Ali Devin Sezer 
  
Thomas Kruse 
email: thomas.kruse@uni-due.de
  
Alexandre Popier 
email: alexandre.popier@univ-lemans.fr
  
Backward Stochastic Differential Equations with Nonmarkovian Singular Terminal Values

Keywords: AMS 2010 class: 35K57, 35K67, 60G40, 60H30, 60H99, 60J65 Backward stochastic differential equations / Reaction-diffusion equations / Singularity / Non-Markovian terminal conditions

We solve a class of BSDE with a power function f (y) = y q , q > 1, driving its drift and with the terminal boundary condition r) , where B(m, r) is the ball in the path space C([0, T ]) of the underlying Brownian motion centered at the constant function m and radius r. The solution involves the derivation and solution of a related heat equation in which f serves as a reaction term and which is accompanied by singular and discontinuous Dirichlet boundary conditions. Although the solution of the heat equation is discontinuous at the corners of the domain the BSDE has continuous sample paths with the prescribed terminal value.

Introduction

One of the first points emphasized in an introductory ordinary differential equations (ODE) course is that the solution of an ODE may explode in finite time; the equation

dy dt = y q , (1) 
with q > 1 serves as the primary example. Indeed, specify the terminal value y T = ∞ to (1) and y t . = ((q -1)(T -t)) 1-p , t < T, 1/p + 1/q = 1,

will be the corresponding unique solution of (1) (p is the Hölder conjugate of q). Now let W be a standard Brownian motion and {F t } be its natural filtration. For a terminal condition ξ ∈ F T , one can think of the backward stochastic differential equation (BSDE)

Y s = Y t + t s f (Y r )dr + t s Z r dW r , 0 < s < t < T, (3) 
Y T = ξ, (4) 
f (y) = -y|y| q-1 , Y continuous 1 on [0, T ], as a stochastic generalization / perturbation of the ODE(1) because for ξ = ∞ identically, one can set Z t = 0 and reduce (3) to [START_REF] Ankirchner | BSDEs with singular terminal condition and a control problem with constraints[END_REF] for which Y t = y t is the unique solution. But ξ is a random variable and can also be chosen equal ∞ over a measurable set A ∈ F T and a finite random variable over A c . Can one solve the BSDE [START_REF] Brézis | Nonlinear parabolic equations involving measures as initial conditions[END_REF][START_REF] Ph | L p solutions of backward stochastic differential equations[END_REF] with such terminal conditions? An analysis of this and related questions began with the article [START_REF] Popier | Backward stochastic differential equations with singular terminal condition[END_REF], where W is assumed to be d-dimensional. [START_REF] Popier | Backward stochastic differential equations with singular terminal condition[END_REF] proved in particular that there exists a pair of processes (Y min , Z min ) adapted to the filtration F t satisfying [START_REF] Brézis | Nonlinear parabolic equations involving measures as initial conditions[END_REF] and where Y min satisfies almost surely (a.s.)

lim t→T Y min t ≥ ξ = Y min T . (5) 
In other words, the process Y min is a continuous process on [0, T ), whose left-limit as t goes to T exists a.s. and dominates the terminal condition ξ = Y min T . Moreover, Y min of [START_REF] Popier | Backward stochastic differential equations with singular terminal condition[END_REF] is minimal: for any other pair ( Ŷ, Ẑ) satisfying [START_REF] Brézis | Nonlinear parabolic equations involving measures as initial conditions[END_REF] and

lim inf t→T Ŷt ≥ ξ, (6) 
one has

Y min t ≤ Ŷt , a.s., t ∈ [0, T ]. (7) 
Following [START_REF] Kruse | Minimal supersolutions for BSDEs with singular terminal condition and application to optimal position targeting[END_REF] we will refer to any pair satisfying ( 3) and ( 6) as a super-solution of the BSDE [START_REF] Brézis | Nonlinear parabolic equations involving measures as initial conditions[END_REF][START_REF] Ph | L p solutions of backward stochastic differential equations[END_REF]. Thus (Y min , Z min ) is the minimal super-solution of the BSDE [START_REF] Brézis | Nonlinear parabolic equations involving measures as initial conditions[END_REF][START_REF] Ph | L p solutions of backward stochastic differential equations[END_REF]. To strengthen [START_REF] Douady | Closed form formulas for exotic options and their lifetime distribution[END_REF] to the a.s. equality lim

t→T Y min t = Y min T = ξ (8) 
and hence solving the BSDE [START_REF] Brézis | Nonlinear parabolic equations involving measures as initial conditions[END_REF][START_REF] Ph | L p solutions of backward stochastic differential equations[END_REF] for general ξ ∈ F T turns out to be a difficult problem.

The article [START_REF] Popier | Backward stochastic differential equations with singular terminal condition[END_REF] proved [START_REF] Friedman | Partial differential equations of parabolic type[END_REF] for ξ of the form ξ = g(W T ), where the function g : R → R + ∪{∞} satisfies {g = ∞} is closed and for any compact subset K of {g < ∞}, E[g(W T )1 K (W T )] < ∞. Because ξ is a deterministic function of W , such terminal conditions are referred to as "Markovian". To the best of our knowledge, to delineate the class of ξ ∈ F T for which the BSDE [START_REF] Brézis | Nonlinear parabolic equations involving measures as initial conditions[END_REF][START_REF] Ph | L p solutions of backward stochastic differential equations[END_REF] has a solution Y on [0, T ] still remains an open problem.

The goal of the present work is to construct solutions to the BSDE [START_REF] Brézis | Nonlinear parabolic equations involving measures as initial conditions[END_REF][START_REF] Ph | L p solutions of backward stochastic differential equations[END_REF] for a class of non-Markovian terminal conditions ξ ∈ F T ; we will also prove that the solutions we construct are equal to the minimal supersolutions (Y min , Z min ) of [START_REF] Popier | Backward stochastic differential equations with singular terminal condition[END_REF], which will imply that [START_REF] Friedman | Partial differential equations of parabolic type[END_REF] holds for the terminal conditions we treat. To the best of our knowledge, the present work is the first to derive these types of results for non-Markovian singular terminal conditions. The class of ξ which we will focus on is best explained using the canonical path space Ω . = C([0, T ], R), the set of all R-valued continuous paths ω on [0, T ], equipped with its sup norm 

ξ 1 = ∞ • 1 B(m,r) c or ξ 2 = ∞ • 1 B(m,r) (9) 
where B(m, r) is the ball {ω : ||ω -m|| ∞ ≤ r}, for some m ∈ R and r > 0. To simplify notation we will assume throughout that m = r = L/2 for some L > 0 for which the expressions for ξ in (9) become ξ 1 = ∞ • 1 B(L/2,L/2) c and ξ 2 = ∞ • 1 B(L/2,L/2) ; all of what follows trivially extends to arbitrary m ∈ R and r > 0.

The Markovian terminal conditions provide (via Itô's formula) the connection between BSDE and a class of semilinear / quasilinear parabolic PDE [START_REF] Pardoux | Backward stochastic differential equations and quasilinear parabolic partial differential equations, Stochastic partial differential equations and their applications[END_REF]. In the case of singular terminal conditions of the type g(X T ) where g can take the value +∞, the associated parabolic PDE is coupled with singular boundary conditions; a considerable number of articles appeared over the last several decades (see [START_REF] Baras | Problèmes paraboliques semi-linéaires avec données mesures[END_REF][START_REF] Brézis | Nonlinear parabolic equations involving measures as initial conditions[END_REF][START_REF] Marcus | Initial trace of positive solutions of some nonlinear parabolic equations[END_REF][START_REF] Dynkin | Trace on the boundary for solutions of nonlinear differential equations[END_REF][START_REF] Gall | A probabilistic approach to the trace at the boundary for solutions of a semilinear parabolic partial differential equation[END_REF] and the references therein) studying the PDE

∂ t V + 1 2 ∂ xx V -V q = 0, (10) 
allowing for singular terminal values. This PDE [START_REF] Geiss | Fractional smoothness and applications in finance, Advanced mathematical methods for finance[END_REF] is directly related to the BSDE [START_REF] Brézis | Nonlinear parabolic equations involving measures as initial conditions[END_REF][START_REF] Ph | L p solutions of backward stochastic differential equations[END_REF] and will play a key role in our analysis below. See [START_REF] Popier | Backward stochastic differential equations with singular terminal condition[END_REF]Section 4] for more on the link between the BSDE [START_REF] Brézis | Nonlinear parabolic equations involving measures as initial conditions[END_REF][START_REF] Ph | L p solutions of backward stochastic differential equations[END_REF] and the PDE [START_REF] Geiss | Fractional smoothness and applications in finance, Advanced mathematical methods for finance[END_REF].

The main idea of the present paper for the solution of the BSDE [START_REF] Brézis | Nonlinear parabolic equations involving measures as initial conditions[END_REF][START_REF] Ph | L p solutions of backward stochastic differential equations[END_REF] for ξ of the form ( 9) is to reduce the question to a Markovian problem in the random time interval [0, τ ∧ T ] where

τ . = inf{t ∈ [0, ∞) : W t ∈ {0, L}}, W 0 = x, x ∈ (0, L).
For τ < T , the terminal conditions given in (9) reduce to constants

ξ 1 (ω) = ∞ • 1 B(m,r) c = ∞, ξ 2 (ω) = ∞ • 1 B(m,r) = 0,
and the SDE (3) reduces to the ODE (1) on (τ, T ]. Solving it on (τ, T ] with the terminal condition ξ 1 (ω) = ∞ gives the solution

Y 1 t = y t , Z 1 t = 0, t ∈ (τ, T ],
of the BSDE (3,4) on (τ, T ] for ξ = ξ 1 . Similarly, solving the same ODE on the same time interval with the terminal condition ξ 2 (ω) = 0 gives the solution

Y 2 t = 0, Z 2 t = 0, t ∈ (τ, T ],
of the same BSDE for ξ = ξ 2 . These then give the value of the solutions Y i at time τ < T :

Y 1 τ = y τ , Y 2 τ = 0. ( 11 
)
On the set T < τ , the terminal conditions ξ 1 and ξ 2 reduce to

ξ 1 (ω) = 0, ξ 2 (ω) = ∞. ( 12 
)
Next we solve the same BSDE in the time interval [0, T ∧ τ ] using [START_REF]Fractional smoothness of functionals of diffusion processes under a change of measure[END_REF] and ( 12) as terminal conditions. Thus our BSDE is reduced to one with a Markovian terminal condition at the random terminal time τ ∧T . Now Itô's formula provides the connection between the solution of the reduced BSDE to the solution of the parabolic equation ( 10)

