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FLATNESS OF MULTI-INPUT CONTROL-AFFINE SYSTEMS
LINEARIZABLE VIA ONE-FOLD PROLONGATION∗

FLORENTINA NICOLAU† AND WITOLD RESPONDEK‡

Abstract. We study flatness of multi-input control-affine systems. We give a geometric charac-
terization of systems that become static feedback linearizable after an invertible one-fold prolongation
of a suitably chosen control. They form a particular class of flat systems. Namely, they are of dif-
ferential weight n + m + 1, where n is the dimension of the state-space and m is the number of
controls. We propose conditions (verifiable by differentiation and algebraic operations) describing
that class and provide a system of PDE’s giving all minimal flat outputs. We illustrate our results
by an example of the quadrotor helicopter.

Key words. flatness, flat outputs, differential weight, linearization.

1. Introduction. In this paper, we study flatness of nonlinear control systems
of the form

Ξ : ẋ = F (x, u),

where x is the state defined on a open subset X of Rn and u is the control taking
values in an open subset U of Rm (more generally, an n-dimensional manifold X and
an m-dimensional manifold U , respectively). The dynamics F are smooth and the
word smooth will always mean C∞-smooth.

The notion of flatness was introduced in control theory in the 1990’s, by Fliess,
Lévine, Martin and Rouchon [8, 9], see also [13, 14, 17, 24], and has attracted a lot of
attention because of its multiple applications in the problem of constructive control-
lability and motion planning (see, e.g. [10, 16, 25, 29, 23, 18, 26, 27]). Flat systems
form a class of control systems whose set of trajectories can be parametrized by m
functions and their time-derivatives, m being the number of controls. More precisely,
the system Ξ : ẋ = F (x, u) is flat if we can find m functions, ϕi(x, u, . . . , u

(l)) such
that

(1.1) x = γ(ϕ, . . . , ϕ(s−1)) and u = δ(ϕ, . . . , ϕ(s)),

for a certain integer s, where ϕ = (ϕ1, . . . , ϕm) is called a flat output. Therefore
the time-evolution of all state and control variables can be determined from that of
flat outputs without integration and all trajectories of the system can be completely
parameterized. A similar notion, of systems of undetermined differential equations
integrable without integration, has been studied by Hilbert [11] and Cartan [6], see
also [29], where connections between Cartan prolongations and flatness were studied.

Flatness is closely related to the notion of feedback linearization. It is well known
that systems linearizable via invertible static feedback are flat. Their description
(1.1) uses the minimal possible, which is n + m, number of time-derivatives of the
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components of the flat output ϕ. In general, a flat system is not linearizable by static
feedback, with the exception of the single-input case where flatness reduces to static
feedback linearization, see [7] and [24]. For any flat system that is not static feedback
linearizable, the minimal number of time-derivatives of ϕi needed to express x and u
(which is called the differential weight [26]) is thus greater than n+m and measures
actually the smallest possible dimension of a precompensator linearizing dynamically
the system. Therefore the simplest systems for which the differential weight is greater
than n + m are systems linearizable via one-dimensional precompensator, thus of
differential weight n+m+1. They form the class that we are studying in the paper:
our goal is to give a geometric verifiable characterization of control-affine systems
that become static feedback linearizable after an invertible one-fold prolongation of a
suitably chosen control.

The paper is organized as follows. In Section 2, we recall the definition of flatness
and define the notion of differential weight of a flat system. In Section 3, we give
our main results: we characterize control-affine systems that become static feedback
linearizable after an invertible one-fold prolongation. They form a particular class of
flat systems, that is, flat systems of differential weight n+m+1. We provide necessary
and sufficient conditions for flatness of differential weight n +m + 1 and explain in
Section 3.2 how to verify them. We describe all minimal flat outputs in Section 4.
For all results presented in Sections 3 and 4, we assumed that all ranks involved are
constant. In Section 5 we address the issue of the importance of the constant rank
assumption and clarify for which results it is necessary. We illustrate our results by
an example of the quadrotor helicopter in Section 6 and provide proofs in Section 7.

2. Flatness. The fundamental property of flat systems is that all their solutions
may be parametrized by a finite number of functions and their time-derivatives. Fix
an integer l ≥ −1 and denote U l = U ×R

ml and ūl = (u, u̇, . . . , u(l)). For l = −1, the
set U−1 is empty and ū−1 in an empty sequence.

Definition 2.1. The system Ξ : ẋ = F (x, u) is flat at (x0, ū
l
0) ∈ X × U l,

for l ≥ −1, if there exists a neighborhood Ol of (x0, ū
l
0) and m smooth functions

ϕi = ϕi(x, u, u̇, . . . , u
(l)), 1 ≤ i ≤ m, defined in Ol, having the following property:

there exist an integer s and smooth functions γi, 1 ≤ i ≤ n, and δj, 1 ≤ j ≤ m, such
that

xi = γi(ϕ, ϕ̇, . . . , ϕ
(s−1)) and uj = δj(ϕ, ϕ̇, . . . , ϕ

(s))

for any Cl+s-control u(t) and corresponding trajectory x(t) that satisfy (x(t), u(t), . . . ,
u(l)(t)) ∈ Ol, where ϕ = (ϕ1, . . . , ϕm) and is called a flat output.

Whenever necessary to specify the number of derivatives of u on which the com-
ponents of the flat outputs ϕ depend, we say that the system Ξ is (x, u, · · · , u(r))-flat
if the r-th-derivative is the highest involved. In the particular case ϕi = ϕi(x), for
1 ≤ i ≤ m, we say that the system is x-flat.

In general, r is not greater than the integer l needed to define the neighborhoodOl.
In our study, r will be proved to be -1, i.e., the flat outputs depend on x only, and l
is -1 or 0.

The minimal number of derivatives of components of a flat output, needed to ex-
press x and u, will be called the differential weight of that flat output and is formalized
as follows. By definition, for any flat output ϕ of Ξ there exist integers s1, . . . , sm
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such that

x = γ(ϕ1, ϕ̇1, . . . , ϕ
(s1)
1 , . . . , ϕm, ϕ̇m, . . . , ϕ

(sm)
m )

u = δ(ϕ1, ϕ̇1, . . . , ϕ
(s1)
1 , . . . , ϕm, ϕ̇m, . . . , ϕ

(sm)
m ).

Moreover, we can choose (s1, . . . , sm), γ and δ such that (see [26]) if for any other
m-tuple (s̃1, . . . , s̃m) and functions γ̃ and δ̃, we have

x = γ̃(ϕ1, ϕ̇1, . . . , ϕ
(s̃1)
1 , . . . , ϕm, ϕ̇m, . . . , ϕ

(s̃m)
m )

u = δ̃(ϕ1, ϕ̇1, . . . , ϕ
(s̃1)
1 , . . . , ϕm, ϕ̇m, . . . , ϕ

(s̃m)
m ),

then si ≤ s̃i, for 1 ≤ i ≤ m. We will call
∑m
i=1(si + 1) = m+

∑m
i=1 si the differential

weight of ϕ. A flat output of Ξ is called minimal if its differential weight is the lowest
among all flat outputs of Ξ. We define the differential weight of a flat system to be
equal to the differential weight of a minimal flat output.

The differential weight is n+m+p, where p ≥ 0, can be interpreted as the minimal
dimension of a precompensator that dynamically linearizes the system. Indeed, p = 0
corresponds to static feedback linearizable systems (see Theorem 2.2 below) and the
case p = 1 is the subject of this paper.

Consider a control-affine system

(2.1) Σ : ẋ = f(x) +

m
∑

i=1

uigi(x),

where f and g1, · · · , gm are smooth vector fields on X. The system Σ is linearizable
by static feedback if it is equivalent via a diffeomorphism z = φ(x) and an invertible
static feedback transformation, u = α(x) + β(x)v, to a linear controllable system
Λ : ż = Az +Bv.

The problem of static feedback linearization was solved by Brockett [3] (for a
smaller class of transformations) and then by Jakubczyk and Respondek [15] and,
independently, by Hunt and Su [12], who gave geometric necessary and sufficient
conditions. The following theorem recalls their result and, furthermore, gives an
equivalent way of describing static feedback linearizable systems from the point of
view of differential weight.

Define inductively the sequence of distributions Di+1 = Di + [f,Di], where D0 is
given by D0 = span {g1, · · · , gm} and denote [f,Di] = {[f, ξ] : ξ ∈ Di}.

