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Backward Stochastic Differential Equations with

Nonmarkovian Singular Terminal Values

Ali Devin Sezer ∗, Thomas Kruse †, Alexandre Popier ‡

November 24, 2016

Abstract

We solve a class of BSDE with a power function f(y) = yq, q > 1, driving its drift
and with the terminal boundary condition ξ =∞·1B(m,r)c (for which q > 2 is assumed)
or ξ =∞·1B(m,r), where B(m, r) is the ball in the path space C([0, T ]) of the underlying
Brownian motion centered at the constant function m and radius r. The solution involves
the derivation and solution of a related heat equation in which f serves as a reaction term
and which is accompanied by singular and discontinuous Dirichlet boundary conditions.
Although the solution of the heat equation is discontinuous at the corners of the domain
the BSDE has continuous sample paths with the prescribed terminal value.

AMS 2010 class: 35K57, 35K67, 60G40, 60H30, 60H99, 60J65
Keywords: Backward stochastic differential equations / Reaction-diffusion equations / Sin-
gularity / Non-Markovian terminal conditions

1 Introduction

One of the first points emphasized in an introductory ordinary differential equations (ODE)
course is that the solution of an ODE may explode in finite time; the equation

dy

dt
= yq, (1)

with q > 1 serves as the primary example. Indeed, specify the terminal value yT =∞ to (1)
and

yt
.
= ((q − 1)(T − t))1−p, t < T, 1/p+ 1/q = 1, (2)

will be the corresponding unique solution of (1) (p is the Hölder conjugate of q). Now let W
be a standard Brownian motion and {Ft} be its natural filtration. For a terminal condition
ξ ∈ FT , one can think of the backward stochastic differential equation (BSDE)

Ys = Yt +

∫ t

s
f(Yr)dr +

∫ t

s
ZrdWr, 0 < s < t < T, (3)

YT = ξ, (4)
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f(y) = −y|y|q−1, Y continuous1 on [0, T ], as a stochastic generalization / perturbation of the
ODE(1) because for ξ = ∞ identically, one can set Zt = 0 and reduce (3) to (1) for which
Yt = yt is the unique solution. But ξ is a random variable and can also be chosen equal
∞ over a measurable set A ∈ FT and a finite random variable over Ac. Can one solve the
BSDE (3,4) with such terminal conditions? An analysis of this and related questions began
with the article [19], where W is assumed to be d-dimensional. [19] proved in particular that
there exists a pair of processes (Y min, Zmin) adapted to the filtration Ft satisfying (3) and
where Y min satisfies almost surely (a.s.)

lim
t→T

Y min
t ≥ ξ = Y min

T . (5)

In other words, the process Y min is a continuous process on [0, T ), whose left-limit as t goes
to T exists a.s. and dominates the terminal condition ξ = Y min

T . Moreover, Y min of [19] is

minimal: for any other pair (Ŷ, Ẑ) satisfying (3) and

lim inf
t→T

Ŷt ≥ ξ, (6)

one has
Y min
t ≤ Ŷt, a.s., t ∈ [0, T ]. (7)

Following [12] we will refer to any pair satisfying (3) and (6) as a super-solution of the BSDE
(3,4). Thus (Y min, Zmin) is the minimal super-solution of the BSDE (3,4). To strengthen
(5) to the a.s. equality

lim
t→T

Y min
t = Y min

T = ξ (8)

and hence solving the BSDE (3,4) for general ξ ∈ FT turns out to be a difficult problem.
The article [19] proved (8) for ξ of the form ξ = g(WT ), where the function g : R 7→ R+∪{∞}
satisfies {g =∞} is closed and for any compact subset K of {g <∞}, E[g(WT )1K(WT )] <
∞. Because ξ is a deterministic function of W , such terminal conditions are referred to as
“Markovian”. To the best of our knowledge, to delineate the class of ξ ∈ FT for which the
BSDE (3,4) has a solution Y on [0, T ] still remains an open problem.

The goal of the present work is to construct solutions to the BSDE (3,4) for a class of
non-Markovian final conditions ξ ∈ FT ; we will also prove that the solutions we construct are
equal to the minimal supersolutions (Y min, Zmin) of [19], which will imply that (8) holds for
the terminal conditions we treat. To the best of our knowledge, the present work is the first
to derive these types of results for non-Markovian singular terminal conditions. The class of
ξ which we will focus on is best explained using the canonical path space Ω

.
= C([0, T ],R),

the set of all R-valued continuous paths ω on [0, T ], equipped with its sup norm

||ω||∞
.
= sup

t∈[0,T ]
|ω(t)|,

and a family of Wiener measures {Px, x ∈ R}, under which the canonical process Wt(ω) =
ω(t) is a standard Brownian motion with initial conditionW0 = x. As before F = (Ft)0≤t≤T is
the canonical filtration generated by W . Then FT is the the Borel field of Ω corresponding
to the sup norm || · ||∞ and the basic FT -measurable random variables are the indicator

1The requirement that Y be continuous on [0, T ] is natural- otherwise one could solve the SDE (3) ar-
bitrarily on [0, T ) and set YT = ξ; thus the terminal condition ξ would have no bearing on the behavior of
(Y,Z) on [0, T ).
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functions of open /closed subsets of C([0, T ]). The open and closed subset of C([0, T ]) are
generated by balls with respect to the norm || · ||∞ and the simplest balls in turn are those
centered around constant functions. Thus we arrive at the class of terminal values we would
like to cover:

ξ1 =∞ · 1B(m,r)c or ξ2 =∞ · 1B(m,r) (9)

where B(m, r) is the ball {ω : ||ω − m||∞ ≤ r}, for some m ∈ R and r > 0. To simplify
notation we will assume throughout that m = r = L/2 for some L > 0 for which the
expressions for ξ in (9) become ξ1 = ∞ · 1B(L/2,L/2)c and ξ2 = ∞ · 1B(L/2,L/2); all of what
follows trivially extends to arbitrary m ∈ R and r > 0.

The Markovian terminal conditions provide (via Itô’s formula) the connection between
BSDE and a class of semilinear / quasilinear parabolic PDE [18]. In the case of singular ter-
minal conditions of the type g(XT ) where g can take the value +∞, the associated parabolic
PDE is coupled with singular boundary conditions; a considerable number of articles ap-
peared over the last several decades (see [2, 3, 15, 6, 14] and the references therein) studying
the PDE

Vt −∆V + V q = 0, (10)

where ∆ denotes the Laplace operator, allowing for singular terminal values. The same PDE
(10) is directly related to the BSDE (3,4) and will play a key role in our analysis below. See
[19, Section 4] for more on the link between the BSDE (3,4) and the PDE (10).

The main idea of the present paper for the solution of the BSDE (3,4) for ξ of the form
(9) is to reduce the question to a Markovian problem in the random time interval [0, τ ∧ T ]
where τ

.
= {t ∈ [0,∞) : Wt ∈ {0, L}}. For τ < T , the terminal conditions given in (9) reduce

to constants
ξ1(ω) =∞ · 1B(m,r)c =∞, ξ2(ω) =∞ · 1B(m,r) = 0,

and the SDE (3) reduces to the ODE (1) on (τ, T ]. Solving it on (τ, T ] with the terminal
condition ξ1(ω) =∞ gives the solution

Y 1
t = yt, Z

1
t = 0, t ∈ (τ, T ],

of the BSDE (3,4) on (τ, T ] for ξ = ξ1. Similarly, solving the same ODE on the same time
interval with the terminal condition ξ2(ω) = 0 gives the solution

Y 2
t = 0, Z2

t = 0, t ∈ (τ, T ],

of the same BSDE for ξ = ξ2. These then give the value of the solutions Y i at time τ < T :

Y 1
τ = yτ , Y

2
τ = 0. (11)

On the set T < τ , the terminal conditions ξ1 and ξ2 reduce to

ξ1(ω) = 0, ξ2(ω) =∞. (12)

Next we solve the same BSDE in the time interval [0, T ∧ τ ] using (11) and (12) as terminal
conditions. Thus our BSDE is reduced to one with a Markovian terminal condition at the
random terminal time τ ∧T . Now Itô’s formula provides the connection between the solution
of the reduced BSDE to the solution of the parabolic equation

∂tV +
1

2
∂2
xxV − V q = 0; (13)
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(11) and (12) suggest the following boundary conditions to accompany the PDE:

V (0, t) = V (L, t) = yt, t ∈ [0, T ], V (x, T ) = 0, 0 < x < L (14)

for ξ1 and
V (0, t) = V (L, t) = 0, t ∈ [0, T ], V (x, T ) =∞, 0 < x < L (15)

for ξ2. Proposition 1 of Section 2 gives the details of the above reduction.
With these steps our problem is reduced to the solution of the PDE (13) and the boundary

condition (14) for ξ1 and the boundary condition (15) for ξ2. The main difficulty with the
solution of these equations are the discontinuous (at the corners (0, T ), (L, T ) ∈ R2) and
infinite valued boundary conditions. The most relevant work that we have identified in the
literature on the solution of (13) and the boundary conditions (14) and (15) is [15], which
contains results giving the existence of weak solutions to the PDE (13) in d space dimensions
when coupled with boundary conditions which are allowed to take the value +∞. However,
these results occur in [15] in the context of the computation of initial traces and within a
general framework where boundary conditions and solutions are specified in a weak Sobolev-
sense; to treat these questions the authors of [15] use PDE and analysis results developed
by them over a number of works. We think that one can build an argument starting from
results in [15] to get a classical solution to (13,14) and (13,15) having the regularity and the
boundary continuity properties needed for our purposes but this appears to be a nontrivial
task. In this paper, we follow a different route and give a new self contained construction of
classical solutions of (13,14) and (13,15) starting from classical parabolic PDE theory with
smooth boundary conditions [8] and building on it using smooth approximation from below
of the boundary conditions and elementary probabilistic techniques.

