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Abstract: In a rapidly urbanizing world, trace element pollution may represent a threat to human 

health and wildlife, and it is therefore crucial to assess both exposition levels and associated effects 

of trace element contamination on urban vertebrates. In this study, we investigated the impact of 

urbanization on trace element contamination and stress physiology in a wild bird species, the 

common blackbird (Turdus merula), along an urbanization gradient (from rural to moderately 

urbanized areas). Specifically, we described the contamination levels of blackbirds by 4 non-

essential (Ag, Cd, Hg, Pb) and 9 essential trace elements (As, Co, Cr, Cu, Fe, Mn, Ni, Se, Zn), and 

explored the putative disrupting effects of the non-essential element contamination on 

corticosterone levels (a hormonal proxy for environmental challenges). We found that non-

essential trace element burden (Cd and Pb specifically) increased with increasing urbanization, 

indicating a significant trace element contamination even in medium sized cities and suburban 

areas. Interestingly, the increased feather non-essential trace element concentrations were also 

associated with elevated feather corticosterone levels, suggesting that urbanization probably 

constrains birds and that this effect may be mediated by trace element contamination. Future 

experimental studies are now required to disentangle the influence of multiple urban-related 

constraints on corticosterone levels and to specifically test the influence of each of these trace 

elements on corticosterone secretion. 
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1. Introduction 

Anthropogenic activities have continuously released a wide variety of pollutants into the 

environment (Azimi et al., 2003, 2005; Pacyna and Pacyna, 2001; Van der Gon et al., 2007), and 

the worldwide contamination of ecosystems has rapidly become of environmental concern (Carson, 

1962; Colborn et al., 1993; Mergler et al., 2007; Peakall, 1992). Due to the constant expanding 

urbanization and associated industrial processes, trace elements in particular, can be a major 

environmental issue in urbanized environments (Azimi et al., 2005; Nam and Lee, 2006; Roux and 

Marra, 2007; Scheifler et al., 2006; Wei and Yang, 2010). Despite their natural origin (Nriagu, 

1989), trace element emissions have been significantly increased by anthropogenic activities (e.g., 

mining, fossil fuels combustion, waste products of industrial activities; Azimi et al., 2005; Nriagu, 

1990; Selin, 2009; Walker et al., 2012). These contaminants are particularly persistent and toxic 

(especially the non-essential elements such as cadmium (Cd), mercury (Hg), and lead (Pb); 

Domingo, 1994; Scheuhammer, 1987; Walker et al., 2012; Wolfe et al., 1998), and importantly, 

they can bio-accumulate in organisms and, for some elements, bio-magnify through the food chains 

(Walker et al., 2012). Increased trace element pollution in urban environments may thus represent 

a threat for human health and wildlife, and it is therefore imperative to accurately assess exposition 

levels and potential associated detrimental effects of these pollutants on urban vertebrates. 

Wild animals have successfully and increasingly been used as biomonitors of trace element 

contamination in the past decades (Alleva et al., 2006; Burger, 1993; Furness, 1993; Lodenius and 

Solonen, 2013). Because of their wide distribution and their often high trophic levels, birds have 

especially been proposed as suitable indicators (Burger, 1993; Furness, 1993), and therefore, the 

determination of trace element concentrations in various tissues of bird species (e.g., blood, 

feathers, liver, kidney, muscle, eggs, feces) has been widely used in biomonitoring studies (e.g., 



see Berglund et al., 2015; Burger and Gochfeld, 1992; Carravieri et al., 2014a; Costa et al., 2014; 

Dauwe et al., 2000; Eens et al., 1999; Frantz et al., 2012; Orłowski et al., 2015; Swaileh and Sansur, 

2006). However, most studies assessing the exposure of birds to trace element pollution have 

focused on heavily contaminated areas (e.g., vicinity of smelters; see Berglund et al., 2011; 

Coeurdassier et al., 2012; Dauwe et al., 2000, 2004; Janssens et al., 2002) or aquatic ecosystems 

(e.g., see Burger and Gochfeld, 2004; Carravieri et al., 2014b; Furness and Camphuysen, 1997; 

Hernández et al., 1999; Kalisińska et al., 2004), and comparatively, moderately polluted urban and 

suburban environments have been less studied (but see Costa et al., 2013; Frantz et al., 2012; Roux 

and Marra, 2007; Scheifler et al., 2006; Torres et al., 2010; Swaileh and Sansur, 2006) despite their 

ecological importance (Grimm et al., 2008). Importantly, trace element contamination has been 

associated with reduced breeding performances, reduced survival, and therefore poor individual 

fitness (Brasso and Cristol, 2008; Goutte et al., 2014; Hallinger et al., 2011; Scheuhammer et al., 

2007; Varian-Ramos et al., 2014; Wolfe et al., 1998), even when contamination was far below a 

lethal threshold. At low or moderate doses, the detrimental effects of trace elements are thought to 

be primarily mediated by alteration and disruption of central physiological and behavioural 

mechanisms that govern the seasonal and daily routines of wild vertebrates (Wingfield, 2008). For 

instance, accumulation of trace elements has been associated with immunosuppression and 

prevalence of infectious disease (Bichet et al., 2013; Gasparini et al., 2014; Hawley et al., 2009; 

Snoeijs et al., 2004), altered behaviour and reproductive impairment (Evers et al., 2008; Frederick 

and Jayasena, 2010; Janssens et al., 2003; Tartu et al., 2013, 2015), and nutritional stress (Eeva et 

al., 2000, 2003). Trace element contamination can therefore disrupt homeostasis and can represent 

a stressful challenge for wild vertebrates. 

