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Abstract

Constraint propagation has been widely used in nonlinear single-objective op-
timization inside interval Branch & Bound algorithms as an efficient way to
discard infeasible and non-optimal regions of the search space. On the other
hand, when considering two objective functions, constraint propagation is un-
common. It has mostly been applied in combinatorial problems inside particular
methods. The difficulty is in the exploitation of dominance relations in order
to discard the so-called non-Pareto optimal solutions inside a decision domain,
which complicates the design of complete and efficient constraint propagation
methods exploiting dominance relations.

In this paper, we present an interval Branch & Bound algorithm which inte-
grates dominance contractors, constraint propagation mechanisms that exploit
an upper bound set using dominance relations. This method discards from the
decision space values yielding solutions dominated by some solutions from the
upper bound set. The effectiveness of the approach is shown on a sample of
benchmark problems.

Keywords: Nonlinear optimization, Biobjective optimization, Constraint
propagation, Interval Branch & Bound

1. Introduction

Rigorous numerical global optimization aims at finding all the optimal, with
respect to some objectives, and feasible, with respect to some constraints, solu-
tions of a nonlinear continuous optimization problem with some numerical guar-
antees like a prescribed computational precision or solution existence proof. In
single-objective optimization, rigorous global methods such as interval Branch
& Bound (B&B) have been designed and they are well studied in the literature,
see e.g. [19, 23, 38, 49]. These methods subdivide the search space into smaller
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parts which are discarded using bounds on the objective and pruning techniques
so as to isolate the portion of the feasible space that contains the global optima.
The use of interval analysis allows rigorous computations (e.g., verified linear
relaxations) and powerful pruning techniques based on constraint propagation.
However, the literature on interval B&B for solving nonlinear biobjective opti-
mization is not proficient. In addition, the recent developments [43, 13, 14, 28]
do not take full benefits of interval analysis, in particular constraint propaga-
tion although it has been used within the B&B-like method PICPA [2]. The
difficulty of applying such techniques lies in the exploitation of the dominance
relation in the multiobjective case in order to discard non-optimal (dominated)
solutions of the search space. The method PICPA [2] decomposes the objective
space, which eases application of constraint propagation but causes overlapping
in the decision space.

We propose in this paper an interval B&B algorithm that integrates con-
straint propagation through the use of dominance contractors. These pruning
techniques extend the ideas for multiobjective combinatorial optimization pre-
sented in [15, 20] to nonlinear biobjective continuous optimization. This algo-
rithm generalizes the B&B from [43, 14] in which a regular decomposition of
the decision space is performed, similar to how it is usually done in the single-
objective case. It differs from inverse methods [28, 2] in which a decomposition
of the objective space masters a decomposition in the decision space.

The paper is organised as follows. Sections 2 and 3 introduce the necessary
background on nonlinear biobjective optimization and, respectively, on interval
analysis and constraint propagation. Our B&B algorithm with dominance con-
tractors is presented in Section 4. Some experiments validating our proposal
are discussed in Section 5. Eventually, the paper is concluded in Section 6.

2. Nonlinear Multiobjective Optimization Problems

In this section we introduce the terminology and notions in use in multiobjec-
tive optimization. Though we consider only biobjective problems in this paper,
all the definitions given here apply in the general case and are thus expressed
for an arbitrary number m of objectives.

Nonlinear MultiObjective Optimization (NLMOO) consists in optimizing
several nonlinear conflicting objectives under nonlinear constraints. Such prob-
lems arise in many applications, such as engineering design, the need for a com-
promise being inherent to the decision process (see, e.g., [11, 34]). A NLMOO
problem can be written as follows: min f(x)

s.t. g(x) ≤ 0
h(x) = 0

 (1)

with x ∈ Rn the decision variables, f : Rn → Rm the objective functions,
g : Rn → Rp the inequality constraints and h : Rn → Rq the equality constraints.
The feasible region X is the set of decision vectors that satisfy all the constraints,
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i.e., X := {x ∈ Rn : g(x) ≤ 0, h(x) = 0}. Its image Y = f(X ) in the objective
space is called the feasible objective region. In this paper, we consider objective
and constraints that are continuously differentiable1.

Because the objective functions are conflicting, all feasible objective vectors
cannot be compared. Still, if one such vector y ∈ Y is better according to all
the objective functions than another one y′ ∈ Y, y is obviously more desirable
than y′. This is formalized by the notion of dominance.

Definition 1 (Dominance relations). Let y and y′ be two vectors in Rm.
The following notations are used:

(i) y < y′ ≡ yi < y′i ∀i = 1, . . . ,m (y strictly dominates y′)

(ii) y � y′ ≡ yi ≤ y′i ∀i = 1, . . . ,m, and y 6= y′ (y dominates y′)

(iii) y ≤ y′ ≡ yi ≤ y′i ∀i = 1, . . . ,m (y weakly dominates y′)

In a posteriori decision making (i.e., without preferences inducing an ag-
gregation of the objectives), solving problem (1) requires computing its set of
Pareto optimal solutions, i.e., optimal trade-offs between the objectives.

Definition 2 (Nondominance, Pareto optimality). Consider a feasible ob-
jective vector y ∈ Y. It is a nondominated (resp. weakly nondominated) vector
of Y if there is no other y′ ∈ Y such that y′ � y (resp. y′ < y). The set of
nondominated (resp. weakly nondominated) vectors is denoted Y∗ (resp. Y∗W ).

A feasible solution x ∈ X is Pareto optimal (resp. weakly Pareto optimal) if
f(x) is nondominated (resp. weakly nondominated). The set of Pareto optimal
(resp. weakly Pareto optimal) solutions is denoted by X ∗ (resp. X ∗W ).

As the objectives and constraints are nonlinear (non-convex), locally Pareto
optimal solutions may exist.

Definition 3 (Local optimality). A solution x ∈ X is locally Pareto optimal
if there exists δ > 0 such that x is Pareto optimal in the ball B(x, δ) ∩ X .

In the convex case, all locally Pareto optimal solutions are globally Pareto
optimal [34, Theorem 2.2.3] and can be found using local approaches, e.g., as
a set of Pareto optimal solutions with images well spread upon the nondomi-
nated set. Oppositely, the non-convex case requires global search methods like
evolutionary algorithms [6], swarm algorithms [42], or interval B&B [43, 14, 28].

Computing all the globally Pareto optimal solutions via interval B&B re-
quires bounding the subproblems issued from the subdivision of the search space.
Contrarily to the single-objective case, bounding in multiobjective optimization
is not straightforward: the bounds must enclose a whole set of nondominated

1Though constraint propagation could apply to evaluable only (blackbox) functions, its
effectiveness is reduced in this case.
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Figure 1: Feasible objective space of a biobjective problem with objective functions f1(x) =
−(x1 +x2)2−x1 +x2, f2(x) = −(x1 +x2)2 +x1−x2 and constraint g(x) = x21 + 2x22−1 ≤ 0.
Gray regions correspond to Y. Thick black lines corresponds to Y∗, and thick dashed lines
to images of locally Pareto optimal solutions.(left) Ideal, nadir and anti-ideal points, with
induced bound sets in dotted lines. (right) An upper bound set represented by six black dots,
and a lower bound set by three squared points, the dotted lines deliminating their dominated
area.

vectors2. Usually, the ideal yI and nadir yN (or anti-ideal yA) points are used
to bound, respectively below and above, the nondominated set Y∗:

yIi = min
x∈X

fi(x) = min
y∈Y

yi, i = 1, . . . ,m (2)

yNi = max
x∈X∗

fi(x) = max
y∈Y∗

yi, i = 1, . . . ,m (3)

yAi = max
x∈X

fi(x) = max
y∈Y

yi, i = 1, . . . ,m (4)

As seen on Figure (1), the ideal and nadir bound the nondominated set Y∗:
all nondominated points are dominated by the ideal and dominate the nadir,
while all feasible objective points dominate the anti-ideal. Those particular
points can be ”easily” computed in the biobjective case3 provided solutions of
single-objective versions of Problem (1) are known (or can be efficiently ob-
tained). On the other hand, as they are single points, they do not provide good
bounds, capturing only poorly the shape of the nondominated set. In order
to obtain a more accurate bounding, dominance-free bounding sets have been
introduced in [12].

Definition 4 (Dominance-free set). A set E of vectors in Rm is dominance-
free if there is no y, y′ ∈ E such that y dominates y′.

2Assuming this set is actually bounded
3Weakly nondominated points increase the difficulty of computing yN
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Intuitively, a dominance free set can serve as a lower (resp. upper) bound if
it is ”below” (resp. ”above”) the set of Pareto optimal solutions to the problem.
A formal definition follows. The right hand side of Figure 1 depicts one lower
and one upper bound set.

Definition 5 (Bound sets). Consider Problem (1) and let YL ⊂ Rm be a
dominance-free set. This set is a lower bound set of Y∗ if it satisfies:

Y∗ ⊆ {y : ∃y′ ∈ YL, y ≥ y′}

Similarly, let YU ⊂ Rm be a dominance-free set. This set is an upper bound
set of Y∗ if it satisfies:

Y∗ ⊆ Rm\{y : ∃y′ ∈ YU , y > y′ }

Given this definition, any dominance-free set of feasible objective vectors form a
global upper bound set of Problem (1), e.g., the black points in Figure 1. Note
also that bound sets can be used to locally bound the Pareto optimal solutions
in sub-regions of the search space.

3. Interval analysis

Interval analysis (IA) is a modern branch of numerical analysis born in the
1960’s [35]. It replaces computations with real numbers by computations with
intervals of real numbers, providing a framework for handling uncertainties and
verified computations. It is a powerful tool for dealing reliably with any prob-
lems implying real-valued variables such as numerical constraint satisfaction and
nonlinear optimization [36, 21, 23, 22].