Theorem 2.2. The following conditions are equivalent:
(FL1) Σ is locally static feedback linearizable, around x0 ∈ X;
(FL2) Σ is locally static feedback equivalent, around x0 ∈ X, to the Brunovský canon-

ical form

(Br) :

{

żji = zj+1
i

żρii = vi

where 1 ≤ i ≤ m, 1 ≤ j ≤ ρi − 1, and
∑m
i=1 ρi = n;

(FL3) For any q ≥ 0, the distributions Dq are of constant rank, around x0 ∈ X,
involutive, and Dn−1 = TX;

(FL4) Σ is flat at x0 ∈ X, of differential weight n+m.
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The geometry of static feedback linearizable systems is given by the following
sequence of nested involutive distributions:

D0 ⊂ D1 ⊂ · · · ⊂ Dn−1 = TX.

It is well known that a feedback linearizable system is static feedback equivalent to
the Brunovský canonical form, see [4], and is clearly flat with ϕ = (ϕ1, · · · , ϕm) =
(z11 , · · · , z

1
m) being a minimal flat output (of differential weight n + m). Therefore,

for static feedback linearizable systems, the representation of all states and controls
uses the minimal possible, which is n +m, number of time-derivatives of ϕi and an
equivalent way of describing them is that they are flat systems of differential weight
n+m.

In general, a flat system is not linearizable by static feedback, with the exception
of the single-input case. Any single input-system is flat if and only if it is static
feedback linearizable, see [7, 24], and thus of differential weight n + 1. Flat systems
can be seen as a generalization of static feedback linearizable systems. Namely they
are linearizable via dynamic, invertible and endogenous feedback, see [9, 8, 17, 24].
Our goal is thus to describe the simplest flat systems that are not static feedback
linearizable: control-affine systems that become static feedback linearizable after an
invertible one-fold prolongation, which is the simplest dynamic feedback. They are flat
systems of differential weight n+m+ 1, see Proposition 3.1 below. In this paper, we
will completely characterize them (actually, almost completely, since for two particular
sub-cases we do not provide verifiable conditions, see Section 3.2) and show how their
geometry differs and how it reminds that given by the involutive distributions Di for
static feedback linearizable systems.

3. Main results. Throughout, we make the following assumption:

(Assumption 1) From now on, unless stated otherwise, we assume that all ranks
involved are constant in a neighborhood of a given x0 ∈ X (or
(x0, ū

l
0) ∈ X × U l). All results presented here are valid on an open

and dense subset of either X or X ×U (or X ×U l) and hold locally,
around any given point of that set.

Remark 1. The studied systems may display ranks that are not constant around
some points, but the results presented here are valid only around points where the
ranks are constant. We discuss in Section 5 why (Assumption 1) is important, for
which results it is necessary and for which it can be weakened or neglected.

Proposition 3.1.

Consider a control system Ξ : ẋ = F (x, u). The following conditions are equiva-
lent:
(i) Ξ is flat at (x0, ū

l
0), of differential weight n+m+ 1, for a certain l ≥ −1;

(ii) Ξ is x-flat at x0 or (x0, u0), of differential weight n+m+ 1;
(iii) There exists, around x0, an invertible static feedback transformation u = ψ(x, ũ)

bringing the system Ξ into Ξ̃ : ẋ = F̃ (x, ũ) = F (x, ψ(x, ũ)), such that the pro-
longation

Ξ̃(1,0,...,0) :

{

ẋ = F̃ (x, y1, v2, · · · , vm)
ẏ1 = v1

is locally static feedback linearizable, with y1 = ũ1, vi = ũi, for 2 ≤ i ≤ m.
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Moreover, if Ξ is a control-affine system of the form Σ : ẋ = f(x)+
∑m
i=1 uigi(x), then

the equivalences (i) ⇐⇒ (ii) ⇐⇒ (iii) hold with the general feedback u = ψ(x, ũ) being
replaced by u = ψ(x, ũ) = α(x) + β(x)ũ, the system Ξ̃ by Σ̃ : ẋ = f̃(x) +

∑m
i=1 ũig̃i(x)

and the prolongation Ξ̃(1,0,...,0) by

Σ̃(1,0,...,0) :

{

ẋ = f̃(x) + y1g̃1(x) +
∑m
i=2 vig̃i(x)

ẏ1 = v1

with y1 = ũ1, vi = ũi, for 2 ≤ i ≤ m, f̃ = f +αg and g̃ = gβ, where g = (g1, · · · , gm)
and g̃ = (g̃1, · · · , g̃m).

The proofs of Proposition 3.1 and of all theorems of this section are given in
Section 7.

A system Ξ satisfying (iii) is called dynamically linearizable via invertible one-
fold prolongation. Notice that Ξ̃(1,0,...,0) is, as indicated by the notation, obtained by
prolonging the control ũ1 as v1 = ˙̃u1 and keeping vi = ũi, for 2 ≤ i ≤ m. The above
result asserts that for systems of differential weight n+m+1, flatness and x-flatness
coincide and that, moreover, these properties are equivalent to linearizability via the
simplest dynamic feedback, namely invertible one-fold preintegration.

To simplify the exposition of the paper, from now on, we will consider the control-
affine case only. The generalization for the control-nonlinear systems is straightfor-
ward.

Before giving our main theorems, let us introduce the notion of corank that will
be frequently used in the rest of the paper.

Remark 2. If A ⊂ B, the corank of the inclusion A ⊂ B, denoted by cork (A ⊂
B), equals the rank of the quotient B/A, i.e., cork (A ⊂ B) = rk (B/A). Let A and B be
two distributions of constant rank and f a vector field. Denote [A,B] = {[a, b] : a ∈ A,
b ∈ B} and [f,B] = {[f, b] : b ∈ B}. Clearly, A and B are sbdistributions of [A,B]
because we take all a ∈ A and all b ∈ B and not just generators.

From now on, we deal only with systems that are not static feedback linearizable.
Therefore one of the distributions Di fails to satisfy condition (FL3) of Theorem 2.2.
Flat systems are always accessible so Dn−1 = TX holds and all distributions Di are
supposed to be of constant rank, see (Assumption 1) above. So there exists an integer k
such that Dk is not involutive. Suppose that k is the smallest integer satisfying that
property. The integer k plays a fundamental role in our study.

Our main result describing flat systems of differential weight n+m+1 is given by
the two following theorems corresponding to the first noninvolutive distribution Dk

being either D0, i.e., k = 0 (Theorem 3.3) or Dk, for k ≥ 1 (Theorem 3.2). These
two cases have slightly different geometries, but we are able to merge them into one
general result, Theorem 3.4, whose conditions although compact are less readable
and do not allow the reader to see the differences between flat systems of differential
weight n +m + 1 with k ≥ 1 and those with k = 0. Namely, if k ≥ 1 we never face
singularities in the control space (i.e., even if the minimal flat outputs are defined
locally around a given x0, they are always global with respect to the control). This
is no longer the case if k = 0 and the prolongation always creates singularities in the
control space. In order to highlight these differences, we start by presenting the two
cases separately.

Theorem 3.2. Assume k ≥ 1. The control system Σ given by (2.1), is flat at
x0, of differential weight n+m+ 1, if and only if it satisfies around x0:
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(A1) There exists an involutive distribution Hk verifying Dk−1 ⊂ Hk ⊂ Dk, with the
second inclusion of corank one;

(A2) The distributions Hi, for i ≥ k+1, are involutive, where Hi = Hi−1+[f,Hi−1];
(A3) There exists ρ such that Hρ = TX.

The distributions D0, . . . ,Dk are feedback invariant and, if Hk exists, so are
Hk, . . . ,Hρ. Therefore the geometry of systems described by the previous theorem
can be summarized by the following sequence of inclusions:

D0 ⊂ · · · ⊂ Dk−1 ⊂ Dk ⊂ D
k

⊂ 1∪ ∩
Hk ⊂ Hk+1 ⊂ · · · ⊂ Hρ = TX

where all distributions, except Dk, are involutive, D
k
is the involutive closure of Dk

and the inclusion Hk⊂Dk is of corank one. The main structural condition is the
existence of a corank one involutive subdistribution Hk in Dk containing Dk−1. We
will discuss in Section 3.2, the uniqueness of Hk and provide its construction. The

inclusion Dk−1 ⊂ Hk yields Dk ⊂ Hk+1 which gives D
k
⊂ Hk+1 (since Hk+1 is

involutive by (A2)). Notice also that the inclusion Dk−1 ⊂ Hk is of corank at least
one. Otherwise, Dk−1 = Hk which would imply Dk = Hk+1 and thus Dk would be

involutive. It is clear that in the particular case D
k
= TX, we have ρ = k + 1.