In that respect, measuring glucocorticoid levels is useful and relevant to assess to what extent trace 

element contamination might affect wild vertebrates in urban environments. Glucocorticoids are 



one of the main mediators of allostasis in vertebrates (McEwen and Wingfield, 2010; Romero et 

al., 2009) and slight increases in circulating corticosterone levels (hereafter CORT, the main avian 

glucocorticoid) aim at restoring homeostasis when energetic challenges occur (Angelier and 

Wingfield, 2013; Landys et al., 2006; Romero, 2004). Therefore, elevated CORT levels are 

classically viewed as a reliable proxy for a high allostatic state, and thus, for important energetic 

constraints (Angelier and Wingfield, 2013; McEwen and Wingfield, 2010; Romero et al., 2009). 

In addition, there is also important evidence, mostly from laboratory studies, that non-essential 

trace elements (e.g., Cd, Hg and Pb) can act as powerful endocrine disruptors and result in abnormal 

or modified circulating hormone levels, even at very low concentrations (Colborn, 2004; Giesy et 

al., 2003; Ottinger et al., 2005; Tan et al., 2009). The disruption of CORT regulation may prevent 

individuals from restoring homeostasis when environmental challenges occur, and such endocrine 

disruption could therefore be a major cause of reduced performances in wild vertebrates. However, 

the relationship between trace element contamination and glucocorticoid levels in wild vertebrates 

needs further attention. Indeed, most studies have been limited to a single contaminant or to 

elevated doses of contaminants (Franceschini et al., 2009; Heath et al., 2005; Herring et al., 2012; 

Tartu et al., 2013, 2015; Wada et al., 2009) and, thus far, no clear patterns of the effects of trace 

elements on CORT concentrations have been revealed. 

In this study, we investigated the impact of urbanization on trace element contamination and CORT 

levels in a wild bird species, the common blackbird (Turdus merula). Specifically, we sampled 

breast feathers of 44 adult and juvenile blackbirds to concomitantly measure feather trace element 

concentrations (Burger, 1993) and feather CORT levels (Bortolotti et al., 2008). So far, most 

studies have focused on large and dense cities (e.g., see Roux and Marra, 2007) while overlooking 

moderately urbanized cities (i.e., less densely populated, with lower building density and higher 

vegetation coverage) that, yet, represent a large and increasing part of urbanized land cover (United 



Nations, 2015). Our first goal was therefore to document the contamination of blackbirds by 4 toxic 

non-essential trace elements (silver (Ag), Cd, Hg and Pb) and 9 essential trace elements (for which 

only high levels can be toxic: arsenic (As), cobalt (Co), chromium (Cr), copper (Cu), iron (Fe), 

manganese (Mn), nickel (Ni), selenium (Se) and zinc (Zn)) along an urbanization gradient (from 

rural to moderately urbanized areas) in France. Because urbanized areas are characterized by 

important anthropogenic activities, we logically predicted that trace element contamination of 

blackbirds will increase along the urbanization gradient. We also predicted that trace element 

contamination will remain moderate because of limited anthropogenic activities in medium-sized 

cities. Second, we focused on the non-essential trace elements (Ag, Cd, Hg and Pb) because they 

are known to be highly toxic and to have endocrine disrupting properties even at very low 

concentrations (Colborn, 2004; Giesy et al., 2003; Ottinger et al., 2005; Tan et al., 2009). Our 

second goalwas therefore to test whether this non-essential trace element contamination is 

associated with modified CORT levels. For instance, if trace element contamination energetically 

constrains blackbirds, we predicted that trace element levels will be positively correlated with 

CORT levels as elevated CORT levels are usually related to high allostatic load and important 

energetic constraints (sensu McEwen and Wingfield, 2010). Alternatively, if these trace elements 

act as endocrine disruptors, it may also result in abnormal reduced CORT levels as previously 

suggested in other studies (e.g., see Wada et al., 2009). 

 

2. Materials and Methods 

2.1. Study area and sample collection 

A total of 44 blackbirds (31 adult males and 13 juveniles) were sampled between January 2013 and 

August 2014 along an urbanization gradient in the Poitou-Charentes region, Western France. 