Once the solution of the BSDE is built as above, the last step is to connect them with
the corresponding minimal supersolution (Y min, Zmin); this is achieved by an argument using
the approximating sequence of functions constructed in the solution of the PDE.

One change in the application of the above steps to the terminal conditions ξ1 and ξ2 is
the assumption we make on q: for ξ1 we need q > 2 whereas q > 1 suffices for ξ2. This is
coupled with the following change in the argument: for q > 2, the classical heat equation
∂tV + 1

2∂
2
xxV = 0 also has a classical solution v0 with the boundary condition (14). In the

treatment of ξ1 we use v0 as an upper bound in constructing an approximating sequence for
the solution of (13) and (14), which ensures the continuity of the limit of the approximation
at the boundaries. For ξ2 the corresponding boundary condition is (15), for which v0 doesn’t
exist (regardless of the value of q) but we are able to construct an upperbound directly
working with the PDE (13) and the boundary condition (15) and for this q > 1 suffices.
Other than this, the arguments for ξ1 and ξ2 are the same. To reduce repetition and shorten
the paper we give them in detail for the first case in Section 2, the necessary changes for
ξ2 are given in Section 3. The results of these sections are summarily given in Theorems 1
(Section 2) and 2 (Section 3). Both of these sections present numerical examples (graphs of
functions and example sample paths) of the constructed solutions of the BSDE and those of
the associated PDE.

We would like to note a connection between our results and the BSDE theory with Lp

terminal conditions. The assumption q > 2 for ξ1 implies that, with the above reduction of
the BSDE (3,4) to the random time interval [0, τ ∧ T ], the reduced terminal condition will
be in L1; thus one can also invoke the existence results of [4] to construct a solution for the
terminal condition ξ1. The reduction to the time interval [0, τ ∧ T ] doesn’t lead to an L1

terminal condition for ξ = ξ2; the PDE approach above applies to both ξ1 and ξ2.
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A well known fact in the prior literature (see, e.g.,[12]) is the link between the BSDE
(3,4) and the following stochastic optimal control problem: the controlled process C is
Cs = c+

∫ t
s αsds, the running cost is |α|p and the terminal cost is |CT |pξ, where 0·∞ = 0. The

random variable ξ is a penalty on the terminal value of C; in particular the controlled process
is constrained to satisfy CT = 0 if ξ = +∞. A growing number of articles study variants
and generalizations of this control problem (with ξ = ∞ identically) with applications to
liquidation of portfolios of assets, see [1, 10, 9, 12]. The value function v of the control
problem is given by the minimal solution Y min: v(t, x) = |x|pY min

t [12]. Therefore, our
results in Section 2 and 3 give explicit expressions for the value function of this control
problem for ξ = ∞ · 1B(m,r) and ξ = ∞ · 1B(m,r)c . Section 4 uses this connection to derive
estimates on the conditional probabilities P(B(m, r)|Ft) and P(B(m, r)c|Ft), t ∈ [0, T ).

Let us point out further prior literature on the solution of the BSDE (3,4): [19] considers
the case where ξ is a function g(XT ) where X is the solution of a forward SDE

Xt = x+

∫ t

0
b(s,Xs)dr +

∫ t

0
σ(s,Xs)dWs;

(for the assumptions on b, σ and q we refer the reader to [19]). Since then, two works
[17, 21] appeared treating the BSDE (3,4) both focusing on ξ of the form g(XT ). The work
[17] extends the results of [19] to the class of backward doubly stochastic SDE (BDSDE in
short). The article [17] proves under these models that a minimal super-solution (Y min, Zmin)
exists which is also continuous at the terminal time T with Y min

T = ξ = g(XT ). The work [21]
also considers the BSDE with three additional extensions a) there are an additional jump
term given by a Poisson random measure; b) the drift term f(Ys) = Y q

s in (3) is replaced with
a general f satisfying a number of conditions which includes as a special case the function
y → yq and c) it works with a general complete right continuous filtration to which all of
the given processes are adapted (as in [12]); [21] proves that under these model assumptions
that the minimal super-solution Y min to the BSDE is continuous at the terminal time with
Y min
T = ξ = g(XT ) (in [21] jump terms are also allowed in the dynamics of X). Note that

existence and minimality of (Y min, Zmin, Umin,Mmin) were proved already in [12] (the terms
Umin and Mmin come from the Poisson measure and the general filtration). A recent work
treating integro-partial differential generalizations of (10) with singular terminal conditions
is [20], which contains many further references and a literature review on parabolic PDE with
singular boundary conditions, their connections to BSDE and their probabilistic solutions.

We indicate several directions for future research in the Conclusion.

2 A first non-Markovian case

This section implements for the terminal condition ξ = ξ1 =∞·1B(m,r)c the argument whose
outline was given in the introduction. We will denote by D the domain (0, L)× (0, T ). For
x 6∈ (0, L), Px(ξ = +∞) = 1 or Px(ξ = 0) = 1 and the problem becomes trivial for such x
(the same comment applies to the terminal condition ξ =∞·1B(L/2,L/2) as well). Therefore,
will assume the initial condition x to satisfy x ∈ (0, L); none of the arguments of the present
work depend on the initial point W0 = x beyond this consideration, thus for ease of notation
we will simply write P for Px and always assume x ∈ (0, L). We summarize the results of
this section in the following Theorem.
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Theorem 1. If q > 2 then there is a function u which is C∞ in the x variables and C1

in the t variable and continuous on D̄ \ {(L, T ), (0, T )} satisfying the PDE (13) with the
boundary condition (14) such that

1.

Yt =

{
u(Wt, t) , t < τ ∧ T,
yt , τ ≤ t ≤ T,

Zt =

{
ux(Wt, t) , t < τ ∧ T,
0 , τ ≤ t ≤ T.

(16)

solve the BSDE (3, 4) with ξ = ξ1 = ∞ · 1B(L/2,L/2)c; in particular, Y is continuous
on [0, T ],

2. We have (Y min, Zmin) = (Y, Z); in particular (8) holds.

Proof. Proposition 1 of subsection 2.1 proves that given any classical solution u of (13)
and the boundary condition (14), the processes (Y,Z) defined as in (16) satisfy the BSDE
(3,4) and the Y process is continuous on [0, T ]. Proposition 2 of subsection 2.2 constructs a
classical solution u of (13) and the boundary condition (14). Finally, Proposition 3 proves
Y = Y min for the u constructed in Proposition 2, which implies in particular that, for ξ = ξ1,
(8) holds.

Remark 1. As pointed out in the introduction, the connection between the BSDE (3,4) and
the PDE (13) is well known for Markovian terminal conditions. The above result says that
the same connection continues to hold when ones uses the non-Markovian ξ1 as terminal
condition for the BSDE.

We give several numerical examples and simulation of our results in subsection 2.4.

2.1 Reduction to heat equation with reaction

As outlined in the introduction, our approach to solving the BSDE (3,4) ξ =∞·1B(L/2,L/2)c

will be by breaking the problem into two random time intervals [0, τ ∧ T ) and (τ ∧ T, T ];
on the latter the problem reduces to the trivial (1) with the terminal value yT = ∞. The
value of the unique solution yτ at τ then provides the terminal condition over the interval
[0, τ ∧ T ); thus we end up with a Markovian problem and can attack it via the associated
PDE. These are the main ideas underlying the next proposition.