If k = 0, i.e., the first noninvolutive distribution is D0, then a similar result
holds but in the chain of involutive subdistributions H0 ⊂ H1 ⊂ H2 ⊂ · · · (playing
the role of Hk ⊂ Hk+1 ⊂ Hk+2 ⊂ · · · ), the distribution H1 is not defined as H1 =
H0 + [f,H0], but as H1 = D0 + [D0,D0] + [f,H0], (compare (A2) and (A2)′) and
satisfies an additional condition (A4)′ which as we will see plays a double role (of
a nonsingularity condition and of a structural condition). In fact, flat systems with
k = 0 may exhibit singularities in the control space (created by one-fold prolongation
of the to-be-prolonged control) defined by

Using(x) = {u(x) ∈ R
m : rk (D0 + [f +

m
∑

i=1

uigi,H
0]}(x) < rkH1(x)}

and excluded by (A4)′. To describe the singular controls, apply an invertible feedback
u = βũ such that H0 = span {h2, . . . , hm} and D0 = span {g̃1, h2, . . . , hm}, where
(g̃1, h2, . . . , hm) = (g1, g2, . . . , gm)β. Denote rkH1 = r+m and for any 2 ≤ i1 < · · · <
ir ≤ m, put

ci1,...,ir = (adfhi1 + ũ1[g̃1, hi1 ]) ∧ · · · ∧ (adfhir + ũ1[g̃1, hir ]) ∧ g̃1 ∧ h2 ∧ · · · ∧ hm.

Then the set Using can be written as:

Using(x) ={ũ(x) ∈ R
m : rk span {g̃1, hj , [f + ũ1g̃1, hj ], 2 ≤ j ≤ m}(x) < rkH1(x)}

={ũ(x) ∈ R
m : ci1,...,ir (x, ũ1) = 0, 2 ≤ i1 < · · · < ir ≤ m},

where ũ(x) = (ũ1(x), ũ2(x), . . . , ũm(x)) and thus ũ2(x), . . . , ũm(x) are arbitrary. Now
its is clear that for any x ∈ X, the singular set Using(x) is an algebraic (empty or not)
subset of Rm. In the particular case of rkH1 = 2m−1, i.e, cork (D0 ⊂ H1) = r = m−1
is maximal possible, the singular set Using(x) is the zero level set of the polynomial
c2,...,m(x, ũ1) of degree m−1 with respect to ũ1. So for each fixed x ∈ X, the singular
controls Using(x) form the union of µ affine hyperplanes in R

m, where 0 ≤ µ ≤ m− 1
is the number of distinct real roots of the polynomial c2,...,m(x, ũ1). It follows that
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if m is even, then the one-fold prolongation always creates singularities in the control
space (in the particular case of two controls m = 2, the singular set is an affine line
in R

2, see [21]) but if m is odd, then singularities of control may be absent, see normal
forms in Subsection 6.1.

Before giving our result, we introduce H1
u = D0 + [f +

∑m
i=1 uigi,H

0], which, for
each fixed u ∈ R

m, is a distribution defined on X.

Theorem 3.3. Assume k = 0. The system Σ given by (2.1), is flat at (x0, u0),
of differential weight n+m+ 1, if and only if it satisfies around (x0, u0):
(A1)’ There exists an involutive distribution H0 ⊂ D0, of corank one;
(A2)’ The distributions Hi, for i ≥ 1, are involutive, where H1 = D0 + [D0,D0] +

[f,H0] and Hi = Hi−1 + [f,Hi−1], for i ≥ 2;
(A3)’ There exists ρ such that Hρ = TX;
(A4)’ H1

u(x) = H1(x), for any (x, u) in a neighborhood of (x0, u0).

Like in Theorem 3.2, if D
0
= TX, then ρ = 1. Notice that the condition (A4)′

plays a double role. First, it is a structural condition since it assures that for all values
of u ∈ R

m, we obtain the same distribution H1
u = H1, in other words, H1

u does not
depend on u. Now recall that since k = 0, the distribution D0 = span {g̃1, hj , 2 ≤ j ≤
m} (where we used the notations introduced just before Theorem 3.3) is noninvolutive,
thus the rank of span {g̃1, hj , [f + u1g̃1 +

∑m
i=2 uihi, hj ], 2 ≤ j ≤ m}(x) could a priori

drop at u = u0. From (A4)′, it is immediate that u0 6∈ Using(x0), where Using(x0) =
{u ∈ R

m : rk (span {g1, hj , [f + u1g1 +
∑m
i=2 uihi, hj ], 2 ≤ j ≤ m})(x0) < rkH1(x0)}.

Hence (A4)′ is also a regularity condition, since it excludes the singular controls, that
is, the controls u for which rkH1

u(x0) < rkH1(x0).
The cases k = 0 and k ≥ 1 are similar, but they have slightly different ge-

ometries. Even if at first sight, it seems not possible to merge them (because of
different definitions of the distributions H1 and Hk+1 and of a possible existence of
singularities in the control space for k = 0), the following result enables us to unify
them. Theorem 3.4 is based on the observation that in both cases, we actually have
Hk+1 = Dk + [Dk,Dk] + [f,Hk] (by definition of H1, for k = 0, and as a direct conse-
quence of the definition of Hk+1, for k ≥ 1, see the comments following Theorem 3.2).

Similarly to H1
u(x), defined before the Theorem 3.3, for u fixed in R

m, we consider
the distribution Hk+1

u = Dk + [f +
∑m
i=1 uigi,H

k], defined on X. We have thus
introduced a family of distributions defined on X and parameterized by u.

Theorem 3.4. The system Σ, given by (2.1), is flat either at x0, if k ≥ 1, or at
(x0, u0), if k = 0, of differential weight n +m + 1, if and only if it satisfies around
(x0, u0):
(A1)” There exists an involutive distribution Hk verifying Dk−1 ⊂ Hk ⊂ Dk, with

the second inclusion of corank one (and where D−1 = {0}, if k = 0);
(A2)” The distributions Hi, for i ≥ k + 1, are involutive, where Hk+1 = Dk +

[Dk,Dk] + [f,Hk] and Hi+1 = Hi + [f,Hi], for i ≥ k + 1;
(A3)” There exists ρ such that Hρ = TX;
(A4)” (Dk + [f +

∑m
i=1 uigi,H

k])(x, u) = Hk+1(x).

Notice that taking in the above theorem k = 0 gives Theorem 3.3. Observe also
that the role of condition (A4)′′ changes with k. For k = 0, it immediately gives
that the distribution H1

u = D0 + [f +
∑m
i=1 uigi,H

0] does not depend on u and that
u0 /∈ Using(x0), excluding singularities in the control space. So, in this case, (A4)′′

plays the role of both a structural and a regularity condition. If k ≥ 1, it can be easily
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shown that Hk+1
u =Dk + [f +

∑m
i=1 uigi,H

k] does not depend on the control u and
that (A4)′′ can actually be written as Dk+[f,Hk] = Hk+1. So, for k ≥ 1, item (A4)′′

is only a structural condition assuring that, modulo Dk, the directions in [Dk,Dk]

that are not in Dk are in fact in [f,Hk], implying that D
k
⊂ Hk+1 = Hk + [f,Hk].

The proofs of Theorems 3.2 and 3.3 are given in Section 7, whereas Theorem 3.4
is their direct consequence . The crucial problem of constructing the involutive sub-
distribution Hk ⊂ Dk will be treaded in Section 3.2.

The previous theorems enable us to define the control up (which is given up to a
multiplicative function) to be prolonged in order to obtain the locally static feedback
linearizable Σ̃(1,0,...,0). In the next section, we will explain the construction of up.

3.1. To-be-prolonged control. We will construct in this section the control up
to be prolonged (preintegrated) in order to dynamically linearize the system.

According to the following lemma (that we will prove as a part of Proposi-
tion 7.2(ii) in Section 7), to the involutive subdistribution Hk, where k ≥ 1, we
can associate a unique corank one subdistribution H in D0 that plays a crucial role
in defining the to-be-prolonged control. If k = 0, we simply put H = H0.

Lemma 3.5. Assume k ≥ 1 and suppose that Dk contains an involutive subdistri-
bution Hk, of corank one satisfying Dk−1 ⊂ Hk. Then there exists a distribution H,
uniquely associated to Hk, such that H ⊂ D0 is of corank one and Hk = Dk−1+adkfH.