∂ t V + 1 2 ∂ xx V -V q = 0;
(11) and ( 12) suggest the following boundary conditions to accompany the PDE:

V (0, t) = V (L, t) = y t , t ∈ [0, T ], V (x, T ) = 0, 0 < x < L (13) 
for ξ 1 and

V (0, t) = V (L, t) = 0, t ∈ [0, T ], V (x, T ) = ∞, 0 < x < L (14) 
for ξ 2 ; (note that in a single space dimension the Laplacian reduces to the second derivative operator ∂ xx ). Proposition 1 of Section 2 gives the details of the above reduction. With these steps our problem is reduced to the solution of the PDE [START_REF] Geiss | Fractional smoothness and applications in finance, Advanced mathematical methods for finance[END_REF] and the boundary condition [START_REF] Graewe | Smooth solutions to portfolio liquidation problems under price-sensitive market impact[END_REF] for ξ 1 and the boundary condition ( 14) for ξ 2 . The main difficulty with the solution of these equations are the discontinuous (at the corners (0, T ), (L, T ) ∈ R 2 ) and infinite valued boundary conditions. The most relevant work that we have identified in the literature on the solution of [START_REF] Geiss | Fractional smoothness and applications in finance, Advanced mathematical methods for finance[END_REF] and the boundary conditions ( 13) and ( 14) is [START_REF] Marcus | Initial trace of positive solutions of some nonlinear parabolic equations[END_REF], which contains results giving the existence of weak solutions to the PDE [START_REF] Geiss | Fractional smoothness and applications in finance, Advanced mathematical methods for finance[END_REF] in d space dimensions when coupled with boundary conditions which are allowed to take the value +∞. These results occur in [START_REF] Marcus | Initial trace of positive solutions of some nonlinear parabolic equations[END_REF] in the context of the computation of initial traces and within a general framework where boundary conditions and solutions are specified in a weak Sobolev-sense; to treat these questions the authors of [START_REF] Marcus | Initial trace of positive solutions of some nonlinear parabolic equations[END_REF] use PDE and analysis results developed by them over a number of works. We think that one can build an argument starting from results in [START_REF] Marcus | Initial trace of positive solutions of some nonlinear parabolic equations[END_REF] to get a classical solution to [START_REF] Geiss | Fractional smoothness and applications in finance, Advanced mathematical methods for finance[END_REF][START_REF] Graewe | Smooth solutions to portfolio liquidation problems under price-sensitive market impact[END_REF] and [START_REF] Geiss | Fractional smoothness and applications in finance, Advanced mathematical methods for finance[END_REF][START_REF] Hirsch | Lipschitz functions and fractional Sobolev spaces[END_REF] having the regularity and the boundary continuity properties needed for our purposes but this appears to be a nontrivial task. In this paper, we follow a different route and give a new self contained construction of classical solutions of [START_REF] Geiss | Fractional smoothness and applications in finance, Advanced mathematical methods for finance[END_REF][START_REF] Graewe | Smooth solutions to portfolio liquidation problems under price-sensitive market impact[END_REF] and [START_REF] Geiss | Fractional smoothness and applications in finance, Advanced mathematical methods for finance[END_REF][START_REF] Hirsch | Lipschitz functions and fractional Sobolev spaces[END_REF] starting from classical parabolic PDE theory with smooth boundary conditions [START_REF] Friedman | Partial differential equations of parabolic type[END_REF] and building on it using smooth approximation from below of the boundary conditions and elementary probabilistic techniques.

Once the solution of the BSDE is built as above, the last step is to connect it with the corresponding minimal supersolution (Y min , Z min ); this is achieved by an argument using the approximating sequence of functions constructed in the solution of the PDE.

One change in the application of the above steps to the terminal conditions ξ 1 and ξ 2 is the assumption we make on q: for ξ 1 we need q > 2 whereas q > 1 suffices for ξ 2 . This is coupled with the following change in the argument: for q > 2, the classical heat equation

∂ t V + 1 2 ∂ 2 xx V = 0
also has a classical solution v 0 with the boundary condition [START_REF] Graewe | Smooth solutions to portfolio liquidation problems under price-sensitive market impact[END_REF]. In the treatment of ξ 1 we use v 0 as an upper bound in constructing an approximating sequence for the solution of ( 10) and [START_REF] Graewe | Smooth solutions to portfolio liquidation problems under price-sensitive market impact[END_REF], which ensures the continuity of the limit of the approximation at the boundaries. For ξ 2 the corresponding boundary condition is [START_REF] Hirsch | Lipschitz functions and fractional Sobolev spaces[END_REF], for which v 0 doesn't exist (regardless of the value of q) but we are able to construct an upperbound directly working with the PDE [START_REF] Geiss | Fractional smoothness and applications in finance, Advanced mathematical methods for finance[END_REF] and the boundary condition [START_REF] Hirsch | Lipschitz functions and fractional Sobolev spaces[END_REF] and for this q > 1 suffices. Other than this, the arguments for ξ 1 and ξ 2 are the same. To reduce repetition and shorten the paper we give them in detail for the first case in Section 2, the necessary changes for ξ 2 are given in Section 3. The results of these sections are summarily given in Theorems 1 (Section 2) and 2 (Section 3). Both of these sections present numerical examples (graphs of functions and example sample paths) of the constructed solutions of the BSDE and those of the associated PDE.

We would like to note a connection between our results and the BSDE theory with L p terminal conditions. The assumption q > 2 for ξ 1 implies that, with the above reduction of the BSDE [START_REF] Brézis | Nonlinear parabolic equations involving measures as initial conditions[END_REF][START_REF] Ph | L p solutions of backward stochastic differential equations[END_REF] to the random time interval [0, τ ∧ T ], the reduced terminal condition will be in L 1 ; thus one can also invoke the existence results of [START_REF] Ph | L p solutions of backward stochastic differential equations[END_REF] to construct a solution for the terminal condition ξ 1 . The reduction to the time interval [0, τ ∧ T ] doesn't lead to an L 1 terminal condition for ξ = ξ 2 ; the PDE approach above applies to both ξ 1 and ξ 2 .

A well known fact in the prior literature (see, e.g., [START_REF] Kruse | Minimal supersolutions for BSDEs with singular terminal condition and application to optimal position targeting[END_REF]) is the link between the BSDE (3,4) and the following stochastic optimal control problem: the controlled process C is C s = c+ t s α s ds, the running cost is |α| p and the terminal cost is |C T | p ξ, where 0•∞ = 0. The random variable ξ is a penalty on the terminal value of C; in particular the controlled process is constrained to satisfy C T = 0 if ξ = +∞. A growing number of articles study variants and generalizations of this control problem (with ξ = ∞ identically) with applications to liquidation of portfolios of assets, see [START_REF] Ankirchner | BSDEs with singular terminal condition and a control problem with constraints[END_REF][START_REF] Graewe | Smooth solutions to portfolio liquidation problems under price-sensitive market impact[END_REF][START_REF] Graewe | A non-markovian liquidation problem and backward spdes with singular terminal conditions[END_REF][START_REF] Kruse | Minimal supersolutions for BSDEs with singular terminal condition and application to optimal position targeting[END_REF]. The value function v of the control problem is given by the minimal solution

Y min : v(t 0 , c) = |c| p Y min t 0 , where Y min t 0
is the initial value of the solution of the BSDE [START_REF] Brézis | Nonlinear parabolic equations involving measures as initial conditions[END_REF][START_REF] Ph | L p solutions of backward stochastic differential equations[END_REF] when it is solved on the interval [t 0 , T ] with W t 0 = x [START_REF] Kruse | Minimal supersolutions for BSDEs with singular terminal condition and application to optimal position targeting[END_REF]. Therefore, our results in Section 2 and 3 give explicit expressions for the value function of this control problem for ξ = ∞ • 1 B(m,r) and ξ = ∞ • 1 B(m,r) c . Section 4 uses this connection to derive estimates on the conditional probabilities P(B(m, r)|F t ) and

P(B(m, r) c |F t ), t ∈ [0, T ).
Let us point out further prior literature on the solution of the BSDE (3,4): [START_REF] Popier | Backward stochastic differential equations with singular terminal condition[END_REF] considers the case where ξ is a function g(X T ) where X is the solution of a forward SDE

X t = x + t 0 b(s, X s )dr + t 0 σ(s, X s )dW s ;
(for the assumptions on b, σ and q we refer the reader to [START_REF] Popier | Backward stochastic differential equations with singular terminal condition[END_REF]). Since then, two works [START_REF] Matoussi | Stochastic partial differential equations with singular terminal condition[END_REF][START_REF]Limit behaviour of BSDE with jumps and with singular terminal condition[END_REF] appeared treating the BSDE [START_REF] Brézis | Nonlinear parabolic equations involving measures as initial conditions[END_REF][START_REF] Ph | L p solutions of backward stochastic differential equations[END_REF] both focusing on ξ of the form g(X T ). The work [START_REF] Matoussi | Stochastic partial differential equations with singular terminal condition[END_REF] extends the results of [START_REF] Popier | Backward stochastic differential equations with singular terminal condition[END_REF] to the class of backward doubly stochastic SDE (BDSDE in short). The article [START_REF] Matoussi | Stochastic partial differential equations with singular terminal condition[END_REF] proves under these models that a minimal super-solution (Y min , Z min ) exists which is also continuous at the terminal time T with Y min T = ξ = g(X T ). The work [START_REF]Limit behaviour of BSDE with jumps and with singular terminal condition[END_REF] also considers the BSDE with three additional extensions a) there are an additional jump term given by a Poisson random measure; b) the drift term f (Y s ) = Y q s in (3) is replaced with a general f satisfying a number of conditions which includes as a special case the function y → y q and c) it works with a general complete right continuous filtration to which all of the given processes are adapted (as in [START_REF] Kruse | Minimal supersolutions for BSDEs with singular terminal condition and application to optimal position targeting[END_REF]); [START_REF]Limit behaviour of BSDE with jumps and with singular terminal condition[END_REF] proves that under these model assumptions that the minimal super-solution Y min to the BSDE is continuous at the terminal time with [START_REF]Limit behaviour of BSDE with jumps and with singular terminal condition[END_REF] jump terms are also allowed in the dynamics of X). Note that existence and minimality of (Y min , Z min , U min , M min ) were proved already in [START_REF] Kruse | Minimal supersolutions for BSDEs with singular terminal condition and application to optimal position targeting[END_REF] (the terms U min and M min come from the Poisson measure and the general filtration). A recent work treating integro-partial differential generalizations of [START_REF] Geiss | Fractional smoothness and applications in finance, Advanced mathematical methods for finance[END_REF] with singular terminal conditions is [START_REF]Integro-partial differential equations with singular terminal condition[END_REF], which contains many further references and a literature review on parabolic PDE with singular boundary conditions, their connections to BSDE and their probabilistic solutions.

