N

HAL

open science

A quantitative analysis of reasoning for RMSes

Laurent Buisson, Jérome Euzenat

» To cite this version:

Laurent Buisson, Jérome Euzenat. A quantitative analysis of reasoning for RMSes. 6th International
Symposium on Methodologies for Intelligent Systems (ISMIS), Oct 1991, Charlotte, United States.

pp.9-20. hal-01401195

HAL Id: hal-01401195
https://hal.science/hal-01401195
Submitted on 27 Nov 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NoDerivatives 4.0 International License

https://hal.science/hal-01401195
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://hal.archives-ouvertes.fr

A QUANTITATIVE ANALYSIS OF REASONING FOR RMS

Laurent Buisson and Jérdme Euzenat

Division Nivologiec = IRIMAG/INPG
CEMAGREF Laboratoire ARTEMIS/Imag
BP76 BP53X
F-38402 SAINT-MARTIN D’HERES F-38041 GRENOBLE Cedex
internet: Jerome.Euzenat@ sherpa.imag.fr — uucp: euzenat@imag.fr

ABSTRACT

For reasoning systems, it is sometime useful to cache away the
inferred values. Meanwhile, when the system works in a dynamic
environment, cache coherence has to be performed, and this can be
achieved with the help of a reasoning maintenance system (RMS), The
questions to be answered, before implementing such a system for a
particular application, are: how much is caching useful ? Does the
system need a dynamicity management system ? Is a RMS suited (what
will be its overhead) ? '

We provide an application driven evaluation framework in order to
answer these questions. The evaluation is based on the real work to be
processed on the reasoning of the application. First, we express the
action of caching and maintaining with two concepts: backward and
forward cone effects. Then we quantify the inference time for those
systems and find the quantification of the cone effects in the formulas.

1. INTRODUCTION

For reasoning systems such as knowledge bases, it is often necessary to record
the result of the inference process even if it is goal driven. Recording the result of a
computation is called caching in computer science. Caching is necessary when the
produced inferences are costly and used several times.

When knowledge in the base does not evolve, caching is safe and very efficient.
But in real world applications, the knowledge base is usually dynamic. This is true for
systems that interact with the environment (through sensors) or with the user who can
set hypotheses and change the knowledge in the base. So, caching requires dynamicity
management, Most of the time, it is performed by using a RMS (Reasoning
Maintenance System) based on dependency graph manipulation. But is a RMS always
interesting ? Should it be more attractive to treat dynamicity problems by ignoring RMS
solutions ?

We develop here a quantitative analysis of the reasoning graph in order to answer
these questions. Numeric criteria defined on properties of the dependency graph are
used. Real world applications give evidence of such properties, especially for spatial
knowledge bases and spatial reasoning.

After a short description of reasoning maintenance systems and their advantages
in the context of knowledge bases, we will briefly describe an object-based knowledge

;
i
|
|
1
i
1
1
;

base management system called Shirka/TMS which uses a RMS (§2). We will show
some numeric results from that system and give expectations about its behavior, More
recently, observations have been performed on a real world application ELSA (§3)
dedicated to the analysis of snow avalanche path. This application uses the inference
mechanisms in order to compute spatial properties of a geographic area such as
connected sub-areas or close ridges which are used very often. The benchmark results
obtained with ELSA are very surprising.

We are able to explain them with the help of a new concept: backward and
forward cone effects. They are formalized (§4) in order to draw general conclusions
about RMS use in reasoning systems. In fact, the advantage of a RMS toward rough
caching is a tradeoff between backward and forward cone effect.

2. A SPATIAL REASONING APPLICATION

The motivations for using a RMS in knowledge based systems are first presented.
Then, Shirka/TMS will be introduced together with some tests and expectations about
its behavior,

2.1. REASONING MAINTENANCE SYSTEM

When using an inference system in backward chaining mode, the result of each
inference, would it be an attribute value or the validity status of a proposition, can be
cached i.e. recorded in memory. Cached values do not have to be inferred twice or
more. In fact, caching is useful when a value is used several times by the system and is
as useful as the number of times the value is needed. But, while caching uses additional
memory space and time, it has to be used with care.