Moreover, all distributions Hi = Di−1 + adifH, for 0 ≤ i ≤ k − 1, where D−1 = {0}

and H0 = H, are involutive and are feedback invariant, that is, do not change if we
replace f by f +

∑m
i=1 αigi.

Since rkH = m−1, we can find m functions β1, . . . , βm (not vanishing simultane-
ously) such that u1(x)β1(x) + · · ·+ um(x)βm(x) = 0 if and only if

∑m
i=1 ui(x)gi(x) ∈

H(x). The to-be-prolonged control up (becoming ũ1 after feedback) that needs to be
preintegrated in order to dynamically linearize the system is

up = ũ1 = u1(x)β1(x) + · · ·+ um(x)βm(x)

and we put v1 = d
dt
up =

d
dt
ũ1. Therefore up is not unique and given up to multiplica-

tion by a non-vanishing function. Indeed, if up is a to-be-prolonged control, then so

is ũp = u1(x)β̃1(x) + · · ·+ um(x)β̃m(x), where β̃i = γβi and γ(x) 6= 0. What is thus
canonical is not a to-be-prolonged control up = ũ1 = u1(x)β1(x) + · · ·+ um(x)βm(x),
or the Rm-valued vector function (β1(x), . . . , βm(x)) defining it, but, respectively, the
collection of the to-be-prolonged controls γ(x)up and the field of lines [β1(x) : β2(x) :
· · · : βm(x)] in R

m, where the latter denotes projective coordinates in R
m.

Finding up requires knowing β1. . . ,βm, which in turn is reduced to calculating H
and, finally, to constructing the involutive subdistribution Hk. The latter problem is
solved in the next section.

3.2. Verification of the conditions. Theorems 3.2 and Theorems 3.3 (stated
together as Theorem 3.4) describe all flat systems of differential weight n + m +
1. In order to verify their conditions, we have to check whether the distribution
Dk (respectively D0) contains an involutive subdistribution Hk (respectively H0) of
corank one. We will see that the corank r of the inclusion Dk ⊂ Dk + [Dk,Dk] plays
an important role in conditions verifications. Recall that, according to the Remark 2,
cork (Dk ⊂ Dk + [Dk,Dk]) simply means rk (Dk + [Dk,Dk])/Dk).

In fact, if r ≥ 2, then the existence of Hk (and its construction, if it exists) is
given by Proposition 3.6 below. Also in the case r = 1 and [Dk−1,Dk] 6⊂ Dk, the
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involutive subdistribution Hk can be uniquely identified as Hk = Ck + Dk−1, where
Ck is the characteristic distribution of Dk and is defined below. For both cases, we
thus get verifiable necessary and sufficient conditions for flatness od differential weight
n+m+ 1, stated as Theorem 3.7. If r = 1 and [Dk−1,Dk] ⊂ Dk, we will introduce a
new index l. If l exists, then it takes the role of k and leads to checkable conditions
given by Theorem 3.8. If l does not exist, then still three sub-cases are possible. For
the first one, we provide verifiable conditions and for the second, we are not able to
distinguish between flatness of differential weight n+m+1 and n+m+2, respectively
in Theorem 3.9 ( vi) and ( vii). For the third sub-case (defined at the end of this
Section), we are not able to give verifiable conditions for flatness of differential weight
n+m+ 1.

Consider a distribution D of rank d, defined on a manifold X of dimension n and
define its annihilator D⊥ = {ω ∈ Λ1(X) :< ω, f >= 0, ∀f ∈ D}, where Λ1(X) is
the space of smooth differentials 1-forms on X. Let cork (D ⊂ D + [D,D]) = r and
let ω1, . . . , ωr, ωr+1, . . . , ωs, where s = n− d, be differential 1-forms such that locally
D⊥ = span {ω1, . . . , ωs} and (D + [D,D])⊥ = span {ωr+1, . . . , ωs}.

The Engel rank of D equals 1 at x if and only if D is non involutive and (dωi ∧
dωj)(x) = 0modD⊥, for any 1 ≤ i, j ≤ s. For any ω ∈ D⊥, we define W(ω) = {f ∈
D : fy dω ∈ D⊥}, where y is the interior product. The characteristic distribution
C = {f ∈ D : [f,D] ⊂ D} of D is given by

C =
⋂s

i=1
W(ωi).

It follows directly from the Jacobi identity that the characteristic distribution is always
involutive. Define the distribution

B =
r
∑

i=1

W(ωi).

Although the distributions W(ωi) depend on the choice of ωi’s, the distribution B
does not and we have the following result [22] based on [5].

Proposition 3.6. Consider a distribution D of rank d and let cork (D ⊂ D +
[D,D]) = r.
(i) Assume r ≥ 3. The distribution D contains an involutive subdistribution H of

corank one if and only if it satisfies
(ISD1) The Engel rank of D equals one;
(ISD2) The characteristic distribution C of D has rank d− r − 1.
Moreover, that involutive subdistribution is unique and is given by H = B.

(ii) Assume r = 2. The distribution D contains a corank one involutive subdistribu-
tion H if and only D verifies (ISD1)-(ISD2) and the distribution B is involutive.
Then H is unique and given by H = B.

(iii) Assume r = 1. The distribution D contains an involutive subdistribution of
corank one H if and only it satisfies the condition (ISD2). In the case r = 1, if
an involutive subdistribution of corank one H exists, it is never unique.

The above conditions are easy to check and a unique involutive subdistribution
of corank one can be constructed if r ≥ 2, i.e., cork (D ⊂ D + [D,D]) ≥ 2.

Therefore, we can check (verifying (ISD1)-(ISD2) for D = Dk and, only if r ≥ 2,
the involutivity of B) whether an involutive subdistribution Hk of corank one in Dk

exists and if it exists, then it is unique and can be explicitly calculated. As a conse-
quence, for any given control-affine system satisfying cork (Dk ⊂ Dk + [Dk,Dk]) ≥ 2,
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the conditions of Theorems 3.2, 3.3 and 3.4 are verifiable and we can thus check
whether the system is flat with the differential weight n+m+ 1. Moreover, the veri-
fication involves differentiation and algebraic operations only, without solving PDE’s
or bringing the system into a normal form. Moreover, under the same assumption,
it can be shown (via the Jacobi identity, see Proposition 7.2 in Section 7.1) that if
Dk contains an involutive subdistribution Hk of corank one, then Hk satisfies the
following inclusion Dk−1 ⊂ Hk and we no longer have to suppose it in the statement
of the theorems.

Let us now consider the case r = 1, that is, cork (Dk ⊂ Dk + [Dk,Dk]) = 1.
In that case, according to Proposition 3.6(iii), if an involutive subdistribution Hk of
corank one of Dk exists, then it is never unique. It is easy to see that not all choices
of an involutive subdistribution Hk lead to dynamically feedback linearizable systems
via invertible one-fold prolongation. A natural question arises: how to identify the
“right” subdistribution Hk (that is, the subdistribution Hk that leads to a static
feedback linearizable prolongation) in the case cork (Dk ⊂ Dk + [Dk,Dk]) = 1?

The involutivity of Dk can be lost in two different ways: either [Dk−1,Dk] 6⊂ Dk

(which makes sense only if k ≥ 1) or [Dk−1,Dk] ⊂ Dk and there exist 1 ≤ i, j ≤
m such that [adkfgi, ad

k
fgj ] /∈ Dk. As asserts Theorem 3.7 (ii) below, in the case

[Dk−1,Dk] 6⊂ Dk, the corank one involutive subdistribution Hk can be uniquely
identified by another argument. Namely, Hk = Ck+Dk−1, where Ck is the character-
istic distribution (defined above) of Dk. The subdistribution Hk has to verify some
additional conditions analogous to those of Theorem 3.2.

Theorem 3.7. Assume k ≥ 0 and consider the control system Σ, given by (2.1).

(i) Suppose that cork (Dk ⊂ Dk + [Dk,Dk]) ≥ 2. The system Σ is flat at x0 (at
(x0, u0), if k = 0) of differential weight n+m+1, if and only if Dk satisfies either
item (i) or item (ii) of Proposition 3.6 and its unique involutive subdistribution
Hk, given by that proposition, satisfies the conditions (A1)′′ − (A4)′′ of Theo-
rem 3.4 (or equivalently, satisfies the conditions (A1)− (A3) of Theorem 3.2, if
k ≥ 1, or the conditions (A1)′ − (A4)′ of Theorem 3.3, if k = 0).