Proposition 1. Suppose u : D̄ → R is C∞ in the x variable and continuously differentiable
in the t variable over D, continuous on D̄ \ {(L, T ), (0, T )} and satisfies the PDE (13) and
the boundary condition (14) in the classical sense. Then the pair (Y,Z) of (16) satisfies the
BSDE (3, 4) and is continuous on [0, T ].

Proof. We begin by proving that Y is continuous on [0, T ]. First consider the case {τ <
T}. By assumption u is continuous on D̄ \ {(L, T ), (0, T )}. Therefore, u is continuous on
[0, L]× [0, τ ], [0, τ ]  [0, T ]. In addition, W has continuous sample paths. Then t 7→ u(Wt, t)
is the composition of two continuous maps on [0, τ ] and therefore is a continuous function
on that interval. On the other hand, by definition (16) Yt = yt for t > τ ; and the continuity
of t 7→ yt on [τ, T ] implies the same for Y ; finally the continuity of Y at τ follows from the
boundary condition (14) and the definition of Y given in (16): u(Wτ , τ) = yτ = Yτ . Thus
we see that Y is continuous on [0, T ] on the set {τ < T}. The event {τ = T} is of measure
zero, thus it only remains to consider the case {τ > T}. By definition (16) Yt = u(Wt, t),
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t ∈ [0, T ] for ω ∈ {τ > T}. The continuity of the sample path of W and the compactness of
[0, T ] imply that there exists δ > 0 such that

Wt(ω) ∈ [δ, L− δ], t ∈ [0, T ], (17)

for ω ∈ {τ(ω) > T}. By assumption u is continuous on [δ, L − δ] × [0, T ]. Then t 7→ Yt =
u(Wt, t), t ∈ [0, T ] is the composition of two continuous functions and hence continuous.
This proves the continuity of Y on [0, T ].

By definition

YT = yT · 1{τ<T} + u(WT , T )1{τ>T}

=∞ · 1B(L/2,L/2)c + u(WT , T )1{τ>T}.

The fact (17) and that u satisfies (14) imply u(WT , T )1{τ>T} = 0. This and the last display
imply YT = ξ1, i.e., that Y satisfies the terminal condition (4) with ξ = ξ1.

It remains to prove that for fixed s < t < T (3) holds almost surely. On the set {τ ≤ s},
Yr = yr and Zr = 0 for r ∈ [s, t] and (3) reduces to

yt = ys +

∫ t

s
yqrdr,

which is equivalent to (1) of which y is a solution; this establishes that (3) holds over
{τ ≤ s}. Recall that by assumption, u is smooth in x, continuously differentiable in t in D
and continuous on D \ {(L, T ), (0, T )}. In particular, u is continuous on any [0, L]× [0, t] for
t < T . On the set {τ > s} apply Itô’s formula to u(Wr, r) between s and τ ∧ t to get

Yτ∧t = Ys +

∫ t∧τ

s
∂x(Wr, r)dWr +

∫ t∧τ

s
∂tu(Wr, r)dr +

1

2

∫ t∧τ

s
∂xxu(Wr, r)dr.

That u satisfies (13) implies

Yτ∧t = Ys +

∫ t∧τ

s
∂xu(Wr, r)dWr +

∫ t∧τ

s
uq(Wr, r)dr

= Ys +

∫ t∧τ

s
ZrdWr +

∫ t∧τ

s
Y q
r dr, (18)

which implies (3) for {τ > t}. Finally, for {τ ∈ (s, t)}:

Yt = Yτ +

∫ t

τ
Y q
r dr.

Substituting the right side of (18) for Yτ in the last display gives

Yt = Ys +

∫ t

s
ZrdWr +

∫ t

s
Y q
r dr,

where we have used Zr = 0 for r ∈ (τ, t), which finishes the proof that (Y,Z) satisfies (3).
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2.2 Solution of the heat equation with reaction

This subsection proves the key ingredient of Theorem 1, i.e., the existence of a classical
solution u of (13) and the boundary condition (14). Equation (13) is often referred to as
a reaction-diffusion equation where V q is the reaction term [7, Example 1, page 535]. The
main difficulty with (13) and (14) is the discontinuity and unboundedness of the boundary
condition near the corners (L, T ) and (0, T ) in R2. The next proposition asserts the existence
of u and gives its regularity properties (the function v0 is defined in (19)). Define

v0(x, t)
.
= Ex,t

[
yτ1{τ<T}

]
, (19)

where the subscript (x, t) of the expectation operator denotes conditioning on Wt = x. The
function v0 will play a key role in our construction of the solution u.

Proposition 2. There is a unique function 0 ≤ u ≤ v0 which is C∞ in the x variable and
continuously differentiable in the t variable over D and is continuous on D̄ \ {(L, T ), (0, T )}
and which solves (13) and (14).

An intermediate step in the proof of Proposition 2 will be to show that v0 of (19) solves
the classical heat equation

∂tV +
1

2
∂2
xxV = 0, (20)

over D = (0, L)×(0, T ), with the same boundary condition (14) (see subsection 2.2.1 below).
In this, the assumption q > 2 and the following fact will play a key role: q > 2 implies that
−1 < 1− p < 0 and thus the solution (2) is integrable:∫ T

0
ysds <∞. (21)

Following notation parallel to that of [8] define

Bt0
.
= {(x, t), x ∈ (0, L), t = t0}, B

.
= {(x, t), x ∈ (0, L), t = T}, S

.
= ∂D \ {B0 ∪ B̄};

these sets are depicted in Figure 1. The proof of Proposition 2 will proceed as follows:

1. q > 2 implies that v0 solves (in the classical sense) the linear heat equation (20) and
the boundary condition (14) (see Lemmas 1 and 2 in subsection 2.2.1 below),

2. Approximate (14) by a sequence of smooth boundary conditions to which standard
classical PDE theory applies and yields classical solutions. The solutions of the ap-
proximating equations are monotone in the approximation parameter, and their limit
is our candidate solution u. Itô’s formula implies an expectation representation for
the approximate solutions. The solution v0 of the heat equation in the first step gives
us the necessary bound to invoke the dominated convergence theorem to infer that u
satisfies the same expected value representation as the prelimit functions (see Lemma
4 and (30)).

3. Establish the regularity properties of u (see Lemma 5); we do this in two different
ways. The first approach relies only on probabilistic arguments and is elementary and
direct, it uses the following elements: a) explicit formulas for the density of the hitting
time τ = inf{t : Wt ∈ {0, L}} and the density of Wt over sample paths restricted to
stay in the interval (0, L) upto time t b) Duhamel’s principle and c) the expected value
representation of u. The second approach is based on analytic arguments for parabolic
uniformly elliptic PDE.
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S

S

B0

x

t = 0 ∂B

x = 0

x = L

t

t = T

B

Figure 1: The domain and its boundaries

4. Establish the continuity properties of u (Lemma 6),

5. Once enough regularity is proved, the proof that u actually solves the PDE follows from
Itô’s formula, the expectation representation of u and the strong Markov property of
W .

The above elements are put together in the Proof of Proposition 2 given at the end of
subsection 2.2.2.

2.2.1 Solution of the classical heat equation with singularities at the corners

The classical theory of Brownian motion and of the classical heat equation suggest that v0

is the unique solution of (20) and the boundary condition (14). Let us prove that v0 is
finite and that it indeed solves (20) and (14). Equation [5, (4.1)] (or Itô’s formula and direct
computation) implies the following formula for the distribution function of τ conditioned on
Wt = x:

Px,t(τ ≤ s) = 1 + Px,0(Ws−t ∈ Ac)− Px,0(Ws−t ∈ A) (22)

where A
.
= ∪n∈Z{2nL + [0, L]}, x ∈ [0, L] and s > t. Substitute A in (22) and change

variables to rewrite (22) as

Px,t(τ ≤ s) = 1 +
∑
n∈Z

1√
2π

(∫ (2n+2)L−x√
s−t

(2n+1)L−x√
s−t

e−y
2/2dy −

∫ (2n+1)L−x√
s−t

2nL−x√
s−t

e−y
2/2dy

)
.