3.1. Intervals and boxes

An interval x is a closed connected subset of R. It is defined, by a lower
and an upper bound x, x ∈ R, which gives x = [x, x] = {x ∈ R : x ≤ x ≤ x}.
A n-dimensional box x is a vector of n intervals (xi)1≤i≤n, defined by a lower
and an upper bound vectors x and x. We can define similarly interval matrices
as matrices of intervals: A = (aij)1≤i≤n,1≤j≤m = [A,A]. A box can be used to
enclose tightly any arbitrary subset U ⊂ Rn via the hull operation: �U = [u, u]
such that ∀i ∈ {1, . . . , n}, ui = inf{ui : u ∈ U} and ui = sup{ui : u ∈ U}.

Given an interval x, mid(x) := 0.5(x + x) is its center, wid(x) := x −
x is its width. The width of a box is the maximum of its component-wise
widths. Another important operation for a n-dimensional box x is vol(x) :=∏

1≤i≤n wid(xi) which defines its volume. Finally, considered as subsets of Rn,
boxes accept all set operations.
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3.2. Interval arithmetic

Interval arithmetic allows the replacement of real operations by interval ones
in numerical computations. It is based on the containment principle: the inter-
val resulting from an operation must contain all the possible reals resulting from
the corresponding operation applied to any reals from the interval operands.
Hence, an arbitrary operation op over real numbers x1, . . . , xn is naturally ex-
tended to intervals x1, . . . ,xn using the hull operation, i.e.,

op(x1, . . . ,xn) = �{op(x1, . . . , xn) : xi ∈ xi}. (5)

Simple formulas exist for the most common operators and functions, e.g.,

x + y := [x+ y, x+ y], (6)

logx := [log x, log x] if x > 0, (7)

:= (−∞, log x] if x > 0 ≥ x, (8)

:= ∅ otherwise. (9)

Interval arithmetic hence allows the definition of interval extensions f of any
(multi-variate) real function f . The natural interval extension simply replaces
the different operands of a function by their interval counterparts. When a
function is continuous, its natural interval extension is convergent.

Definition 6 (Convergent interval extension). An interval extension f of
a function f : U ⊆ Rn → R is convergent if for any sequence of boxes x(k) ⊆ U ,

lim
k→∞

wid(x(k)) = 0 =⇒ lim
k→∞

wid(f(x(k))) = 0. (10)

Consequently, f(x) = f(x) for any degenerated box [x, x]. In the following, f
will by default designate the natural interval extension of f .

Interval arithmetic inherits many properties of real arithmetic (e.g., asso-
ciativity, commutativity), but suffers from two specific issues: the dependency
problem and the wrapping effect. Indeed, it does not take into account the
dependency between the different occurrences of any variable x in an expres-
sion, yielding to an overestimation of the result; for instance, x − x 6= 0 and
x · x 6= x2 in general. Second, because the result of an operation is an in-
terval, it cannot represent disconnected sets of reals and thus includes many
reals which are not the result of an operation from the operands; for example,
1
x = [−∞,+∞] whenever 0 ∈ x, i.e., the hole around 0 in the image of the real
division operation is lost. In addition, interval arithmetic is in general imple-
mented using floating-point bounds, yielding the necessity for outward rounding
which introduces additional overestimation in interval computations.

For these reasons, interval computations are generally included into some
branching process which recursively splits operand boxes into smaller ones, mak-
ing the computation more and more accurate and yielding pavings, i.e., a union
of non-overlapping, possibly edge-adjacent, boxes.
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3.3. Interval constraint propagation
Numerical constraint satisfaction is the problem of finding the set X of so-

lutions to a constraint system, defined by a set of equalities h(x) = 0 and
inequalities g(x) ≤ 0, within a considered box domain xinit ⊆ Rn.

The (interval) constraint programming approach [4] to solving numerical
constraint satisfaction problems (NCSPs) follows the Branch & Prune scheme
and yields a paving of X down to a prescribed precision : at each iteration, a non-
final box of the paving is selected and contracted according to the constraints ;
if it becomes empty, it is discarded ; if it has reached the prescribed precision,
it is declared final ; otherwise it is split into sub-boxes to be further processed.

Though part of the research in this area considers other topics (e.g., search
strategies or applications), most of the work in the interval constraint program-
ming community has concentrated on the definition of efficient contracting op-
erators (contractors in short). One reason is that the more efficient the pruning
step, the least branching will occur, yielding smaller search trees. It is however
a matter of trade-off, since the pruning step can be expensive and may thus
turn out counter-productive in some cases.

Cheap and efficient contractors are typically based on some local consistency
definitions. For example, hull-consistency (aka 2B-consistency) [30] states that
each bound of each interval domain xi must be compatible with the other in-
terval domains with respect to the considered constraints. These definitions
give birth to contracting operators that discard boundaries of boxes that are
not locally consistent. Typical contractors are HC4-revise [3] which employs
operator-wise evaluation and projection in order to enforce hull-consistency,
BC3-revise [3] which uses univariate Newton steps to find extremal solutions
within an interval domain and enforces box-consistency [5], and MOHC-revise [1]
which exploits monotonicity and combines hull and box consistencies. These op-
erators usually consider one constraint at a time and must thus be repeated in
sequence, typically following an AC3-like fix-point propagation principle [5]. Be-
cause such propagation mechanisms may exhibit slow convergence toward their
fix-point, heuristic stopping criteria are often employed, e.g., when the obtained
contraction drops below a given (relative) threshold called improvement factor.

More global operators comprise: Peeling (or shaving) operators [8, 31], which
iteratively discard slices on the boundaries of an interval domain using local con-
sistency based operators on all the constraints ; Constructive interval disjunction
(CID) [48, 39] which considers a partition of x, propagates other contracting
operators (usually HC4-revise) onto each part, and takes the hull of the con-
tracted part as the new domain ; And interval Newton [36] which considers
a linear enclosure of the equations of the problem using interval evaluation of
their derivatives and applies evaluation/intersection steps until a fix-point, or a
maximum number of steps, is reached. The latter has the additional advantage
that it can certify the existence of a solution to the equations within a box.

Contractors have proven to be powerful tools for reducing the search space
and avoiding large search efforts, allowing to address challenging problems, in
particular in control and robotics [21]. They have also been included in inter-
val B&B algorithms to address numerical constrained optimization problems,
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Algorithm 1: Interval multiobjective Branch & Bound

Input: multiobjective problem P = (f, g, h); initial box (xinit,yinit)
Output: nodes Sout containing the Pareto optimal solutions; upper

bound set YU
1.1 YL,YU ← InitializeBounds(xinit,yinit, P );
1.2 Sout ← ∅;
1.3 S ← {(xinit,yinit,YL)};
1.4 while S 6= ∅ do
1.5 (x,y,YL)← Extract(S);
1.6 (x,y)← Prune(x,y,YL,YU , P );
1.7 if (x,y) 6= ∅ then
1.8 YL,YU ← UpdateBounds(x,y,YL,YU , P );
1.9 if Final(x,y,YL,YU ) then

1.10 Sout ← Sout ∪ {(x,y,YL)};
1.11 else
1.12 S ← S ∪ Split(x,y,YL,YU , P );
1.13 end

1.14 end

1.15 end
1.16 return CleanUp(Sout ,YU )

also called (single-objective) nonlinear programs (NLPs) [19, 23, 38, 49]. In
this context, they complement other traditional pruning tests, e.g., bounding
tests which discard boxes whose best objective value (lower bound) is greater
than that of an already computed good solution (upper bound) ; optimality
conditions [23, 37, 16] which discard boxes that cannot contain (local) optima
according to first or second order optimality criteria ; monotonicity tests [23]
which reduce a domain to one of its bound if the objective function is proved
to monotonically decrease/increase along the corresponding dimension.

4. A new biobjective Branch & Bound algorithm

Interval B&B methods are well known and most effective methods for solv-
ing rigorously and globally NLPs. Although they have been widely developed in
the context of single-objective problems, few B&B exist for multiobjective opti-
mization. Moreover, the existing approaches lack some important components,
e.g. efficient pruning through constraint propagation.

In this section we propose a generic biobjective B&B algorithm which is a
generalization of the single-objective B&B scheme and incorporates constraint
programming techniques.

4.1. Generic algorithm

Algorithm 1 introduces a generic multiobjective B&B scheme conforming the
tree-search structure used in the literature [26, 27, 28, 14], except that it works
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in the product of decision and objective spaces, i.e., on boxes (x,y) ⊂ Rn×Rm

which combine domains for the decision variables x and the objective variables
y. This allows considering both sets of variables in all the operations in the
algorithm, hence a greater level of generality. Another notable specificity is
that Algorithm 1 considers explicitly bound sets (see Definition 5, page 5). The
upper bound set YU is global to the whole search tree while a lower bound set YL
is associated to each box (x,y) in the set S of search nodes. Finally, Algorithm 1
also explicits a generic pruning step (line 1.6) which allows incorporating any
discarding and filtering techniques from the literature as well as new dedicated
contractors like the ones we propose in Section 4.4.

In the following, we define the biobjective instance of Algorithm 1 we pro-
pose, detailing the implementation of the various functions it involves.

4.2. Inputs and outputs

Algorithm 1 takes as input the considered biobjective problem P defined by
the two objective functions f = (f1, f2) : Rn → R2, the inequality constraints
functions g : Rn → Rp and the equality constraints h : Rn → Rq.

It also takes as input the initial search space, defined as a box (xinit,yinit) ⊂
Rn+2 in the decision×objective space. Specifying the decision search space xinit

is typical in multiobjective optimization. Specifying the objective search space
yinit is more unusual, but it can be useful when one wants to focus the search
in a given trade-off area; when no such focus is desired or difficult to obtain
(e.g. computing the box whose corners are the ideal and nadir points), yinit

can simply be set to f(xinit). It must be noted that specifying xinit and/or
yinit in fact induces additional constraints in the problem, namely x ∈ xinit and
y ∈ yinit. These bound constraints must be considered in several operations of
the algorithm, e.g., optimality conditions checks and pruning.