Moreover, in evolving systems or when the inferences allowed by the system can
be nonmonotonic, something which is considered as holding (a value considered as the
value of an attribute or a proposition considered as true) can be discarded. In such
cases, the cached values must be invalidated, i.e. not cached anymore. This is the job
of a RMS.

Fig. 1. A dependency graph is here
represented with circles as nodes and
triangles as justifications where the nodes
in the IN-list come through a full line
while nodes in the QUT-list come through
a doted line. Nodes that have a
justification whose IN- and OUT-lists are

O node D justification empty (e.g. D) represent true formulas
because they do not need 1o be inferred.

Reasoning maintenance systems (RMS) are aimed at managing a knowledge base
considering different kinds of reasoning. Such a system is connected to a reasoner (or
problem solver or inference engine) which communicates every inference made. The
RMS has in charge the maintenance of the reasoner’s current belief base. RMS
developed so far focussed on nonmonotonic reasoning or multiple contexts reasoning.
They record each inference in a justification that relates nodes representing
propositional formulas plus a special atom (L) representing contradiction. A
justification (<{iy,...ip}{01,...0m}>: ¢) is made of an IN-list ({iy,...in}) and an OUT-

list ({01,...0m}). Such a justification is said to be valid if and only if all the nodes in
the IN-list are known to hold while those in the OUT-list are not; a node, in turn, is
known to hold if and only if it is the consequent {c) of a valid justification. The
recursion of the definition is stopped by nodes without justification and by the axioms
that are nodes with a justification containing empty IN- and OUT-lists.

2.2. SHIRKA/TMS AND ITS BEHAVIOR

Shirka is a traditional object based knowledge representation system written in
Lisp [1]. Bverything, in Shirka, is an object (including inference methods...). Each
object belongs to a class which defines its structure — in terms of a list of fields and
constraints on the fields values — and its inferential capabilities — in terms of inference
methods used in order to determine the values of unfilled fields. Inference methods are
among value passing, procedural attachment, pattern matching and default values.

Classes are organized in a direct acyclic graph structured by the a-kind-of
relationship between classes. This relationship enables inheritance from a class to its
specializations. Inheritance is used through class refinement — a class strongly
inherits, i.e. possesses, its constraints on fields from its super-class — and inference
specialization — a class weakly inherits, i.e. inherits by default, its inference methods.

A RMS has been implemented on Shirka. It is standard except that it records and
propagates field values [2]. The underlying assumption of the implementation of 2 RMS
in an object-based knowledge representation is that the base is queried very often (or
not often modified). The performances are very attractive because re-infering is avoided
(and so, the answers are given very quickly). On another hand, the modifications —
that are safely dealt with — and initial inferences are processed more slowly. This
assumption was enforced by the observations made with the very simple tests below.

2.3. ELSA: A SPATIAL REASONING APPLICATION

In the context of spatial reasoning, the RMS is very attractive. In other words,
spatial reasoning appears as a good application domain. Meanwhile, some effects
which have not been presented yet can be observed in that kind of applications: they are
“forward and backward cone effects”. These observations were performed on a real
world application dedicated to the analysis of snow avalanche paths: ELSA,

We first present ELSA and the advantage of using a RMS in the context of spatial
reasoning. Then, a set of numeric tests are discussed which demonstrates the advantage
of using a RMS in ELSA. At last, those results are summarized in two principles called
backward and forward cone effect.

ELSA is a problem solving environment which offers to a snow specialist the
different tools available in order to perform an avalanche path analysis and choose the
best protection devices. As it has been explained elsewhere [3, 4], ELSA is built on
Shirka/TMS. ELSA is a knowledge based system which uses both symbolic simulation
based on expert knowledge and numerical simulation based on fluid mechanics
conservative laws.