Y min T = ξ = g(X T ) (in
We indicate several directions for future research in the Conclusion.

A first non-Markovian case

This section implements for the terminal condition ξ = ξ 1 = ∞ • 1 B(L/2,L/2) c the argument whose outline was given in the introduction. We will denote by D the domain (0, L) × (0, T ). For x ∈ (0, L), P x (ξ = +∞) = 1 and the problem becomes trivial for such x (the same comment applies to the terminal condition ξ = ∞ • 1 B(L/2,L/2) with P x (ξ = 0) = 1). Therefore, will assume the initial condition x to satisfy x ∈ (0, L); none of the arguments of the present work depend on the initial point W 0 = x beyond this consideration, thus for ease of notation we will simply write P for P x and always assume x ∈ (0, L). We summarize the results of this section in the following Theorem.

Theorem 1. If q > 2 then there is a function u which is C ∞ in the x variables and C 1 in the t variable and continuous on D \ {(L, T ), (0, T )} satisfying the PDE [START_REF] Geiss | Fractional smoothness and applications in finance, Advanced mathematical methods for finance[END_REF] with the boundary condition (13) such that 1.

Y t = u(W t , t) , t < τ ∧ T, y t , τ ≤ t ≤ T, Z t = u x (W t , t) , t < τ ∧ T, 0 , τ ≤ t ≤ T. ( 15 
)
solve the BSDE [START_REF] Brézis | Nonlinear parabolic equations involving measures as initial conditions[END_REF][START_REF] Ph | L p solutions of backward stochastic differential equations[END_REF] 

with ξ = ξ 1 = ∞ • 1 B(L/2,L/2) c ; in particular, Y is continuous on [0, T ],
2. We have (Y min , Z min ) = (Y, Z); in particular (8) holds.

Proof. Proposition 1 of subsection 2.1 proves that given any classical solution u of ( 10) and the boundary condition [START_REF] Graewe | Smooth solutions to portfolio liquidation problems under price-sensitive market impact[END_REF], the processes (Y, Z) defined as in ( 15) satisfy the BSDE [START_REF] Brézis | Nonlinear parabolic equations involving measures as initial conditions[END_REF][START_REF] Ph | L p solutions of backward stochastic differential equations[END_REF] and the Y process is continuous on [0, T ]. Proposition 2 of subsection 2.2 constructs a classical solution u of ( 10) and the boundary condition [START_REF] Graewe | Smooth solutions to portfolio liquidation problems under price-sensitive market impact[END_REF]. Finally, Proposition 3 proves Y = Y min for the u constructed in Proposition 2, which implies in particular that, for

ξ = ξ 1 , (8) holds. 
Remark 1. As pointed out in the introduction, the connection between the BSDE (3,4) and the PDE ( 10) is well known for Markovian terminal conditions. The above result says that the same connection continues to hold when ones uses the non-Markovian ξ 1 as terminal condition for the BSDE.

We give several numerical examples and simulation of our results in subsection 2.4.

Reduction to heat equation with reaction

As outlined in the introduction, our approach to solving the BSDE [START_REF] Brézis | Nonlinear parabolic equations involving measures as initial conditions[END_REF][START_REF] Ph | L p solutions of backward stochastic differential equations[END_REF] Proof. We begin by proving that Y is continuous on [0, T ]. First consider the case {τ < T }. By assumption u is continuous on D \ {(L, T ), (0, T )}. Therefore, u is continuous on

ξ = ∞ • 1 B(L/2,L / 
[0, L] × [0, τ ], [0, τ ] [0, T ]. In addition, W has continuous sample paths. Then t → u(W t , t)
is the composition of two continuous maps on [0, τ ] and therefore is a continuous function on that interval. On the other hand, by definition (15) Y t = y t for t > τ ; and the continuity of t → y t on [τ, T ] implies the same for Y ; finally the continuity of Y at τ follows from the boundary condition [START_REF] Graewe | Smooth solutions to portfolio liquidation problems under price-sensitive market impact[END_REF] and the definition of Y given in [START_REF] Karatzas | Brownian motion and stochastic calculus[END_REF]:

u(W τ , τ ) = y τ = Y τ .
Thus we see that Y is continuous on [0, T ] on the set {τ < T }. The event {τ = T } is of measure zero, thus it only remains to consider the case {τ > T }. By definition (15

) Y t = u(W t , t), t ∈ [0, T ] for ω ∈ {τ > T }.
The continuity of the sample path of W and the compactness of [0, T ] imply that there exists δ > 0 such that

W t (ω) ∈ [δ, L -δ], t ∈ [0, T ], (16) 
for 

ω ∈ {τ > T }. By assumption u is continuous on [δ, L-δ]×[0, T ]. Then t → Y t = u(W t , t), t ∈ [0, T ] is
Y T = y T • 1 {τ <T } + u(W T , T )1 {τ >T } = ∞ • 1 B(L/2,L/2) c + u(W T , T )1 {τ >T } .
The fact [START_REF] Kruse | Minimal supersolutions for BSDEs with singular terminal condition and application to optimal position targeting[END_REF] and that u satisfies (13) imply u(W T , T )1 {τ >T } = 0. This and the last display imply Y T = ξ 1 , i.e., that Y satisfies the terminal condition ( 4) with ξ = ξ 1 .

It remains to prove that for fixed s < t < T (3) holds almost surely. On the set {τ ≤ s}, Y r = y r and Z r = 0 for r ∈ [s, t] and (3) reduces to

y t = y s + t s y q r dr,
which is equivalent to (1) of which y is a solution; this establishes that (3) holds over {τ ≤ s}. Recall that by assumption, u is smooth in x, continuously differentiable in t in D and continuous on D \ {(L, T ), (0, T )}. In particular, u is continuous on any [0, L] × [0, t] for t < T . On the set {τ > s} apply Itô's formula to u(W r , r) between s and τ ∧ t to get

Y τ ∧t = Y s + t∧τ s ∂ x (W r , r)dW r + t∧τ s ∂ t u(W r , r)dr + 1 2 t∧τ s ∂ xx u(W r , r)dr.
That u satisfies [START_REF] Geiss | Fractional smoothness and applications in finance, Advanced mathematical methods for finance[END_REF] implies

Y τ ∧t = Y s + t∧τ s ∂ x u(W r , r)dW r + t∧τ s u q (W r , r)dr = Y s + t∧τ s Z r dW r + t∧τ s Y q r dr, (17) 
which implies (3) for {τ > t}. Finally, for {τ ∈ (s, t)}:

Y t = Y τ + t τ Y q r dr.
Substituting the right side of [START_REF] Ladyženskaja | Linear and quasilinear equations of parabolic type[END_REF] for Y τ in the last display gives

Y t = Y s + t s Z r dW r + t s Y q r dr,
where we have used Z r = 0 for r ∈ (τ, t), which finishes the proof that (Y, Z) satisfies (3).

Solution of the heat equation with reaction

This subsection proves the key ingredient of Theorem 1, i.e., the existence of a classical solution u of (10) and the boundary condition [START_REF] Graewe | Smooth solutions to portfolio liquidation problems under price-sensitive market impact[END_REF]. Equation ( 10) is often referred to as a reaction-diffusion equation where V q is the reaction term [7, Example 1, page 535]. The main difficulty with [START_REF] Geiss | Fractional smoothness and applications in finance, Advanced mathematical methods for finance[END_REF] and ( 13) is the discontinuity and unboundedness of the boundary condition near the corners (L, T ) and (0, T ) in R 2 . The next proposition asserts the existence of u and gives its regularity properties (the function v 0 is defined in ( 18)). Define

v 0 (x, t) . = E x,t y τ 1 {τ <T } , (18) 
where the subscript (x, t) of the expectation operator denotes conditioning on W t = x. The function v 0 will play a key role in our construction of the solution u.

Proposition 2. There is a unique function 0 ≤ u ≤ v 0 which is C ∞ in the x variable and continuously differentiable in the t variable over D and is continuous on D \ {(L, T ), (0, T )} and which solves (10) and ( 13).

An intermediate step in the proof of Proposition 2 will be to show that v 0 of ( 18) solves the classical heat equation

∂ t V + 1 2 ∂ xx V = 0, (19) 
over D = (0, L)×(0, T ), with the same boundary condition [START_REF] Graewe | Smooth solutions to portfolio liquidation problems under price-sensitive market impact[END_REF] (see subsection 2.2.1 below). In this, the assumption q > 2 and the following fact will play a key role: q > 2 implies that -1 < 1 -p < 0 and thus the solution ( 2) is integrable:

T 0 y s ds < ∞. (20) 
Following notation parallel to that of [START_REF] Friedman | Partial differential equations of parabolic type[END_REF] define

B t 0 . = {(x, t), x ∈ (0, L), t = t 0 }, B . = {(x, t), x ∈ (0, L), t = T }, S . = ∂D \ {B 0 ∪ B};
these sets are depicted in Figure 1. The proof of Proposition 2 will proceed as follows:

1. q > 2 implies that v 0 solves (in the classical sense) the linear heat equation ( 19) and the boundary condition [START_REF] Graewe | Smooth solutions to portfolio liquidation problems under price-sensitive market impact[END_REF] (see Lemmas 1 and 2 in subsection 2.2.1 below), 2. Approximate (13) by a sequence of smooth boundary conditions to which standard classical PDE theory applies and yields classical solutions. The solutions of the approximating equations are monotone in the approximation parameter, and their limit is our candidate solution u. Itô's formula implies an expectation representation for the approximate solutions. The solution v 0 of the heat equation in the first step gives us the necessary bound to invoke the dominated convergence theorem to infer that u satisfies the same expected value representation as the prelimit functions (see Lemma 4 and (29)).

3. Establish the regularity properties of u (see Lemma 5); we do this in two different ways. The first approach relies only on probabilistic arguments and is elementary and direct, it uses the following elements: a) explicit formulas for the density of the hitting time τ = inf{t : W t ∈ {0, L}} and the density of W t over sample paths restricted to stay in the interval (0, L) upto time t b) Duhamel's principle and c) the expected value representation of u. The second approach is based on analytic arguments for parabolic uniformly elliptic PDE. The above elements are put together in the Proof of Proposition 2 given at the end of subsection 2.2.2.