The algorithm returns a paving Sout in the decision×objective space that
covers the weakly Pareto optimal solutions X ∗W and their corresponding objec-
tive values Y∗W 4. It also returns the upper bound set YU . The global lower
bound set YL is not returned explicitly. It can be extracted from Sout in a post-
process. The CleanUp function post-processes the output data before returning
them. In our implementation, it eliminates the boxes in Sout that are dominated
by YU , which may happen since YU can be updated posterior to the insertion
of a box in Sout . This process could also be integrated in the UpdateBounds
operations in order to avoid memory issues when the paving Sout becomes large.
Its cost however advocates for its implementation as a post-process.

4.3. Bounding

As explained earlier, our generic B&B uses lower and upper bounding sets.
In this section, we discuss how they can be initialized before the algorithm main

4Due to interval overestimations, it is in general not possible to distinguish weakly Pareto
optimal solutions from Pareto optimal ones
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loop and updated during this loop. We also consider their possible exploitations
in the other abstract operations of the algorithm.

4.3.1. Initializing the bounds

Function InitializeBounds (line 1.1) initializes the bound sets YL and YU
on the objective functions f = (f1, f2) with respect to the initial domain
(xinit,yinit) at the beginning of the algorithm. It is typical to initialize the
bound sets to singletons, namely the ideal YL = {yI} and the nadir YU = {yN}.
Since computing these points may be expensive5, we propose a cheap and safe
alternative: YL = {yinit} and YU = {yinit}. Note that yinit ≤ yI and yinit ≥ yN .
The bound sets can be further tighten by means of local optimization and re-
laxation of the considered problem. We do not study the effectiveness of such
techniques in this paper.

4.3.2. Updating the bounds

Function UpdateBounds (line 1.8) updates the bound sets YL and YU on
the objective functions f = (f1, f2) with respect to the currently considered
box (x,y) at each iteration of the algorithm, provided the box has not been
discarded (line 1.7). In this paper, we consider YL = {y}, i.e. the singleton
made of the local ideal point at the considered node after the corresponding
box has been pruned. In order to update the upper bound set, we propose as
in [14] to certify the feasibility of the midpoint x̃ = mid(x) of the decision box of
the considered node at each iteration. Certifying the feasibility in the presence
of equality constraints requires the use of parametric Hansen-Sengupta [36, 44],
with ε-Inflation, applied to the system of equation h(x) = 0. Such a method
is not used in [14]. The parametric Hansen-Sengupta we propose to implement
selects the q variables to fix as parameters with a Gauss elimination on the
interval matrix ∇h(x) (q is the number of equality constraints, with q ≤ n,
otherwise the Hansen-Sengupta cannot be applied for certifying the solution).
Satisfaction of inequality constraints can be checked more easily, using simple
interval evaluation. If the feasibility checks succeed, the certified point ỹ = f(x̃)
is added to the upper bound set YU . Since YU must remain a dominance-free
set, all the vectors it contains that are dominated by the newly inserted solution
must be removed. This operation takes a time proportional to the size of YU
in the worst case. The time complexity of the parametric Hansen-Sengupta
is O(q2n) for the Gauss elimination; and O(q3) per iteration of the Hansen-
Sengupta (we set a maximum of 15 iterations).

Note that we adopt a ”lazy” strategy for eliminating search nodes once the
upper bound set is updated, i.e. we do not eliminate directly all the search
nodes in S (and Sout) whose lower bound set YL is dominated by the newly
inserted element in the upper bound set YU . Such nodes are instead discarded
in function Prune, when they are extracted from S to be processed. We justify
this strategy as the ordering of the search nodes (see in Section 4.5) does not

5The ideal requires solving two single-objective NLPs which is itself NP-hard
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Algorithm 2: function Prune with dominance contractors

Input: node (x,y,YL); upper bound set YU ; biobjective problem
P = (f, g, h)

Output: narrowed box (x,y)
2.1 (x,y)← DiscardingTests(x,y,YL,YU , P ) ;
2.2 S ← DominanceDecomposition(y,YU ) ;
2.3 (x′,y′)← �

⋃
y′′∈S Contract((x,y′′), P ) ;

2.4 return (x′,y′)

allow to efficiently find the nodes that are dominated by a given element in the
upper bound set.

4.3.3. Exploiting the bounds

Consider the box (x,y) extracted at a given iteration of the main loop of
Algorithm 1, its associated lower bound set YL, and the global upper bound set
YU . A first remark is that since the bound sets are composed of points in the
objective space, they only impact directly the objective components y of the
considered box. A second remark is that since we have chosen YL = {y}, the
lower bound has no impact at all on the considered box.

Points ŷ ∈ YU that dominate the local nadir y of the considered box allow
removing part of y. This removal can take two different forms : either y is
split so as to isolate the dominated part, yielding several boxes to be further
processed in future iterations ; or else, the dominated part of y is pruned and
the impact of this reduction is propagated towards the decision box x, yielding a
narrowed box (x′,y′). The upper bound set YU can thus be exploited during the
pruning and the splitting operations of Algorithm 1. We detail the exploitation
we propose in the following sections.

4.4. Pruning

Function Prune aims at discarding parts of the current box (x,y) that do
not satisfy the constraints or cannot contain (locally) optimal solutions. The
implementation we propose combines state of the art discarding tests and con-
straint propagation using a new contractor based on the dominance relations.
It is detailed in Algorithm 2.

This algorithm takes as input a box (x,y) and its associated lower bound set
YL, as well as the global upper bound set YU and the considered problem P . It
returns a narrowed box (x′,y′). This box is obtained applying first discarding
tests (line 2.1), then decomposing the objective dimensions of the resulting box
using the upper bound set (line 2.2) and then pruning the resulting sub-boxes
and taking the hull of all the pruned boxes as a result (line 2.3). This pruning
process follows the principles of Constructive Interval Disjunction [48, 39] guided
by the dominance relation with respect to the upper bound set. Note that
function Prune could be interrupted when it becomes obvious no more process is
required, e.g., when the whole box is discarded at line 2.1 or when the resulting
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narrowed box becomes equal to the input one after a Contract at line 2.3.
We detail our implementation of the operations composing this function in the
following sections.

4.4.1. Discarding tests

Discarding tests are in general cheap operations that allow discarding a
whole box at once. For this reason, we propose to apply them first in our
implementation of function Prune.

The discarding tests we propose to use are:

1. The dominance test which seeks in YU one vector ŷ dominating YL = {y},
thus dominating the whole box y (time complexity logarithmic in the size
of YU provided it is sorted);

2. The simple monotonicity tests from [14] (time complexity linear in the
number of decision variables), which possibly allows some pruning;

3. The generalized monotonicity test from [14] (time complexity quadratic
in the number of decision variables);

4. And the three first order tests from [16] (time complexities linear or cubic
in the number of decision variables).

These tests are applied in the order above, i.e., from the cheapest to the most
expensive, interrupting their application whenever one succeeds.

4.4.2. Dominance decomposition

Function DominanceDecomposition exploits the upper bound set YU to de-
compose an objective box y into several sub-boxes.

In single-objective optimization, the interval y would be intersected with
[−∞, yU ], where yU is the (scalar) upper bound value. In the biobjective case
as it has been seen in the discrete case [15, 20], the upper bound set induces a
non-dominance relation which can be formalized as follows:∧

ŷ∈YU

(
y1 ≤ ŷ1 ∨ y2 ≤ ŷ2

)
. (11)

Then only the vectors in YU such that ŷ < y are of interest to contract a box
using constraint (11). Among them, vectors such that ŷ < y allow discarding
the whole box but are already exploited in Function DiscardingTests (see above)
and are thus disregarded here.

Vectors such that ŷi < y
i

and ŷj ∈ yj , i 6= j, and in particular the tightest
vectors as defined in [20] and depicted in square on Figure 2(a), allow contracting
the objective box y from the outside. Indeed, for such vectors, one of the
inequalities in the corresponding disjunction in (11) is not satisfied and thus
the disjunction is reduced to the other inequality. Figure 2(b) depicts as y′ the
portion of y satisfying (11) given two such vectors.
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Figure 2: Cutting y in the biobjective case from YU .

Eventually, vectors such that y < ŷ (i.e., ŷ ∈ y), like those circled in Fig-
ure 2(a), impose to consider the corresponding disjunction of inequalities in (11).
In that case, one can decompose the box y into three nondominated sub-boxes
(ylb , yl , yb) as shown on Figure 2(c) .

By exploiting the ordering of the upper bound set YU , finding the interesting
points can be done in logarithmic time in the size of YU (in order to identify the
tightest outer points) plus an additional term linear in the number of interesting
points (which are comprised between the outer points in YU ). The complexity
of the overall Algorithm 2 depends on the number of sub-boxes produced by
DominanceDecomposition: the finer is the decomposition, the better is the ex-
pected pruning (see Figure 2(a) where the gray part corresponds to the finest
decomposition into 15 sub-boxes exploiting all the interesting points in this ex-
ample) but also the higher is the computational cost. Because the number of
interesting points can be very large6, we propose to restrict the decomposition
to at most three points from YU , namely:

• ŷ1 the tightest outer point with respect to objective f1;

• ŷ2 the tightest outer point with respect to objective f2;

• ŷin the inner point inducing the largest dominated volume within y;

and we suggest three variants of the function DominanceDecomposition:

Dominance Peeler This variant uses only ŷ1 and ŷ2 and reduces y to a single
box y′ as shown in Figure 2(b);

Dominance Divider This variant uses the three points ŷ1, ŷ2 and ŷin, reduces
y with the first two just like Dominance Peeler and then decomposes it
into two sub-boxes yl ∪ ylb and yb as shown in Figure 2(c);

6The size of YU is not bounded and all its points may allow decomposing a given box.
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Dominance Full Divider This variant is similar to Dominance Divider ex-
cept it decomposes y into three sub-boxes yl, ylb and yb as shown in
Figure 2(c).