For x ∈ (0, L), the derivative of the last display with respect to s gives the density of τ :

fτ (x, t, s)
.
=

(s− t)−3/2

√
2π

∑
n∈Z

((2n+ 1)L− x)e
− ((2n+1)L−x)2

2(s−t) − (2nL− x)e
− (2nL−x)2

2(s−t) (23)

(for x ∈ {0, L}, τ = t and Px,t(τ > s) = 0 identically for s > t and indeed the right side of
(22) is identically 0 for x ∈ {0, L}); Figure 2 shows the graph of fτ for t = 2, L = 4, x = 3.5
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Figure 2: The graph of fτ , t = 2, L = 4, x = 3.5

For (x, t) ∈ D, write the expectation in (19) in terms of the density fτ :

v0(x, t) =

∫ T

t
fτ (x, t, s)ysds =

∫ T

t
fτ (x, t, s)((q − 1)(T − s))1−pds. (24)

The formula (23) and the behavior of x log(x) around 0 imply that fτ is continuous and
smooth with continuous derivatives over the region [δ1, L − δ2] × [t,∞) for any δi > 0 with
δ1 < L− δ2. Therefore from (21) we deduce that v0(x, t) <∞ for (x, t) ∈ D and v0 has the
same regularity as fτ in compact subsets of D. Integrability of t 7→ yt (21), the boundedness
of fτ in compact subsets of D, (24) and the dominated convergence theorem also imply
v0(x, t) → 0 for x ∈ (0, L) and t → T . Furthermore, for any t < T , fτ is continuous as a
function of (x, s) on any compact strip [0, L]× [T − δ, T ] as long as t < T − δ. This and (21)
imply ∣∣∣∣v0(x, t)−

∫ T−δ

t
fτ (x, t, s)ysds

∣∣∣∣ ≤ ε (25)

for any ε > 0 when δ > 0 is small enough. Note∫ T−δ

t
fτ (x, t, s)ysds = Ex,t

[
yτ1{τ<T−δ}

]
.

Px,t(τ = T −δ) = 0, and s 7→ ys1{s<T−δ} is a continuous and bounded function for s 6= T −δ.
Now choose any sequence (tn, xn)→ (t, x), x ∈ {{0, L}} and t < T. The law of the iterated
logarithm [11, Theorem 9.23] implies that the hitting time τ converges to t as n→∞. These
imply

lim
n→∞

E(xn,tn)

[
yτ1{τ<T−δ}

]
= yt.

This and (25) imply v0(xn, tn)→ yt. Let us record what we have proved so far as a lemma:

Lemma 1. The function v0 defined in (19) has the integral representation (24), is smooth
in D (with continuous derivatives of all orders in compact subsets of D) and continuous on
D̄ \ ∂B and satisfies the boundary condition (14).

Next we will use Itô’s formula and the regularity of v0 to show that in fact it is a solution
to the heat equation (20).
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Lemma 2. v0 solves (20).

Proof. Suppose there is (x0, t0) ∈ D such that

1

2

∂2v0

∂x2
(x0, t0) +

∂v0

∂t
(x0, t0) 6= 0. (26)

Let δ > 0, be so that 0 < x0− δ < x0 + δ < L and t0 + δ < T. By the previous proposition v0

is smooth on the compact set Nx0
.
= [x0 − δ, x0 + δ]× [t0, t0 + δ] with continuous derivatives

of all orders. Let τδ be the first time the process (t,Wt) hits ∂Nx0 . By definition τδ < τ ∧T.
Conditioning on Fτδ , the strong Markov property of the Brownian motion and the definition
of v0 imply

v0(x0, t0) = Ex0,t0 [v0(Wτδ , τδ)]. (27)

Itô’s formula applied to v0 upto time τδ gives

Ex0,t0 [v0(Wτδ , τδ)]− v0(x0, t0) (28)

= Ex0,t0
[∫ τδ

t

(
0.5

∂2v0

∂x2
(Ws, s) +

∂v0

∂t
(Ws, s)

)
ds

]
.

(27) implies that the left side of the last display equals 0. But the continuity of 0.5∂
2v0
∂x2

+ ∂v0
∂t

on Nx0 , τδ 6= 0 and (26) imply that the right side of (28) is nonzero, which is a contradiction.
Hence, (26) cannot happen and v0 indeed solves (20) in D.

2.2.2 Treating the V q term

Equipped with the classical solution v0 of the heat equation (20) and the boundary condition
(14) we will proceed as follows to construct a classical solution to (13) and (14): define a
family of boundary conditions ym,n approximating y (decreasing in m and increasing in n)
which are smooth upto ∂D satisfying the existence uniqueness results from the classical
theory of parabolic PDE [8]. This gives us a family of functions um,n, solving (13) with
boundary values ym,n and which, by Itô’s formula, have expected cost representations. This,
the dominated convergence theorem and (21) give, upon taking limits of {um,n}, a candidate
solution u, which also has the same expected cost representation as the prelimit functions
um,n. We will then use the expected cost representation of u to improve our knowledge of
u’s regularity.

The next lemma is a consequence of the maximum principle2 and is well known for BSDE
with monotone generator.

Lemma 3.

1. Suppose u0 ≥ 0 and u1 ≥ 0 are two bounded smooth solutions of (13) such that
u0|∂D\B0

≥ u1|∂D\B0
. Then u0 ≥ u1 on D.

2. Assume that u0 is a continuous solution of (13) with |u0| ≤ K on ∂D \ B0. Then
|u0| ≤ K on D̄.

2The maximum principle also holds under much more weaker assumptions (see among others Lemma 2.7
in [15] or Lemma 1.6 in [16]).
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Proof. v = (u0 − u1) satisfies

∂tv +
1

2
∂2
xxv −

1

2
Rv = 0 (29)

where R = (uq0−u
q
1)/(u0−u1)1u0 6=u1 > 0 and the boundary condition u0−u1 ≥ 0 on ∂D\B0.

Itô’s formula implies

v(x, t) = Ex,t
[
e−

∫ τ∧T
t R(Ws,s)dsv(Wτ∧T , τ ∧ T )

]
≥ 0.

For the second claim of the lemma, we use the same estimate with u1 = 0:

u0(x, t) = Ex,t
[
e−

∫ τ∧T
t R(Ws,s)dsu0(Wτ∧T , τ ∧ T )

]
.

The next lemma identifies our candidate solution to the PDE (20) and the boundary
condition (14).

Lemma 4. There exists a measurable function 0 ≤ u ≤ v0 which satisfies

u(x, t) = Ex,t
[
e−

∫ τ
t u

q−1(Ws,s)dsyτ1{τ<T}

]
(30)

or equivalently

u(x, t) = Ex,t
[
−
∫ τ∧T

t
uq(Ws, s)ds+ yτ1{τ<T}

]
, (31)

for (x, t) ∈ D.

Proof. Define

y
(n)
t

.
= yt−1/n.

Hence for any t ∈ [0, T ], |y(n)
t | ≤ ((q−1)1−p)np−1. Define ψ : ∂D\B → R and ψn : ∂D\B → R

as follows:

ψ(x, T ) = ψn(x, T ) = 0, x ∈ (0, L),

ψ(x, t) = yt, (x, t) ∈ S,
ψn(x, t) = y

(n)
t , (x, t) ∈ S.

The function ψ describes exactly the boundary condition (14). Note that ψ and ψn are
discontinuous at the corners ∂B and ψn ↗ ψ. We will now approximate ψn by a sequence
of smooth ψm,n so that we can invoke [8, Theorem 9, page 205]. This result requires that
ψm,n ∈ C̄2+δ for δ ∈ (α, 1), where α is the Hölder constant associated with the boundary S,
and

∂ψm,n
∂t

+
1

2

∂2ψm,n
∂x2

− ψqm,n = 0 (32)

on ∂B.
To get the desired sequence, begin with two functions (linear in x):

ψ(0)
m,n(x, t)

.
= y

(n)
t [1− xm/2] ,

ψ(L)
m,n(x, t)

.
= y

(n)
t [1− (L− x)m/2] .

12



Let η : R→ [0, 1], η ∈ C∞ be as follows: η′ < 0 on (0, 1), η ≥ 0, η(x) = 1 for x ≤ 0, η(x) = 0,
for x > 1; one possible choice is

η(x) =

∫ 1

(x∨0)∧1
e

−1

1−(2y−1)2 dy

/∫ 1

0
e

−1

1−(2y−1)2 dy.

Now define

ψm,n(x, t) = ψ(0)
m,n(x, t)η

(
m2x− 1

m− 1

)
+ ψ(L)

m,n(x, t)η

(
m2(L− x)− 1

m− 1

)
;

for m > 2/L ∨ 1. The resulting sequence ψm,n of functions are nonnegative and smooth,
decreasing in m with limit ψn and they all satisfy (32). Figure 3 shows the graph of ψm,n
for m = 5, n = 10, L = 3 and T = 1.

