
HAL Id: hal-01401183
https://hal.science/hal-01401183

Submitted on 23 Nov 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

KR and OOL co-operation based on semantics non
reducibility
Jérôme Euzenat

To cite this version:
Jérôme Euzenat. KR and OOL co-operation based on semantics non reducibility. ECAI workshop
on integrating object-orientation and knowledge representation, Aug 1994, Amsterdam, Netherlands.
�hal-01401183�

https://hal.science/hal-01401183
https://hal.archives-ouvertes.fr

in: Roman Cunis, Hermann Kaindl, Denis De Champaux (eds.), Proc. 11th ECAI workshop on integrating object-
orientation and knowledge representation, Amsterdam (NL), no pagination, 1994

KR and OOL co-operation based on semantics non
reducibility

Jérôme Euzenat

INRIA Rhône-Alpes,
IMAG-LIFIA, 46, avenue Félix Viallet, 38031 Grenoble cedex 1, France
Jerome.Euzenat@imag.fr

We argue that, due to semantics non reducibility, object based-knowledge representation
systems (OBKR) and object-oriented programming languages (OOL) cannot be reduced one to
another. However, being aware of this incompatibility allows to organise their cohabitation and
co-operation accordingly. This is illustrated through the design of a new implementation of the
TROPES system.

1.WHY ARE OOL AND OBKR DIFFERENT ?
There have been several works on the many possible OOL and OBKR based on the remark

that OOL and OBKR are very similar at a conceptual level [16, 11, 12, 24, 4]. As a matter of fact,
involved concepts include individual entities (hereby called objects), to which attributes are
assigned, and generic entities (called classes) describing the structure of individual objects and
organised through a relation (called specialisation). A possible source of difference, at the
conceptual level, is the ability of OOL objects to do (send messages) while OBKR object only are
(accessed). However, the distinction is balanced by the possibility of having access-oriented
programming in OBKR, that which is computationally equivalent to message passing.

On one hand, comparing OBKR and OOL on this conceptual level, as a whole or component
by component, is possible but misses the meaning of the involved concepts [16, 18]. Therefore
each tentative characterisation of OOL with regard to OBKR is contradicted by some non typical
system. On the other hand, in the last ten years, there has been fundamental work concerning
the semantics attached to the notions of objects, classes, specialisation and so on [3, 2]. There
are roughly three ways for establishing the semantics of object-based systems:

• designing an operational semantics which models the behaviour of the system without
referring to the modelled domain [21];

• designing a denotational semantics given by an interpretation function ranging from the
object concepts to the represented domain (it can be a one-to-one correspondence in first-
order interpretations [14, 17] or an approximation through OSF-morphisms [1]). The
domain can be characterised in two ways:

— an essentially mathematical domain (e.g. function spaces [5]);
— a domain which could be the reality (with nothing more than set theory; e.g. [17]);

such a semantics will be called simple denotational semantics.
The difference lays in the immediate intelligibility of the semantics by a user: what is
modelled by an object is usually not a function, in consequence there is no reason why
the meaning of objects should be a function.

The two first trends are mainly those used in modelling OOL — the second one being more
popular in theoretical computer science — while the third one clearly concerns knowledge
representation. Of course, this distinction is not that clear: some works, close to OOL, rely on a
simple denotational semantics (e.g. feature algebra [22]). However, the distinction seems pretty
solid: it is admitted in the OBKR field that the foundation of knowledge representation is its
relationship with reality (or rather a domain to be modelled) [17], while researchers in OOL are
looking for a computational model of object systems [23].

As far as the difference is made on denotational versus operational semantics, the gap is not
that large. They are not contradictory, just two different ways to see the same phenomenon. But
some characteristics of OOL raise problems which render difficult the task to assign them a
simple denotational semantics. As a matter of fact, the emphasis put on the extendibility of OOL
led to the definition of as few concepts as possible in order to enable anyone to modify the

2 Jérôme Euzenat

system behaviour as a whole. This has the expected advantages. However, this has two
important consequences for the semantics:

• It becomes very difficult to draw the boundary between the objects which belong to the
modelled domain (denoting some particular individual) and those which are part of the
computational machinery of the system (this is obvious when queues, windows,
programs and messages are themselves objects [10]).