Among them, 32 blackbirds were found dead (from vehicle collisions), collected and stored in 

metal-free polyethylene bags at −20 °C, while the 12 others were opportunistically captured with 

mist-nets and released immediately after feather sampling. For each individual, a few breast 

feathers (up to 10–12 feathers for live individuals) were collected and stored dry in metal-free 

polyethylene bags until analyses. Birds were aged as juvenile (i.e., first year individual before the 

post-juvenile molt) or adult based on plumage characteristics (Cramp, 1988). In blackbird, 

juveniles and adult males are predominantly victims of road traffic (Erritzoe et al., 2003). Thus, to 

avoid an unbalanced adult sex-ratio (only 3 females were collected) and potential gender-related 

differences in trace element contamination (e.g., due to diets differences between males and 

females or due to the ability of females to eliminate part of their trace element burden in their eggs; 

Burger, 2007), adult females were not included in this study. Conversely, we could not determine 

the sex of the juveniles and, thus, both male and female were probably analyzed. However, because 

the feathers of juveniles have grown during their development in the nest (and thus, while both 

sexes share the same environment and the same diet), differences in trace element contamination 

between genders are much less likely to occur. 

Blackbirds were sampled in locations that differ in urbanization rates (i.e., urban and suburban 

areas, and rural areas surrounded by agricultural areas or forests). For each bird, the geographic 

coordinates of the site of collection were recorded (see Supplementary Material, Table A.1 in the 

online version at http://dx.doi.org/10.1016/j.scitotenv.2016.05.014). To quantify the degree of 

urbanization of each location, we used a slightly modified version of the method described in 

Bichet et al. (2013). Briefly, we acquired habitat characteristics from the CORINE Land Cover 

database (CLC2006; see http://www.eea.europa.eu/publications/COR0-landcover) using the open 

source geographic information system QGIS (QGIS 2.4.0; www.qgis.org). We used a circle of 3.5 

km radius centered on the sampling location (because, mean adult and natal dispersal distances of 

http://dx.doi.org/10.1016/j.scitotenv.2016.05.014
http://www.eea.europa.eu/publications/COR0-landcover


blackbirds are around 3.3 km; Paradis et al., 1998) and extracted the surfaces (km²) of five variables 

that describe the major habitat characteristics (Table A.1 in the online version at 

http://dx.doi.org/10.1016/j.scitotenv.2016.05.014): (1) urban areas (urban fabric and industrial, 

commercial and transport units), (2) arable lands, (3) pastures, (4) woodlands, and (5) scrublands. 

We then calculated the PC1 value from a principal component analysis (PCA) on the 5 variables 

of land cover (log-transformed) for each location. The PC1 accounted for 67.6% of the total 

variance, and correlated positively with urban areas (r = 0.85) and negatively with forests (r = 

−0.91) and scrublands (r = −0.90). Areas with PC1 value around 0 corresponded to agricultural 

areas. The PC1 values were thus used as an “urbanization gradient” (Table A.1 in the online version 

at http://dx.doi.org/10.1016/j.scitotenv.2016.05.014). 

In this study, we used two sampling methods: collection of carcasses and capture of live 

individuals. Because fewer blackbirds were found dead in urban areas compared to rural areas 

(urban: 7 individuals; rural: 25 individuals),we also captured individuals at sites located within two 

medium-size cities (Niort and La Rochelle; urban: 12 individuals; Table A.1 in the online version 

at http://dx.doi.org/10.1016/j.scitotenv.2016.05.014). The birds caught alive were captured close 

to locations where birds road-killed had been found, using mist-nets positioned along a road. 

Importantly, there were no effect of the sampling method on all parameters investigated (i.e., trace 

element levels and CORT levels; see Section 2.4. for details). 

 

2.2. Sample preparation and trace element analyses 

Prior to trace element analyses, feathers were washed in a chloroform-methanol solution to remove 

adsorbed external contamination and dirt, and then oven dried (48 h, 50 °C) to constant dry mass 

as described in Blévin et al. (2013). For each individual, washed feathers were then pooled and 

http://dx.doi.org/10.1016/j.scitotenv.2016.05.014
http://dx.doi.org/10.1016/j.scitotenv.2016.05.014


homogenized by crushing them to powder with scissors, and then stored in plastic tubes. For 35 

individuals, 2 feathers were kept unwashed for corticosterone analyses (see Section 2.3 for details). 

Trace elements were determined in the washed feather samples at the University of La Rochelle 

(LIENSs), France. First, total Hg (hereafter Hg) concentrations were measured using an Advanced 

Mercury Analyzer spectrophotometer (Altec AMA 254) on dried feather aliquots (5–10 mg) 

following Blévin et al. (2013). For each sample, analyses were run 2–3 times until having a relative 

standard deviation (RSD) b 10%. Blanks were analyzed at the beginning of each set of samples. 