Figure 3: ψm,n, m = 10, n = 50, L = 3, T = 1

Now we consider the PDE (13) with the boundary condition

V |∂D\B0
= ψm,n. (33)

|ψm,n| ≤ ((q − 1)1−p)np−1 = γn,q implies that it suffices for our purposes to look for a
solution |um,n| ≤ γn,q (see Lemma 3). The f(V)

.
= Vq term in (13) is continuous in the

interval [0, γn,q] and in particular it satisfies [8, equation (4.10), page 203]

Vf(V) ≤ A1V2 +A2,V ∈ [0, γn,q] ,

for constants A1, A2 ≥ 0, and being monotone itself, it trivially satisfies [8, equation (4.17),
page 205], which requires f be bounded by a monotone function. These imply that [8,
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Theorem 9, page 205] is applicable, and therefore, the PDE (13) and the boundary condition
(33) have a classical solution um,n that is continuous in D̄. Itô’s formula gives

um,n(x, t) = Ex,t
[
e−

∫ τ∧T
t uq−1

m,n(Ws,s)dsψm,n(Wτ∧T , τ ∧ T )
]

(34)

= Ex,t
[
−
∫ τ∧T

t
uqm,n(Ws, s)ds+ ψm,n(Wτ∧T , τ ∧ T )

]
.

ψm,n ≥ 0 and Lemma 3 imply um,n ≥ 0. The functions ψm,n are decreasing in m and
increasing in n and they are all bounded; this and Lemma 3 imply that um,n is decreasing
in m and increasing in n. Then we can define

0 ≤ un
.
= lim

m→∞
um,n

and
0 ≤ u .

= lim
n→∞

un.

The representation (34), um,n ≥ 0, ψm,n ≤ yt, and the definition (19) of v0 imply um,n ≤ v0.
Then by the above definitions u ≤ v0. Now the dominated convergence theorem (where
yτ1{τ<T} serves as the dominating function), v0 <∞, and taking limits in (34) give

u(x, t) = Ex,t
[
e−

∫ τ∧T
t uq−1(Ws,s)dsyτ1{τ<T}

]
= Ex,t

[
−
∫ τ∧T

t
uq(Ws, s)ds+ yτ1{τ<T}

]
.

Our next task is to establish that u is smooth in D.

Lemma 5. The function u of (30) is C∞ in x and continuously differentiable in t over D.

We will give two different proofs for Lemma 5. The first is based on Duhamel’s principle
and uses the density of Ws, s > t on [0, L] over the set {0 < Wu < L, ∀u ∈ [t, s]}; this proof
is based on fairly elementary calculations and in that sense direct. We will define a number
of functions (U1, U2, U3 and U4) in this proof, which will also be used in the proof of the
continuity of u on D̄ \∂B in Lemma 6 below. The second proof uses general analytic results
on the solution of uniformly elliptic parabolic PDE.

For the first proof we need the density P(Ws ∈ dx, τ > s) whose formula is given as [5,
Equation (4.1)]; let us rederive it using our notation. Parallel to (22) one first writes

Px,t(Ws ∈ (0, a), 0 < Wu < L, u ∈ (t, s)) (35)

= Px,0(Ws−t ∈ Aa)− Px,0(Ws−t ∈ Ba),

for a ∈ (0, L) and where Aa
.
= ∪n∈Z{2nL+ (0, a)} and Ba

.
= ∪n∈Z{2nL+ (2L− a, 2L)}; the

identities AL = A and BL = AcL = Ac imply that (22) is a special case of (35). Substituting
Aa and Ba in (35) and the normal distribution of Ws−t give

Px,t(Ws ∈ (0, a), 0 < Wu < L, u ∈ (t, s))

=
∑
n∈Z

1√
2π

(∫ a+2nL−x√
s−t

2nL−x√
s−t

e−y
2/2dy −

∫ 2nL−x√
s−t

2nL−a−x√
s−t

e−y
2/2dy

)
.
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Differentiate the last display to get the density of Ws on (0, a) when the sample path of W
is constrained to stay in [0, L] over the time interval [t, s]:

fW (x, t, s)
.
=

1√
2π(s− t)

∑
n∈Z

(
e
−(a+2nL−x)2

2(s−t) − e
−(2nL−a−x)2

2(s−t)

)
. (36)

The above display implies that fW is smooth for s > t and x ∈ (0, L) in all variables with
continuous derivatives of all orders. Now we proceed with the first proof of Lemma 5.

Proof. Write u as the sum
u(x, t) = −U1(x, t) + v0(x, t), (37)

where

U1(x, t)
.
= Ex,t

[∫ τ∧T

t
uq(Ws, s)ds

]
, v0(x, t) = Ex,t

[
yτ1{τ<T}

]
.

We already know that v0 satisfies the conditions listed in the proposition. It rests to show
the same for U1. First, 0 ≤ u ≤ v0 implies

0 ≤ U1 ≤ v0. (38)

Fix an arbitrary T > δ > 0. We will now show that U1 is smooth in (0, L) × (0, T − δ), δ
being arbitrary, this will show U1 is smooth on (0, L) × (0, T ). For t < T − δ, the strong
Markov property of W and conditioning on Fτ∧(T−δ) imply that we can write U1 in two
pieces as follows:

U1(x, t) = Ex,t

[∫ τ∧(T−δ)

t
uq(Ws, s)ds+ U1(WT−δ, T − δ)1{τ>T−δ}

]
= U2(x, t) + U4(x, t), (39)

where

U2(x, t)
.
= Ex,t

[∫ τ∧(T−δ)

t
uq(Ws, s)ds

]
,

U4(x, t)
.
= Ex,t

[
U1(WT−δ, T − δ)1{τ>T−δ}

]
.

Let us write U4 using the density fW given in (36):

U4(x, t) =

∫ L

0
fW (x, t, T − δ, y)U1(y, T − δ)dy.

That 0 ≤ v0 is continuous on D̄ \ ∂B implies that it is in particular bounded on [0, L] ×
[0, T − δ]. This and (38) imply that U1(·, T − δ) is bounded by the same bound. This, the
existence and the continuity of the derivatives of fW in x and t imply that U4 is smooth in
(0, L)× [0, T − δ] and is continuous on [0, L]× [0, T − δ). To study U2 we will use Duhamel’s
principle:

U2(x, t) = Ex,t

[∫ τ∧(T−δ)

t
uq(Ws, s)ds

]
= Ex,t

[∫ T−δ

t
1{s<τ}u

q(Ws, s)ds

]
.
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v0 ≥ u ≥ 0 and Fubini’s theorem imply

U2(x, t) =

∫ T−δ

t
Ex,t

[
1{s<τ}u

q(Ws, s)
]
ds. (40)

Define
U3(x, t, s)

.
= Ex,t

[
1{s<τ}u

q(Ws, s)
]

and write (40) in terms of U3 (this is Duhamel’s principle):

U2(x, t) =

∫ T−δ

t
U3(x, t, s)ds. (41)

The function U3 can be written in terms of the density fW as

U3(x, t, s) =

∫ L

0
fW (x, t, s, y)uq(y, s)dy. (42)

Once again, for s < T − δ, 0 ≤ uq is uniformly bounded above by a constant. This, the
smoothness of fW in x imply that U3 is smooth in x and t on (0, L)× (0, T − δ) for t < s. U3

is smooth in its x variable, therefore U2 is also smooth in x over the region (0, L)× (0, T −δ).
This, the smoothness of U4 and (39) imply the same for U1; the smoothness of U1 in x and
(37) imply the smoothness of u in x.

Now we will derive the regularity of u in the t variable. Let us begin with continuity of
U2 in t: take any sequence tn → t, with 0 < tn, t < T − δ and x ∈ (0, L). The continuity of
U3 in the t variable implies that the sequence of functions

s 7→ 1{s>tn}U3(x, tn, s)

converge almost surely to
s 7→ 1{s>t}U3(x, t, s)

on the set (0, T − δ). This and the bounded convergence theorem imply

U2(x, tn)→ U2(x, t),

i.e., U2 is also continuous in the t variable on the set (0, L)× (0, T − δ). Thus we have: U2,
U4 are both continuous on (0, L)× (0, T − δ). This and (39) imply that U1 is continuous over
the same domain, this and (37) imply the same for u. Now going back to (42) we see that
this implies that U3 is also continuous in the s variable. The continuity of U3 in all of its
variables, (41) and the fundamental theorem of calculus tell us that U2 is differentiable in t
and

∂U2

∂t
= −U3(x, t, t) +

∫ T−δ

t

∂U3

∂t
(x, t, s)ds

= −uq(x, t) +

∫ T−δ

t

∂U3

∂t
(x, t, s)ds,

which, in particular, is a continuous function on (0, L)×(0, T−δ). Finally, this, the regularity
of U4 and (39) imply that U1 is differentiable in t with continuous derivative over the domain
(0, L)× (0, T − δ), which in its turn, along with (37) imply the same for u. This finishes the
smoothness claims of the lemma on u.
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We now give an alternative proof of the same lemma using classical but deep results on
parabolic PDE with a regularization bootstrap argument. We know from Lemma 4 that u,
by construction, is the limit of a sequence um,n of classical solutions of the PDE (13) with
the boundary condition (33). The comparison principle (Lemma 3) implies that for any m,n
we have: 0 ≤ um,n(x, t) ≤ yt on [0, L] × [0, T ]. Thus the solutions are bounded from above
by a function independent of n and m. This will be useful in the proof below.