• The meaning of a class as denoting, unambiguously and in itself, something (usually a
set of individuals) in the modelled domain cannot be established very clearly, since the
behaviour of that class is dictated by numerous changes made in the meta-class, the
inheritance protocol and so on. Moreover, in many systems (e.g. [13]) this protocol is
programmed in another language which must have a denotational semantics so that the
OOL can have one.

Of course, these problems culminate in reflective (or self-described) systems in which well-
founded sets cannot be used for defining the denotation of classes1. The distinction drawn
above is not an arbitrary distinction between these systems: it is the core of our argumentation.
In order to implement its denotational semantics, a KR system has to behave accordingly with
the represented domain. If anyone can legitimately modify the behaviour of the system, this is
not ensured anymore. The next step of this dialectical argument consists in noting that the
modelled domain itself is capable of self-representation (and self-modification), but we have
been too far… Note that nothing prevents from implementing OBKR in an OOL by implementing
the appropriate semantics, however, the simple denotational semantics of the OBKR cannot be
straightforwardly deduced from the operational semantics of OOL.

2.WHY BRINGING THEM TOGETHER ?
The conceptual similarity is a bad reason to try to unify OBKR and OOL: it is only surface

similarity without semantic grounding. Of course, there are «real similarities» which are learned
directly with such a unification, but it brings too much confusion. Meanwhile, there are good
reasons to put them together:

• Object-oriented programming (OOP) is so widely used that it is not possible to imagine a
useful KR system unable to communicate with some OOL.

• OBKR, for their part, are a good way of representing knowledge, that which is not a
strength of OOL. Thus, if an application requires knowledge representation, OBKR is a
good solution.

• OOP is a powerful way of developing systems: programming an OBKR in an OOL brings
portability, extendibility and integrability.

In summary, OOL and OBKR are condemned to cohabitate in real applications. These are tiny
but promising arguments for putting OOL and OBKR together. They certainly justify numerous
attempts to (generally) embed or implement OBKR on top of OOL by taking advantage of their
extendibility [19].

There is usually, in OOL applications, some part which could be considered as representing
knowledge while the other is dedicated to the functioning of the system. Our purpose is to
render this distinction more explicit rather than to hide it. To that extent, we start from an
analysis of the different functions of classes in OBKR and show that some can be devoted to
OOL classes while other concern OBKR classes. This does not provide integration of
denotational and operational semantics of such systems, but bounds the domain of each of them
in such a way that they are integrated but cannot interfere. The presentation is based on the
OBKR TROPES [15, 8] which introduces a conceptual difference between concepts and classes.

3.TAXONOMY VERSUS ONTOLOGY

In classical OBKR, the membership of an object to a class has important consequences.
Meanwhile some of them are necessary while others are contingent (exemplified by the fact that
an object can change its class). The meaning of classes is too often overloaded and this raises at
least two important problems:

1 While OBKR only have problems with the semantics of a concept which refers to itself [16, 6], OOL have
problems with classes which are instances of themselves.

KR and OOL co-operation based on semantics non reducibility 3

• It merges the ontological aspects of instances (i.e. the conditions of their being: structure,
integrity, identity) and the taxonomic aspects (i.e. the conditions for seeing them as a
member of a class: domain restriction, relevant fields). Merging both views together
raises problems of integrity: does some object change class (breaking the integrity of the
object) or is it replaced by another object with similar characteristics but belonging to
another class (giving up identity of objects)? [6] Classes cannot play their role of
categories in an identification system without breaking the ontological link with the
objects.

• There exist several different ways of classifying objects (for instance, employees in your
firm are not categorised the same way by yourself or by your account agent). It is thus
important to be able to consider different concurrent taxonomies of classes organising the
same set of objects.