Note that some of the interesting points considered in each variant may not
exist in YU , in which case they are ignored. In order to avoid unnecessary work
on poor decompositions, we also propose to use ŷin only when the volume it
dominates within y exceeds a given ratio:

vol([ŷin, y]) ≥ ρ · vol(y), (12)

where 0 ≤ ρ < 1 is a parameter. When ŷin cannot be used (or does not exist),
all the proposed variants work the same. When ŷ1 and ŷ2 also do not exist,
no decomposition happen and y′′ = y. Still, the contraction in Algorithm 2
operates once, since the other constraints in the problem may still allow some
reduction of the considered box.

4.4.3. Contraction

Given a box (x,y′′) resulting from the dominance decomposition, the fol-
lowing numerical constraint satisfaction problem (NCSP) can be built from the
biobjective problem P :[

f(x) = y, g(x) ≤ 0, h(x) = 0
x ∈ x, y ∈ y′′.

]
. (13)

Applying classical contractors with respect to this NCSP on a box (x,y′′) allows
pruning its decision domains and its objective domains. The constraint f(x) = y
indeed establishes the link between decision and objective variables and allows
propagating reductions from one space to the other. Indeed, if f(x) ( y′′, this
constraint allows narrowing the objective domain y′′. Conversely, if f(x) ) y′′,
it allows narrowing x.

Following the principle of CID, function Contract (line 2.3) applies on each
sub-box resulting from the dominance decomposition an AC3-like fix-point al-
gorithm using HC4 and BC3 contractors, and takes the hull of the resulting
contractions. This fix-point loop may be interrupted considering an improve-
ment factor.

4.4.4. Alternative pruning techniques

Other, potentially complementary, pruning techniques are proposed in [14,
27]: in [14], a contractor similar to BC3-revise extracts from the ”middle” of
the domain of a variable the values yielding objective vectors dominated by a
selected point ŷ ∈ YU . It prunes only one variable domain at a time and is thus
less global than the contractor we propose. In [27], an interval Newton method
exploiting the first order optimality conditions of multiobjective problems is pro-
posed . This method can be used directly for unconstrained problems. However
for constrained problems, and in particular those containing inequalities, one
has to take care of changes of constraints activity as in [33], otherwise the inter-
val Newton cannot converge. Since we consider general constrained biobjective
problems, we don’t use this specific contractor.
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4.5. Search Strategy

The search strategy in Algorithm 1 is implemented within the three functions
Extract (line 1.5), which selects the next node to be processed, Final (line 1.9),
which determines if a node must not be further processed, and Split (line 1.12),
which decomposes a non-final node into sub-nodes to be further processed. Since
we do not aim at studying the effect of different search strategies in this paper7,
we propose to use a standard setting of the search strategy that has been proved
to be experimentally stable for the different problems used in the numerical
experiment in Section 5.

The three components of our search strategy are based on the following
criteria, Ordering Criterion (OC), Termination Criterion (TC) and Splitting
Criterion (SC):

OC
y1−yinit

1

wid(yinit
1 )

+
y2−yinit

2

wid(yinit
2 )

.

TC wid(xi) ≤ εxi
.

SC Max Domain, i.e. the variable xi whose wid(xi) is the largest.

4.5.1. Ordering Criterion

Nodes in S are ordered by increasing OC, which is defined as the normalized
(with respect to yinit) sum of objectives. The search hence focuses first on the
regions of the Pareto front minimizing OC. Technically, S is implemented as a
binary search tree, with a constant time complexity for extracting a node (as
the first one is extracted) and a O(log(|S|)) time complexity for insertion of
nodes in the set.

This criterion is a particular case of the weighted sum criteria from [46], in
which yinit is used for the normalization instead of the nadir and the ideal points
(hence avoiding their computations8). Other criteria from [46, 14] consider other
weights including adaptive ones that change over the iterations. This latter
criterion enables the search to focus more homogeneously along the Pareto front,
but requires reordering S whenever the weights are changed.

4.5.2. Termination Criterion

Setting a search node final in Algorithm 1 is problem dependent. For exam-
ple, one may wish to stop the B&B process once a global precision on the upper
bound set, with respect to the merged lower bound sets, is obtained. Criteria
from [14] considers a precision on the decision variables or a relative precision
on the objectives. The criterion we are using here can be seen as a safeguard for
avoiding infinite decomposition of the search space when any other termination
criteria is considered.

7A comparison of some search strategies is presented in [32].
8If those points can be computed efficiently, they can be used to initialize yinit
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4.5.3. Splitting Criterion

This criterion is used to determine which variable domain is halved. The
procedure Split hence splits a node in two sub-nodes along the variable with
largest width. This is a common and robust criterion in many interval B&B
algorithms, and the only one to our knowledge used for multiobjective opti-
mization. This criterion is moreover balanced, which is necessary for proving
the theoretical convergence of the B&B (see below).

Another splitting criterion used in single-objective optimization is the smear-
based criterion, see e.g. [47]. It is in general an efficient criterion, but theoret-
ically unbalanced. Finally, it is interesting to note that since objective vari-
ables and associated domains are considered in Algorithm 1, these domains
could also be selected for splitting, yielding to mixed method in-between direct
B&B [43, 14] and inverse B&B [28]. Since this would require a study of its own,
we leave this possibility as a future direction of research.

4.5.4. Convergence

The convergence proof of the interval B&B from [14] considers an equiva-
lent termination criterion as TC with εx = 0 and a slight modification9 of the
ordering criterion similar to OC. Hence, the nodes in S whose decision domains
reduce asymptotically to points (due to the 0 precision) can be proved to con-
verge to the set X ∗W of weakly Pareto optimal solutions. This proof however
supposes that the upper bound set YU can be updated in order to cover the
whole set Y∗, which requires to ensure that the feasibility of the decisions in X ∗
can be numerically guaranteed. This requires additional regularity assumptions
on the problems (e.g. constraint qualifications on solutions in X ∗), in particu-
lar for dealing with equality constraints not considered in [14]. If we consider
filtering the nodes in S each time the upper bound set YU is updated (i.e. not
using the lazy strategy we propose to use in practice), our algorithm has simi-
lar convergence results as in [14], since adding a constraint propagation process
with dominance contractors does not permit to discard nodes containing weakly
Pareto optimal solutions.

5. Numerical Experiment

We have implemented our interval B&B algorithm with dominance contrac-
tor in C++ using the RealPaver [18] API, which features routines for constraint
propagation and contractors, and using the Gaol [17] library for interval arith-
metic. These experiments have been run on a computer under Linux Ubuntu
version 14.10 64-bit, with processor Intel i7-4702MQ 2.20GHz and 8Gb of RAM.

The implementation follows the description given in Section 4. The portion ρ
used in the dominance divider and dominance full divider is set to 0.125, which

9Every K (a positive integer) iterations of the algorithm, the extracted node is the one
with the decision box of largest width.
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Table 1: Problem characteristics
Problem n p q εx

Non-scalable
Binh [7] 2 2 0 0.00125
KIM [24] 2 0 0 0.00125
NBI [9] 5 1 2 0.00125
SR [52] 7 11 0 0.00125
OSY [40] 6 6 0 0.00125
WD [50] 4 4 0 0.00125
TAN [7] 2 2 0 0.00125

Scalable
CF3 [51] {2, 3} 1 0 0.0125
CTP1 [10] {3, 5} 2 0 0.00125
CTP2 [10] {3, 5} 1 0 0.00125
CTP6 [10] {3, 4} 1 0 0.005
CTP7 [10] {4, 5} 1 0 0.0025
MOP [45] {7, 10, 13} 0 0 0.005

Note: n = nb variables, p = nb inequalities, q = nb equalities.

proved to be an appropriate default setting for our benchmark. The improve-
ment factor used to interrupt long-running fix-point constraint propagation is
set to 0.75 and also considers the prescribed precision on the decision variables
given by the termination criterion in order to avoid unnecessary pruning of small
enough variable domains.

We consider a benchmark of 13 problems from the literature, with various
characteristics detailed in Table 1. These problems are fully described in Ap-
pendix A. The last 6 problems are scalable and we have thus considered various
dimensions to study the scalability of the methods. Each problem is given a
specific precision εx on the decision variables for the termination criterion TC.
This precision has been fixed so as to allow precise enough outputs in reasonable
computational times.

For each problem, an initial decision box xinit is given as bound constraints,
see Appendix A. The initial objective box is set to yinit = f(xinit), which
is not unbounded on the tested problems. Hence, the objective vector yinit

can be used as a reference point for computing hypervolumes [53]. Therefore,
for each tested implementation, we measure both the CPU time (an efficiency
indicator) and the normalized, with respect to the width of yinit, difference ∆H

between the hypervolume of the global lower bound set (obtained by combining
and filtering by dominance the lower bounds YL of all nodes in S) and the
hypervolume of the global upper bound set YU (a quality indicator). This
difference measures the distance between the lower bound set and the upper
bound set: the smaller the difference, the better the enclosure of the weakly
Pareto optimal solutions. We also provide the number of output boxes, the
total number of nodes treated (number of iterations), the size of the final upper
bound set YU and the maximum number of nodes stored in S at any time of
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Figure 3: Illustration on the problem KIM with εx = 0.05. On the left, the produced decom-
position in the decision space, on the right in the objective space. Black dots are points from
the computed upper bound set YU . Red boxes are the obtained paving Sout . The blue shape
on the right represents the image of the initial decision box.

the algorithm. In addition, we provide for each statistic a ”ratio to the best
method” allowing to quantitatively rank all methods on a problem according
to each indicator. This eases the appreciation of the efficiency/quality trade-off
for each method. For all the methods and problems, we have used a timeout of
3600 seconds beyond which no statistics are reported.