The limit of detection (LoD) of the method was 0.005 μg·g−1 dry weight (dw). Measurements 

quality was assessed using a certified reference material (TORT-2 Lobster Hepatopancreas, 

National Research Council, Canada: certified Hg concentration: 0.27 ± 0.06 μg·g−1 dw). Our 

measured values were 0.268 ± 0.018 μg·g−1 dw (n =13). 

Second, 12 other trace elements (Ag, As, Cd, Co, Cr, Cu, Fe,Mn, Ni, Pb, Se and Zn)were measured 

using a Varian Vista-Pro ICP-OES and a Thermo Fisher Scientific X Series 2 ICP-MS following 

Metian et al. (2008). Aliquots of the dried feather samples (20–200 mg; weighted to the nearest 0.1 

mg) were digested in a mixture of 6 ml of 65% HNO3 (VWR Quality SUPRAPUR) and 2 ml of 

30% HCl (VWR Quality SUPRAPUR), except for the samples with a weight below 0.1 g (3 ml 

HNO3 and 1 ml HCl). Acidic digestion of the samples was carried out overnight at room 

temperature and then using a Milestone microwave (30 min with constantly increasing temperature 

up to 120 °C, and then 15 min at this maximal temperature). After digestion, samples were diluted 

to 50 ml (25ml for the samples below 0.1 g) with ultrapure water. To avoid trace element 

contamination, all glass and plastic utensils used were soaked in a bath of nitric acid (50ml in 2 l) 

for a minimum of 48 h, rinsed in ultrapure water and dried under a laminar hood before use. 

Accuracy and reproducibility of the preparation were tested by preparing analytical blanks and 

replicates of Lobster Hepatopancreas (TORT-2) and Dogfish Liver (DOLT-4) certified reference 



materials (NRC, Canada) along with each set of samples. Results for the certified reference 

materials were in good agreement with the certified values and recovery rates varied from 83% to 

115% for TORT-2 and 84% to 118% for DOLT-4. The LoD (μg·g−1 dw) were 0.04 for Ag, Cd, Co, 

Cr, and Pb, 0.07 for Ni, 0.19 for Mn and Se, 0.37 for As, 1.85 for Cu, and 7.41 for Fe and Zn 

(calculated using blank values and average dry mass of samples). Trace element concentrations are 

expressed in μg·g−1 on a dry weight (dw) basis. 

 

2.3. Corticosterone analyses 

Because we did not have enough feathers after trace element analyses for 9 blackbirds, only 35 

blackbirds were assayed for CORT analyses. For each individual, two unwashed feathers were 

measured (length) with a caliper to the nearest 0.1 mm and weighed with a precision scale to the 

nearest 0.1 mg. All measurements were made by the same person to avoid extra variation in the 

data. Feather CORT concentrations were then measured following the protocol described by 

Bortolotti et al. (2008) with minor modifications. 10 ml of methanol (HPLC grade) was added to 

each feather sample to extract CORT from the feather. The samples were placed in a sonicating 

water bath at room temperature for 30 min, followed by incubation at 50 °C overnight in a shaking 

water bath. The methanol was then separated from feather material by filtration, using filtered 

syringes. The feather remnants, original sample vial and filtration material were washed twice with 

2.5 ml of additional methanol and the washes were added to the original methanol extract. The 

methanol extract was placed in a 50 °C water bath and subsequently evaporated in a fume hood 

under air. The extract residues were reconstituted in a small volume of the phosphate buffer system 

(PBS; 0.05 m, pH 7.6). These feather extracts were then analyzed by radio-immunoassay at the 

Centre d'Etudes Biologiques de Chizé (CEBC) as previously described (Lormée et al., 2003). The 



intra- and inter-assay coefficients of variation were 7.79% and 8.61% respectively (samples were 

run in 3 assays). 

 

2.4. Statistical analyses 

All statistical analyses were performed in R 3.1.0 (R Core Team, 2014). Trace elements for which 

concentrations were lower than the LoD in N30% of individuals (Ag and As) were included in 

summary statistics but excluded from subsequent statistical analyses. For the other trace elements, 

concentrations below the LoD were replaced by (LoD)*0.5 and considered for further statistical 

analyses (EPA, 2000). Because feather samples were collected from blackbirds that were found 

dead but also from live individuals that were captured with mist-nets, we first ensured that feather 

trace element concentrations and feather CORT levels did not differed between sampling method 

using One-way ANOVAs. Since we did not capture birds in rural areas, we only performed these 

tests on individuals collected in urban and suburban areas (n = 12 captured alive and n = 7 found 

dead) and we found no effect of the sampling method on trace element concentrations (ANOVAs: 

p N 0.275 for all considered trace elements) or CORT levels (ANOVA: p = 0.719). 

Second, we used linear models (LMs) to test the influence of urbanization (urbanization gradient; 

continuous variable), age (two-level factor: juvenile and adult) and their interaction on trace 

element concentrations. Trace element concentrations were log-transformed to obtain normal 

distribution, but we present non-transformed values in figures to facilitate interpretation. Similarly, 

we then used LMs to test the influence of urbanization, age and their interaction on CORT 

concentrations (log-transformed). Finally, for 3 non-essential elements (Cd, Hg, and Pb) we used 

LMs to examine the influence of feather trace element concentrations (log-transformed), age, and 

their interaction on feather CORT levels (log-transformed). 