(ii) Suppose that k ≥ 1, cork (Dk ⊂ Dk + [Dk,Dk]) = 1 and [Dk−1,Dk] 6⊂ Dk. The
system Σ is flat at x0, of differential weight n+m+1, if and only if the following
conditions are satisfied:
(C1) rk Ck = rk Dk − 2, where Ck is the characteristic distribution of Dk;
(C2) rk (Ck ∩ Dk−1) = rk Dk−1 − 1;
(C3) The distributions Hi, for i ≥ k, are involutive, where Hk = Ck + Dk−1

and Hi+1 = Hi + [f,Hi];
(C4) There exists ρ such that Hρ = TX.

For the case treated by item (ii) of the above theorem, the to-be-prolonged control
is defined exactly as explained in Section 3.1. The proof of Theorem 3.7(i) is a direct
consequence of Theorems 3.2 and 3.3, and of Proposition 3.6. We present the proof
of Theorem 3.7(ii) in Section 7.

It can be shown that in the case [Dk−1,Dk] 6⊂ Dk (no matter what is the value of
cork (Dk ⊂ Dk + [Dk,Dk])), the involutive subdistribution Hk can always be defined
as above, i.e., the computation of Hk using the procedure given by Proposition 3.6
and that provided by conditions (C1) − (C3) of the above theorem are equivalent if
[Dk−1,Dk] 6⊂ Dk. This is not valid anymore if [Dk−1,Dk] ⊂ Dk; indeed, in that case,
we have Dk−1 ⊂ Ck, the condition (C2) is not verified and (C3) would give Hk = Ck.
Notice that in the case [Dk−1,Dk] ⊂ Dk, the inclusion Ck ⊂ Hk is always satisfied
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(implyingDk−1 ⊂ Hk) and is of corank one if additionally cork (Dk ⊂ Dk+[Dk,Dk]) =
1, i.e., Hk = Ck + span {g}, where g is a vector field belonging to Dk, but not to Ck.

If cork (Dk ⊂ Dk + [Dk,Dk]) = 1, [Dk−1,Dk] ⊂ Dk and there exist 1 ≤ i, j ≤ m
such that [adkfgi, ad

k
fgj ] /∈ Dk, any corank one involutive subdistributionHk may serve

to define a control (different distributions yield different controls) whose prolongation
gives a static feedback linearizable system. Thus, in order to verify flatness of differen-
tial weigh n+m+1, we have to construct a corank one involutive subdistribution Hk

(condition (A1)), check the involutivity of all distributions Hk+i defined with the help
of Hk (condition (A2)) and the existence of ρ such that Hρ = TX (condition (A3)).
If (A2)− (A3) are satisfied for that choice of Hk, then the system is flat of differential
weigh n+m+1 and becomes static feedback linearizable after the prolongation of the
control up associated to Hk (see Section 3.1). If this is not the case, construct another

corank one involutive subdistribution H̃k and repeat the same procedure for H̃k. The
problem that we are facing with this algorithm, is the definition of a simple criterion
to decide when to stop, i.e., to conclude that the system is not flat of differential
weight n + m + 1. We will explain next how we may overcome this difficulty and
propose verifiable conditions for flatness of differential weight n+m+1, for almost all
subcases of the particular case cork (Dk ⊂ [Dk,Dk]) = 1 and [Dk−1,Dk] ⊂ Dk (where
D−1 = {0}, if k = 0). To this end, let l denote the smallest integer such that either

(l-cork) cork (Dl ⊂ [Dl,Dl]) ≥ 2

or

(l-struct) cork (Dl ⊂ [Dl,Dl]) = 1 and [Dl−1,Dl] 6⊂ Dl.

Under our assumptions, if l exists, then l ≥ k+1 but it may not exists, in which case
all distributions Di, for i ≥ k, are either involutive or satisfy cork (Di ⊂ [Di,Di]) = 1
and [Di−1,Di] ⊂ Di. It can be shown that the distributions Di, for k ≤ i ≤ l, are
in fact feedback invariant. If l exists, then we will use the distribution Dl (instead of
Dk) to give the conditions for flatness of differential weight n+m+1. The main idea
is that, instead of constructing the subdistribution Hk, we will uniquely identify Hl

and construct, with its help, the sequence of distributions Hi, i ≥ 0, see Theorem 3.8.
The obtained conditions are similar to those of Theorems 3.4 and 3.7 but with the
integer k being replaced by l.

Theorem 3.8. Consider the control system Σ, given by (2.1). Assume k ≥ 0,
cork (Dk ⊂ [Dk,Dk]) = 1 and [Dk−1,Dk] ⊂ Dk and the integer l exists.
(iii) Suppose that k ≥ 1 and l satisfies (l-cork). The system Σ is flat at x0 of

differential weight n +m + 1, if and only if Dl satisfies either item (i) or item
(ii) of Proposition 3.6 and its unique involutive subdistribution Hl, given by that
proposition, fulfils the conditions (A1)′′−(A4)′′ of Theorem 3.4 (or equivalently,
satisfies the conditions (A1)− (A3) of Theorem 3.2) and additionally:

(A5)” The distributions Hi = Di−1 + adifH, for k ≤ i ≤ l − 1, are involutive,

where H is the corank one subdistribution of D0, uniquely associated to
Hl, such that Hl = Dl−1 + adlfH.

(iv) Suppose that k ≥ 1 and l satisfies (l-struct). The system Σ is flat at x0 of
differential weight n+m+1, if and only if Dl satisfies the conditions (C1)−(C4)
of Theorem 3.7 (ii) and, additionally, condition (A5)′′, of the above item.

(v) Suppose that k = 0 and l satisfies (l-cork) (resp. (l-struct)). The system Σ is
flat at (x0, u0) of differential weight n+m+ 1, if and only if Dl satisfies either
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item (i) or item (ii) of Proposition 3.6 (resp. the conditions (C1) − (C4) of
Theorem 3.7 (ii)) and the corank one subdistribution H of D0, uniquely asso-
ciated to Hl by Hl = Dl−1 + adlfH, satisfies the conditions (A1)′′ − (A4)′′ of

Theorem 3.4, where Hl is the involutive subdistribution of Dl, given by Proposi-
tion 3.6 (respect. by condition (C3) of Theorem 3.7 (ii)).

If l does not exists, then all distributions Di, for i ≥ 0, are feedback invariant and
we will denote by Ck the characteristic distribution of Dk. Since [Dk−1,Dk] ⊂ Dk, it
follows immediately that Dk−1 is contained in Ck. Moreover, it can be shown that

rk Ck = rk Dk − 2

is necessary for flatness of differential weight n+m+1, we can thus assume that this
relation holds for Theorem 3.9. Under that assumption, it can be proven that there
exist vector fields h3, . . . , hm ∈ D0 such that

Ck = Dk−1 + span {adkfhj , 3 ≤ j ≤ m}.

We introduce the following sequence of distributions:

E0 = span {h3, . . . , hm} and E i+1 = Di + span {adi+1
f hj , 3 ≤ j ≤ m}, for i ≥ 0.

Let s be the smallest integer such that Es is not involutive. Notice that the integer s
may not exist, i.e., all distributions E i, for i ≥ 0, are involutive, and in that case, we
take s = ∞. It can be easily shown that all distributions E i, for 0 ≤ i ≤ s, are in fact
feedback invariant. If s exists and [Es, Es] 6= TX, the obtained conditions are given
in terms of the distribution Es, see Theorem 3.9(vi), and remind very much those for
two-input control systems that are flat of differential weight n+ 3, see [21, 19].

If s does not exist (i.e., all distributions E i are involutive) and there exists ρ such
that Eρ = TX, then the system actually becomes static feedback linearizable after
two prolongations without any additional condition and thus, it is flat of differential
weight at most n +m + 2. Indeed, apply an invertible static feedback to bring the
system Σ into the form Σ̃ : ẋ = f̃(x) + ũ1g̃1(x) + ũ2g̃2(x) +

∑m
i=3 ũihi. Then the

prolonged system

Σ̃(1,1,0,...,0) :







ẋ = f̃(x) + y1g̃1(x) + y2g̃2(x) +
∑m
i=3 yihi

ẏ1 = v1
ẏ2 = v2

where yi = ũi, for 1 ≤ i ≤ 2, and vj = ũj , for 3 ≤ j ≤ m, is static feedback lineariz-
able, since all its linearizability distributions are of the form Di

p = span { ∂
∂y1

, ∂
∂y2

}+ E i

and thus involutive.