Because of the spatial extension of the phenomena involved in snow avalanches
(snow-drift, snow-cover stability, fracture propagation, avalanche flowing...), ELSA
needs spatial information on the path. In order to get this information or to use it, ELSA
performs an actual spatial reasoning as it has been defined in [3]. As a matter of fact,

" from poorly relevant spatial knowledge such as contour line, vegetation or ridge maps,

ELSA must infer the definition of special units of terrain called “small panels” by snow
specialists and which are relevant for analysis (they are homogeneous from the analysis
criteria points of view). Meanwhile this definition in small panels is not relevant enough
and ELSA must also infer the properties of these small panels to perform its analysis.

These inferences are taken into account by the knowledge base system. In this
paper we emphasize on terrain inference: the inference of spatial relevant properties
from poor spatial knowledge. For example, here is the spatial definition of a small-
panel called pp1. At the beginning of the session, this small panel is defined only by the
list of triangles included in it. As it has been written in Shirka, the syntax is frame like.

{ppl
small-panel ;

tr2 tro93 }

is-a
contains

In order to make an analysis of the avalanche starting zone, ELSA needs more
relevant information and, to that extent, infers a more complete description of the small
panel pp1. All the fields inferred by ELSA are obtained by the use of inference methods
(as presented above), particularly, pattern-matching inference and procedural
attachment.

{ppl
is-a = small-panel ;
area = 6850. ;
c-gravity = %point-552 ;
diameter = 115. ;
slope-% = 68. ;
is-in = tende ;
contalns = tr2 tro3 ;
boundary-points = po4 pob po5 pol ;
connected-panels = pp2 pp3 ;
borders = %border-589 %border-590 ;
close-ridges = arl ar3 ar4 arb ;
above = pp3 }

Reasoning maintenance is interesting in an interactive environment for spatial
reasoning. As a matter of fact, the caching of inferences is necessary because of the size
of the spatial knowledge base and the amount of inferences. In ELSA, an avalanche path
can easily contain more than 500 triangles and 50 small panels and ridges. Without
caching the time taken for the inferences will forbid any interactive use of the system,
while ELSA is dedicated to decision support and thus needs interactive use.

But, in this kind of context, the user is also supposed to modify given
knowledge. In ELSA, the user can change the vegetation of a part of a small panel (in
order to simulate protection works for instance), or modify the definition of a small
panel (toward a more accurate decomposition of space). As a result, the spatial
properties of these small panels must be re-inferred. In order to keep the base
consistent, a RMS is necessary.

Although ELSA is based on Shirka/TMS, it can take advantage of the RMS in order
to manage dynamicity in spatial reasoning. Fig. 2 gives a good example of interest of
such a RMS,

Fig. 2. In a triangulation of space, two polygons are defined through the set of
triangles which are included in them, The inferences described below are made on those
polygons. If a triangle changes its owner, the RMS must invalidate the cached inferences
which were concerned by these two polygons, Meanwhile, the inferences conducted on
the other polygons are not modified. The invalidation remains local.

As a summary, it appears that spatial reasoning applications can take advantage of
classical RMS abilities. More precisely, the spatial locality can be translated in the
dependency graph.

2.5. PERFORMANCE TESTS ON THE ELSA SYSTEM

Some inference times are given in order to illustrate our claims. They show how
the caching is attractive and also why the RMS is useful. The tests have been performed
on the same hardware as above.

Table 1. This first set of queries concerns caching; each query requires the computation
of the close ridges of a panel. This second set of queries also concerns caching but queries
compute the set of panels connected to a precise panel. No results about Shirka alone are
‘provided because response times are prohibitive (in fact, from this unique iest, we can
conclude that ELSA is not viable without caching).

maintenance level Shirka Caching RMS
Shirka: val? pp34 close-ridges 8.78 421 4.77
Shirka: val? pp34 close-ridges 8.72 0. 0.