Second proof of Lemma 5. Now fix ε > 0. On [0, L]× [0, T − ε], um,n is bounded (uniformly
in n and m) by yT−ε. Moreover the smooth function um,n satisfies on (0, L)× (0, T − ε)

∂tum,n +
1

2
∂2
xxum,n = (um,n)q = fm,n

with the Hölder continuous lateral boundary condition y
(n)
t (and a bounded terminal condi-

tion um,n(x, T − ε)). Here fm,n is a bounded function. We can apply [13, Theorem III.10.1]
(Conditions (1.2) and (7.1) of [13] are trivially satisfied in our setting). Therefore for any
η > 0, um,n is in Hα,α/2([η, T −η]× [0, T − ε]) (space of functions which α-Hölder continuous
in the space variable x and α/2-Hölder continuous in the times variable t). The value of
α > 0 and the Hölder norm of um,n does not depend on m and on n. In other words the
Hölder norm of um,n is bounded by some constant Cα depending only on η and ε. Moreover
we already know that um,n converges pointwise to un (as m goes to +∞) and un converges
to u (when n tends to +∞)3. Therefore un and u are in Hα,α/2([η, L − η] × [0, T − ε]) and
their Hölder norms are bounded by the same constant Cα.

Then um,n is the solution of the same problem but now with more regular functions fm,n
and um,n(·, T−ε). Thus from [13, Theorem IV.10.1], we know that um,n is inH2+α,1+α/2([η, L−
η]× [0, T − ε− η]) for any ε > 0 and η > 0 and the norm estimates don’t depend on n and
on m, but only on the Hölder norm of fn,m on [η, L− η]× [0, T − ε− η] and the upper bound
on um,n. Thus the same property holds for u. In other words u is a classical solution on
(0, L) × [0, T ). This regularization argument can be iterated in order to obtain that u is
C∞.

Lemma 6. u of (30) is continuous on D̄ \ ∂B.

Proof. Remember that v0 is continuous onB and takes the value 0 there. This and 0 ≤ u ≤ v0

imply the continuity of u on B. By definition u(x, t) = yt = v0(x, t) for (x, t) ∈ S. We already
know that v0 is continuous on S. Furthermore, by definition, U1 = 0 on S; these and (37)
imply that it suffices to show

U1(xn, tn)→ 0 (43)

for {(xn, tn) ∈ D, with (xn, tn)→ (x, t) ∈ S. For this, we will use (39) with δ > 0 satisfying
t < T − δ and the definitions of U2 and U4. As (xn, tn) → (x, t) ∈ S, τ → t. This and the
boundedness of uq on [0, L] × [0, T − δ] implies U2(xn, tn) → 0. Lastly, τ → t implies that
1{τ>T−δ} converges to 0 almost surely. This and the boundedness of U1 on over [0, L] ×
[0, T − δ] imply U4(xn, tn)→ 0. These and (39) establish (43).

We can now complete the proof of Proposition 2:

3The Arzela-Ascoli theorem implies that um,n (up to a subsequence) converges to some function ũ ∈
Hα,α/2([η, L− η]× [0, T − ε]). Here ũ = u since pointwise convergence has been proved before.
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Proof of Proposition 2. By construction u satisfies (14). Lemma 5 says that the function u
is smooth on D. Thus Itô’s formula and the representation formula in Lemma 4 imply that
u satisfies (13); the details of a parallel argument have already been given in Lemma 2 and
are omitted. Lemma 6 says that u is continuous on D̄ \∂B; (43), v0(x, t) = yt on S and (37)
imply that u(x, t) = yt on S; u ≤ v0 and v0 = 0 on B imply u = 0 on B. These imply that
u satisfies the boundary condition (14).

Next we prove the uniqueness claim, i.e., if 0 ≤ u1 ≤ v0 is any other solution of the
PDE (20) and the boundary condition (14), continuous on D̄ \ ∂B then u1 = u must hold.
Proceeding as in the proof of Lemma 3 define v = u1−u and R = (uq1−u

q
0)/(u1−u)1u1 6=u > 0.

Now v satisfies the PDE (29), v|∂D = 0, and is continuous on D̄\∂B. These and Itô’s formula
imply

v(x, t) = Ex,t
[
e−

∫ T−1/n
t R(Ws,s)dsv

(
WT− 1

n
, T − 1

n

)
1{τ>T−1/n}

]
.

The above display, R ≥ 0, |v| ≤ |u− u1| ≤ 2v0 and Jensen’s inequality imply

|v(x, t)| ≤ Ex,t
[
2v0

(
WT− 1

n
, T − 1

n

)
1{τ>T−1/n}

]
.

The expectation representation (19) of v0 implies that the second expectation above con-
verges to 0 with n. This proves v = 0.

2.3 Connection to the minimal super-solution

It remains to establish the connection between the solution of the BSDE constructed above
and the minimal supersolution (Y min, Zmin) of the BSDE (3,4) .

Proposition 3. Let Y and Z be the solution of the BSDE (3,4) defined in (16) where for
u we take the solution of the PDE (13) and the boundary condition (14) constructed in
Proposition 2. Then (Y, Z) = (Y min, Zmin).

Proof. It follows from (3) and the definition of the Itô integral that it suffices to prove
Y = Y min. The inequality Y ≥ Y min follows from the minimality property (7) of Y min.

To finish the proof we simply need to prove the converse inequality. Recall that u is
defined as the limit of a sequence of functions un (see the proof of Lemma 4). Using the
same ideas as used in the proofs of Lemma 5 one can prove that for any n, the function un
is smooth and is a classical solution of the PDE (13) in D. Moreover, as in the case of u, un
is continuous on D \ ∂B and satisfies the boundary condition:

un(0, t) = un(L, t) = y
(n)
t = yt−1/n, t ∈ [0, T ], un(x, T ) = 0, 0 < x < L.

Define

Y n
t
.
=

{
un(Wt, t) , t < τ ∧ T,
y

(n)
t , τ ≤ t ≤ T,

Znt
.
=

{
∂xun(Wt, t) , t < τ ∧ T,
0 , τ ≤ t ≤ T.

Straightforward modifications of previous arguments show that (Y n, Zn) solves the BSDE
(3) with terminal condition

ξn = y
(n)
T 1B(L/2,L/2)c =

(
n

q − 1

) 1
q−1

1B(L/2,L/2)c .
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Figure 4: On the left, the graph of um,n with m = 100 and n = 50; on the right, the graph
of um,n over x = 1.5 for m = 100, n = 10 (thin) and n = 1000 (thick), and yt (dashed line).
In all computations L = 3 and T = 1

Since the minimal solution (Y min, Zmin) constructed in [19] is the increasing limit of solutions
of the same BSDE but with terminal condition ξ ∧m (as m goes to +∞), the comparison
principle implies

Y n
t ≤ Y min

t

a.s. for any t ∈ [0, T ]. But un converges to u and from (16) we obtain the desired inequality.

2.4 Numerical examples

Let us give several numerical examples for the PDE solutions constructed above and the
resulting solution Y of the BSDE. The left side of Figure 4 shows the graph of um,n with
L = 3 and T = 1, m = 100 and n = 50 computed using a finite difference approximation of
the PDE with ∆x = 0.1 and ∆t = 0.01. The right side of the same figure shows the graph of
um,n over the line x = L/2 = 1.5 for m = 100 and n = 10 and n = 150 as well as the graph
of yt; note u100,10(1.5, t) < u100,1000(1.5, t) < yt in the figure, as expected. Figure 5 shows
two randomly sampled sample paths of the Brownian motion W with W0 = L/2 = 3/2 and
the corresponding path for Y , computed using (16) where we use a numerical approximation
of um,n with m = 100 and n = 1000 to approximate u.