Theorem 3.9. Consider the control system Σ, given by (2.1). Assume that
k ≥ 0, cork (Dk ⊂ [Dk,Dk]) = 1 and [Dk−1,Dk] ⊂ Dk, cork (Ck ⊂ Dk) = 2 and the
integer l does not exist.

(vi) Suppose that k ≥ 0, the integer s exists and [Es, Es] 6= TX. The system Σ is flat
at x0 (at (x0, u0), if k = 0) of differential weight n+m+ 1, if and only if
(D1) rk E

s
= rk Es + 1, where E

s
is the involutive closure of Es;

(D2) rk (E
s
+ Ds) = rkDs = rk E

s
+ 1, implying the existence of a vector field

h2 ∈ D0 such that h2 /∈ E0 and adsfh2 ∈ E
s
;
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(D3) The distributions Hi, for i ≥ s− 1, are involutive, where Hs−1 = Es−1 +
span {ads−1

f h2} and Hi+1 = Hi + [f,Hi], for i ≥ s − 1, if s ≥ 1, (resp.,

the distributions Hi, for i ≥ 0, are involutive, where H0 = E0+span {h2},
H1 = D0+[D0,D0]+ [f,H0] and Hi+1 = Hi+[f,Hi], for i ≥ 1, if s = 0);

(D4) There exists ρ such that Hρ = TX;
(D5) H1

u(x) = H1(x), around (x0, u0), where H1
u(x) = D0+[f+

∑m
i=1 uigi,H

0],
if k = 0.

(vii) Suppose that k ≥ 0 and the integer s does not exist. The system Σ is flat at
(x0, u0) of differential weight at most n+m+ 2.

The proofs of Theorems 3.8 and 3.9 follow a similar line as those of, respectively,
Theorem 3.2 and Theorem 3.1 in [21] and are left to the reader.

Now, notice that, in the case of two-input control-affine systems, i.e., m = 2,
any corank one involutive subdistribution Hk of Dk satisfies cork (Dk ⊂ Hk+1) = 1,

therefore, D
k
= Hk+1 and we necessarily have cork (Dk ⊂ Dk + [Dk,Dk]) = 1. Thus

neither item (i) nor item (ii) of Proposition 3.6 occurs for two-input flat systems of
differential weight n +m + 1 = n + 3. Thus we cannot check flatness of differential
weight n + 3 using Theorem 3.7(i). On the other hand, Theorem 3.7 (ii) covers the
case m = 2, but only if [Dk−1,Dk] 6⊂ Dk. In [21] (see also [19]), we treat the case
m = 2 in its full generality. Namely, we define (by another method) the involutive
subdistribution Hk in all cases satisfying Dk + [Dk,Dk] 6= TX (no mater whether
[Dk−1,Dk] 6⊂ Dk or [Dk−1,Dk] ⊂ Dk and [adkfg1, ad

k
fg2] 6∈ Dk). Moreover, in the

particular case Dk + [Dk,Dk] = TX and [Dk−1,Dk] 6⊂ Dk, the subdistribution Hk is
defined as in Theorem 3.7 (ii). Finally, if Dk + [Dk,Dk] = TX and [Dk−1,Dk] ⊂ Dk,
we have shown, in [21], that the system is flat of differential weight n+3 without any
additional structural condition.

To summarize, the conditions of Theorems 3.2-3.4, restated as in Theorems 3.7 -
3.9, are always checkable (with the help of Proposition 3.6) in terms of the vector
fields of the original system, except for three particular cases: m = 2, for which the
authors presented in [21], see also [19], verifiable necessary and sufficient conditions
for flatness of differential weight n+3, and the casem ≥ 3, if cork (Dk ⊂ [Dk,Dk]) = 1
and [Dk−1,Dk] ⊂ Dk and either l does not exist and [Es, Es] = TX or both l and
s do not exist. The last two sub-cases need a separate analysis (for the last one,
we only do not know to distinguish between flatness of differential weight n+m+ 1
and n +m + 2). Moreover, the verification of conditions involves differentiation and
algebraic operations only.

4. Calculating flat outputs. The goal of this section is to answer the question
whether a given m-tuple of smooth functions forms a minimal x-flat output.

Recall that, according to Lemma 3.5 in Section 3.1, we can always construct the
following sequence of nested involutive distributions:

(4.1) H0 ⊂ H1 ⊂ · · · ⊂ Hρ−1 ⊂ Hρ = TX

where either k = 0 and then H0 is the involutive corank one subdistribution of D0, the
distribution H1 is defined by H1 = D0 + [D0,D0] + [f,H0] and Hi+1 = Hi + [f,Hi],
for 1 ≤ i ≤ ρ− 1, or k ≥ 1 and then H0 is the involutive corank one subdistribution
of D0 associated to Hk and Hi = Di−1 + adifH, 1 ≤ i ≤ k − 1. If k ≥ 1, then,

for i ≥ 2, we actually have Hi = Hi−1 + [f,Hi−1]. For both cases, ρ stands the
smallest integer such that Hρ = TX. We will denote by rj the corank of the inclusion
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Hρ−j ⊂ Hρ−j+1, for 1 ≤ j ≤ ρ. We clearly have 1 ≤ r1 ≤ r2 ≤ · · · ≤ rρ ≤ m and we
put r0 = 0.

We can now state our result describing all minimal x-flat outputs of differential
weight n+m+1. The following proposition answers the question whether a given m-
tuple of smooth functions (ϕ1, · · · , ϕrρ , ψrρ+1, · · · , ψm) forms a minimal x-flat output
and holds for both cases k = 0 and k ≥ 1. If rρ = m, then in the above m-tuple the
functions ψl are missing.

Proposition 4.1. Consider the control system Σ, given by (2.1), that is flat
at x0 (resp. at (x0, u0), if k = 0), of differential weight n+m+ 1. Then an m-tuple
(ϕ1, . . . , ϕrρ , ψrρ+1, . . . , ψm) of smooth functions defined on a neighborhood of x0 is a
minimal x-flat output at x0 (resp. at (x0, u0)) if and only if (after permuting them,
if necessary):
(FO1) for 1 ≤ j ≤ ρ, the differentials dϕi annihilate Hρ−j , where 1 ≤ i ≤ rj;

(FO2) the differentials dϕ
(q)
i and dψl are independent at x0, where rρ + 1 ≤ l ≤ m,

and 1 ≤ j ≤ ρ, 0 ≤ q ≤ ρ− j, rj−1 + 1 ≤ i ≤ rj.

A proof of Proposition 4.1 is given in Section 7.

5. Constant rank assumptions and systems with singularities. Recall
that for all results presented in this paper we have supposed in (Assumption 1) that all
ranks involved are constant in a neighborhood of a given x0 ∈ X (or (x0, ū

l
0) ∈ X×U l).

A natural question is whether (some of) our results hold around points of the singular
sets where certain ranks drop. In particular, which ranks are allowed to vary and
which have to be constant.

The constant rank assumption is necessary for Proposition 3.1, claiming the equiv-
alence between flatness of differential weight n+m+1, x-flatness of differential weight
n +m + 1, and dynamic feedback linearization via invertible one-fold prolongation.
Without (Assumption 1), that equivalence no longer holds as the following example
shows.

Example. Consider the following control system

(S)

{

ẋ1 = u1
ẋ2 = x1 + x2u2,

where x ∈ R
2 and u ∈ R

2. It is easy to see that (S) is (x, u)-flat at (x0, u0) of
differential weight n+m+1 = 5, where x0 = 0 and u0 ∈ R

2, with (x2, u2) a minimal
flat output, but it is not x-flat at (x0, u0).

So the equivalence (i) ⇐⇒ (ii) does not hold. Neither holds (ii) ⇐⇒ (iii) because
the system prolonged via u1 = v1, u̇2 = v2, whose state is (x1, x2, u2) and controls
are (v1, v2), is static feedback linearizable at x0 = 0 ∈ R

2. The reason for which
the equivalences (i) ⇐⇒ (ii) and (ii) ⇐⇒ (iii) are not valid is that the distribution
D0 = span { ∂

∂x1
, x2

∂
∂x2

} is not of constant rank around x0 = 0 ∈ R
2.