Shirka: val? pp33 close-ridges 17.12 1.8 221
Shirka; val? pp32 close-ridges 19.01 2.11 249
Shirka: val? ppl close-ridges 12.14 1.47 1.74
Shirka: val? pp2 close-ridges 8.71 1.14 1.36
Total 1 74.48 10.73 - 12.57
Shirka: val? pp26 connected-panels 65.32 75.92
Shirka: val? pp26 connected-panels 0. 0.

Shirka: val? pp27 connected-panels 4.9 6.7

Shirka: val? pp27 connected-panels 0. 0.

Shirka: val? pp30 connected-panels 4,15 5.37
Shirka: val? ppl connected-panels : 3.68 435
Shirka: val? pp2 connected-panels 3.53 4.96
Total 2 31.58 97.3

Table 2. After the tests that produced Table 1, the user changes the terrain description
transferring one triangle (tr78) from a panel to another (just as in Fig. 2). The former
queries are processed at new. In the first case (single caching), the user must clear the
base and load it again, The time required for those operations is not taken into account.

maintenance level Caching RMS
Shirka: sup-val pp26 contains 78 - .89 071
Shirka: aj-val pp27 contains tr78 0.1 1.81
Shirka: val? pp34 close-ridges 4.2 0.
Shirka: val? pp33 close-ridges 1.81 0.
Shirka: val? pp31 close-ridges 2.14 0.83
Shirka: val? ppl close-ridges 1.49 0.83
Shirka: val? pp2 close-ridges 1.16 0.83
Shirka: val? pp26 connected-panels 65.87 6.16
Shirka: val? pp27 connected-panels 5.17 8.08
Shirka: val? pp30 connected-pancls 4.17 7.
Shirka: val? ppl connected-pancls 37 5.17
Shirka: val? pp2 connected-panels 3.52 5.49
Total (initial inference + modification + re-inference} 175.8 134,21

With single caching, inference time is considerably reduced. A further discussion
will give some explanations of some surprising results (especially the reduction of the
first inference time). With the RMS, inference times are slightly increased in comparison
with single caching inference times but the gain toward Shirka is obvious.

The second kind of queries shows the gain of time thanks to reasoning
maintenance system. The comparison is made between single caching and RMS. The
total line in Table 2 shows that the gain provided by the RMS is very important.

2.6. NEW EXPLANATIONS FOR THESE RESULTS: CONE EFFECTS

The observation made (comparing ELSA with or without RMS) are counter-

intuitive at first sight:

1) Of course, the second call to the same inference takes no time with the RMS
while, in spite of its the filtering capabilities, in Shirka, it still takes a while.

2) Even the first call is faster with the RMS than without (with a factor 22)!

3) Moreover, the time required to answer the same query against another object is
reduced of a factor 8.

So these evaluations reveal a synergistic effect between inferences. These effects
can be summarized as:

Backward cone effect: there is a backward cone effect when a datum is used
several times in the computation of another. This can be stated in another way: the more
used the datum, the better the caching. This effect is as much interesting as the datum is
expensive to compute. Backward cone effect is able to explain the results above for
points (2) and (3). Intermediate inferences performed use each other several times in
order to obtain the high-level (or requested) data. With the RMS, these intermediate data
are computed only once. For the same reason that the inferences of different data share
the same intermediate inferences, after the computation of an item, the required time to
answer the same query against another object is reduced. The two former points explain
why the system is also faster on the re-computation after a change.

Fig. 3. In order to obtain C31, the
system must infer C21 and C22 which in
turn necessitates other inferences. Their
computation can take advantage of caching
because they share common inferences.
This explains that the inferences produced
with caching are faster even for their first
computation.

Forward cone effect: the more used the datum, the worse the invalidation. As
before, there is a forward cone effect when a datum is used for the inference of a
important number of other pieces of knowledge. The forward cone effect is a negative
effect, it reflects the necessary work in order to invalidate a cached result. It explains
the classical results of observation (1) with Shirka/TMS.