3 The case ξ =∞ · 1B(m,r)

Our results for the terminal condition ξ =∞·1B(L/2,L/2) parallel those for ξ =∞·1B(L/2,L/2)c ,
with two differences: 1) we need to replace the upperbound v0 of subsection 2.2.1 with a
new upperbound ū and 2) q > 1 is enough for the existence of solutions; see the discussion
below for more on these changes.
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Figure 5: Numerically computed trajectories of W (thin light path) and Y (thick dark) (left
with explosion, right without); Y is computed using (16) with um,n approximating u with
m = 100 and n = 1000; L = 3 and T = 1

Theorem 2. Suppose q > 1. There exists a function v̄ which is C∞ in the x variable and
C1 in the t variable and continuous on D̄ \ {(L, T ), (0, T )} and which solves the PDE (13)
with the boundary condition (15) (i.e., (45) below)) such that

1. The processes

Yt =

{
v̄(Wt, t) , t < τ ∧ T,
0 , τ ≤ t ≤ T,

Zt =

{
v̄x(Wt, t) , t < τ ∧ T,
0 , τ ≤ t ≤ T.

(44)

solve the BSDE (3, 4) with ξ =∞ · 1B(L/2,L/2), and in particular, Y is continuous on
[0, T ],

2. (Y min, Zmin) = (Y,Z) and (8) hold.

The steps for the proof of Theorem 2 apply verbatim to the current case except for the
construction of the solution of the PDE; for this reason we only give an outline and point
out the necessary changes. Breaking as we do in Section 2.1 the BSDE into the intervals
[0, τ ∧ T ] and [τ ∧ T, T ], this case can be reduced to the solution of the PDE (13) now with
the boundary condition

V (0, t) = V (L, t) = 0, t ∈ [0, T ], V (x, T ) =∞, 0 < x < L. (45)

The construction given in Section 2.2 for the PDE (13) and the boundary condition (14) allow
one to solve the same PDE now with the boundary condition (45) except for the differences
pointed out above: in the present case we no longer have the upperbound v0 to serve as an
upperbound in convergence and continuity arguments. The role of v0 will now be played by
the limit ū of a decreasing sequence of solutions of (13). And because we no longer need v0

we no longer need the assumption q > 2 and can work with q > 1. The details are given in
the outline below:

1. First proceed as in Section 2.2, Lemma 4, to construct a classical solution ūn to (13)
on [0, L]× [0, T − 1/n] with the boundary condition

V (0, t) = V (L, t) = 0, t ∈ [0, T − 1/n], V (x, T − 1/n) = yT−2/n,
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0 < x < L, continuous on [0, L]× [0, T − 1/n]− {(0, T − 1/n), (L, T − 1/n)} satisfying
the expectation representations (of type (30) and (31)):

ūn(x, t) = Ex,t
[
e−

∫ T−1/n
t ūq−1

n (Ws,s)dsyT−2/n1{τ≥T−1/n}

]
(46)

or equivalently

ūn(x, t) = Ex,t

[
−
∫ τ∧(T−1/n)

t
ūqn(Ws, s)ds+ yT−2/n1{τ≥T−1/n}

]
, (47)

for (x, t) ∈ [0, L]× [0, T − 1/n].

2. By Lemma 3 for any (x, t) ∈ [0, L] × [0, T − 1/n], ūn(x, t) ≤ yt. Hence for n1 < n2

and for any x ∈ [0, L], ūn2(x, T − 1/n1) ≤ yT−2/n1
. Again by comparison principle

(Lemma 3), for any (x, t) ∈ [0, L]× [0, T − 1/n1], ūn2(x, t) ≤ ūn1(x, t). Then, for fixed
(x, t) ∈ [0, L] × [0, T ), (x, t) will be in the domain of ūn(x, t) for n ≥ n0 for some n0

and the sequence {un(x, t), n ≥ n0} will be decreasing in n; call its limit ū(x, t), i.e.,

ūn(x, t)↘ ū(x, t), n→ +∞.

The representations (46) and (47) and the dominated convergence theorem imply

ū(x, t) = Ex,t
[
e−

∫ τ∧r
t ūq−1(Ws,s)dsū(Wr, r)

]
, (48)

ū(x, t) = Ex,t
[
−
∫ τ∧r

t
ūq(Ws, s)ds+ ū(Wr, r)

]
, (49)

for any t < r < T and any x ∈ [0, L]. Moreover we have

∀(x, t) ∈ [0, L]× [0, T ), 0 ≤ ū(x, t) ≤ yt.

3. The sufficient differentiability of ū is proved exactly as in the proofs of Lemma 5. This
implies (via Itô’s formula) that ū solves (13).

4. Next we construct an increasing approximating sequence v̄n by solving the PDE (13)
on [0, L]× [0, T ] with the boundary condition

V (0, t) = V (L, t) = 0, t ∈ [0, T ], V (x, T ) = yT−1/n, 0 < x < L,

and continuous on D̄ \ ∂B.

5. Lemma 3 implies that the sequence v̄n is increasing. Define v̄
.
= limn→∞ v̄n.

6. Lemma 3 and the fact that (x, t) 7→ yt−1/n solves (13) imply that v̄n(·, T − 1/n) ≤
yT−2/n, which, along with Lemma 3 and the definition of ūn imply

v̄n ≤ ūn,

from which
v̄ ≤ ū

follows. Arguments in subsection 2.2 now applied to v̄ (with ū providing the dominating
function) imply that v̄ has representations of the form (48) and (49), is infinitely
differentiable in the x variable and continuously differentiable in the t variable on
(0, L)× (0, T ) and that it solves (13).
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7. The functions v̄ and ū both satisfy the boundary condition (45) by definition. It
remains to show that they are continuous on ∂D \ ∂B. The continuity of ū on the
lateral boundary {(0, t), (L, t), t < T} follows from 0 ≤ ū ≤ ūn and the continuity of
ūn on the same boundary. 0 ≤ v̄ ≤ ū implies then the continuity of v̄ on the lateral
boundary. The continuity of v̄ along B follows from the continuity of v̄n along the
same boundary and v̄ ≥ v̄n. This and ū ≥ v̄ finally imply the continuity of ū along B.

The above algorithm gives us two classical solutions ū, v̄ of the PDE (13) and the boundary
condition (45) satisfying ū ≥ v̄. In (44) we use the smaller of these solutions to define our
solution of the BSDE (3,4) with ξ =∞ · 1B(m,r). That (Y, Z) thus defined satisfies (3,4) as
well as the proof of continuity of Y on [0, T ] proceed exactly as in the proof of Proposition
1. The proof that (Y,Z) = (Y min, Zmin) proceeds as in the proof of Proposition 3 given in
subsection 2.3 and follows from v̄n ↗ v̄.

We illustrate the computations above with several numerical examples in Figures 6 and
7. The left side of Figure 6 shows the graph of ū50, computed numerically using finite
differences; the right side of the same figure shows the graphs of ū5(1, t) and ū50(1, t) and
yt. Figure 7 shows two sets of sample paths of W and Y with W0 = L/2 = 1 and where Y
is approximated by ū50(Wt, t) for t < τ ; in all computations L = 2 and T = 1.

Figure 6: On the left, graph of ū50; on the rights graphs of ū5(1, t), ū50(1, t) and yt,
t ∈ [0, 1]; T = 1 and L = 2

4 The Control Interpretation

We next point out a control interpretation of the BSDE (3,4) or more precisely of the BSDEs
(3,8) and (3,5). We consider the case of a general FT -measurable terminal condition ξ
possibly taking the value +∞ with positive probability. We use this connection to a stochastic
control problem to derive a sufficient (Lemma 7) and a necessary (Lemma 8) condition for
the continuity limt→T Y

min
t = ξ of Y min at T . Finally, we apply our findings from Sections

2 and 3 to derive estimates about the limiting behavior of conditional probabilities Pt[A] as
t→ T for A = B(m, r)c ∈ FT and A = B(m, r) ∈ FT (Corollary 1).
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Figure 7: Two trajectories of W and Y (left with explosion, right without).

Let us assume p > 1 and as before q denotes its Hölder conjugate; for an arbitrary
ξ ∈ FT , ξ ≥ 0, consider the stochastic optimal control problem

V (c, t, ω)
.
= essinf

α∈A(t,c)
E
[
(p− 1)p−1

∫ T

t
|αs|pds+ |CαT |pξ

∣∣∣∣Ft

]
, (50)

Cαu
.
= c+

∫ u

t
αsds, u ∈ [t, T ],

t ∈ [0, T ], c ∈ R, where the set of admissible controls A(t, c) consists of all progressively
measurable processes α such that α ∈ L1(t, T ) P-a.s and we assume 0 · ∞ = 0. From the
verification Theorems [1, Theorem 1.3] or [12, Theorem 3], we know that

V (c, t, ω) = |c|pY min
t (51)

where Y min is the minimal super-solution of the BSDE (3, 4) constructed in these works4.
In particular,

lim
t→T

V (c, t, ω) ≥ |c|pξ(ω)

holds P-a.s. Moreover, an optimal control for (50) is given by α∗s = −(q− 1)Cα
∗

s |Ys|q−1, and
thus

Cα
∗

u = c exp

[
−(q − 1)

∫ u

t
(Ys)

q−1 ds

]
,

for t ≤ u ≤ T . The link (51) between the value function V and Y min will give two results
concerning the continuity of Y min in a general setting. First, we show | limt→T Y

min
t | < ∞

already implies continuity.