TROPES distinguishes ontological and taxonomic aspects of classes and assigns the
semantics of each aspect to distinct entities with correspondent prerogatives: concepts and
classes.

3.1.Concepts
Ontological prerogatives are attached to the concept. They are those which warrant the

integrity of an object (i.e. that it cannot be modified in a way which would lead it to cease being
an instance of the concept). This also includes the management of object identity. In TROPES,
objects are identified by the mean of a key: a list of field values that corresponds to only one
object. The usual consequences with keys are related to integrity: an object without a key cannot
exist and there cannot exist two objects with the same key (thus accidental co-reference is
avoided).

These prerogatives play an important role at instanciation when the object is created and
registered. They have in charge the management of existential dependencies from objects to the
components without which they cannot exist. During its lifetime, an object, belonging to some
concept, is ensured that none of the above postulates is violated.

3.2.Classes
As soon as the classification is seen as contingent, there can be several different

classifications of the instances of the same concept: in a particular firm, the individuals are not
considered the same way by the project management staff, the account office and the restaurant.
Therefore the same individual is seen differently under several viewpoints and each viewpoint
can have its classification of the same set of individuals.

Under a particular viewpoint, an object is attached a class and can change class as soon as it
has been further identified. This organisation is very useful since one can classify an object with
regard only to the relevant fields for the viewpoint. As a consequence, the set of classes to be
considered is small, while considering the whole lattice of possible structures (e.g.
Vegetarian-Profit-sharing-Clerk) would confuse the user.

A class is (1) a projection of the structure of the concept retaining only relevant fields and,
(2) a definition of constraints that objects must satisfy in order to belong to it. It thus provide
the support for classification. As opposed to instanciation, objects can be attached to a class and
can be detached from it at anytime. Classes also allow the expression of hypothetical knowledge
in term of default values or default inference methods. The hypothetical knowledge is relevant
here since, for instance, default values are given with regard to the specificity of the object
class. These values are not to be seen as the true values of fields but as hypotheses which can
be made under a particular viewpoint. As a matter of fact, default values returned from different
viewpoints do not have to be identical. For instance, it could be the case that research directors
are usually fat while vegetarian are usually thin: what about a vegetarian director?

4.TIGHT CO -OPERATION BETWEEN OBKR AND OOL
It is noteworthy that TROPES characteristics are a combination of those of OOL and OBKR. In

fact, OOL classes have concept prerogatives (e.g. instanciation, integrity, weak typing) with
instances which cannot change their class and OBKR classes have class prerogatives (e.g.
default inference, strong typing) with instances which can migrate. The only missing aspects of
OOL is message-passing.

4 Jérôme Euzenat

This distinction between concepts and classes led to the new implementation of TROPES in
the context of a CLOS-like OOL (named ICOS — thus leading to the TROPICOS implementation
of TROPES). In TROPICOS, the integration is such that any TROPES object can be considered as
an ICOS object and any ICOS objet could be a TROPES… value. This avoids the rupture between
OOL and OBKR objects. On one hand, OOL operations (e.g. integrity enforcement but also
displaying, storing) can be applied to these objects without altering their representational aspects
(e.g. slot values, class membership). On the other hand, pure OOL objects can freely be referred
to by OBKR objects but are not interpreted as representation of an individual in the modelled
domain.

resear
cher

Functional Restaurant

employee

clerk

engineer

assistant

vege
tarian

low-
fat regular

employee

OOL
class

OOL
specialisation

OOL
object

OBKR
object

OBKR
specialisation

OBKR class

Concept

Viewpoint

OOL
instanciation

Attachment
senior

Figure. The implementation of the OBKR Tropes in an object-oriented language.