 



3. Results 

3.1. Summary statistics 

Concentrations of the 13 trace elements in breast feathers of adult and juvenile blackbirds are listed 

in Table 1. All trace elements investigated were detected in the feathers of blackbirds. Among 

them, only two elements (Ag and As) were below the LoD in N30% of individuals (Table 1). 

 

3.2. Effect of urbanization on trace element concentrations 

Regarding the non-essential trace elements (Cd, Hg, and Pb), both feather Cd and Pb concentrations 

were positively and significantly related to the degree of urbanization (Table 2, Fig. 1). In contrast, 

feather Hg concentrations were not related to the degree of urbanization (Table 2, Fig. 1). Feather 

Cd, Hg and Pb concentrations were similar between juveniles and adults (Table 2). Moreover, the 

“urbanization × age” interaction was never significant, suggesting that the influence of urbanization 

on feather Cd and Pb concentrations did not significantly differ between adults and juveniles. 

For the essential trace elements, only feather Se and Zn were positively and significantly related to 

the degree of urbanization (Table 3). In particular, for Zn concentrations, the “urbanization × age” 

interaction was marginally significant (Table 3): feather Zn concentrations increased with 

increasing urbanization in adults only (slope estimates (β ± SE) adults: 0.121 ± 0.044, p = 0.008; 

juveniles: 0.003 ± 0.047, p = 0.944). The other essential trace element (Co, Cr, Cu, Fe, Mn and Ni) 

concentrations were not significantly related to the degree of urbanization. Finally, feather essential 

trace element concentrations did not differ between age classes (Table 3), except feather Fe 

concentrations, with juveniles having lower Fe concentrations than adults. 

 

 

 



3.3. Effect of urbanization on feather CORT concentrations 

Feather CORT concentrations were positively and significantly related to the degree of 

urbanization (“urbanization” variable: F1,31=6.61, p = 0.015, slope estimates (β ± SE): 0.090 ± 

0.035) and were similar between adult and juveniles (“age” variable: F1,31 = 0.01, p = 0.974). 

Moreover, the “urbanization × age” interaction was not significant (F1,31=2.84, p = 0.102), 

suggesting that the influence of urbanization on feather CORT concentrations did not significantly 

differ between juveniles and adults. 

 

 

 

Fig 3. CORT concentrations (Mean ± SD ng.mm-1) in feathers of juvenile and male adult blackbirds 

from rural (open bars) and urban areas (filled bars). Significant effect of habitat is symbolized: ** 

p < 0.01 (Wilcoxon test). Numbers above bars indicate sample size. 

 

3.4. Relationships between non-essentials trace elements and CORT concentrations 

Feather CORT concentrations were significantly and positively related to feather Cd, Hg, and Pb 

concentrations (Table 4; Fig. 2). Importantly, the “urbanization × age” interactions were not 

significant, demonstrating that the relationships between these non-essential trace element 

concentrations and CORT concentrations did not differ between adults and juveniles. When 

analyses were performed after removal of the individual with a very high CORT level, results were 



qualitatively similar. More specifically, feather CORT concentrations were positively and 

significantly related to feather Cd concentrations (LM, F1,30 = 10.35, p = 0.003) and feather Pb 

concentrations (LM, F1,30 = 13.38, p b 0.001), but only marginally significantly related to feather 

Hg concentrations (LM, F1,30= 3.02, p=0.092). 

 

 

 



 

Fig 4. Relationship between feather CORT levels (log-transformed) and feather non-essential trace 

element levels (Cd, Hg, Pb; log-transformed) in juvenile and male adult blackbirds. Dotted lines refer 

to statistically significant linear regressions. 

 

4. Discussion 

In this study, we examined the influence of urbanization on trace element contamination in 

blackbirds along an urbanization gradient (from rural to moderately urbanized areas). We found 

that trace element burden (specifically the non-essential elements Cd and Pb) increased with 

increasing urbanization, Interestingly, the increased nonessential trace element contamination of 

urban birds was also associated with elevated CORT levels. This result suggests that urbanization 

probably energetically constrains urban birds and that this effect could be mediated, at least partly, 

by trace element contamination. Indeed, trace element contamination may alter the ability of 

individuals to cope with the urban environment, resulting therefore in elevated CORT levels. 

Moreover, these non-essential trace elements may also act as endocrine disruptors and affect the 

Hypothalamic-Pituitary-Adrenal (HPA) axis, thus explaining the observed higher CORT levels of 

urban blackbirds from our study. Because urbanization is not only associated with trace element 

contamination but also with numerous other constraints, future experimental studies are now 



required to disentangle the influence of these multiple urban-related constraints on CORT levels 

and to specifically test the influence of each of these non-essential trace elements on CORT 

secretion. 