In order to assess the relative merits of the various contractors we have pro-
posed with respect to the literature, we compare the following implementations
of our interval B&B:

basic the B&B described in Section 4 without dominance contractor, i.e., func-
tion DominanceDecomposition returns the input box as it is. Pruning by
constraint propagation is performed on the inequality and equality con-
straints only, and monotonicity and first-order rejection tests are used;

basic+FT basic B&B using the pruning/splitting method from Fernández and
Tóth [14] discussed in section 4.4.4;

basic+peel basic B&B using dominance peeler (i.e., only outer points ŷ1 and
ŷ2 from YU );

basic+div basic B&B using dominance divider (i.e., both outer points ŷ1, ŷ2,
and inner point ŷin from YU , decomposition in at most 2 sub-boxes);

basic+full basic B&B using dominance full-divider (i.e., like dominance di-
vider but with full decomposition, at most 3 sub-boxes).

A paving obtained with basic+full is shown on Figure 3.
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We also compare all our variants with our implementation10 of the B&B
from [14] in two different versions:

FT implementation of [14], i.e., similar to basic+FT but without constraint
propagation nor first-order optimality discarding test;

FT+FO same as FT but using the first-order optimality discarding test, i.e.,
similar to basic+FT but without constraint propagation.

FT+FO and basic+FT are equivalent on unconstrained problems, with the
exception that in FT+FO, nodes in S are filtered by dominance each time YU is
successfully updated (following the implementation from [14]). Note also that
equality constraints are not considered in [14], thus FT and FT+FO are not
applied on Problem NBI.

In the following we discuss the experimental results, first on the non-scalable
problems, then on the scalable ones.

5.1. Non-scalable problems

Results on non-scalable problems are detailed in Table 3. We can see
that overall, dominance contractors, and in particular the method basic+peel,
are giving the best results with the exception of problem KIM. This bound-
constrained problem has only two variables but the objectives contain many
multi-occurrences of them, making overestimations of their interval valuation
large. Propagating on the objectives turns out to be too computationally ex-
pensive with respect to the slight gain in terms of number of explored nodes.

We can also note that for higher dimensional and highly constrained prob-
lems WB, OSY and SR, constraint propagation performs well compared to FT.
Although on problem WB and OSY, the use of first-order rejection test with
FT allows an efficient pruning (FT+FO competes with some of the proposed
methods, while FT may reach the timeout11), this is not the case on SR and in
general dominance contractors help the solving process yielding better timings,
precision and less explored nodes. Comparatively, FT performs poorly on WB,
OSY and SR. This is not surprising since the constraints of those problems can
be efficiently treated by first-order test and constraint propagation.

As the problem NBI contains equality constraints, it can not be treated by
FT or FT+FO, and only the proposed methods are compared. It appears that
the pruning technique from [14] here greatly deteriorates the search in terms of
timing. Dominance contractors based on peeling appear to be the most efficient
approach.

On the lower dimensional and constrained problems Binh and TAN, all meth-
ods compete well with each other, with a slight advantage for the proposed tech-

10No open-source implementation of this method is available at the moment, and no other
method can deal with the same spectrum of problems in a direct way.

11With FT on OSY: the experiment encounters a memory issue terminating before the
timeout. The timeout can be effectively reached using a lower precision εx = 0.0125
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niques which give better timings and precisions and explore the decision space
more efficiently.

These experiments overall validate the efficiency of constraint propagation
and dominance contractors. However, we can see that in general peeling is
enough to obtain good results and that the stronger divider and full-divider,
although they bring more accurate results (∆H) and eliminate more search
nodes (#Nodes), are not worth the additional computational efforts.

5.2. Scalable problems

The results for scalable problems are presented in Tables 4 and 5.
The problem CF3 appears to be very difficult as it is poorly handled by all of

the tested approaches. This can be seen as the number of final nodes represent
a large portion of the decomposed space. This is due to the nested and intricate
trigonometric functions that appear in both objectives and constraint making
interval evaluations imprecise. In addition, we have observed that a large part
of the decision space has an image close to the Pareto front. Hence we could
not solve CF3 for dimensions n > 3 before the timeout with any method. Still,
the results for dimensions n = 2 and n = 3 are interesting. The methods FT,
FT+FO and basic + FT perform worse than the other methods on CF3 for
both dimensions n = 2 and n = 3 (about 4 times worse on all indicators, i.e.,
both in efficiency and quality, for n = 3 compared to the best obtained results).
The use of dominance contractors seems to ease the scaling from n = 2 to
n = 3, since basic alone which is competitive for n = 2 is drastically degraded
for n = 3. It is also worth mentioning that the divider strategy is the best on
this problem. This could partly be explained by the large number of feasible
points in YU , whose discovery seems to be facilitated by dominance contractors
which in turn benefit from them in future pruning steps, yielding a mutual
reinforcement mechanism.

On the CTP test suite, no method clearly dominates the others, though the
proposed methods with dominance contractors globally provide the most stable,
and relatively good, results across all these problems. On CTP1 for instance, the
dominance contractors allow to discard infeasible or suboptimal nodes efficiently
enough at dimension n = 3 but become too expensive at dimension n = 5,
though they still outperform FT and FT+FO. A similar observation holds for
CTP2, but in this case FT and FT+FO are the most efficient methods at the
largest dimension n = 5 (though faster by less than 21%). Again, the quality
achieved using stronger contractors comes at a too high computational price in
this case. On CTP6, appart on the number of explored nodes, all methods are
quite competitive. We observe, as expected, that dominance contractors help
improving the exploration by reducing the number of treated and output nodes.
Eventually, CTP7 requires the use of pruning on objectives, as can be seen by the
poor performances of basic. This is understandable as the Pareto front is made
of several disconnected components in this problem. Constraint propagation is
hence also important for performing well on the higher dimensional instance.
Again, the method basic+peel appears to overall perform best.
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Table 2: Average and max ratios obtained for all tested problems on a subset of measures.
Method CPU ∆H # Nodes # TO

avg. max # b avg. max # b avg. max # b

FT 1.52 19.38 3 1.42 4.37 0 1.72 9.02 0 4
FT+FO 1.92 19.26 1 1.58 5.79 0 1.84 9.02 0 1
basic 1.63 50.70 3 1.39 6.38 2 1.85 74.08 0 1
basic+FT 1.85 11.41 0 1.21 4.37 0 1.30 9.02 0 1
basic+peel 1.14 7.86 9 1.04 1.30 5 1.11 11.00 6 1
basic+div 1.18 1.91 4 1.04 1.75 12 1.00 1.02 14 0
basic+full 1.24 2.42 1 1.01 1.14 11 1.00 1.03 14 0

On the last problem MOP, which is bound-constrained, it is interesting to
see that solely divider and full-divider are scaling well. This problem has simple
objectives, which can be efficiently handled by the stronger dominance con-
tractors. They are indeed helping reducing drastically the number of explored
nodes. It is also worth noting divider and full-divider behave totally identi-
cally at all dimensions, thus the result is in favor of divider due to its cheapest
computational cost.

5.3. Summary

We summarize our experimental results of the previous sections in Table 2
with respect to the ratios of CPU times and #Nodes (efficiency), and ∆H (qual-
ity). The table provides the harmonic average and maximum ratio for each
indicator, as well as the number of times #b a method has obtained ratio 1.0,
i.e., it has been the best on the corresponding measure. The number of timeout
# TO attained by each method is also reported.

This underlines the global performance and robustness of our proposed algo-
rithm with dominance contractors, and in particular with the use of divider and
full-divider, in terms of both efficiency and quality. Those contractors, based on
traditional constraint programming techniques, outperform overall the pruning
technique from [14].

Eventually, from the previous results and analyzing the problems specifically,
we can draw the following conclusions:

1. complex objective expressions (i.e. with numerous occurrences of each
variable) cannot be efficiently handled by the dominance contractors. This
is also true for complex constraints expressions and constraint propagation
in general.

2. highly constrained problems (i.e., OSY, SR and WD) are solved efficiently
with the usage of constraint propagation and the proposed dominance
contractors (dominance peeler and dominance divider). They generalize
the classical pruning step of single-objective interval B&B and perform
overall better than using specific pruning techniques alone, such as the
one from [14].

3. dominance divider, although having stable performance from one problem
to the other, is not often performing well compared to the single use of
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peeling. But for some problems with simple objective expressions and
a high number of variables, they can help a lot in reducing the explo-
ration cost. Nevertheless, full-divider has never been worth the effort. It
advocates for a parsimonious decomposition of the objective boxes with
dominance contractors.

6. Conclusion

The proposed interval Branch & Bound with dominance contractors offers
a generic framework for applying constraint propagation in a biobjective opti-
mization context. It allows exploiting efficiently the upper bound set collected
during the search, similarly to what is done in the single-objective case. The im-
plementation we propose clearly helps the global solving of nonlinear biobjective
optimization by discarding efficiently parts of the search space not containing
Pareto optimal solutions. As it is the case of many interval-based techniques,
the performance of dominance contractors depends on the complexity of the ob-
jective functions and constraints expressions, in particular in terms of number
of multi-occurrences of each variable (dependency problem).

The directions for future research are numerous. First we could explore
the use of other contractors, e.g., based on interval linearization that may help
reducing the influence of complex constraints/objectives expressions, like the
Quad filtering proposed for quadratic constraints in [29]. Linearization can also
be used for computing (using parametric simplex algorithm) better lower bound
sets than the ones used in this paper based on local approximated ideal points.
This in turn would yield the exploration of different search strategies.

Improving the update of the upper bound set via local search is also a
promising search direction. In particular, we would like to embed the certi-
fied continuation method ParCont [33] inside our interval B&B so as to quicken
the verified computations of enclosures of Pareto optimal solutions, and avoid
exploring already discovered regions of the search space.

The fact the interval B&B algorithm we propose uses explicit domains for
the objective functions makes it possible to develop an inverse approach similar
to [28] (see [32] for preliminary experiments), or even hybrid approaches which
split intervals in both the decision and objective spaces, combining the strengths
of both approaches.

Eventually, the extension of the dominance contractor to more than 2 objec-
tives can be done without theoretical difficulties. More objectives means more
ways to divide objective boxes into nondominated parts given a point from the
upper bound set, see [32]. The difficulty is then to maintain and search elements
in the upper bound set efficiently. The techniques developed in [41, 25] could
help solve this issue.