4.1.Implementing TROPES in an OOL

As a matter of fact, concepts are implemented like particular instanciable, non-mutable ICOS
classes. They provide to their instances (hereby TROPES objects) the services of indexing,
integrity checking (no other object can have the same key and they always have the same
structure). On the other side, several viewpoints (maybe none) are attached to these concepts
with a taxonomy of classes in each viewpoint. Thus, TROPES objects can be seen from several
viewpoints and classified in different classes in different viewpoints. They can be reclassified at
any time and their aspect (visible fields) can change from one viewpoint to another.

As a consequence of this implementation, any TROPES object is an OOL object. It behave
exactly in the same way. Of course, what cannot change is the behaviour of the object from the
TROPES point of view. Thus, the implementation of this object (in OOL terms) must respect
TROPES semantics. However, this semantics does not extend to the whole OOL action field but
only a restricted area. For instance, displaying is not taken into account by TROPES it can thus
be provided by the OOL. It is expected that both sides of the object do not interact so that both
semantics are preserved.

4.2.Introducing OOL objects in TROPES

So far, only TROPES objects have been fully integrated into an OOL. The converse does not
hold because for OOL object to be integrated into an OBKR, they should loose their flexibility by
being assigned a strict denotational semantics. However, there is a need for a continuum
between OOL objects and OBKR objects which is provided by enabling the OBKR to reference

KR and OOL co-operation based on semantics non reducibility 5

OOL objects in a minimal fashion. OOL objects are thus enabled to transit into TROPES objects
(i.e. being in field values, being identified as belonging to a type) but they are not considered as
TROPES objects but rather as values such as strings, boolean and so on.

For that purpose, TROPES types are declared through an abstract data type which provides a
predicate for values of the type, an equality predicate and sometimes an order predicate allowing
to express sub-types as enumerated domains or interval union. For instance, the date data type
is provided with date-p predicate for testing if the given value is a date, a date-equal-p
predicate for testing if two dates are equal and a date-anterior-p predicate. These data type
are also provided with reader and writer functions. Thus, TROPES does not consider these
objects as OOL objects (as a mater of fact they can be implemented as strings) but does not
prohibit it. TROPES warrant that what should be a date is indeed a date and when the slot value
is retrieved from a TROPES object field it can be sent the appropriate messages.

5.CONCLUSION

In summary, it has been argued that no merge is possible between OOL and OBKR but that
strong pragmatic reasons appeal for co-operation. The TROPES OBKR has been briefly
presented. It proposes a distinction between class and concept roles. Then, an implementation
preserving differences while clarifying and strengthening links has been presented.

ROME [6] has been the first system to explicitly separate ontology from taxonomy. It makes
an object instance of an “instanciation class” borrowed from OOL and let it be classified under a
“representational class” related to OBKR. But, it does not separate the base into different
viewpoints: there is only one taxonomy. FRAMETALK [19] proposes an implementation of
frame concepts in CLOS which provides perspectives (similar to our viewpoints) [20]. Classes
are just extended OOL classes and no particular semantics is provided for the system. KRS is
concerned with integration of external data types in the representation systems [9]. External data
are integrated through abstract data types. No distinction between OOL and KR classes is
considered and no semantics is provided. Recently, it has been argued that some sort of
terminological logic is more general than frames and “object-oriented data models” [4].
However, it only concerns a restricted class of object models and features has not been taken
into account (e.g. reflectivity).

The presented position takes into account the current state of object semantics in OOL and
OBKR. Without neglecting the efforts towards the convergence of both semantics, it represents
an already practicable way of integrating both kind of systems without weakening their
respective position. The main drawback of our proposal lays in the fact that an OOL
implementation of OBKR is dangerous due to the flexibility of OOP.

ACKNOWLEDGEMENTS

Many thanks to Roland Ducournau for carefully reading and arguing (not that much) against
my proposal. This research is partly supported by the French Groupement d’Études et
Recherches sur les Génomes.

