 = ‖v‖L1(Q)}

= {z ∈ L∞(Q) | ‖z‖L∞(Q) ≤ 1, z ∈ sign(v}.

So
∂Ng(Au) =

{
z ∈ L∞(Q) : ‖z‖L∞(Q) ≤ 1, z ∈ sign(Au− g)

}
.

Hence,
u∗ ∈ H(g,Au)⇔ u∗ = A∗z, ‖z‖L∞(Q) ≤ 1, z ∈ sign(Au− g).

Finally

∂H(g,Au) =


A∗(Au− g)q−1, if A = A, 1 <q<∞{
A∗z, ‖z‖L∞(Q)≤ 1, z ∈ sign(Au− g)

}
, if A = A, q = 1

R∗
(
1Σ −

g

Ru

)
+ ∂1Lp+

(u), if A = R.

Hence, for the subdifferential of the fidelity term, we prove the following
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Proposition 4.2. For any u ∈ Lp(Q),

u∗2 ∈ ∂H(g,Au)⇐⇒ u∗2 = u∗4 + u∗3,

where u∗3 = 0 if A = A (no positivity constraint) and u∗3 ≤ 0 with

(4.7) 〈u, u∗3〉p,p′ = 0 .

if A = R. Here

(4.8) u∗4 ∈


{A∗(Au− g)q−1}, if A = A, 1 < q <∞{
A∗z, ‖z‖L∞(Q) ≤ 1, z ∈ sign(Au− g)

}
, if A = A, q = 1{

R∗
(
1Σ −

g

Ru

)}
, if A = R.

We finally obtain,

0 ∈ ∂J (u)⇐⇒ u∗1 = −u∗2 = −u∗4 − u∗3,

⇐⇒ −u∗4 − u∗3 ∈ ∂Ñλ,µ(u), with u∗3

{
= 0 if A = A
≤ 0 and (4.7) if A = R ,

⇐⇒ ∀v ∈ Kλ,µ 〈u∗4 + v, u〉p,p′ ≤ −〈u
∗
3, u〉p,p′ .

With relation (4.7) and the fact that v ∈ Kλ,µ ⇐⇒ −v ∈ Kλ,µ we get

0 ∈ ∂J (u)⇐⇒ ∀v ∈ Kλ,µ 〈u∗4 − v, u〉p,p′ ≤ 0 .

Theorem 4.7. A function u ∈ BV(Q) is a unique solution to (3.2) if and only if
• Case A = A and 1 < q < +∞

∀v ∈ Kλ,µ
〈
A∗(Au− g)q−1 − v,u

〉
p,p′
≤ 0,

• Case A = A and q = 1

∀v ∈ Kλ,µ, 〈A∗z − v,u〉p,p′ ≤ 0, ‖z‖L∞(Q) ≤ 1, z ∈ sign(Au− g),

• Case A = R
∀v ∈ Kλ,µ,

〈
R∗
(
1Σ −

g

Ru

)
− v,u

〉
p,p′
≤ 0 .

Here Kλ,µ = Kλ ∩Kµ, where the closure is taken in the sense of the Lp
′
-norm and Kλ,Kµ are

defined by (4.5).
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4.4. Optimality conditions in the decoupled case (3.2) . We may also use the equivalent
formulation (3.2) to get the optimality conditions. In a similar manner, we deal with the
extented functions on X = Lp topology framework. If (u,v) is a solution to problem (3.2),
then we clearly have 

u = argmin
u∈X

F̃λ(u− v) +H(g,Au),

v = argmin
v∈X

F̃λ(u− v) + F̃µ(v) .

As the functionals are convex and lower semicontinuous with respect to the Lp topology with
1 ≤ p ≤ d+1

d , the necessary and sufficient condition is

(4.9)


0 ∈ ∂

(
F̃λ ◦ τv)(u) +H(g,Au)

)
,

0 ∈ ∂
(

(F̃λ ◦ τu)(v) + F̃µ(v)
)
,

where τu(v) = v − u. A usual we use

u∗ ∈ ∂(F̃λ ◦ τv)(u) ⇐⇒ u ∈ ∂
(
F̃λ ◦ τv

)∗
(u∗).

A simple computation gives ∂(F̃λ ◦ τv)∗ = ∂F̃ ∗λ + v and we get

u∗ ∈ ∂(F̃λ ◦ τv)(u) ⇐⇒ u− v ∈ ∂1Kλ(u∗).

Similarly

v∗ ∈ ∂(F̃λ ◦ τu)(v) ⇐⇒ v − u ∈ ∂1Kλ(v∗).