Fig. 4, The whole graph represents the

Ci1 inferences made by the inference engine.
ci12 The shaded part of the graph is invalidated
c13 after the suppression of C15. We can see,

qualitatively, that this shaded part looks
34 like a “forward cone”. The larger is this

cone, the less interesting is the RMS
because the number of inferences to
launch is nearer from the numbers of all
the inferences.

Cl6
C17

The problem that will be addressed in the remaining is: how is it possible to
quantify these effects? and which conclusions to draw for the use of a RMS in a
particular application. It is obvious that the attraction of a RMS in an application will
result in a trade off between backward and forward cone effects.

3. A SPACE OF REASONING: THE DEPENDENCY GRAPH

Here is an attempt to generalize the results we obtained with the ELSA
experiments in order to state what kind of reasoning/application can benefit from a
RMS,

Real efficiency of RMS is very difficult to evaluate because a lot of factors have to
be taken into account: not only the number of nodes and justifications but also the way
they are organized in cycles of different kind and the order of firing rules. Moreover,
the performances of RMS depend heavily of the kind of use. Here, we do not address
these complexity problems but the conditions under which a RMS is useful in order to
maintain a reasoning. So, worst case analysis is not a suited measure of the
performances of the system and an abstract computation of the algorithm complexity is
not very useful. What is important for real applications is not the theoretical complexity
analysis of the program used for reasoning maintenance but the real complexity of the
RMS when confronted with the real reasoning. To that extent, we exhibit some results
for graphs with particular restrictions that do not trigger the whole machinery of a RMS.

This section will, first, set some definitions to be used in the quantitative analysis
and the restrictions used in the present study. Then the analysis is achieved for both
kinds of cone effect before summarizing the results of the tradeoff between backward
and forward cone effect.

3.1. NOTATION AND RESTRICTION

In order to give some precise results, some hypotheses have been done about the
dependency graph. We assume that:

H1) There is no nonmonotonic inferences. This is not an important restriction when
assumed the second hypothesis. In fact, nonmonotonic inference in a graph
without loops is a problem for the inference system but not for the RMS,

H2) There is no loops in the graph. This assumption is quite restrictive. In fact, it is
restrictive regarding the complexity analysis of RMS, but it is not for a lot of
applications.

H3) The analysis below only considers average values and hypothesizes the
homogeneity of the graph. With regards to real application, this is the most
restrictive hypothesis. The general aspect of reasoning will be evaluated and
quantified on the basis of average values considered that the graph can itself be
decomposed in several little sub-graphs in which it is possible to cancel or
activate reasoning maintenance.

All those hypotheses are set for reason of simplicity. Of course, the quantitative
analysis of reasoning for RMS have to be fulfilled with the relaxation of those
hypotheses.

First, some notations have to be introduced. Let B be a knowledge base dedicated to a
given application. We consider all the inferences launched all along the typical session
of the application; this is called the reasoning. A particular reasoning can be represented
as a dependency graph such as the one used in the RMS. If we do not care for
nonmonotonic inferences (H1), it is an AND-OR graph (each inference is an and-node
linking the antecedents to the consequent, each formula is an or-node linking together
the possible inference of this formula).

Note that the dependency graph (as it does in RMS) does not represent the
potential inference of B, but the inferences really committed. The formulas in the graph
constitute the set F of formulas used in the reasoning (they can either be given by the
user or inferred by the reasoning system). N is the number of all formulas in F. In F,
we distinguish two sets of formulas: I is the set of initial formulas which are given and
not inferred, and Q is the set of interesting formulas which are the goal of the reasoning
process.

We call a chain, a sequence g, j1, f1.... jn, fy of formulas and justifications such
that, for each ie[1,n], fi.1 is an antecedent of jj and f; is the consequent of jj in the
graph. n is the length of the chain (the number of justifications).

The forward depth (df(f)) at node f is the length of the longest chain beginning at node f
(and ending at a node in Q). The backward depth (db(f)) at node f is the length of the
longest chain ending by node f (and beginning at a node in I). Backward depth is also
called the level of f.