Solution of the classical heat equation with singularities at the corners

The classical theory of Brownian motion and of the classical heat equation suggest that v 0 is the unique solution of ( 19) and the boundary condition [START_REF] Graewe | Smooth solutions to portfolio liquidation problems under price-sensitive market impact[END_REF]. Let us prove that v 0 is finite and that it indeed solves [START_REF] Marcus | Initial trace of positive solutions of some nonlinear parabolic equations[END_REF] and [START_REF] Graewe | Smooth solutions to portfolio liquidation problems under price-sensitive market impact[END_REF]. Equation [5, (4.1)] (or Itô's formula and direct computation) implies the following formula for the distribution function of τ conditioned on

W t = x: P x,t (τ ≤ s) = 1 + P x,0 (W s-t ∈ A c ) -P x,0 (W s-t ∈ A) (21) 
where [START_REF] Matoussi | Stochastic partial differential equations with singular terminal condition[END_REF] and change variables to rewrite [START_REF] Matoussi | Stochastic partial differential equations with singular terminal condition[END_REF] as

A . = ∪ n∈Z {2nL + [0, L]}, x ∈ [0, L] and s > t. Substitute A in
P x,t (τ ≤ s) = 1 + n∈Z 1 √ 2π (2n+2)L-x √ s-t (2n+1)L-x √ s-t e -y 2 /2 dy - (2n+1)L-x √ s-t 2nL-x √ s-t
e -y 2 /2 dy .

For x ∈ (0, L), the derivative of the last display with respect to s gives the density of τ :

f τ (x, t, s) . = (s -t) -3/2 √ 2π n∈Z ((2n + 1)L -x)e - ((2n+1)L-x) 2 2(s-t) -(2nL -x)e - (2nL-x) 2 2(s-t) (22) 
(for x ∈ {0, L}, τ = t and P x,t (τ > s) = 0 identically for s > t and indeed the right side of ( 21) is identically 0 for x ∈ {0, L}); Figure 2 shows the graph of f τ for t = 2, L = 4, x = 3.5 For (x, t) ∈ D, write the expectation in [START_REF] Gall | A probabilistic approach to the trace at the boundary for solutions of a semilinear parabolic partial differential equation[END_REF] in terms of the density f τ :

v 0 (x, t) = T t f τ (x, t, s)y s ds = T t f τ (x, t, s)((q -1)(T -s)) 1-p ds. (23) 
The formula [START_REF] Pardoux | Backward stochastic differential equations and quasilinear parabolic partial differential equations, Stochastic partial differential equations and their applications[END_REF] and the behavior of x log(x) around 0 imply that f τ is continuous and smooth with continuous derivatives over the region

[δ 1 , L -δ 2 ] × [t, ∞) for any δ i > 0 with δ 1 < L -δ 2 .
Therefore from [START_REF] Marcus | Semilinear parabolic equations with measure boundary data and isolated singularities[END_REF] we deduce that v 0 (x, t) < ∞ for (x, t) ∈ D and v 0 has the same regularity as f τ in compact subsets of D. Integrability of t → y t [START_REF] Marcus | Semilinear parabolic equations with measure boundary data and isolated singularities[END_REF], the boundedness of f τ in compact subsets of D, [START_REF] Popier | Backward stochastic differential equations with singular terminal condition[END_REF] and the dominated convergence theorem also imply v 0 (x, t) → 0 for x ∈ (0, L) and t → T . Furthermore, for any t < T , f τ is continuous as a function of (x, s) on any compact strip [0, L] × [T -δ, T ] as long as t < T -δ. This and ( 20) imply

v 0 (x, t) - T -δ t f τ (x, t, s)y s ds ≤ (24) 
for any > 0 when δ > 0 is small enough. Note Next we will use Itô's formula and the regularity of v 0 to show that in fact it is a solution to the heat equation [START_REF] Marcus | Initial trace of positive solutions of some nonlinear parabolic equations[END_REF].

T -δ t f τ (x, t, s)y s ds = E x,t y τ 1 {τ <T -δ} . P x,t (τ = T -δ) = 0,
Lemma 2. v 0 solves [START_REF] Marcus | Initial trace of positive solutions of some nonlinear parabolic equations[END_REF].

Proof. Suppose there is (x 0 , t 0 ) ∈ D such that

∂ t v 0 (x 0 , t 0 ) + 1 2 ∂ xx v 0 (x 0 , t 0 ) = 0. ( 25 
)
Let δ > 0, be so that 0 < x 0 -δ < x 0 + δ < L and t 0 + δ < T. By the previous proposition v 0 is smooth on the compact set

N x 0 . = [x 0 -δ, x 0 + δ] × [t 0 , t 0 + δ]
with continuous derivatives of all orders. Let τ δ be the first time the process (t, W t ) hits ∂N x 0 . By definition τ δ < τ ∧ T. Conditioning on F τ δ , the strong Markov property of the Brownian motion and the definition of

v 0 imply v 0 (x 0 , t 0 ) = E x 0 ,t 0 [v 0 (W τ δ , τ δ )]. (26) 
Itô's formula applied to v 0 up to time τ δ gives

E x 0 ,t 0 [v 0 (W τ δ , τ δ )] -v 0 (x 0 , t 0 ) (27) = E x 0 ,t 0 τ δ t ∂ t v 0 (W s , s) + 1 2 ∂ xx v 0 (W s , s) ds .
(26) implies that the left side of the last display equals 0. But the continuity of [START_REF]Integro-partial differential equations with singular terminal condition[END_REF] imply that the right side of ( 27) is nonzero, which is a contradiction. Hence, (25) cannot happen and v 0 indeed solves [START_REF] Marcus | Initial trace of positive solutions of some nonlinear parabolic equations[END_REF] in D.

∂ t v 0 + 1 2 ∂ xx v 0 on N x 0 , τ δ = 0 and
Note that v 0 is the unique function satisfying the properties of Lemma 1 and Lemma 2. This follows from the arguments of the previous proof or from [17, Theorem III.5.1].

Treating the V q term

Equipped with the classical solution v 0 of the heat equation [START_REF] Marcus | Initial trace of positive solutions of some nonlinear parabolic equations[END_REF] and the boundary condition [START_REF] Graewe | Smooth solutions to portfolio liquidation problems under price-sensitive market impact[END_REF] we will proceed as follows to construct a classical solution to [START_REF] Geiss | Fractional smoothness and applications in finance, Advanced mathematical methods for finance[END_REF] and ( 13): define a family of boundary conditions y m,n approximating y (decreasing in m and increasing in n) which are smooth upto ∂D satisfying the existence uniqueness results from the classical theory of parabolic PDE [START_REF] Friedman | Partial differential equations of parabolic type[END_REF]. This gives us a family of functions u m,n , solving [START_REF] Geiss | Fractional smoothness and applications in finance, Advanced mathematical methods for finance[END_REF] with boundary values y m,n and which, by Itô's formula, have expected cost representations. This, the dominated convergence theorem and (20) give, upon taking limits of {u m,n }, a candidate solution u, which also has the same expected cost representation as the prelimit functions u m,n . We will then use the expected cost representation of u to improve our knowledge of u's regularity.

The next lemma is a consequence of the maximum principle2 and is well known for BSDE with monotone generator. Lemma 3.

1. Suppose u 0 ≥ 0 and u 1 ≥ 0 are two bounded smooth solutions of [START_REF] Geiss | Fractional smoothness and applications in finance, Advanced mathematical methods for finance[END_REF] 

such that u 0 | ∂D\B 0 ≥ u 1 | ∂D\B 0 . Then u 0 ≥ u 1 on D.
2. Assume that u 0 is a continuous solution of [START_REF] Geiss | Fractional smoothness and applications in finance, Advanced mathematical methods for finance[END_REF] 

with |u 0 | ≤ K on ∂D \ B 0 . Then |u 0 | ≤ K on D.
Proof. v = (u 0 -u 1 ) satisfies

∂ t v + 1 2 ∂ xx v - 1 2 Rv = 0 (28)
where R = (u q 0 -u q 1 )/(u 0 -u 1 )1 u 0 =u 1 > 0 and the boundary condition

u 0 -u 1 ≥ 0 on ∂D \B 0 . Itô's formula implies v(x, t) = E x,t e -τ ∧T t R(Ws,s)ds v(W τ ∧T , τ ∧ T ) ≥ 0.
For the second claim of the lemma, we use the same estimate with u 1 = 0:

u 0 (x, t) = E x,t e -τ ∧T t R(Ws,s)ds u 0 (W τ ∧T , τ ∧ T ) .

The next lemma identifies our candidate solution to the PDE (19) and the boundary condition (13).

Lemma 4. There exists a measurable function 0 ≤ u ≤ v 0 which satisfies u(x, t) = E x,t e -τ t u q-1 (Ws,s)ds y τ 1 {τ <T } (29)

or equivalently u(x, t) = E x,t - τ ∧T t u q (W s , s)ds + y τ 1 {τ <T } , (30) 
for (x, t) ∈ D.

Proof. Define y

(n) t . = y t-1/n .
Hence for any t ∈ [0, T ], |y

t | ≤ ((q-1) 1-p )n p-1 . Define ψ : ∂D\B → R and ψ n : ∂D\B → R as follows:

ψ(x, T ) = ψ n (x, T ) = 0, x ∈ (0, L), ψ(x, t) = y t , (x, t) ∈ S, ψ n (x, t) = y (n) t , (x, t) ∈ S.
The function ψ describes exactly the boundary condition [START_REF] Graewe | Smooth solutions to portfolio liquidation problems under price-sensitive market impact[END_REF]. Note that ψ and ψ n are discontinuous at the corners ∂B and ψ n ψ. We will now approximate ψ n by a sequence of smooth ψ m,n so that we can invoke [8, Theorem 9, page 205]. This result requires that ψ m,n ∈ C2+δ for δ ∈ (α, 1), where α is the Hölder constant associated with the boundary S, and

∂ t ψ m,n + 1 2 ∂ xx ψ m,n -ψ q m,n = 0 (31)
on ∂B.