To understand the role of the constant rank assumption for Theorems 3.2, 3.3, 3.4,
recall that if a system is static feedback linearizable (i.e., of differential weight n+m),
then the distributions Di of Theorem 2.2 have to be of constant rank. It turns
out that if a system Σ is flat of differential weight n +m + 1 around (x0, u0), then
the distributions Di need not be of constant rank as shows the system (S) of the
above example that is flat of differential weight n + m + 1 = 2 + 2 + 1 =5 around
(x0, u0) = (0, u0), for any u0, but whose distribution D0 is not of constant rank
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around x0. Even under the stronger requirement of x-flatness, the distributions Di

of Theorems 3.2 and 3.4 need not be of constant rank. Indeed, for the system (S)
prolonged via u̇1 = v1, u̇2 = v2, the distribution D1 is not of constant rank althought
the system is x-flat.

On the other hand, if we study linearizability under invertile one-fold prolongation
(instead of flatness), then we can reformulate Theorems 3.2-3.4 around any (x0, u0)
(around which Di are of constant rank or not). It turns out that the ranks of the
involutive distributions Hi have to be constant, while that of Dk may vary (but not
those of Di, for i ≤ k−1). Namely, the following theorem, an analogue of Theorem 3.3,
holds for the problem of linearization via an invertible one-fold prolongation.

Let k be the smallest integer such that the distribution Dk does not satisfy
the static feedback linearizability conditions of Theorem 2.2, i.e., the smallest k
such that either Dk is not involutive or not of constant rank, and denote d =
maxdim(Dk(x)/Dk−1(x)) around x0. By the latter we mean that there exists a
neighborhood of x0 such that the dimension of the quotient is not greater than d and
in any neighborhood of x0 there are points at which it is d.

Theorem 5.1. Suppose k ≥ 1. The system Σ is locally, around (x0, u0), feedback
linearizable via an invertible one-fold prolongation if and only if there exists a (m ×
d)-matrix β = (βij), where βij are C∞-smooth functions in a neighborhood of x0,
rkβ(x) = d, and such that

(A0)s span {adkfg1, . . . , ad
k
fgm}(x) = span {adkf g̃1, . . . , ad

k
f g̃d}(x)modDk−1(x), for any

x in a neighborhood of x0, where g̃ = gβ, with g = (g1, . . . , gm) and g̃ =
(g̃1, . . . , g̃d) = (g̃1, h2, . . . , hd);

(A1)s The distribution Hk = Dk−1 + span {adkfh2, . . . , ad
k
fhd} is involutive and of

constant rank rkHk = rkDk−1 + d− 1;
(A2)s The distributions Hi, for i ≥ k+1, where Hi = Hi−1+[f,Hi−1], are involutive

and of constant rank;
(A3)s There exists ρ such that Hρ = TX.

Notice that, indeed, the involutive distributions Hi have to be of constant rank.
On the other hand, the rank of Dk may vary. Conditions (A0)s - (A1)s actually imply
that Dk is generated, as a module, by the involutive sub-distribution of constant
rank Hk and just one more vector field of the form adkf g̃1 that may or may not vanish

at x0 (for g̃1 =
∑m
i=1 giβ1,i, not all β1,i vanishing at x0). If it does vanish, then the

rank of Dk, indeed, drops at x0. The proof of the above theorem follows the same
line as that of Theorem 3.2. The fact that Hi have to be of constant rank is a direct
consequence of the constant rank of the linearizability distributions Di

p associated to

the static feedback linearizable prolongation Σ̃(1,0,··· ,0) (see the proof of Theorem 3.2).
In the same way as in the proof of Theorem 3.2, we deduce that Dk−1 ⊂ Hk ⊂ Dk, but
now the codimension of the inclusion Hk(x) ⊂ Dk(x) is either 1 or 0 and, moreover,
the distribution Dk has to be generated by Hk and just one more vector field adkf g̃1
that satisfies condition (A0)s.

Example. We will show that the conditions of Theorem 5.1 cannot be re-
placed by their pointwise analogue, that is, by the requirement: there exists an
involutive distribution Hk of constant rank, satisfying (A2)s and (A3)s, such that
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codim (Hk(x) ⊂ Dk(x)) ≤ 1. To this aim, consider the system

ẋ1 = x3
ẋ2 = x1 +

1
2 (x

2
4 + x25)

ẋ3 = u1
ẋ4 = u2
ẋ5 = u3.

We have D0 = span { ∂
∂x3

, ∂
∂x4

, ∂
∂x5

} and D1 = D0 + span { ∂
∂x1

, x4
∂
∂x2

, x5
∂
∂x2

}, so 4 ≤

dimD1(x) ≤ 5 and the involutive distribution H1 = span { ∂
∂x1

, ∂
∂x3

, ∂
∂x4

, ∂
∂x5

} satisfies

D0 ⊂H1 ⊂ D1 and rkH1(x) = 4. Moreover, H2 = H1 + [f,H1] = TX. Nevertheless
the system is not static feedback linearizable via an invertible one-fold prolongation.
An attempt would be to put x̃1 = x1 + 1

2 (x
2
4 + x25) giving ˙̃x1 = x3 + x4u2 + x5u3.

But then ¨̃x1 depends on both u̇2 and u̇3 implying that two one-fold prolongations are
needed.

To see the reason, notice that rkD0 = 3, the maximal dimension of D1(x)/D0(x),
in a neighborhood of 0 ∈ R

5, is 2, and there does not exist any smooth vector field
g̃1 = β1g1 + β2g2 + β3g3 (with βi smooth and not all vanishing at 0 ∈ R

5) such
that span {adf g̃1} = span {x4

∂
∂x2

, x5
∂
∂x2

}modD0, so D1 cannot be generated by the

involutive sub-distribution H1 of constant rank 4 and just one more vector field adf g̃1.
Thus (because of Theorem 5.1) we are, indeed, not able to linearize the system via
an invertible one-fold prolongation.

6. Examples.

6.1. An example: normal form for k = 0 and singularities in the control
space. Consider a three-input control-affine systems Σ flat of differential weight n+
3 + 1 at (x0, u0), with k = 0 and cork (D0 ⊂ D0 + [D0,D0]) = 2. Σ is locally
static feedback equivalent, around x0 ∈ X, to the the following normal form in a
neighborhood of z0 ∈ R

n

(NF k=0
m=3)































ż11 = z21 ż1j = z2j
...

...

żρ1−1
1 = zρ11 ż

ρj−1
j = z

ρj
j

żρ11 = ũ1 ż
ρj
j = aj(z) + z

ρj+1
j ũ1

ż
ρj+1
j = ũj

where j = 2 or 3, ρ1 + ρ2 + ρ3 = n, and aj are arbitrary smooth functions such that

rk

(

∂(aj(z)+z
ρj+1

j
ũ1)

∂z
ρi+1

i

)

(z0, ũ0) = 2, where 2 ≤ i, j ≤ 3.

The above normal form is generalizing the Brunovský canonical form. Namely,
for three-input control systems, at most two components (i.e., at most only one com-
ponent for each chain) are replaced by arbitrary (nonlinear) functions. It is easy to
see that (NF k=0

m=3) is flat with the top variables ϕ = (z11 , z
1
2 , z

1
3) being minimal flat out-

puts of differential weight n+3+1 and that (NF k=0
m=3) becomes locally static feedback

linearizable after a one-fold prolongation of ũ1, which is the to-be-prolonged control.
Moreover, if we replace ũ1 by û1 = β(z)ũ1, with β(z) 6= 0, and we prolong û1 instead of
ũ1, the prolonged system is also locally static feedback linearizable. The normal form
(NF k=0

m=3) allows us to see that in the case k = 0 (and according to our results only
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in that case!), the precompensator may create singularities in the control space (de-

pending on state). Indeed, the controls ũ0 satisfying rk (
∂aj(z)+z

ρj+1

j
ũ1

∂z
ρi+1

i

)(z0, ũ0) < 2,

where 2 ≤ i, j ≤ 3, are singular for (NF k=0
m=3) , an invariant description of that set of

singular controls being given by Using. It follows that (NF k=0
m=3) ceases to be flat of

differential weigh n+ 3+ 1 at (z0, ũ0), with ũ0 for which the above rank is at most 1

or, equivalently, det

( ∂a1

∂z
ρ1+1
1

+ ũ1
∂a1

∂z
ρ2+1
2

∂a2

∂z
ρ1+1
1

∂a2

∂z
ρ2+1
2

+ ũ1

)

= 0. For each fixed z ∈ R
n, the

determinant is a polynomial of ũ1 of degree 2, so it may have 2, 1, or 0 distinct real
roots. Therefore for a given z ∈ R

n, the values of the singular controls, respectively,
form two affine planes in the control space R

3, one affine plane in R
3, or are absent.