Let us focus on the first equation of (4.9):

0 ∈ ∂
[
F̃λ ◦ τv)(u) +H(g,Au)

]
⇐⇒ −u∗4 − u∗3 ∈ ∂(F̃λ ◦ τv)(u)

⇐⇒ u− v ∈ ∂1Kλ(−u∗4 − u∗3)

⇐⇒ ∀w ∈ Kλ 〈u− v, w + u∗4 + u∗3〉p,p′ ≤ 0,

⇐⇒ ∀w ∈ Kλ 〈v − u, w − u∗4 − u∗3〉p,p′ ≤ 0,

where u∗4 is given by (4.8). Once again we used w ∈ Kλ ⇐⇒ −w ∈ Kλ. Here, u∗3 = 0 if
A = A and u∗3 ≤ 0, 〈u, u∗3〉p,p′ = 0 if A = R. Moreover

− u∗4 − u∗3 ∈ ∂(F̃λ ◦ τv)(u)

⇐⇒ (F̃λ ◦ τv)(u) + (F̃λ ◦ τv)∗(−u∗4 − u∗3) = −〈u, u∗4 + u∗3〉p,p′
⇐⇒ F̃λ(u− v) = −〈u, u∗4〉p,p′ .

We consider now the second equation of (4.9):
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0 ∈ ∂
[
F̃λ ◦ τu)(v) + F̃µ(v)

]
⇐⇒

∃w∗ ∈ ∂F̃µ(v) such that − w∗ ∈ ∂(F̃λ ◦ τu)(v) ⇐⇒

v ∈ ∂1Kµ(w∗) ∩
(
∂1Kλ(−w∗) + u

)
⇐⇒

v ∈ ∂1Kµ(w∗) and v − u ∈ ∂1Kλ(−w∗) ⇐⇒

∀w ∈ Kλ 〈v − u, w + w∗〉p,p′ ≤ 0 and ∀w ∈ Kµ 〈v∗, w − w∗〉p,p′ ≤ 0.

Moreover,

v ∈ ∂1Kµ(w∗) ⇐⇒ w∗ ∈ ∂F̃µ(v) ⇐⇒ 1Kµ(w∗) + Fµ(v) = 〈v∗, w∗〉p,p′ .

This gives 〈v∗, w∗〉p,p′ = F̃µ(v). Similarly 〈v − u, w∗〉p,p′ = −F̃λ(v − u). We finally obtain

Theorem 4.8. For any solution (u,v) to (3.2) , there exists u∗3 ∈ Lp
′
(Q) and w∗ ∈ Kλ,µ

such that

∀w ∈ Kλ 〈u− v, u∗4 + u∗3 − w〉p,p′ ≤ 0,(4.10)

∀w ∈ Kλ 〈v − u, w + w∗〉p,p′ ≤ 0,(4.11)

∀w ∈ Kµ 〈v, w − w∗〉p,p′ ≤ 0,(4.12)  u∗3 = 0 if A = A,

u∗3 ≤ 0,u ≥ 0, 〈u, u∗3〉p,p′ = 0 if A = R,
and Fλ(u− v) = −〈u, w∗〉p,p′(4.13)

〈v, w∗〉p,p′ = Fµ(v) and 〈v − u, w∗〉p,p′ = −Fλ(v − u)(4.14)

Here u∗4 is given by (4.8) and we used that F̃µ(v) = Fµ(v) and F̃λ(u− v) = Fλ(u− v).

Remark 4.1. • With equation (4.14), equation (4.12) gives

∀w ∈ Kµ 〈v, w〉p,p′ ≤ Fµ(v);

similarly equation (4.11) gives

∀w ∈ Kλ 〈v − u, w〉p,p′ ≤ Fλ(v − u).

Eventually, equation (4.14) implies

〈u, w∗〉p,p′ = Fλ(v − u) + Fµ(v) = (Fλ#Fµ)(u) .

• In the case where p = 2 or if we consider a discretized problem then equation (4.10) is
equivalent to

u∗4 + u∗3 = ProjKλ(u∗4 + u∗3 + v − u) ;
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equation (4.11) is equivalent to

w∗ = −ProjKλ(v − u− w∗)

and equation (4.12) is equivalent to

w∗ = ProjKµ(v + w∗) .

5. Conclusion. The model we have investigated is now better understood from a mathe-
matical point of view. We get well-posedness results and optimality conditions that allow to
use primal-dual algorithm. We provide two methods dealing with two specific cases :
- the parameters are supposed to be constant and we get results for any Lp topology with

1 ≤ p ≤ d+ 1

d
; this allows to recover the L2 framework if d = 1;

- the parameters may be time dependent which allows to include non uniform time dis-

cretization step in them. However, we can only consider 1 < p <
d+ 1

d
. The value p = 1 is

excluded for reflexivity reason and p =
d+ 1

d
for lack of compactness.

Next issue is to describe carefully the discretization process and the dual problem in a
appropriate way. Next, we shall perform numerics using classical performant methods to
compare this model to those that can be found in the literature and in [15] in particular. This
will be addressed in a forthcoming paper.
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