Acknowledgment

The authors would like to thanks Brice Chevalier, whose earlier work on
interval B&B in nonlinear multiobjective optimization during his master thesis

22



has been the foundation of the developments proposed here. The first author
is also grateful to the Portuguese Foundation for Science and Technology. for
having partially granted this work through the project PROCURE ( Probabilis-
tic Constraints for Uncertainty Reasoning in Science and Engineering Applica-
tions), ref. PTDC/EEI-CTP/1403/2012.

References

[1] I. Araya, G. Trombettoni, and B. Neveu. Exploiting monotonicity in inter-
val constraint propagation. In AAAI, 2010.

[2] V. Barichard and J. Hao. A population and interval constraint propagation
algorithm. In LNCS, pages 88–101. Springer, 2003.

[3] F. Benhamou, F. Goualard, L. Granvilliers, and J-F. Puget. Revising hull
and box consistency. In International Conference on Logic Programming,
pages 230–244. MIT press, 1999.

[4] F. Benhamou and L. Granvilliers. Chapter 16 - continuous and interval
constraints. In Peter van Beek Francesca Rossi and Toby Walsh, editors,
Handbook of Constraint Programming, volume 2, pages 571 – 603. Elsevier,
2006.

[5] F. Benhamou, D. McAllister, and P. Van Hentenryck. CLP(Intervals) Re-
visited. In International Symposium on Logic Programming, pages 124–138,
1994.

[6] C. A. C. Coello, G. B. Lamont, and D. A. Van Veldhuizen. Evolutionary
Algorithms for Solving Multi-Objective Problems (Genetic and Evolutionary
Computation). Springer-Verlag, 2006.

[7] C. A. C. Coello, G. B. Lamont, and D. A. Van Veldhuizen. Evolutionary
Algorithms for Solving Multi-Objective Problems (Genetic and Evolutionary
Computation). Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006.

[8] H. Collavizza, F. Delobel, and M. Rueher. Comparing partial consistencies.
Reliable Computing, 5(3):213–228, 1999.

[9] I. Das and J. Dennis. Normal-Boundary Intersection: A New Method
for Generating the Pareto Surface in Nonlinear Multicriteria Optimization
Problems. SIAM Journal on Optimization, 8(3):631–657, 1998.

[10] K. Deb, A. Pratap, and T. Meyarivan. Constrained test problems for
multi-objective evolutionary optimization. In E. Zitzler, L. Thiele, K. Deb,
C. A. Coello Coello, and D. Corne, editors, Evolutionary Multi-Criterion
Optimization, volume 1993 of Lecture Notes in Computer Science, pages
284–298. Springer Berlin Heidelberg, 2001.

[11] M. Ehrgott. Multicriteria Optimization (2. ed.). Springer, 2005.

23



Table 3: Results for non-scalable problems.
Methods CPU ∆H |Sout | # Nodes |YU | # Store

Binh

FT 1.35 1.22 1.32E-4 1.07 9 016 1.06 37 820 1.05 27 576 575 1.07

FT+FO 2.05 1.85 1.32E-4 1.07 9 016 1.06 37 816 1.05 27 576 575 1.07

basic 1.11 1.00 1.26E-4 1.02 8 573 1.01 36 102 1.01 31 976 542 1.01

basic+FT 1.38 1.25 1.26E-4 1.02 8 573 1.01 36 102 1.01 31 976 542 1.01

basic+peel 1.25 1.13 1.26E-4 1.02 8 573 1.01 36 098 1.01 31 976 540 1.00

basic+div 2.02 1.82 1.24E-4 1.00 8 516 1.00 35 866 1.00 33 197 539 1.00

basic+full 1.57 1.41 1.24E-4 1.00 8 648 1.02 36 420 1.02 32 426 539 1.00

KIM

FT 38.31 1.28 2.12E-4 1.01 64 478 1.08 304 197 1.02 80 623 4 390 1.00

FT+FO 42.67 1.43 2.12E-4 1.01 64 478 1.08 304 197 1.02 80 623 4 390 1.00

basic 29.91 1.00 2.11E-4 1.00 62 283 1.04 315 660 1.05 81 180 5 542 1.26

basic+FT 43.43 1.45 2.12E-4 1.01 64 478 1.08 304 197 1.02 80 623 5 293 1.21

basic+peel 40.18 1.34 2.12E-4 1.01 60 937 1.02 305 752 1.02 79 866 4 743 1.08

basic+div 57.25 1.91 2.15E-4 1.02 59 793 1.00 299 382 1.00 77 470 5 251 1.20

basic+full 72.29 2.42 2.15E-4 1.02 59 793 1.00 299 286 1.00 77 470 5 246 1.19

NBI

FT NA
FT+FO NA
basic 128.51 1.61 2.76E-7 1.03 82 027 1.06 701 000 1.08 367 267 2 810 1.03

basic+FT 822.19 10.33 2.83E-7 1.06 81 082 1.05 693 527 1.06 364 203 2 754 1.01

basic+peel 79.60 1.00 3.48E-7 1.30 81 518 1.05 699 310 1.07 369 013 2 870 1.05

basic+div 122.97 1.54 3.82E-7 1.43 78 013 1.01 651 614 1.00 341 777 2 725 1.00

basic+full 127.15 1.60 2.68E-7 1.00 77 518 1.00 669 806 1.03 354 412 2 730 1.00

OSY

FT TO*
FT+FO 792.22 5.41 1.60E-4 3.09 781 001 2.83 6 522 128 4.11 31 888 3 795 2.13

basic 966.13 6.60 1.46E-4 2.82 842 749 3.05 8 620 364 5.43 78 224 17 896 10.05

basic+FT 990.93 6.77 5.83E-5 1.13 772 036 2.80 4 306 624 2.71 61 699 3 015 1.69

basic+peel 146.34 1.00 5.17E-5 1.00 278 377 1.01 1 609 148 1.01 41 230 1 818 1.02

basic+div 154.97 1.06 9.07E-5 1.75 276 166 1.00 1 588 200 1.00 41 696 1 781 1.00

basic+full 159.91 1.09 5.90E-5 1.14 277 888 1.01 1 616 378 1.02 38 782 1 887 1.06

SR

FT TO
FT+FO 602.11 12.58 1.21E-3 3.28 112 731 2.96 1 612 610 4.22 4 082 20 537 29.46

basic 83.34 1.74 5.71E-4 1.54 55 117 1.45 611 986 1.60 3 215 5 013 7.19

basic+FT 327.30 6.84 6.24E-4 1.69 49 839 1.31 608 430 1.59 2 982 5 834 8.37

basic+peel 47.86 1.00 3.71E-4 1.00 38 117 1.00 391 902 1.03 3 754 895 1.28

basic+div 52.87 1.10 3.70E-4 1.00 38 050 1.00 381 920 1.00 3 792 697 1.00

basic+full 57.67 1.20 3.70E-4 1.00 38 046 1.00 384 048 1.01 3 785 762 1.09

TAN

FT 0.25 1.05 6.82E-4 3.58 1 954 1.45 8 280 2.58 1 004 279 1.67

FT+FO 0.30 1.28 6.75E-4 3.54 1 934 1.44 8 150 2.54 1 004 277 1.66

basic 0.29 1.25 3.51E-4 1.84 1 345 1.00 5 030 1.57 1 124 249 1.49

basic+FT 0.30 1.26 3.30E-4 1.73 1 538 1.14 3 932 1.22 1 160 191 1.14

basic+peel 0.24 1.03 1.91E-4 1.00 1 454 1.08 3 212 1.00 1 212 167 1.00

basic+div 0.24 1.01 1.91E-4 1.00 1 454 1.08 3 212 1.00 1 212 167 1.00

basic+full 0.23 1.00 1.91E-4 1.00 1 454 1.08 3 212 1.00 1 212 167 1.00

WB

FT TO
FT+FO 1460.02 1.65 9.16E-5 5.79 940 836 1.39 14 760 371 1.79 68 222 6 090 2.04

basic 902.31 1.02 2.21E-5 1.39 709 892 1.05 9 192 856 1.12 93 261 3 444 1.15

basic+FT 1626.58 1.83 1.60E-5 1.01 718 056 1.06 9 581 054 1.16 111 815 3 007 1.01

basic+peel 887.41 1.00 1.64E-5 1.03 680 957 1.00 8 425 136 1.02 116 333 3 078 1.03

basic+div 1309.66 1.48 1.59E-5 1.01 677 914 1.00 8 384 008 1.02 121 062 3 047 1.02

basic+full 1632.17 1.84 1.58E-5 1.00 687 219 1.01 8 235 136 1.00 114 090 2 987 1.00
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Table 4: Results for scalable problems.
Methods CPU ∆H |Sout | # Nodes |YU | # Store

CF3-2

FT 68.36 2.75 8.00E-3 1.16 115 464 1.32 293 597 1.62 1 308 4 798 2.62

FT+FO 72.92 2.93 8.00E-3 1.16 115 464 1.32 293 597 1.62 1 308 4 798 2.62

basic 32.92 1.32 8.84E-3 1.29 106 034 1.22 321 026 1.78 171 12 077 6.61

basic+FT 85.61 3.44 7.97E-3 1.16 115 046 1.32 292 151 1.62 1 308 4 981 2.72

basic+peel 24.90 1.00 7.60E-3 1.11 87 274 1.00 181 850 1.01 25 048 1 828 1.00

basic+div 28.51 1.14 6.87E-3 1.00 87 180 1.00 180 844 1.00 26 800 1 974 1.08

basic+full 30.59 1.23 6.87E-3 1.00 87 178 1.00 180 840 1.00 26 773 1 970 1.08

CF3-3

FT 2863.55 5.02 3.73E-4 4.37 2 902 757 3.99 9 712 252 5.25 502 473 394 3.67

FT+FO 2998.70 5.25 3.73E-4 4.37 2 902 757 3.99 9 712 252 5.25 502 473 394 3.67

basic 2139.42 3.75 5.43E-4 6.38 3 078 460 4.23 12 240 388 6.62 105 1836 605 14.22

basic+FT 3330.27 5.83 3.73E-4 4.37 2 902 672 3.99 9 712 158 5.25 502 909 435 7.04

basic+peel 612.51 1.07 8.65E-5 1.02 739 976 1.02 2 279 456 1.23 22 769 287 863 2.23

basic+div 570.98 1.00 8.52E-5 1.00 727 842 1.00 1 849 526 1.00 19 291 129 130 1.00

basic+full 597.37 1.05 8.54E-5 1.00 727 743 1.00 1 850 018 1.00 19 273 129 254 1.00