To get the desired sequence, begin with two functions (linear in x):

ψ (0) m,n (x, t) . = y (n) t [1 -xm/2] , ψ (L) m,n (x, t) . = y (n) t [1 -(L -x)m/2] .
Let η : R → [0, 1], η ∈ C ∞ be as follows: η < 0 on (0, 1), η ≥ 0, η(x) = 1 for x ≤ 0, η(x) = 0, for x > 1; one possible choice is

η(x) = 1 (x∨0)∧1 e -1 1-(2y-1) 2 dy 1 0 e -1
1-(2y-1) 2 dy.

Now define

ψ m,n (x, t) = ψ (0) m,n (x, t)η m 2 x -1 m -1 + ψ (L) m,n (x, t)η m 2 (L -x) -1 m -1 ;
for m > 2/L ∨ 1. The resulting sequence ψ m,n of functions are nonnegative and smooth, decreasing in m with limit ψ n and they all satisfy (31). Figure 3 shows the graph of ψ m,n for m = 5, n = 10, L = 3 and T = 1. 

V | ∂D\B 0 = ψ m,n . ( 32 
)
|ψ m,n | ≤ ((q -1) 1-p )n p-1 = γ n,q implies that it suffices for our purposes to look for a solution |u m,n | ≤ γ n,q (see Lemma 3). The f (x) . = x q term in ( 10) is continuous in the interval [0, γ n,q ] and in particular it satisfies [8, equation (4.10), page 203]

xf (x) ≤ A 1 x 2 + A 2 , x ∈ [0, γ n,q ] ,
for constants A 1 , A 2 ≥ 0, and being monotone itself, it trivially satisfies [8, equation (4.17), page 205], which requires f be bounded by a monotone function. These imply that [8, Theorem 9, page 205] is applicable, and therefore, the PDE [START_REF] Geiss | Fractional smoothness and applications in finance, Advanced mathematical methods for finance[END_REF] and the boundary condition (32) have a classical solution u m,n that is continuous in D. Itô's formula gives The representation (33), u m,n ≥ 0, ψ m,n ≤ y t , and the definition (18) of v 0 imply u m,n ≤ v 0 . Then by the above definitions u ≤ v 0 . Now the dominated convergence theorem (where y τ 1 {τ <T } serves as the dominating function), v 0 < ∞, and taking limits in (33) give

u m,n (x, t) = E x,t e -τ ∧T t u q-1 m,n (Ws,s)ds ψ m,n (W τ ∧T , τ ∧ T ) (33) = E x,t - τ ∧T t u q m,n (W s , s)ds + ψ m,n (W τ ∧T , τ ∧ T ) .
u(x, t) = E x,t e -τ ∧T t u q-1 (Ws,s)ds y τ 1 {τ <T } = E x,t - τ ∧T t u q (W s , s)ds + y τ 1 {τ <T } .
Our next task is to establish that u is smooth in D.

Lemma 5. The function u of (29) is C ∞ in x and continuously differentiable in t over D.

We will give two different proofs for Lemma 5. The first is based on Duhamel's principle and uses the density of W s , s > t on [0, L] over the set {0 < W u < L, ∀u ∈ [t, s]}; this proof is based on fairly elementary calculations and in that sense direct. We will define a number of functions (U 1 , U 2 , U 3 and U 4 ) in this proof, which will also be used in the proof of the continuity of u on D \ ∂B in Lemma 6 below. The second proof uses general analytic results on the solution of uniformly elliptic parabolic PDE.

For the first proof we need the density P(W s ∈ dx, τ > s) whose formula is given as [5, Equation (4.1)]; let us rederive it using our notation. Parallel to (21) one first writes

P x,t (W s ∈ (0, a), 0 < W u < L, u ∈ (t, s)) (34) = P x,0 (W s-t ∈ A a ) -P x,0 (W s-t ∈ B a ),
for a ∈ (0, L) and where A a . = ∪ n∈Z {2nL + (0, a)} and B a . 21) is a special case of (34). Substituting A a and B a in (34) and the normal distribution of W s-t give

= ∪ n∈Z {2nL + (2L -a, 2L)}; the identities A L = A and B L = A c L = A c imply that (
P x,t (W s ∈ (0, a), 0 < W u < L, u ∈ (t, s)) = n∈Z 1 √ 2π a+2nL-x √ s-t 2nL-x √ s-t e -y 2 /2 dy - 2nL-x √ s-t 2nL-a-x √ s-t
e -y 2 /2 dy .

Differentiate the last display to get the density of W s on (0, a) when the sample path of W is constrained to stay in [0, L] over the time interval [t, s]:

f W (x, t, s) . = 1 2π(s -t) n∈Z e -(a+2nL-x) 2 2(s-t) -e -(2nL-a-x) 2 2(s-t) . ( 35 
)
The above display implies that f W is smooth for s > t and x ∈ (0, L) in all variables with continuous derivatives of all orders. Now we proceed with the first proof of Lemma 5.

Proof. Write u as the sum

u(x, t) = -U 1 (x, t) + v 0 (x, t), (36) 
where

U 1 (x, t) . = E x,t τ ∧T t u q (W s , s)ds , v 0 (x, t) = E x,t y τ 1 {τ <T } .
We already know that v 0 satisfies the conditions listed in the proposition. It rests to show the same for

U 1 . First, 0 ≤ u ≤ v 0 implies 0 ≤ U 1 ≤ v 0 . ( 37 
)
Fix an arbitrary T > δ > 0. We will now show that U 1 is smooth in (0, L) × (0, T -δ), δ being arbitrary, this will show U 1 is smooth on (0, L) × (0, T ). For t < T -δ, the strong Markov property of W and conditioning on F τ ∧(T -δ) imply that we can write U 1 in two pieces as follows:

U 1 (x, t) = E x,t τ ∧(T -δ) t u q (W s , s)ds + U 1 (W T -δ , T -δ)1 {τ >T -δ} = U 2 (x, t) + U 4 (x, t), (38) 
where

U 2 (x, t) . = E x,t τ ∧(T -δ) t u q (W s , s)ds , U 4 (x, t) . = E x,t U 1 (W T -δ , T -δ)1 {τ >T -δ} .
Let us write U 4 using the density f W given in (35):

U 4 (x, t) = L 0 f W (x, t, T -δ, y)U 1 (y, T -δ)dy. That 0 ≤ v 0 is continuous on D \ ∂B implies that it is in particular bounded on [0, L] × [0, T -δ].
This and (37) imply that U 1 (•, T -δ) is bounded by the same bound. This, the existence and the continuity of the derivatives of f W in x and t imply that

U 4 is smooth in (0, L) × [0, T -δ] and is continuous on [0, L] × [0, T -δ).
To study U 2 we will use Duhamel's principle:

U 2 (x, t) = E x,t τ ∧(T -δ) t u q (W s , s)ds = E x,t T -δ t 1 {s<τ } u q (W s , s)ds .
v 0 ≥ u ≥ 0 and Fubini's theorem imply

U 2 (x, t) = T -δ t E x,t 1 {s<τ } u q (W s , s) ds. ( 39 
) Define U 3 (x, t, s) . = E x,t 1 {s<τ } u q (W s , s)
and write (39) in terms of U 3 (this is Duhamel's principle):

U 2 (x, t) = T -δ t U 3 (x, t, s)ds. ( 40 
)
The function U 3 can be written in terms of the density f W as

U 3 (x, t, s) = L 0 f W (x, t, s, y)u q (y, s)dy. ( 41 
)
Once again, for s < T -δ, 0 ≤ u q is uniformly bounded above by a constant. This, the smoothness of f W in x imply that U 3 is smooth in x and t on (0, L) × (0, T -δ) for t < s. U 3 is smooth in its x variable, therefore U 2 is also smooth in x over the region (0, L) × (0, T -δ). This, the smoothness of U 4 and (38) imply the same for U 1 ; the smoothness of U 1 in x and (36) imply the smoothness of u in x. Now we will derive the regularity of u in the t variable. Let us begin with continuity of U 2 in t: take any sequence t n → t, with 0 < t n , t < T -δ and x ∈ (0, L). The continuity of U 3 in the t variable implies that the sequence of functions

s → 1 {s>tn} U 3 (x, t n , s) converge almost surely to s → 1 {s>t} U 3 (x, t, s)
on the set (0, T -δ). This and the bounded convergence theorem imply

U 2 (x, t n ) → U 2 (x, t),
i.e., U 2 is also continuous in the t variable on the set (0, L) × (0, T -δ). Thus we have: U 2 , U 4 are both continuous on (0, L) × (0, T -δ). This and (38) imply that U 1 is continuous over the same domain, this and (36) imply the same for u. Now going back to (41) we see that this implies that U 3 is also continuous in the s variable. The continuity of U 3 in all of its variables, (40) and the fundamental theorem of calculus tell us that U 2 is differentiable in t and

∂U 2 ∂t = -U 3 (x, t, t) + T -δ t ∂U 3 ∂t (x, t, s)ds = -u q (x, t) + T -δ t ∂U 3 ∂t (x, t, s)ds,
which, in particular, is a continuous function on (0, L)×(0, T -δ). Finally, this, the regularity of U 4 and (38) imply that U 1 is differentiable in t with continuous derivative over the domain (0, L) × (0, T -δ), which in its turn, along with (36) imply the same for u. This finishes the smoothness claims of the lemma on u.

We now give an alternative proof of the same lemma using classical but deep results on parabolic PDE with a regularization bootstrap argument. We know from Lemma 4 that u, by construction, is the limit of a sequence u m,n of classical solutions of the PDE [START_REF] Geiss | Fractional smoothness and applications in finance, Advanced mathematical methods for finance[END_REF] with the boundary condition (32). The comparison principle (Lemma 3) implies that for any m, n we have: 0 ≤ u m,n (x, t) ≤ y t on [0, L] × [0, T ]. Thus the solutions are bounded from above by a function independent of n and m. This will be useful in the proof below.

Second proof of Lemma 5. Now fix > 0. On [0, L] × [0, T -], u m,n is bounded (uniformly in n and m) by y T -. Moreover the smooth function u m,n satisfies on (0, L) × (0, T -)

∂ t u m,n + 1 2 ∂ xx u m,n = (u m,n ) q = f m,n
with the Hölder continuous lateral boundary condition y

(n) t
(and a bounded terminal condition u m,n (x, T -)). Here f m,n is a bounded function. We can apply [17, Theorem III.10.1] (Conditions (1.2) and (7.1) of [START_REF] Ladyženskaja | Linear and quasilinear equations of parabolic type[END_REF] are trivially satisfied in our setting). Therefore for any

η > 0, u m,n is in H α,α/2 ([η, T -η] × [0, T -]) (
space of functions which α-Hölder continuous in the space variable x and α/2-Hölder continuous in the times variable t). The value of α > 0 and the Hölder norm of u m,n does not depend on m and on n. In other words the Hölder norm of u m,n is bounded by some constant C α depending only on η and . Moreover we already know that u m,n converges pointwise to u n (as m goes to +∞) and u n converges to u (when n tends to +∞) 3 . Therefore u n and u are in H α,α/2 ([η, L -η] × [0, T -]) and their Hölder norms are bounded by the same constant C α .