Lemma 7. Let Y min be the minimal super-solution of the BSDE (3,4). Then the following
implication holds for almost all ω ∈ Ω. If

lim
t→T

Y min
t (ω) <∞,

then the path Y min(ω) is continuous at T , i.e. it holds that limt→T Y
min
t (ω) = ξ(ω).

4In [12] only the weak terminal constraint lim inft→T Y
min
t ≥ ξ was established. In the present setting, it

follows from the results in [19] that actually the limit limt→T Y
min
t exists and consequently limt→T Y

min
t ≥ ξ

holds.
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Proof. Let Ct = exp
(
−(q − 1)

∫ t
0 (Y min

s )q−1ds
)

(which is the optimal control in (50) for t = 0

and c = 1). Since Y min is nonnegative, it follows that C is continuous at T : limt→T Ct =
CT ∈ [0, 1]. We know from the analysis of the control problem (see [1], proof of Theorem
4.2) that

Y min
t Cpt = E

[
(p− 1)p−1

∫ T

t
|αs|pds+ ξ|CT |p

∣∣∣∣Ft

]
. (52)

The right side of (52) decomposes into a semimartingale M +A with

Mt = E
[

(p− 1)p−1

∫ T

0
|αs|pds+ ξ|CT |p

∣∣∣∣Ft

]
and

At = −(p− 1)p−1

∫ t

0
|αs|pds.

Since Y0 = E[MT ] <∞, the process M is a true martingale. In particular, M is continuous.
A is continuous by the fundamental theorem of calculus. Therefore, the right side of (52)
converges to MT +AT = ξ|CT |p as t↗ T , i.e.

lim
t↗T

Y min
t Cpt = ξ|CT |p.

Therefore, on the set {CT > 0} we have limt↗T Y
min
t = ξ. Moreover, the definition of C

implies that if CT (ω) = 0, then limt→T Y
min
t (ω) = ∞ and consequently {limt→T Y

min
t <

∞} ⊆ {CT > 0}. This completes the proof.

Remark 2. The identity (52) is equivalent to the representation (30) in Lemma 4 (replace
Y min
t by u(Wt, t) and take expectation).

The next result gives a necessary condition for continuity. We use the shorthand notation
Pt[ξ =∞] = E[1{ξ=∞}|Ft].

Lemma 8. Let Y min be the minimal super-solution of the BSDE (3,4) and suppose that
continuity condition (8) holds for Y min. Then we have a.s. on {ξ <∞}

sup
t∈[0,T ]

Pt[ξ =∞]

(T − t)p−1
<∞.

Proof. For t < T let α ∈ A(t, 1) be an arbitrary strategy with associated position path Cα

that has finite costs:

E
[
(p− 1)p−1

∫ T

t
|αs|pds+ |CαT |pξ

∣∣∣∣Ft

]
<∞.

Take for example the optimal strategy. Then we have

E
[
(p− 1)p−1

∫ T

t
|αs|pds+ |CαT |pξ

∣∣∣∣Ft

]
≥ (p− 1)p−1E

[
1{CαT=0}

∫ T

t
|αs|pds

∣∣∣∣Ft

]
.
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Jensen’s inequality yields
∫ T
t |αs|

p ≥ 1
(T−t)p−1 for every path satisfying CαT = 0. Moreover,

since α has finite costs, it holds that {ξ =∞} ⊆ {CαT = 0}. This implies

E
[
(p− 1)p−1

∫ T

t
|αs|pds+ |CαT |pξ

∣∣∣∣Ft

]
≥ (p− 1)p−1 Pt[ξ =∞]

(T − t)p−1
.

Since the right side of the above display does not depend on the control α, we use (51) to
arrive at

Y min
t ≥ (p− 1)p−1 Pt[ξ =∞]

(T − t)p−1
.

Since limt→T Y
min
t <∞ if ξ <∞, this yields the claim.

Lemma 8 combined with our results from Sections 2 and 3 allows to derive estimates on
the speed of convergence limt→T Pt[A] → 0 on Ac for A = B(m, r) and A = B(m, r)c. This
is subject of the next corollary.

Corollary 1. Let m ∈ R and r ∈ (0,∞). Then on B(m, r) it holds for all p ∈ (1, 2) that

sup
t∈[0,T ]

Pt[B(m, r)c]

(T − t)p−1
<∞

and on B(m, r)c it holds for all p > 1 that

sup
t∈[0,T ]

Pt[B(m, r)]

(T − t)p−1
<∞.

Proof. For the first result set ξ = ∞ · 1Bc(m,r) and let (Y min, Zmin) denote the minimal
super-solution of (3,4) and let (Y, Z) denote the solution of (3,4) constructed in Proposition
1. In particular, it holds that limt→T Yt = ξ. Minimality of Y min and limt→T Y

min
t ≥ ξ

imply that limt→T Y
min
t = ξ. The first result then follows from Lemma 8 (observe that q > 2

implies that p < 2). The second result follows from the same argument and Lemma 8, this
time used with the results in Section 3.

5 Conclusion

Let us comment on several direct extensions and possible future work. The extension of the
boundary condition ξ = ∞ · 1Bc to ∞ · 1Bc + g(WT )1B for g such that E(|g(WT )|1B) < ∞
requires only that we change the terminal condition (14)

V (0, t) = V (L, t) = yt, t ∈ [0, T ], V (x, T ) = g(x), 0 < x < L.

Simple modifications of the argument of Section 2 would suffice to deal with this change.
Generalizing the terminal condition ξ = ∞ · 1B to ∞ · 1B + g(WT )1Bc for g such that
E(|g(WT )|1B) < ∞ requires the solution of two PDE: one must first solve (13) over the
domain R × [0, T ] where g serves as terminal condition on the terminal boundary of this
domain. The value of the solution on S = {(L, t), t ∈ [0, T ]} ∪ {(0, t), t ∈ [0, T ]} will then
serve as lateral boundary condition for the PDE (13) on D.

A further generalization involves changing the definition of the set B to {ω−r < Xt(ω)−
c < r, t ∈ [0, T ]} where X is an SDE driven by W ; this generalization would require to modify
the second derivative term in (13) to the infitesimal generator of X. Further generalizations
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can consider the case when X is an SDE with jumps or a doubly stochastic process, which
may require further arguments and ideas. The treatment of these extensions may also be
taken up in future work.

For the case when ξ = ξ1 = 1Bc our arguments depended on q > 2, which implied
E[yτ1{τ<T}] < ∞. The work of Marcus & Véron [16] and numerical computations suggest
that even when q ∈ (1, 2] the PDE (13) and the boundary condition (14) have a smooth
solution. Future work can also try to treat the terminal condition ξ1 with q ∈ (1, 2].

The single space dimension that we have treated in the present work simplified our
existence and smoothness arguments for the solutions of the PDE we have studied. Their
extension to higher dimensions could also be the subject of future work. In this, a possible
approach is, as hinted at in the introduction, to develop arguments for our PDE problems
starting from results of [15].

Finally, from an applied perspective, we think that it would be of interest to study the
implications of the results of the current work for the portfolio liquidation problem mentioned
in Section 4.
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[10] P. Graewe, U. Horst, and E. Séré, Smooth solutions to portfolio liquidation problems
under price-sensitive market impact, arXiv preprint arXiv:1309.0474 (2013).

[11] I. Karatzas and S. E. Shreve, Brownian motion and stochastic calculus, second ed.,
Graduate Texts in Mathematics, vol. 113, Springer-Verlag, New York, 1991.

26



[12] T. Kruse and A. Popier, Minimal supersolutions for {BSDEs} with singular terminal
condition and application to optimal position targeting, Stochastic Processes and their
Applications 126 (2016), no. 9, 2554 – 2592.

[13] O. A. Ladyženskaja, V. A. Solonnikov, and N. N. Ural′ceva, Linear and quasilinear
equations of parabolic type, Translated from the Russian by S. Smith. Translations of
Mathematical Monographs, Vol. 23, American Mathematical Society, Providence, R.I.,
1968.

[14] J.-F. Le Gall, A probabilistic approach to the trace at the boundary for solutions of
a semilinear parabolic partial differential equation, J. Appl. Math. Stochastic Anal. 9
(1996), no. 4, 399–414.
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