CTP1-3

FT 3.37 1.32 1.06E-3 1.29 16 568 1.51 46 382 2.12 1 075 83 1.60

FT+FO 4.27 1.67 1.06E-3 1.29 16 565 1.51 46 380 2.12 1 075 83 1.60

basic 4.40 1.72 8.27E-4 1.01 17 249 1.58 56 360 2.57 1 149 116 2.23

basic+FT 4.44 1.73 8.30E-4 1.01 11 190 1.02 22 523 1.03 1 528 59 1.13

basic+peel 2.56 1.00 8.23E-4 1.00 10 943 1.00 21 900 1.00 1 618 52 1.00

basic+div 2.64 1.03 8.23E-4 1.00 10 943 1.00 21 900 1.00 1 618 52 1.00

basic+full 2.72 1.06 8.23E-4 1.00 10 943 1.00 21 900 1.00 1 618 52 1.00

CTP1-5

FT 1258.75 2.17 1.00E-3 1.06 2 307 724 1.28 5 538 949 1.27 1 585 6 839 1.06

FT+FO 1002.87 1.73 1.00E-3 1.06 2 307 724 1.28 5 538 949 1.27 1 585 6 839 1.06

basic 580.67 1.00 9.44E-4 1.00 1 801 418 1.00 4 919 100 1.13 1 205 6 474 1.00

basic+FT 1159.92 2.00 9.84E-4 1.04 2 071 267 1.15 4 391 666 1.01 1 590 6 664 1.03

basic+peel 658.80 1.13 9.64E-4 1.02 2 172 140 1.21 4 344 402 1.00 1 339 8 966 1.38

basic+div 683.51 1.18 9.64E-4 1.02 2 172 140 1.21 4 344 402 1.00 1 339 8 966 1.38

basic+full 682.21 1.17 9.64E-4 1.02 2 172 140 1.21 4 344 402 1.00 1 339 8 966 1.38

CTP2-3

FT 4.05 1.10 1.37E-3 1.51 23 556 1.85 91 050 2.83 344 231 1.76

FT+FO 4.97 1.36 1.37E-3 1.51 21 585 1.70 88 344 2.75 344 210 1.60

basic 5.81 1.59 1.27E-3 1.40 19 372 1.52 73 620 2.29 344 176 1.34

basic+FT 4.67 1.27 9.16E-4 1.02 14 759 1.16 36 140 1.12 453 138 1.05

basic+peel 3.67 1.00 9.01E-4 1.00 12 706 1.00 32 172 1.00 453 131 1.00

basic+div 3.81 1.04 9.01E-4 1.00 12 757 1.00 32 266 1.00 458 133 1.02

basic+full 3.84 1.05 9.01E-4 1.00 12 744 1.00 32 232 1.00 458 133 1.02

CTP2-5

FT 1475.13 1.00 1.36E-3 1.14 5 820 443 1.25 17 583 569 1.70 449 20 403 1.24

FT+FO 1475.13 1.00 1.36E-3 1.14 5 820 443 1.25 17 583 569 1.70 449 20 403 1.24

basic 1989.88 1.35 1.51E-3 1.27 4 902 975 1.05 14 306 090 1.38 376 20 743 1.26

basic+FT 1892.20 1.28 1.31E-3 1.11 5 007 180 1.08 11 665 627 1.13 473 16 437 1.00

basic+peel 1790.75 1.21 1.19E-3 1.00 4 650 838 1.00 10 339 316 1.00 449 20 921 1.27

basic+div 1717.77 1.16 1.18E-3 1.00 4 652 010 1.00 10 340 308 1.00 452 20 829 1.27

basic+full 1762.81 1.20 1.18E-3 1.00 4 652 010 1.00 10 340 308 1.00 452 20 829 1.27
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Table 5: Results for scalable problems.
Methods CPU ∆H |Sout | # Nodes |YU | # Store

CTP6-3

FT 4.58 1.00 1.02E-1 1.49 34 100 1.50 100 174 2.15 415 738 1.19

FT+FO 6.23 1.36 1.02E-1 1.49 34 100 1.50 100 174 2.15 415 738 1.19

basic 7.46 1.63 8.82E-2 1.30 30 051 1.32 93 142 2.00 436 1 286 2.07

basic+FT 6.58 1.44 7.97E-2 1.17 27 688 1.22 58 560 1.25 440 672 1.08

basic+peel 5.42 1.18 6.80E-2 1.00 22 922 1.01 46 964 1.01 433 632 1.02

basic+div 6.04 1.32 6.81E-2 1.00 22 772 1.00 46 678 1.00 432 632 1.02

basic+full 6.50 1.42 6.81E-2 1.00 22 767 1.00 46 674 1.00 432 621 1.00

CTP6-4

FT 440.91 1.27 1.44E-1 1.26 1 425 155 1.13 3 847 452 1.47 397 52 046 1.00

FT+FO 526.76 1.52 1.44E-1 1.26 1 425 155 1.13 3 847 452 1.47 397 52 046 1.00

basic 454.02 1.31 1.49E-1 1.31 1 538 112 1.22 4 352 522 1.66 435 129 839 2.49

basic+FT 386.89 1.12 1.17E-1 1.03 1 370 545 1.09 2 972 090 1.14 444 56 303 1.08

basic+peel 346.85 1.00 1.14E-1 1.00 1 258 502 1.00 2 619 118 1.00 472 56 042 1.08

basic+div 378.64 1.09 1.14E-1 1.00 1 257 819 1.00 2 617 820 1.00 470 56 117 1.08

basic+full 395.30 1.14 1.14E-1 1.00 1 257 819 1.00 2 617 820 1.00 470 56 117 1.08

CTP7-4

FT 8.66 1.00 1.59E-2 1.69 41 387 1.16 147 548 1.36 269 11 214 1.06

FT+FO 10.61 1.23 1.59E-2 1.69 41 374 1.16 147 430 1.36 269 11 214 1.06

basic 229.05 26.46 3.04E-2 3.23 686 737 19.26 2 562 940 23.67 267 152 764 14.45

basic+FT 10.25 1.18 1.15E-2 1.22 35 983 1.01 108 828 1.01 272 10 574 1.00

basic+peel 9.94 1.15 9.43E-3 1.00 35 649 1.00 108 274 1.00 299 10 979 1.04

basic+div 12.71 1.47 9.42E-3 1.00 35 649 1.00 108 274 1.00 302 10 979 1.04

basic+full 15.05 1.74 9.42E-3 1.00 35 649 1.00 108 274 1.00 302 10 979 1.04

CTP7-5

FT 1340.76 4.06 2.13E-2 1.80 1 152 831 1.15 3 548 326 1.28 268 267 454 1.00

FT+FO 1464.50 4.43 2.13E-2 1.80 1 152 814 1.15 3 548 080 1.28 268 267 454 1.00

basic TO
basic+FT 383.49 1.16 1.65E-2 1.40 1 014 276 1.01 2 795 006 1.01 282 266 914 1.00

basic+peel 330.53 1.00 1.24E-2 1.05 1 004 614 1.00 2 774 522 1.00 304 271 668 1.02

basic+div 417.43 1.26 1.18E-2 1.00 1 002 647 1.00 2 770 202 1.00 309 271 668 1.02

basic+full 415.19 1.26 1.18E-2 1.00 1 002 647 1.00 2 770 202 1.00 309 271 668 1.02

MOP-7

FT 25.36 1.76 6.03E-7 1.41 13 498 1.81 219 840 1.54 19 175 2 432 2.62

FT+FO 26.38 1.83 6.03E-7 1.41 13 498 1.81 219 840 1.54 19 175 2 432 2.62

basic 15.10 1.05 6.03E-7 1.41 13 498 1.81 219 840 1.54 19 175 2 670 2.87

basic+FT 25.80 1.79 6.03E-7 1.41 13 498 1.81 219 840 1.54 19 175 2 670 2.87

basic+peel 23.31 1.62 4.53E-7 1.06 16 490 2.21 313 826 2.20 36 327 3 394 3.65

basic+div 14.39 1.00 4.28E-7 1.00 7 453 1.00 142 394 1.00 48 304 929 1.00

basic+full 15.33 1.07 4.28E-7 1.00 7 453 1.00 142 394 1.00 48 304 929 1.00

MOP-10

FT 736.43 19.38 1.05E-6 1.43 105 114 11.79 2 323 572 9.02 26 784 18 294 13.82

FT+FO 731.71 19.26 1.05E-6 1.43 105 114 11.79 2 323 572 9.02 26 784 18 294 13.82

basic 212.18 5.58 1.05E-6 1.43 105 114 11.79 2 323 572 9.02 26 784 20 842 15.74

basic+FT 433.52 11.41 1.05E-6 1.43 105 114 11.79 2 323 572 9.02 26 784 20 842 15.74

basic+peel 298.81 7.86 9.37E-7 1.28 118 310 13.27 2 834 216 11.00 39 957 21 820 16.48

basic+div 38.00 1.00 7.33E-7 1.00 8 915 1.00 257 740 1.00 90 573 1 324 1.00

basic+full 42.25 1.11 7.33E-7 1.00 8 915 1.00 257 740 1.00 90 573 1 324 1.00

MOP-13

FT TO
FT+FO TO
basic 3352.79 50.70 1.54E-6 1.32 838 042 99.96 23 526 888 74.08 33 884 174 020 111.19

basic+FT TO
basic+peel TO
basic+div 66.13 1.00 1.16E-6 1.00 8 384 1.00 317 600 1.00 133 631 1 565 1.00

basic+full 69.23 1.05 1.16E-6 1.00 8 384 1.00 317 600 1.00 133 631 1 565 1.00
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[26] B. J. Kubica and A. Woźniak. Interval methods for computing the pareto-
front of a multicriterial problem. In International conference on Parallel
processing and applied mathematics, PPAM’07, pages 1382–1391, 2008.
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Appendix A. Benchmarks

Appendix A.1. Kim and DeWeck (KIM) [24]

A problem with 2 objectives and 2 variables (only bound constraints).
min f1(x) := −(3(1− x1)2 exp(−x2

1 − (x2 + 1)2)
−10(x1/5.0− x3

1 − x5
2) exp(−x2

1 − x2
2)

−3 exp(−(x1 + 2)2 − x2
2) + 0.5(2x1 + x2))

min f2(x) := −(3(1 + x2)2 exp(−x2
2 − (1− x1)2)

−10(−x2/5.0 + x3
2 + x5

1) exp(−x2
1 − x2

2)
−3 exp(−(2− x2)2 − x2

1))

 , (A.1)

with −3 ≤ {x1, x2} ≤ 3.