Then u m,n is the solution of the same problem but now with more regular functions f m,n and u m,n (•, T -). Thus from [17, Theorem IV.10.1], we know that u m,n is in H 2+α,1+α/2 ([η, Lη] × [0, T --η]) for any > 0 and η > 0 and the norm estimates don't depend on n and on m, but only on the Hölder norm of f n,m on [η, L -η] × [0, T --η] and the upper bound on u m,n . Thus the same property holds for u. In other words u is a classical solution on (0, L) × [0, T ). This regularization argument can be iterated in order to obtain that u is C ∞ . Lemma 6. u of (29) is continuous on D \ ∂B.

Proof. Remember that v 0 is continuous on B and takes the value 0 there. This and 0 ≤ u ≤ v 0 imply the continuity of u on B. By definition u(x, t) = y t = v 0 (x, t) for (x, t) ∈ S. We already know that v 0 is continuous on S. Furthermore, by definition, U 1 = 0 on S; these and (36) imply that it suffices to show

U 1 (x n , t n ) → 0 (42) for {(x n , t n ) ∈ D, with (x n , t n ) → (x, t) ∈ S.
For this, we will use (38) with δ > 0 satisfying t < T -δ and the definitions of U 2 and U 4 . As (x n , t n ) → (x, t) ∈ S, τ → t. This and the boundedness of

u q on [0, L] × [0, T -δ] implies U 2 (x n , t n ) → 0.
Lastly, τ → t implies that 1 {τ >T -δ} converges to 0 almost surely. This and the boundedness of

U 1 on over [0, L] × [0, T -δ] imply U 4 (x n , t n ) → 0.
These and (38) establish (42).

We can now complete the proof of Proposition 2:

Since the minimal solution (Y min , Z min ) constructed in [START_REF] Popier | Backward stochastic differential equations with singular terminal condition[END_REF] is the increasing limit of solutions of the same BSDE but with terminal condition ξ ∧ m (as m goes to +∞), the comparison principle implies Y n t ≤ Y min t a.s. for any t ∈ [0, T ]. But u n converges to u and from [START_REF] Karatzas | Brownian motion and stochastic calculus[END_REF] we obtain the desired inequality.

We finally remark that the solution (Y, Z) of the BSDE (3, 4) (with

ξ = ξ 1 = ∞ • 1 B(L/2,L/2) c
) constructed above is in fact unique. This can be shown using uniqueness results for BSDEs with integrable data provided in [START_REF] Ph | L p solutions of backward stochastic differential equations[END_REF]. Indeed, for any non-negative solution (Y , Z) of the BSDE with terminal condition [START_REF] Brézis | Nonlinear parabolic equations involving measures as initial conditions[END_REF][START_REF] Ph | L p solutions of backward stochastic differential equations[END_REF] 

it holds a.s. that 0 ≤ Y min t ≤ Y t ≤ y t .
Hence Y t = y t for all t ∈ [τ ∧ T, T ]. In particular, (Y , Z) solves the BSDE on the random time interval [0, τ ∧ T ] and with terminal condition y τ 1 τ <T . Since this terminal condition is in L r for some r ∈ (1, 1/(p -1)) (recall that we assume q > 2), it follows from [4, Theorem 5.2 ] that there exists at most one solution (Y , Z) of this BSDE. Our results for the terminal condition ξ = ∞•1 B(L/2,L/2) parallel those for ξ = ∞•1 B(L/2,L/2) c , with two differences: 1) we need to replace the upperbound v 0 of subsection 2.2.1 with a new upperbound ū and 2) q > 1 is enough for the existence of solutions; see the discussion below for more on these changes. Theorem 2. Suppose q > 1. There exists a function v which is C ∞ in the x variable and C 1 in the t variable and continuous on D \ {(L, T ), (0, T )} and which solves the PDE [START_REF] Geiss | Fractional smoothness and applications in finance, Advanced mathematical methods for finance[END_REF] with the boundary condition (14) (i.e., (44) below)) such that 1. The processes The steps for the proof of Theorem 2 apply verbatim to the current case except for the construction of the solution of the PDE; for this reason we only give an outline and point out the necessary changes. Breaking as we do in Section 2.1 the BSDE into the intervals [0, τ ∧ T ] and [τ ∧ T, T ], this case can be reduced to the solution of the PDE [START_REF] Geiss | Fractional smoothness and applications in finance, Advanced mathematical methods for finance[END_REF] now with the boundary condition

Numerical examples

Y t = v(W t , t) , t < τ ∧ T, 0 , τ ≤ t ≤ T, Z t = vx (W t , t) , t < τ ∧ T, 0 , τ ≤ t ≤ T. (43 
V (0, t) = V (L, t) = 0, t ∈ [0, T ], V (x, T ) = ∞, 0 < x < L. ( 44 
)
The construction given in Section 2.2 for the PDE [START_REF] Geiss | Fractional smoothness and applications in finance, Advanced mathematical methods for finance[END_REF] and the boundary condition ( 13) allow one to solve the same PDE now with the boundary condition (44) except for the differences pointed out above: in the present case we no longer have the upperbound v 0 to serve as an upperbound in convergence and continuity arguments. The role of v 0 will now be played by the limit ū of a decreasing sequence of solutions of [START_REF] Geiss | Fractional smoothness and applications in finance, Advanced mathematical methods for finance[END_REF]. And because we no longer need v 0 we no longer need the assumption q > 2 and can work with q > 1. The details are given in the outline below:

1. First proceed as in Section 2.2, Lemma 4, to construct a classical solution ūn to [START_REF] Geiss | Fractional smoothness and applications in finance, Advanced mathematical methods for finance[END_REF] on [0, L] × [0, T -1/n] with the boundary condition Then, for fixed (x, t) ∈ [0, L] × [0, T ), (x, t) will be in the domain of ūn (x, t) for n ≥ n 0 for some n 0 and the sequence {u n (x, t), n ≥ n 0 } will be decreasing in n; call its limit ū(x, t), i.e., ūn (x, t) ū(x, t), n → +∞.

V (0, t) = V (L, t) = 0, t ∈ [0, T -1/n], V (x, T -1/n) = y T -2/n , 0 < x < L, continuous on [0, L] × [0, T -1/n] -{(0, T -1/n), (L, T -1/n)}
The representations (45) and (46) and the dominated convergence theorem imply ū(x, t) = E x,t e -τ ∧r t ūq-1 (Ws,s)ds ū(W r , r) ,

(x, t) = E x,t - τ ∧r t ūq (W s , s)ds + ū(W r , r) , (47) ū 
for any t < r < T and any x ∈ [0, L]. Moreover we have Let us assume p > 1 and as before q denotes its Hölder conjugate; for an arbitrary ξ ∈ F T , ξ ≥ 0, consider the stochastic optimal control problem

∀(x, t) ∈ [0, L] × [0, T ), 0 ≤ ū(x, t) ≤ y t .
V (c, t, ω) . = essinf α∈A(t,c) E (p -1) p-1 T t |α s | p ds + |C α T | p ξ F t , (49) 
C α u . = c + u t α s ds, u ∈ [t, T ],
t ∈ [0, T ], c ∈ R, where the set of admissible controls A(t, c) consists of all progressively measurable processes α such that α ∈ L 1 (t, T ) P-a.s and we assume 0 • ∞ = 0. From the verification Theorems [1, Theorem 1.3] or [16, Theorem 3], we know that

V (c, t, ω) = |c| p Y min t ( 50 
)
where Y min is the minimal super-solution of the BSDE [START_REF] Brézis | Nonlinear parabolic equations involving measures as initial conditions[END_REF][START_REF] Ph | L p solutions of backward stochastic differential equations[END_REF] constructed in these works 4 . In particular, lim t→T V (c, t, ω) ≥ |c| p ξ(ω)

holds P-a.s. Moreover, an optimal control for (49) is given by α * s = -(q -1)C α * s |Y s | q-1 , and thus 

C α * u = c exp -(q -1) u t (Y s ) q-1
(ω) = ξ(ω). Proof. Let C t = exp -(q -1) t 0 (Y min s ) q-1
ds (which is the optimal control in (49) for t = 0 and c = 1). Since Y min is nonnegative, it follows that C is continuous at T : lim t→T C t = C T ∈ [0, 1]. We know from the analysis of the control problem (see [START_REF] Ankirchner | BSDEs with singular terminal condition and a control problem with constraints[END_REF], proof of Theorem 4.2) that

Y min t C p t = E (p -1) p-1 T t |α s | p ds ξ|C T | p F t (51) 
with α s = dCs ds = -(q -1)(Y min Remark 2. The identity (51) is equivalent to the representation (29) in Lemma 4 (replace Y min t by u(W t , t) and take expectation). 4 In [START_REF] Kruse | Minimal supersolutions for BSDEs with singular terminal condition and application to optimal position targeting[END_REF] only the weak terminal constraint lim inft→T Y min t ≥ ξ was established. In the present setting, it follows from the results in [START_REF] Popier | Backward stochastic differential equations with singular terminal condition[END_REF] The next result gives a necessary condition for continuity. We use the shorthand notation

P t [ξ = ∞] = E[1 {ξ=∞} |F t ].
Lemma 8. Let Y min be the minimal super-solution of the BSDE [START_REF] Brézis | Nonlinear parabolic equations involving measures as initial conditions[END_REF][START_REF] Ph | L p solutions of backward stochastic differential equations[END_REF] and suppose that continuity condition (8) holds for Y min . Then we have a.s. on {ξ < ∞}

sup t∈[0,T ] P t [ξ = ∞] (T -t) p-1 < ∞.
Proof. For t < T let α ∈ A(t, 1) be an arbitrary strategy with associated position path C α that has finite costs:

E (p -1) p-1 T t |α s | p ds + |C α T | p ξ F t < ∞.
Take for example the optimal strategy. Then we have