 

4.1. Urbanization and trace element contamination 

Here, urbanization appears to have a significant effect on trace element contamination in 

blackbirds, with urban individuals having higher trace element concentrations than rural ones. 

Although we did not find any variation in several essential trace element concentrations (Co, Cr, 

Fe, Cu, Mn, and Ni) along the urbanization gradient, we found that feathers of urban blackbirds 

had increased Se, and Zn concentrations, and most importantly, increased non-essential trace 

element concentrations (Cd and Pb) compared to rural blackbirds. Importantly, our study took place 

in medium-sized cities and moderately urbanized areas, demonstrating therefore that such 

contamination is not limited to intensely urbanized areas. High blood and feather Cd and Pb 

burdens are often found in birds inhabiting highly urbanized and industrial areas (Bichet et al., 

2013; Coeurdassier et al., 2012; Eens et al., 1999; Fritsch et al., 2012; Roux and Marra, 2007; Tête 

et al., 2014, but see Bichet et al., 2013; Manjula et al., 2015 for Cd). For instance, Coeurdassier et 

al. (2012) found that blood Cd and Pb levels reach extremely high concentrations when blackbirds 

were sampled on a smelter contaminated site. It is important to emphasize that the contamination 

levels we report here are relatively moderate or even low when compared with such studies. 

However, accurate comparisons between studies are difficult because trace element levels can 

dramatically differ among different types of feathers (Burger, 1993; Dauwe et al., 2003, see 

Scheifler et al., 2006 for some comparisons in the blackbird). Since the establishment of new 

environmental policies in the 2000′s (e.g., reduction of unleaded petrol use), Pb emissions and 

burdens have, respectively, decreased in urban areas and wildlife (Berglund et al., 2012; Chadwick 



et al., 2011). However, our study shows that this urban-related contamination remains in wild birds, 

even in moderately urbanized areas. Because this contamination appears persistent even after 

several years, trace elements can still represent an important threat for wildlife (Pouyat et al., 2015). 

Interestingly, we did not find any evidence of differences in trace element contamination between 

adult and juvenile blackbirds. Age differences in trace elements concentrations are generally 

expected to arise because of age-related variations in exposure (e.g., through differences in diet 

composition or quality, foraging behavior) or bioaccumulation with age (Berglund et al., 2011; 

Burger, 2008; Furness, 1993). And, contrary to our findings, age-related pattern of accumulation 

of Cd and Pb have been reported in blood and feathers of common blackbirds sampled along a 

pollution gradient near a smelter contaminated area (Fritsch et al., 2012). However, feather Cd and 

Pb concentrations found in the study of Fritsch et al. (2012) were among the highest reported for 

this species. Comparatively, the relatively low contamination levels found in medium-size cities 

and the moderate sample size for juveniles in the present study could have limited our ability to 

detect age related differences in the influence of urbanization on feather Cd and Pb contamination. 

On the other hand, this lack of differences could also suggest that exposure at a given site along 

the urbanization gradient might be quite similar for adults and juveniles during the breeding season 

(e.g., see Janssens et al., 2001). Indeed, feathers of juveniles are synthesized and integrate trace 

elements while they are developing in the nest, and similar exposure between adults and nestlings 

could occur if adults feed their nestlings with the same diet as their own. For instance, Pb levels in 

the kidneys of adult blackbirds have been shown to be comparable to Pb levels in the crop contents 

(diet items dominated by earthworms) of nestlings (Weyers et al., 1985). Finally, some age-related 

differences may also have been blurred by movements of juveniles or adults throughout the year. 

Blackbirds are indeed known to be either sedentary or migratory birds (Cramp, 1988). 

Unfortunately, in our study, we did not know whether sampled birds were migratory or not, and 



thus, we cannot exclude the possibility that they might have accumulated their trace element burden 

in another habitat than the one where they have been sampled. For the juveniles, this last 

interpretation is however unlikely as juvenile blackbirds are known to stay around their natal 

territory several weeks after fledging (Magrath, 1991). Similarly, urban adult blackbirds have been 

shown to be sedentary rather than migratory (Evans et al., 2012; Møller et al., 2014; Partecke and 

Gwinner, 2007), and dispersal is limited in male common blackbirds (Paradis et al., 1998), limiting 

therefore the potential of this hypothesis to explain the lack of age-related differences in trace 

element contamination. Moreover, our findings on the influence of urbanization on trace element 

contamination are consistent with the literature (higher nonessential trace element contamination 

in urbanized areas; e.g., see Bichet et al., 2013; Eens et al., 1999; Roux and Marra, 2007; Scheifler 

et al., 2006), supporting again that migratory tendency did not have a strong effect on our results. 