The forward width (wf(f)) at node f is the number of and-node f is linked with as
antecedent. The backward width (wb(f)) at node f is the number of and-node f is linked

with as consequent. So, wf(f) and wb(f) are the number of connections at front or back
of an OR-node. Note that width can also be called branching factor at node f.

wf is the average number of justifications based on one formula of F\Q (where F\Q=(x;
xeF.xgQ)). wb is the average number of justifications of a formula of F\L. In this
paper, we will consider that wb = 1 (this means that a datum is inferred by only one
way). So,

%\c\;vf(f) Y wb(f)
fe feR
wi=""Rgr Wb =Ry

v(f) is the number of times f is used during the session, this is not the number of
inferences in which it appears but the number of times these inferences are drawn. In a
lot of applications these inferences are used a lot.

* &
p is the ratio l%%. Thus, here p= !5—%“—“., because of the value of wb. It is the

average number of antecedents per justification in the reasoning graph.

We distinguish several constant times which are:

Tinf: the average time taken for an inference for which all the premisses are available.
trec: the average time taken for recording a value (result of an inference).

Tdep: the average time taken for recording a dependency (representing an inference).
zeup: the average time taken for suppressing a dependency and a cached value.

1

Fig. 5. Examples of typical graphs

An additional important constant time also appears, but is not taken into account
in our argumentation. It is Treger, the time required for quitting and loading the
application again. We guess that all these values can be easily evaluated for
homogeneous reasoning. Two archetypical examples are given in Fig. 5.

Table 3. The average values of the variables for the graphs given above.

IF=N [e] i wi wb
) 7 1 4 1 1
[#2)] 7 4 1 2 1

3.2. INFERENCE AND PROPAGATION ANALYSIS

At first sight, the time taken in order to produce the reasoning is
TB =zjnt* ()
feFI

But, if the backward cone effect is accounted for, we can say (if p#1) that the
time taken to infer the formula f is:

db(f) -
TB(f) =tinf * p®®@-1 11
P -

db(f) -
because L(f)—ll is the size of a complete p-ary tree of depth db(f). If p=1, then

=3
TB(f)= tinf * db(f). Hence, the total time for the inferences of the session, if no result
of inference is recorded (and p#1), is:

TB = zjpr * pdb® -1

-1
fEQP

It is noteworthy that the ratio used in TB(f) is the number of inferences in the
backward cone. If other hypotheses are taken into account (no homogeneity, no tree
structure. . .), the formula can be replaced in TB(f) by another expressing the number of
inferences in the cone. With the recording of all the inferred formulas the time is:

TBeach = X (Tinf+erec) = PN * (zinf+Trec)
fteRl

and

TBRMS = 3 (Tinf+Trectedep) = PNl * (zinf+rec+Tdep)

fe

As a result, the gain for RMS is:
GB = Y [(v(f)-1) * tinf - (Trec*T dep)]
feN
the formula is the same for caching without the reference to Tdep.
Table 4. The values for the graphs given as examples. Notes that they arc not

multiplied by the same factors. As a result, case (1) do not profit from caching (and this
is true whatever is the total depth of the graph).

TBj TB2 TBcach TBRMS GB
4y 3 3 3 3 0
2 8 8 6 6 2

3.3. INVALIDATION ANALYSIS

A RMS is useful for invalidation (otherwise, rough caching is enough as it is in
forward chaining systems). Invalidation will lead to the forward cone effect. This effect
is now evaluated. We consider that one given formula f in I is modified and that the
user asks the same queries Q as before. Because of the caching system, the answers

recorded are no valid any more. With a single caching system, we need to re-infer all
the formulas. The time required is so

TFcach = TBcach + Treset + TBcach

where TBcgeh = I\ * (zinf+erec) as above.
Another solution uses a reasoning maintenance system. In that case,

TFrMS = TBRMS + Tinv + Treinf
with TBrms = RN * (zinf+TrectTdep) as above,
and Tiny = Ninva*zsup and Treinf = Ninval*(inf+rec < dep)s

widf(f+1 -1

wf-1
ary tree of depth df(f), so this is the size of the forward cone starting at f. The
branching factor is wf because it has been considered justifications with only one
consequent, otherwise, the branching factor would have been wf*nbcsq (in which
nbesq is the average number of consequents).