Appendix A.2. BINH [7]

A problem with 2 objectives, 2 variables and 2 inequality constraints. Ob-
jectives and constraints are quadratic.

min f1(x) := 4x2
1 + 4x2

2

min f2(x) := (x1 − 5)2 + (x2 − 5)2

s.t g1(x) := (x1 − 5)2 + x2
2 − 25 ≤ 0

g2(x) := −(x1 − 8)2 − (x2 + 3)2 + 7.7 ≤ 0

 , (A.2)

with 0 ≤ x1 ≤ 5 and 0 ≤ x2 ≤ 3.

Appendix A.3. Tanaka (TAN) [7]

A problem with 2 objectives, 2 variables and 2 inequality constraints.
min f1(x) := x1

min f2(x) := x2

s.t g1(x) := −x2
1 − x2

2 + 1 + 0.1 cos(16 arctan(x1/x2)) ≤ 0
g2(x) := 2(x1 − 0.5)2 + 2(x2 − 0.5)2 − 1 ≤ 0

 , (A.3)

with 0 ≤ x1 ≤ 5 and 0 ≤ x2 ≤ 3.

30



Appendix A.4. Osyczka (OSY) [40]

A problem with 2 objectives, 6 inequality constraints and 6 variables.
min f1(x) := −(25(x1 − 2)2 + (x2 − 2)2 + (x3 − 1)2

+(x4 − 4)2 + (x5 − 1)2)
min f2(x) := x2

1 + x2
2 + x2

3 + x2
4 + x2

5 + x2
6

s.t g1(x) := −(x1 + x2 − 2) ≤ 0 g4(x) := −(−x1 + 3x2 + 2) ≤ 0
g2(x) := −(−x1 − x2 + 6) ≤ 0 g5(x) := −(−(x3 − 3)2 − x4 + 4) ≤ 0
g3(x) := −(x1 − x2 + 2) ≤ 0 g6(x) := −((x5 − 3)2 + x6 − 4) ≤ 0

 ,

(A.4)

with 0 ≤ {x1, x2, x6} ≤ 10, 1 ≤ {x3, x5} ≤ 5 and 0 ≤ x4 ≤ 6.

Appendix A.5. NBI [9]

A problem with 2 objectives, 2 equality constraints, 1 inequality constraint
and 5 variables.

min f1(x) := x2
1 + x2

2 + x2
3 + x2

4 + x2
5

min f2(x) := 3x1 + 2x2 − x3/3 + 0.001(x4 − x5)3

s.t h1(x) := x1 + 2x2 − x3 − 0.5x4 + x5 − 2 = 0
h2(x) := 4x1 − 2x2 + 0.8x3 + 0.6x4 + 0.5x2

5 = 0
g1(x) := x2

1 + x2
2 + x2

3 + x2
4 + x2

5 − 10 ≤ 0

 , (A.5)

with −50 ≤ xi ≤ 50.

Appendix A.6. SpeedReducer (SR) [52]

A problem modeling the design of a speed reducer, with 2 objectives, 11
inequality constraints and 7 variables.

min f1(x) := 0.7854x1x
2
2(

10x2
3

3 + 14.933x3 − 43.0934)
−1.508x1(x2

6 + x2
7) + 7.477(x3

6 + x3
7) + 0.7854(x4x

2
6 + x5x

2
7)

f2(x) :=
√

(745x4/x2x3)2 + 1.69× 107/0.1x3
6

s.t g1(x) := 1
x1x2

2x3
− 1

27 ≤ 0 g6(x) := x1

x2
− 12 ≤ 0

g2(x) := 1
x1x2

2x
2
3
− 1

397.5 ≤ 0 g7(x) := 5− x1

x2
≤ 0

g3(x) :=
x3
4

x2x3x4
6
− 1

1.93 ≤ 0 g8(x) := 1.9− x4 + 1.5x6 ≤ 0

g4(x) :=
x3
5

x2x3x4
7
− 1

1.93 ≤ 0 g9(x) := 1.9− x5 + 1.1x7 ≤ 0

g5(x) = x2x3 − 40 ≤ 0 g10(x) := f1(x)− 3300 ≤ 0

g11(x) :=
√

(745x5/x2x3)2 + 1.575× 108/0.1x3
7 − 1100 ≤ 0


,

(A.6)
with 2.6 ≤ x1 ≤ 3.6, 0.7 ≤ x2 ≤ 0.8, 17 ≤ x3 ≤ 28, 7.3 ≤ {x4, x5} ≤ 8.3,
2.9 ≤ x6 ≤ 3.9 and 5 ≤ x7 ≤ 5.5.
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Appendix A.7. Welded Beam (WB) [50]

A problem for the robust design of a Welded Beam, with 4 variables and 4
inequality constraints. This problem orignally contains a random parameter E,
following a normal distribution, that we fixed to its mean value (see below).

min f1(x) := 1.104x2
1x2 + 0.048x3x4(14 + x2)

min f2(x) := 4FL3

Ex3
3x4

s.t g1(x) := τ − 13600 ≤ 0 g3(x) := 6000− Pc ≤ 0
g2(x) := σ − 30000 ≤ 0 g4(x) := x1 − x4 ≤ 0

 , (A.7)

with 0.125 ≤ {x1, x4} ≤ 5, 0.1 ≤ {x2, x3} ≤ 10; and F = 6000, L = 14,
E = 30 · 106; and

τ :=

√
(τ ′)2 + (τ ′′)2 +

x2τ ′τ ′′√
0.25(x2

2 + (x1 + x3)2)

τ ′ :=
6000√
2x1x2

; τ ′′ :=
6000(14 + 0.5x2)

√
0.25(x2

2 + (x1 + x3)2)

2(0.707x1x2(x2
2/12 + 0.25(x1 + x3)2))

σ :=
504000

x2
3x4

; Pc := 64746.022(1− 0.0282346x3)x3x
3
4

Appendix A.8. MOP [45]

A scalable problem with 2 objectives and n variables (only bound con-
straints). 

min f1(x) :=
∑
j 6=1

(xj − 1)2 + (x1 − 1)4

min f2(x) :=
∑
j 6=2

(xj + 1)2 + (x2 + 1)4

 , (A.8)

with −5 ≤ xi ≤ 5 ∀i ∈ 1..n.

Appendix A.9. CTP1 [10]

Biobjective problems with n variables and 2 constraints based on the objec-
tives. min f1(x) := x1

min f2(x) := φ(x) exp(−f1(x)/φ(x))
s.t gj(x) := −f2(x) + aj exp(−bjf1(x)) ≤ 0 ∀j = 1, 2

 , (A.9)

with 0 ≤ xi ≤ 1 ∀i ∈ 1, . . . , n; and a1 = 0.858, a2 = 0.728, b1 = 0.541 and

b2 = 0.295. We selected φ(x) := 1 + 9

n∑
i=1

xi.
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Appendix A.10. CTP2, CTP6 and CTP7 [10]

Biobjective problems with n variables and 1 constraint based on the objec-
tives.

min f1(x) := x1

min f2(x) := φ(x) exp(−f1(x)/φ(x))
s.t g1(x) := a| sin(bπ(sin(θ)(f2(x)− e) + cos(θ)f1(x))c)|d

− cos(θ)(f2(x)− e) + sin(θ)f1(x) ≤ 0

 , (A.10)

with 0 ≤ xi ≤ 1 ∀i ∈ 1, . . . , n, and φ(x) := 1 + 9

n∑
i=1

xi.

The parameters are for CTP2

θ = −0.2π; a = 0.2; b = 10; c = 1 d = 6; e = 1;

for CTP6

θ = 0.1π; a = 40; b = 0.5; c = 1 d = 2; e = −2;

and for CTP7

θ = −0.05π; a = 40; b = 5; c = 1 d = 6; e = 0.

Appendix A.11. CF3 [51]

Biobjective problems with n variables and 1 constraint based on the objec-
tives.

min f1(x) := x1 + 2
|J1|

4
∑
j∈J1

y2
j − 2

∏
j∈J1

cos

(
20yjπ√

j

)
+ 2


min f2(x) := 1− x2

1

+ 2
|J2|

4
∑
j∈J2

y2
j − 2

∏
j∈J2

cos

(
20yjπ√

j

)
+ 2


s.t g1(x) := −f2(x)− f1(x)2

+ sin(2π(f1(x)2 − f2 + 1)) + 1 ≤ 0


, (A.11)

with 0 ≤ x1 ≤ 1, −2 ≤ xi ≤ 2,∀i = 2, . . . , n. In addition,

yi = xj − sin

(
6πx1 +

jπ

n

)
,∀j = 2, . . . , n

and J1 := {j : j odd, 2 ≤ j ≤ n}, J2 := {j : j even, 2 ≤ j ≤ n},
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