E (p -1) p-1 T t |α s | p ds + |C α T | p ξ F t ≥ (p -1) p-1 E 1 {C α T =0} T t |α s | p ds F t .
Jensen's inequality yields Proof. For the first result set ξ = ∞ • 1 B c (m,r) and let (Y min , Z min ) denote the minimal super-solution of [START_REF] Brézis | Nonlinear parabolic equations involving measures as initial conditions[END_REF][START_REF] Ph | L p solutions of backward stochastic differential equations[END_REF] and let (Y, Z) denote the solution of [START_REF] Brézis | Nonlinear parabolic equations involving measures as initial conditions[END_REF][START_REF] Ph | L p solutions of backward stochastic differential equations[END_REF] constructed in Proposition 1. From Theorem 1, Y min = Y and in particular, it holds that lim t→T Y t = lim t→T Y min t = ξ. In other words continuity condition [START_REF] Friedman | Partial differential equations of parabolic type[END_REF] holds. The first result then follows from Lemma 8 (observe that q > 2 implies that p < 2). The second result follows from the same argument and Lemma 8, this time used with the results in Section 3. This result is related to the notion of fractional smoothness developed by [START_REF] Watanabe | Fractional order Sobolev spaces on Wiener space[END_REF][START_REF] Hirsch | Lipschitz functions and fractional Sobolev spaces[END_REF], by [START_REF] Geiss | Fractional smoothness and applications in finance, Advanced mathematical methods for finance[END_REF] for applications in finance and by [START_REF] Geiss | Generalized fractional smoothness and L p -variation of BSDEs with non-Lipschitz terminal condition[END_REF][START_REF]Fractional smoothness of functionals of diffusion processes under a change of measure[END_REF] in the context of BSDEs. Indeed we get the following inequality: for A = B c (m, r) (and p ∈ (1, 2)) or A = B(m, r) (and p > 1), it holds P-a.s.

∀t ∈ [0, T ],

|1 A -E(1 A |F t )| ≤ C(T -t) p-1 .
Following [9, Definition 1], this means that 1 A belongs to B 2(p-1) q,∞ (W ) for any 1 < q < ∞.

Conclusion

Let A further generalization involves changing the definition of the set B to {ω -r < X t (ω)c < r, t ∈ [0, T ]} where X is an SDE driven by W ; this generalization would require to modify the second derivative term in [START_REF] Geiss | Fractional smoothness and applications in finance, Advanced mathematical methods for finance[END_REF] to the infitesimal generator of X. Further generalizations can consider the case when X is an SDE with jumps or a doubly stochastic process, which may require further arguments and ideas. The treatment of these extensions may also be taken up in future work.

For the case when ξ = ξ 1 = ∞ • 1 B c our arguments depended on q > 2, which implied E[y τ 1 {τ <T } ] < ∞. The work of Marcus & Véron [START_REF] Marcus | Semilinear parabolic equations with measure boundary data and isolated singularities[END_REF] and numerical computations suggest that even when q ∈ (1, 2] the PDE [START_REF] Geiss | Fractional smoothness and applications in finance, Advanced mathematical methods for finance[END_REF] and the boundary condition [START_REF] Graewe | Smooth solutions to portfolio liquidation problems under price-sensitive market impact[END_REF] have a smooth solution. Future work can also try to treat the terminal condition ξ 1 with q ∈ (1, 2].

The present work doesn't address the question of uniqueness of the solution of the BSDE [START_REF] Brézis | Nonlinear parabolic equations involving measures as initial conditions[END_REF][START_REF] Ph | L p solutions of backward stochastic differential equations[END_REF] for the terminal condition ξ = ξ 2 = ∞ • 1 B ; even the uniqueness of the solution of the associated PDE [START_REF] Geiss | Fractional smoothness and applications in finance, Advanced mathematical methods for finance[END_REF] and the boundary condition (44) appears to be open. The most relevant works on this question are [START_REF] Marcus | Initial trace of positive solutions of some nonlinear parabolic equations[END_REF][START_REF] Marcus | Semilinear parabolic equations with measure boundary data and isolated singularities[END_REF] and, to the best of our understanding, the results in these works do not settle the question of uniqueness for the PDE. Therefore, the question of uniqueness for the terminal condition ξ = ξ 2 is for the moment open and can be a direction for future research.

The single space dimension that we have treated in the present work simplified our existence and smoothness arguments for the solutions of the PDE we have studied. Their extension to higher dimensions could also be the subject of future work. In this, a possible approach is, as hinted at in the introduction, to develop arguments for our PDE problems starting from results of [START_REF] Marcus | Initial trace of positive solutions of some nonlinear parabolic equations[END_REF].

Finally, from an applied perspective, we think that it would be of interest to study the implications of the results of the current work for the portfolio liquidation problem mentioned in Section 4.

  of Wiener measures {P x , x ∈ R}, under which the canonical process W t (ω) = ω(t) is a standard Brownian motion with initial condition W 0 = x. As before {F t , 0 ≤ t ≤ T } is the canonical filtration generated by W . Then F T is the Borel field of Ω corresponding to the sup norm || • || ∞ and the basic F T -measurable random variables are the indicator functions of open /closed subsets of C([0, T ]). The open and closed subset of C([0, T ]) are generated by balls with respect to the norm || • || ∞ and the simplest balls in turn are those centered around constant functions. Thus we arrive at the class of terminal values we would like to cover:

Proposition 1 .

 1 2) c will be by breaking the problem into two random time intervals [0, τ ∧ T ) and (τ ∧ T, T ]; on the latter the problem reduces to the trivial (1) with the terminal value y T = ∞. The value of the unique solution y τ at τ then provides the terminal condition over the interval [0, τ ∧ T ); thus we end up with a Markovian problem and can attack it via the associated PDE. These are the main ideas underlying the next proposition. Suppose u : D → R is C ∞ in the x variable and continuously differentiable in the t variable over D, continuous on D \ {(L, T ), (0, T )} and satisfies the PDE (10) and the boundary condition[START_REF] Graewe | Smooth solutions to portfolio liquidation problems under price-sensitive market impact[END_REF] in the classical sense. Then the pair (Y, Z) of (15) satisfies the BSDE[START_REF] Brézis | Nonlinear parabolic equations involving measures as initial conditions[END_REF][START_REF] Ph | L p solutions of backward stochastic differential equations[END_REF] and is continuous on [0, T ].

  the composition of two continuous functions and hence continuous. This proves the continuity of Y on [0, T ].By definition
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 1 Figure 1: The domain and its boundaries

Figure 2 :

 2 Figure 2: The graph of f τ , t = 2, L = 4, x = 3.5

Lemma 1 .

 1 and s → y s 1 {s<T -δ} is a continuous and bounded function for s = T -δ. Now choose any sequence (t n , x n ) → (t, x), x ∈ {0, L} and t < T. The law of the iterated logarithm[START_REF] Karatzas | Brownian motion and stochastic calculus[END_REF] Theorem 9.23] implies that the hitting time τ converges to t as n → ∞. These imply lim n→∞ E (xn,tn) y τ 1 {τ <T -δ} = y t .This and (24) imply v 0 (x n , t n ) → y t . Let us record what we have proved so far as a lemma: The function v 0 defined in (18) has the integral representation[START_REF] Popier | Backward stochastic differential equations with singular terminal condition[END_REF], is smooth in D (with continuous derivatives of all orders in compact subsets of D) and continuous on D \ ∂B and satisfies the boundary condition[START_REF] Graewe | Smooth solutions to portfolio liquidation problems under price-sensitive market impact[END_REF].

Figure 3 :

 3 Figure 3: ψ m,n , m = 10, n = 50, L = 3, T = 1

ψ

  m,n ≥ 0 and Lemma 3 imply u m,n ≥ 0. The functions ψ m,n are decreasing in m and increasing in n and they are all bounded; this and Lemma 3 imply that u m,n is decreasing in m and increasing in n. Then we can define 0 ≤ u n .

  Let us give several numerical examples for the PDE solutions constructed above and the resulting solution Y of the BSDE. The left side of Figure4shows the graph of u m,n with L = 3 and T = 1, m = 100 and n = 50 computed using a finite difference approximation of the PDE with ∆x = 0.1 and ∆t = 0.01. The right side of the same figure shows the graph of u m,n over the line x = L/2 = 1.5 for m = 100 and n = 10 and n = 150 as well as the graph of y t ; note u 100,10 (1.5, t) < u 100,1000 (1.5, t) < y t in the figure, as expected. Figure5shows two randomly sampled sample paths of the Brownian motion W with W 0 = L/2 = 3/2 and the corresponding path for Y , computed using (15) where we use a numerical approximation of u m,n with m = 100 and n = 1000 to approximate u.3 The case ξ = ∞ • 1 B(m,r)

)

  solve the BSDE[START_REF] Brézis | Nonlinear parabolic equations involving measures as initial conditions[END_REF][START_REF] Ph | L p solutions of backward stochastic differential equations[END_REF] with ξ = ∞ • 1 B(L/2,L/2) , and in particular, Y is continuous on [0, T ],
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 415 Figure 4: On the left, the graph of u m,n with m = 100 and n = 50; on the right, the graph of u m,n over x = 1.5 for m = 100, n = 10 (thin) and n = 1000 (thick), and y t (dashed line). In all computations L = 3 and T = 1

Figure 6 :

 6 Figure 6: On the left, graph of ū50 ; on the rights graphs of ū5 (1, t), ū50 (1, t) and y t , t ∈ [0, 1]; T = 1 and L = 2

Figure 7 :

 7 Figure 7: Two trajectories of W and Y (left with explosion, right without).

s ) q- 1

 1 C s , s ∈ [t, T ]. The right side of (51) decomposes into a semimartingale M + A with M t = E (p -1) p-1 T 0 |α s | p ds + ξ|C T | p F t and A t = -(p -1) p-1 t 0 |α s | p ds. Since Y min 0 = E[M T ] < ∞, the process M is a true martingale. In particular, M is continuous. A is continuous by the fundamental theorem of calculus. Therefore, the right side of (51) converges to M T + A T = ξ|C T | p as t T , i.e. = ξ|C T | p . Therefore, on the set {C T > 0} we have lim t T Y min t = ξ. Moreover, the definition of C implies that if C T (ω) = 0, then lim t→T Y min t (ω) = ∞ and consequently {lim t→T Y min t < ∞} ⊆ {C T > 0}. This completes the proof.

T t |α s | p ≥ 1 ( 1 . 1 .