 

4.2. Urbanization and feather CORT levels 

We found that urbanization had a significant influence on feather CORT concentrations in 

blackbirds, and specifically, that CORT levels increased with increasing urbanization. This finding 

is supported by other studies on the endocrine ecology of urban birds (e.g., see Fokidis et al., 2009; 

Zhang et al., 2011), but not by others (e.g., see Atwell et al., 2012; Meillère et al., 2015). And in 

particular, another study on blackbirds did not find any differences in plasma baseline CORT 

concentrations between urban and forest birds (Partecke et al., 2006). Such discrepancies could be 

partly due to differences in sampling methods. Indeed, so far, most studies have focused on 

instantaneous measures of CORT levels (i.e., baseline and stress-induced CORT levels in the 

blood) that are only short-term measures of CORT levels, while we used a more-integrated measure 

(i.e., feather CORT levels). To date, the relationship between urbanization and CORT levels has 

been revealed inconsistent and probably depends on the species considered, the life-history stage, 



and the specific constraints of a given urban habitat (reviewed in Bonier, 2012). Birds inhabiting 

urban areas are exposed to numerous potentially stressful challenges (e.g., increased light, noise 

and chemical pollution, human disturbance, food limitation) that could explain higher CORT levels 

in urban areas. For instance, a previous study has shown that food limitation was more important 

in cities than in rural areas for nestlings blackbirds (Ibáñez-Álamo and Soler, 2010). Differences 

in CORT levels between urban and rural juveniles may thus result from nutritional stress when the 

nestlings were still growing and developing their feathers at their nest. However, this explanation 

seems less likely for the adults as there is no clear effect of urbanization on adult blackbirds' body 

condition (i.e., body mass; see Evans et al., 2009). Thus, other potential stressful factors associated 

with urban life (pollutions, in particular) could play a role in the increased CORT levels in urban 

environments. 

 

4.3. Trace element contamination and feather CORT levels 

In wild vertebrates, it is often challenging to link physiological measures and trace element 

contamination because most physiological parameters can only be measured in the blood that only 

represents an instantaneous physiological measurement. For instance, CORT fluctuates daily and 

seasonally (Landys et al., 2006; Rich and Romero, 2001) and a single measure of plasma CORT 

concentrations may be difficult to interpret. In that respect, measuring feather CORT 

concentrations is promising because it provides eco-toxicologists not only with a reliable indicator 

of trace element contamination (Burger, 1993; Lodenius and Solonen, 2013), but also with an 

integrated measure of CORT secretion (Bortolotti et al., 2008; Jenni-Eiermann et al., 2015). Thanks 

to this methodology, here, we report for the first time strong and significant correlations between 

feather Cd and Pb concentrations and feather CORT levels in both juvenile and adult blackbirds. 

Previous biomedical studies have shown that long-term exposure to low doses of Pb can affect the 



HPA axis, and thus CORT secretion, in laboratory rodents and humans (Haider et al., 2013; 

Virgolini et al., 2005). Although Pb exposure has been associated with alteration of behavior and 

physiological functions in wild vertebrates (Burger and Gochfeld, 2005; Chatelain et al., 2016; 

Geens et al., 2009; Martinez-Haro et al., 2011), only a few studies have examined the impact of Pb 

exposure on CORT levels (Eeva et al., 2003, 2014). For example, Baos et al. (2006) found that Pb 

exposure was associated with elevated maximum CORT levels in white storks (Ciconia ciconia), 

supporting therefore the idea that Pb exposure may affect the HPA axis and CORT regulation. 

Similarly, although few studies have investigated the effect of Cd exposure on CORT levels, there 

is also evidence of an effect of Cd on CORT secretion from both experimental (Di Giulio and 

Scanlon, 1984) and field studies in birds (Strong et al., 2015; Wayland et al., 2002). 

Finally, we also found that feather CORT concentrations were significantly and positively 

correlated with Hg burden in blackbirds. Although the impact of Hg contamination has been 

overlooked in terrestrial birds (Jackson et al., 2015), a few previous studies have reported an impact 

of such contamination on CORT levels in wild vertebrates, but they reported either reduced or 

unchanged CORT levels in contaminated animals (Beck et al., 2014; Franceschini et al., 2009; 

Heath et al., 2005; Herring et al., 2012; Tartu et al., 2015; Wada et al., 2009, 2010). Although 

further experimental studies appear now necessary, the positive relationship between Hg and 

CORT concentrations in adult blackbirds may result from independent effects of urbanization on 

Hg concentrations and CORT secretion without any direct effect of Hg on CORT levels. 