REFERENCES

[1] Hassan Aït-Kaci, Andreas Podelski, Towards a meaning of LIFE, Journal of logic
programming16(3-4):195-234, 1993

[2] Andrew Black, Jens Palsberg, Foundations of object-oriented languages, Sigplan notices
29(3):3-12, 1994

[3] Ronald Brachman, What is-a is and isn’t: an analysis of taxonomic link in semantic
networks, IEEE Computer 16(10):30-36, 1983

[4] Diego Calvanese, Maurizio Lenzerini, Daniele Nardi, A unified framework for class-
based representation formalisms, Proc. 4th KR, Bonn (DE), pp109-120, 1994

[5] Luca Cardelli, John Mitchell, Operations on records, Mathematical structures in computer
science 1(1):3–48, 1991

6 Jérôme Euzenat

[6] Bernard Carré and Gérard Comyn, On multiple classification, points of view and object
evolution, in Jacques Demongeot, Thierry Hervé, Vincent Rialle, Christophe Roche
(eds.), Artificial intelligence and cognitive sciences, Manchester University Press,
Manchester (GB), pp49–62, 1988

[7] Robert Dionne, Eric Maes, Frank Oles, The equivalence of model theoretic and structural
subsumption in description logics, Proc. 13th IJCAI, Chambéry (FR), pp710-716, 1993

[8] Jérôme Euzenat, A purely taxonomic and descriptive meaning for classes, Proc. IJCAI
workshop «object-based representation systems» (technical report CRIN 93-R-156,
Nancy (FR), 1993), Chambery (FR), pp81-92, 1993

[9] Brian Gaines, A class library implementation of a principled open architecture knowledge
representation server with plug-in data types, Proc. 13th IJCAI, Chambéry (FR), pp504-
509, 1993

[10] Adele Goldberg, Dave Robson, Smalltalk-80 the langage and its implementation,
Addisson Wesley, Reading (MA US), 1983

[11] Hermann Kaindl, Object-oriented approach in software engineering and artificial
intelligence, Journal of object-oriented programming 6(8):38-45, 1994

[12] Peter Karp, The design space of frame knowledge representation systems, Technical note
520, SRI AI center, Menlo Park (CA US), 1993

[13] Gregor Kiczales, Jim Des Rivières, Daniel Bobrow, The art of the meta-object protocol,
The MIT press, Cambridge (MA US), 1991

[14] Hector Levesque, Ronald Brachman, Expressiveness and tractability in knowledge
representation and reasoning, Computational intelligence/intelligence informatique
3(2):78-93, 1987

[15] Olga Mariño, François Rechenmann, Patrice Uvietta, Multiple perspectives and
classification mechanism in object-oriented representation, Proc. 9th ECAI, Stockholm
(SE), pp425–430, 1990

[16] Bernhard Nebel, How well a vanilla loop fit into a frame?, Data and knowledge
engineering 1:181-194, 1985

[17] Bernhard Nebel, Reasoning and revision in hybrid representation systems, Lecture notes
in computer science (lecture notes in artificial intelligence) 422, 1990

[18] Peter Patel-Schneider, What’s inheritance got to do with knowledge representation, in
Maurizio Lenzerini, Daniele Nardi, Maria Simi (eds.), Inheritance hierarchies in
knowledge representation and programming languages, Wiley, Chichester (GB), pp1-11,
1991

[19] Christian Rathke, Object-oriented programming and frame-based knowledge
representation, Proc. 5th. IEEE conference on tools with artificial intelligence, Boston
(MA US), pp95-98, 1993

[20] Christian Rathke, David Redmiles, Multiple representation perspectives for supporting
explanation in context, Research report CU-CS-645, University of Colorado, Boulder
(CO US), 1993

[21] Uday Reddy, Objects as closures: abstract semantics of object-oriented programming,
Proc. ACM conference on Lisp and functional programming, 1988

[22] Gert Smolka, Feature constraint logics for unification grammars, Journal of logic
programming 12(1-2):51-87, 1992

[23] David Touretzky, The mathematics of inheritance systems, Morgan Kauffman, Los Altos
(CA US), 1986

[24] Peter Wegner, Dimensions of object-based language design, Proc. 2nd OOPSLA,
Orlando (FL US), pp168-182, 1987