 111 T -t) p-1 for every path satisfying C α T = 0. Moreover, since α has finite costs, it holds that {ξ = ∞} ⊆ {C α T = 0}. This impliesE (p -1) p-1 T t |α s | p ds + |C α T | p ξ F t ≥ (p -1) p-1 P t [ξ = ∞] (T -t) p-Since the right side of the above display does not depend on the control α, we use (50) to arrive atY min t ≥ (p -1) p-1 P t [ξ = ∞] (T -t) p-Since lim t→T Y min t < ∞ if ξ < ∞, this yields the claim.Lemma 8 combined with our results from Sections 2 and 3 allows to derive estimates on the speed of convergence lim t→T P t [A] → 0 on A c for A = B(m, r) and A = B(m, r) c . This is subject of the next corollary. Corollary 1. Let m ∈ R and r ∈ (0, ∞). Then on B(m, r) it holds for all p ∈ (1, 2) that sup t∈[0,T ] P t [B(m, r) c ] (T -t) p-1 < ∞ and on B(m, r) c it holds for all p > 1 that sup t∈[0,T ] P t [B(m, r)] (T -t) p-1 < ∞.

  us comment on several direct extensions and possible future work. The extension of the boundary conditionξ = ∞ • 1 B c to ∞ • 1 B c + g(W T )1 B for g such that E(|g(W T )|1 B ) < ∞requires only that we change the terminal condition (13)V (0, t) = V (L, t) = y t , t ∈ [0, T ], V (x, T ) = g(x), 0 < x < L.Simple modifications of the argument of Section 2 would suffice to deal with this change.Generalizing the terminal conditionξ = ∞ • 1 B to ∞ • 1 B + g(W T )1 B c for g such that E(|g(W T )|1 B ) < ∞requires the solution of two PDE: one must first solve[START_REF] Geiss | Fractional smoothness and applications in finance, Advanced mathematical methods for finance[END_REF] over the domain R × [0, T ] where g serves as terminal condition on the terminal boundary of this domain. The value of the solution on S = {(L, t), t ∈ [0, T ]} ∪ {(0, t), t ∈ [0, T ]} will then serve as lateral boundary condition for the PDE (10) on D.

  L] × [0, T -1/n], ūn (x, t) ≤ y t . Hence for n 1 < n 2 and for any x ∈ [0, L], ūn 2 (x, T -1/n 1 ) ≤ y T -2/n 1 . Again by comparison principle (Lemma 3), for any (x, t) ∈ [0, L] × [0, T -1/n 1 ], ūn 2 (x, t) ≤ ūn 1 (x, t).

			satisfying
	the expectation representations (of type (29) and (30)):	
	ūn (x, t) = E x,t e -T -1/n t	ūq-1 n (Ws,s)ds y T -2/n 1 {τ ≥T -1/n}	(45)
	or equivalently		
	τ ∧(T -1/n)		
	ūn (x, t) = E x,t -	ūq n (W s , s)ds + y T -2/n 1 {τ ≥T -1/n} ,	(46)
	t		
	for (x, t) ∈ [0, L] × [0, T -1/n].		
	2. By Lemma 3 for any (x, t) ∈ [0,		

  ds , for t ≤ u ≤ T . The link (50) between the value function V and Y min will give two results concerning the continuity of Y min in a general setting. First, we show | lim t→T Y min Lemma 7. Let Y min be the minimal super-solution of the BSDE (3,4). Then the following implication holds for almost all ω ∈ Ω. If then the path Y min (ω) is continuous at T , i.e. it holds that lim t→T Y min t

			t	| < ∞
	already implies continuity.		
	lim t→T	Y min t	(ω) < ∞,

  that actually the limit limt→T Y min

	t	exists and consequently limt→T Y min t	≥ ξ
	holds.		

The requirement that Y be continuous on [0, T ] is natural-otherwise one could solve the SDE (3) arbitrarily on [0, T ) and set YT = ξ; thus the terminal condition ξ would have no bearing on the behavior of (Y, Z) on [0, T ).

The maximum principle also holds under much weaker assumptions (see among others Lemma 2.7 in[START_REF] Marcus | Initial trace of positive solutions of some nonlinear parabolic equations[END_REF] or Lemma 1.6 in[START_REF] Marcus | Semilinear parabolic equations with measure boundary data and isolated singularities[END_REF]).

The Arzela-Ascoli theorem implies that um,n (up to a subsequence) converges to some function u ∈ H α,α/2 ([η, L -η] × [0, T -]). Here u = u since pointwise convergence has been proved before.

Proof of Proposition 2. By construction u satisfies [START_REF] Graewe | Smooth solutions to portfolio liquidation problems under price-sensitive market impact[END_REF]. Lemma 5 says that the function u is smooth on D. Thus Itô's formula and the representation formula in Lemma 4 imply that u satisfies [START_REF] Geiss | Fractional smoothness and applications in finance, Advanced mathematical methods for finance[END_REF]; the details of a parallel argument have already been given in Lemma 2 and are omitted. Lemma 6 says that u is continuous on D \ ∂B; (42), v 0 (x, t) = y t on S and (36) imply that u(x, t) = y t on S; u ≤ v 0 and v 0 = 0 on B imply u = 0 on B. These imply that u satisfies the boundary condition [START_REF] Graewe | Smooth solutions to portfolio liquidation problems under price-sensitive market impact[END_REF].

Next we prove the uniqueness claim, i.e., if 0 ≤ u 1 ≤ v 0 is any other solution of the PDE [START_REF] Marcus | Initial trace of positive solutions of some nonlinear parabolic equations[END_REF] and the boundary condition [START_REF] Graewe | Smooth solutions to portfolio liquidation problems under price-sensitive market impact[END_REF], continuous on D \ ∂B then u 1 = u must hold. Proceeding as in the proof of Lemma 3 define v = u 1 -u and R = (u q 1 -u q 0 )/(u 1 -u)1 u 1 =u > 0. Now v satisfies the PDE (28), v| ∂D = 0, and is continuous on D \∂B. These and Itô's formula imply

The above display, R ≥ 0, |v| ≤ |u -u 1 | ≤ 2v 0 and Jensen's inequality imply

The expectation representation (18) of v 0 implies that the second expectation above converges to 0 with n. This proves v = 0.

Connection to the minimal super-solution

It remains to establish the connection between the solution of the BSDE constructed above and the minimal supersolution (Y min , Z min ) of the BSDE [START_REF] Brézis | Nonlinear parabolic equations involving measures as initial conditions[END_REF][START_REF] Ph | L p solutions of backward stochastic differential equations[END_REF] . To finish the proof we simply need to prove the converse inequality. Recall that u is defined as the limit of a sequence of functions u n (see the proof of Lemma 4). Using the same ideas as used in the proofs of Lemma 5 one can prove that for any n, the function u n is smooth and is a classical solution of the PDE [START_REF] Geiss | Fractional smoothness and applications in finance, Advanced mathematical methods for finance[END_REF] in D. Moreover, as in the case of u, u n is continuous on D \ ∂B and satisfies the boundary condition:

Straightforward modifications of previous arguments show that (Y n , Z n ) solves the BSDE (3) with terminal condition

3. The sufficient differentiability of ū is proved exactly as in the proofs of Lemma 5. This implies (via Itô's formula) that ū solves [START_REF] Geiss | Fractional smoothness and applications in finance, Advanced mathematical methods for finance[END_REF].

4. Next we construct an increasing approximating sequence vn by solving the PDE (10) on [0, L] × [0, T ] with the boundary condition

and continuous on D \ ∂B.

5. Lemma 3 implies that the sequence vn is increasing. Define v .

= lim n→∞ vn .

6. Lemma 3 and the fact that (x, t) → y t-1/n solves [START_REF] Geiss | Fractional smoothness and applications in finance, Advanced mathematical methods for finance[END_REF] imply that vn (•, T -1/n) ≤ y T -2/n , which, along with Lemma 3 and the definition of ūn imply vn ≤ ūn , from which v ≤ ū follows. Arguments in subsection 2.2 now applied to v (with ū providing the dominating function) imply that v has representations of the form ( 47) and ( 48), is infinitely differentiable in the x variable and continuously differentiable in the t variable on (0, L) × (0, T ) and that it solves [START_REF] Geiss | Fractional smoothness and applications in finance, Advanced mathematical methods for finance[END_REF]. The above algorithm gives us two classical solutions ū, v of the PDE [START_REF] Geiss | Fractional smoothness and applications in finance, Advanced mathematical methods for finance[END_REF] and the boundary condition (44) satisfying ū ≥ v. In (43) we use the smaller of these solutions to define our solution of the BSDE [START_REF] Brézis | Nonlinear parabolic equations involving measures as initial conditions[END_REF][START_REF] Ph | L p solutions of backward stochastic differential equations[END_REF] with ξ = ∞ • 1 B(m,r) . That (Y, Z) thus defined satisfies [START_REF] Brézis | Nonlinear parabolic equations involving measures as initial conditions[END_REF][START_REF] Ph | L p solutions of backward stochastic differential equations[END_REF] as well as the proof of continuity of Y on [0, T ] proceed exactly as in the proof of Proposition 1. The proof that (Y, Z) = (Y min , Z min ) proceeds as in the proof of Proposition 3 given in subsection 2.3 and follows from vn v. In contrast to the setting of Section 2, the question of uniqueness of (Y, Z) remains open in this case (cf. the remark at the end of Subsection 2.3).

We illustrate the computations above with several numerical examples in Figures 6 and7. The left side of Figure 6 shows the graph of ū50 , computed numerically using finite differences; the right side of the same figure shows the graphs of ū5 (1, t) and ū50 (1, t) and y t . Figure 7 shows two sets of sample paths of W and Y with W 0 = L/2 = 1 and where Y is approximated by ū50 (W t , t) for t < τ ; in all computations L = 2 and T = 1.

The Control Interpretation

We next point out a control interpretation of the BSDE [START_REF] Brézis | Nonlinear parabolic equations involving measures as initial conditions[END_REF][START_REF] Ph | L p solutions of backward stochastic differential equations[END_REF] or more precisely of the BSDEs [START_REF] Brézis | Nonlinear parabolic equations involving measures as initial conditions[END_REF][START_REF] Friedman | Partial differential equations of parabolic type[END_REF] and [START_REF] Brézis | Nonlinear parabolic equations involving measures as initial conditions[END_REF][START_REF] Douady | Closed form formulas for exotic options and their lifetime distribution[END_REF]. We consider the case of a general F T -measurable terminal condition ξ possibly taking the value +∞ with positive probability. We use this connection to a stochastic