As a result, the gain given by the RMS is:
GF = N*(zinf+rec) + Treset - Ninval* (Tinf+Trec+<deptTsup)

If we ignore resetting time and set that (Tinf+trec)*k = Tinf+< recH dept<sups the
RMS must be attractive when Njgvar*k < N which must be true most of the time.

and Nipval = -1if wfz1 and df(f) otherwise, this is, again, the size of a wf-

Table 5. The results of the invalidation phase for the graphs given above
(zcach=tinf+*rec and TRMS=vinf+<rec*+*dep+7sup)- The graphs are not big enough to
illustrate interesting properties: both cases do not appeal for a RMS. In particular,
locality do not appear (after each modification, an important part of the graph must be
revised). It becomes more attractive if we consider 10 independent graphs as in case 2” in
which the invalidation is useful.

TFcach Ninval TFRMS
1 6*Tcach 2 6*TRMS+2%Tsup
(2) 12*¢ cach 6 12%T RMS +6*"C sup
2) 120%Tcach 6 66*TRMSH6*Tsup

A pure static evaluation can be given with p modifications of data and the whole
set of queries between them:

Tp)=p*TB
Teach(P) =P * Treset + (p+1) * TBcach
TrMs(p) = TBRMS + Ninval * P * (Tinf+<rectTdept<sup)

3.4. REASONING (ABOUT/FROM) THE GRAPH

As said above, the main problem consists in evaluating the tradeoff between both
cone effects. The important questions to ask for a particular application are: Can it
benefit from caching ? Does caching need dynamicity management ? Is a RMS suited for
dynamicity management or is it better to recompute everything ?

It is noteworthy that these questions cannot be answered independently.
Moreover, they are not directive; in particular, dynamicity management does not imply
the use of a RMS. Nevertheless, reasoning dynamics must be taken into account. As a
matter of fact, the performances of the system depend on the relations between query
and modification time. The result will not be the same if there is a new query after each
modification or if there is an important number of modifications between each query
phase.

4. CONCLUSION

The problem we addressed was the evaluation of the benefits of caching and RMS
in knowledge based applications. To that extent, we first show some results expected
on a general purpose tool and some results obtained on a real world application. The
results, at the advantage of the RMS, were not expected. We explained then by
producing two informal models of the actions of caching and RMS on the reasoning: the
so-called cone effects. Then, we quantified the amount of work required in order to
demonstrate some facts (or resolve one problem). The equations we obtained revealed
the presence of the cone in the quantifications of the number of inferences they contain.

This is a first attempt in order to characterize the usefulness of caching and RMS.
It has to be continued by a better knowledge of reasoning dynamics and by relaxing the
hypotheses we assumed on the graphs. Finally, the advantage of using a RMS in an
application is seen as a tradeoff between both principles. More examples and
experiments, together with a discussion of further and related works can be found in

[5].
REFERENCES

1. F. Rechenmann and P. Uvietta, “SHIRKA: an object-centered knowledge base
management system”, Artificial intelligence in numerical and symbolic simulation,
9-23 (1991).

2. J. Euzenat, “Cache consistency in large object knowledge bases”, Laboratoire
ARTEMIS/Imag internal report (1990).

3. L. Buisson, “ELSA : a problem solving environment for avalanche path analysis”,
Artificial intelligence in numerical and symbolic simulation, 25-49 (1991).

4. L. Buisson, “Reasoning on space with knowledge object centered representation”,
Lecture notes on computer science, 409:325-344 (1990).

5. L. Buisson and J. Euzenat, “A quantitative analysis of reasoning for RMSes”,
Laboratoire ARTEMIS/Imag Internal report (1991).