Because this study is correlative, it is obviously challenging to assess the exact impact of Cd, Pb 

and Hg contamination on CORT regulation. All three of these metals could act as endocrine 

disruptors and affect the functioning of the HPA axis, explaining therefore the higher feather CORT 

levels of urban birds. On the other hand, both CORT secretion and non-essential trace element 

concentrations may be affected by urbanization without any functional link between these two 



variables. Therefore, future experimental studies are now needed to understand to what extent Cd, 

Hg and Pb may disrupt CORT secretion, and more generally physiological mechanisms, in 

terrestrial birds (Jackson et al., 2015). Moreover, as our study was based on a limited geographical 

area and sample size, future studies should now explore these questions at a large geographical 

scale to fully assess the influence of urbanization on trace element concentrations and their 

relationships with stress physiology in wild vertebrates. 
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Table 1. Trace elements concentrations (µg.g-1 dw) in breast feathers of juvenile and male adult  

 

 

⁎ N: sample with concentration above the LoD /sample size. 

 



Table 2. Linear models investigating the influence of urbanization, age (juvenile vs. adult) and their 

interaction on feather non-essential trace element (Cd, Hg and Pb) concentrations. Significant variables 

(p < 0.05) are shown in bold. 

 

 

 

  



Table3. Linear models investigating the influence of urbanization, age (juvenile vs. adult) and their 

interaction on feather essential trace element (Co, Cr, Cu, Fe, Mn, Ni, Se and Zn) concentrations. 

Significant variables (p < 0.05) are shown in bold. 

 

  



Table 4. Linear models investigating the relationships between non-essential trace elements and 

CORT concentrations. All models also include age (juvenile vs. adult) as a covariate and the “trace 

element × age” interaction. Significant variables (p < 0.05) are shown in bold. 

 

 



 

Fig. 1. Non-essential element (Cd, Hg, and Pb) concentrations (μg·g−1 dw) in breast feathers of 

juvenile (open circles) and adult male (filled circles) blackbirds sampled along an urbanization 

gradient. Dotted lines refer to statistically significant linear regressions.  



 

Fig 2. Relationships between feather non-essential trace element concentrations (Cd, Hg, Pb, 

μg·g−1; log-transformed) and feather CORT concentrations (ng·mm−1; log transformed) in 

blackbirds. Open circles represent juvenile and filled circles represent adult male individuals. 

Dotted lines refer to statistically significant linear regressions. Importantly, results were similar 

when analyses were performed after removal of the individual with a very high CORT level (see 

text for details).  
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Table S1: Habitat characteristics of the sampling location and sample sizes. Locations are listed in 

decreasing order of urbanization (PC1 values from a principal component analysis conducted on 

the five variables of land cover). 

    Habitat characteristics (km²)         

Coordinates Type 
Urban 

areas 

Arable 

lands 
Pastures Woodlands Scrublands   

Urbanization 

score (PC1) 
  

Sample 

size 

                      

46°18’16”N;0°27’56”W Urban 18.59 11.97 7.16 0.76 0.00   0.890   1 

46°18’38”N;0°28’30”W Urban 20.19 10.01 7.25 1.04 0.00   0.873   9 

46°10’09”N;1°07’34”W Urban 25.14 11.69 0.22 0.50 0.93   0.840   2 

46°19’49”N;0°27’43”W Urban 23.97 10.79 2.67 1.05 0.00   0.807   5 

46°17’50”N;0°25’31”W Urban 12.24 23.06 2.93 0.26 0.00   0.707   1 

46°20’22”N;0°28’55”W Urban 17.35 16.83 2.77 1.53 0.00   0.705   1 

                      

46°10’49”N;0°15’49”W Rural 1.04 30.54 6.90 0.00 0.00   0.427   1 

46°08’27”N;0°13’13”W Rural 1.37 34.95 2.17 0.00 0.00   0.388   1 

46°14’16”N;0°24’06”W Rural 1.82 28.13 7.13 0.65 0.75   0.381   1 

46°07’23”N;0°07’54”W Rural 1.77 34.73 1.85 0.00 0.14   0.280   1 

46°07’38”N;0°16’05”W Rural 0.62 28.91 7.89 0.69 0.37   0.178   2 

46°07’16”N;0°20’45”W Rural 0.72 23.89 3.71 6.78 3.38   -0.261   1 

46°02’59”N;0°25’43”W Rural 0.41 29.25 2.48 5.89 0.45   -0.334   2 

46°05’53”N;0°20’43”W Rural 0.72 26.30 3.04 7.72 0.70   -0.357   2 

46°06’37”N;0°20’44”W Rural 0.86 27.00 4.05 5.72 0.85   -0.490   1 

46°05’30”N;0°21’45”W Rural 0.53 24.26 2.86 9.73 1.11   -0.490   2 

46°07’05”N;0°23’03”W Rural 0.70 12.86 2.52 17.47 4.93   -0.574   1 

46°04’00”N;0°24’51”W Rural 0.41 25.38 2.26 8.00 2.45   -0.740   1 

46°08’57”N;0°27’49”W Rural 0.38 25.23 0.48 7.32 5.06   -0.811   1 

46°08’49”N;0°25’32”W Rural 0.00 10.88 0.00 19.72 7.89   -1.183   5 

46°08’55”N;0°24’23”W Rural 0.00 7.28 0.00 22.61 8.59   -1.234   3 

                      

 