6.2. Quadrotor helicopter. A quadrotor is a four rotor helicopter. Assume
that a body frame is fixed at the center of gravity of the quadrotor, with the z-axis
pointing up-wards. The body frame is related to the inertial frame by a position
vector (x1, y1, z1) and 3 angles (θ, ψ, ϕ) representing pitch, roll and yaw, respectively.
The equations of motion are given by the following control system [1, 2] (see also [28],
where a quadrotor with a cable-suspended load is considered):

ΣQH :























































ẋ1 = x2
ẋ2 = u1(cosϕ sin θ cosψ + sinϕ sinψ)
ẏ1 = y2
ẏ2 = u1(sinϕ sin θ cosψ − cosϕ sinψ)
ż1 = z2
ż2 = −g + u1(cos θ cosψ)

θ̇ = u2
ψ̇ = u3
ϕ̇ = u4

The control u1 represents the total thrust on the body in the z-axis, u2 and u3 are the
pitch and roll inputs and u4 is the yawing moment. The quadrotor helicopter has been
shown to be flat, with (x1, y1, z1, ϕ) a flat output, see [2]. The system is not static
feedback linearizable, but it becomes static feedback linearizable after an invertible
one-fold prolongation. To illustrate our results, fix ξ0 ∈ X = R

6 × SO(3) such that
(cos θ cosψ cosϕ (cosϕ sin θ cosψ + sinϕ sinψ))(ξ0) 6= 0. In order to simplify the
bracket computations, we apply the following static feedback transformation (which
is supposed invertible around the nominal point ξ0)

ũ1 = u1(cosϕ sin θ cosψ + sinϕ sinψ)
ũi = ui, 2 ≤ i ≤ 4,

and get

Σ̃QH :



































ẋ1 = x2 ẏ1 = y2
ẋ2 = ũ1 ẏ2 = ũ1a(θ, ψ, ϕ)

θ̇ = ũ2

ż1 = z2 ϕ̇ = ũ4,
ż2 = −g + ũ1b(θ, ψ, ϕ)

ψ̇ = ũ3,

where
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a = sinϕ sin θ cosψ−cosϕ sinψ
cosϕ sin θ cosψ+sinϕ sinψ and b = cos θ cosψ

cosϕ sin θ cosψ+sinϕ sinψ .
The distribution

D0 = span {
∂

∂x2
+ a

∂

∂y2
+ b

∂

∂z2
,
∂

∂θ
,
∂

∂ψ
,
∂

∂ϕ
}

is not involutive. Indeed, the vector fields gi, 1 ≤ i ≤ 4, [g1, g2] and [g1, g3] are
independent at ξ0 (provided that cosθ0 cosψ0 cosϕ0 6= 0, which is verified according
to our assumption). We obtain

D0 + [D0,D0] = span {
∂

∂θ
,
∂

∂ψ
,
∂

∂ϕ
,
∂

∂x2
,
∂

∂y2
,
∂

∂z2
}.

Here k = 0 and cork (D0 ⊂ [D0,D0]) = 2, consequently we are in the case of Theo-
rem 3.3. It is immediate to identify the unique corank one involutive subdistribution
of D0, that is H0 = span { ∂

∂θ
, ∂
∂ψ
, ∂
∂ϕ

}.

We have H1 = D0 + [D0,D0] + [f,H0] = D0 + [D0,D0] (since [f, gi] = 0, for
2 ≤ i ≤ 4), which is clearly involutive, and H2 = TX. The system Σ̃QH satisfies all
conditions of Theorem 3.3, hence the corresponding prolongation given by

Σ̃
(1,0,0,0)
QH :







































ẋ1 = x2 ẏ1 = y2
ẋ2 = ũ1 ẏ2 = ũ1a(θ, ψ, ϕ)
˙̃u1 = v1 ż1 = z2

ż2 = −g + ũ1b(θ, ψ, ϕ)

θ̇ = v2
ψ̇ = v3
ϕ̇ = v4,

where vi = ũi, for 2 ≤ i ≤ 4, is locally static feedback linearizable. Indeed, apply-
ing the following change of coordinates θ̃ = ũ1a(θ, ψ, ϕ) and ψ̃ = −g + ũ1b(θ, ψ, ϕ)
(which is valid in a neighborhood of ξ0 and for ũ10 6= 0) and a suitable feedback
transformation, we get

Σ̃
(1,0,0,0)
QH :











ẋ1 = x2 ẏ1 = y2 ż1 = z2 ϕ̇ = ṽ4
ẋ2 = w ẏ2 = θ̃ ż2 = ψ̃

ẇ = ṽ1
˙̃
θ = ṽ2

˙̃
ψ = ṽ3,

which is the Brunovský canonical form with (x1, y1, z1, ϕ) playing the role of the top
variables. From this, it is obvious that (x1, y1, z1, ϕ) is a minimal flat output, i.e., of
differential weight n+m+ 1 = 9 + 4 + 1 =14.

7. Proofs.

7.1. Notations and useful results . Consider a control system of the form

Σ : ẋ = f(x) +
m
∑

i=1

uigi(x) = f(x) + u1g1(x) +
m
∑

i=2

uihi(x),

where the change of notation is to distinguish the first control (respectively, the
first vector field g1) from the remaining controls ui (respectively, remaining vector
fields gi), for 2 ≤ i ≤ m. By Σ(1,0,··· ,0) we will denote the system Σ with one-fold
prolongation of the first control, that is,

Σ(1,0,··· ,0) :

{

ẋ = f(x) + y1g1(x) +
∑m
i=2 vihi(x)

ẏ1 = v1
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with y1 = u1 and vi = ui, for 2 ≤ i ≤ m.
To Σ(1,0,··· ,0), we associate the distributions Di+1

p = Di
p + [F,Di

p], for i ≥ 0,

where F =
∑n
i=1(fi+ y1g1i)

∂
∂xi

stands for the drift of Σ(1,0,··· ,0) and D0
p = span { ∂

∂y1
,

∑n
i=1 hji

∂
∂xi

, 2 ≤ j ≤ m} is the distribution spanned by the control vector fields of

the prolonged system, the subindex p referring to the prolonged system Σ(1,0,··· ,0).

In our proofs we will need the two following technical results. Consider the control
system Σ, given by (2.1), and let Dk be the first noninvolutive distribution.

Proposition 7.1. Assume that Σ is dynamically linearizable via invertible one-
fold prolongation. If k ≥ 1, then rkDk − rkDk−1 ≥ 2.

Proof. Assume rkDk − rkDk−1 = 1 and let l be the smallest integer such that
rkDl − rkDl−1 = 1. It is clear that 1 ≤ l ≤ k. Since Σ is dynamically lin-
earizable via invertible one-fold prolongation, there exists an invertible static feed-
back transformation, u(x) = α(x) + β(x)ũ, bringing Σ into the form Σ̃ : ẋ =
f̃(x) + ũ1g̃1(x) +

∑m
i=2 ũih̃i(x), such that the prolongation

Σ̃(1,0,··· ,0) :

{

ẋ = f̃(x) + y1g̃1(x) +
∑m
i=2 vih̃i(x)

ẏ1 = v1

with y1 = ũ1 and vi = ũi, for 2 ≤ i ≤ m, is locally static feedback linearizable. For
simplicity of notation, we will drop the tildes, but we will keep distinguishing g1 from
hi (which could also be denoted gi) whose controls are not preintegrated.

Since Σ(1,0,··· ,0) is locally static feedback linearizable, for any i ≥ 0 the distri-
butions Di

p are involutive, of constant rank, and there exists an integer ρ such that
rkDρ

p = n+ 1. We have

D0
p = span { ∂

∂y1
, hj , 2 ≤ j ≤ m},

D1
p = span { ∂

∂y1
, g1, hj , adfhj + y1[g1, hj ], 2 ≤ j ≤ m}.

For k ≥ 1, the distribution D0 = span {g1, hj , 2 ≤ j ≤ m} is involutive, thus
[g1, hj ] ∈ D0, for 2 ≤ j ≤ m, and D1

p = span { ∂
∂y1

, g1, hj , adfhj , 2 ≤ j ≤ m}. It is

easy to prove (by an induction argument) that, for 1 ≤ i ≤ l,

Di
p = span {

∂

∂y1
, g1, · · · , ad

i−1
f g1, hj , · · · , ad

i
fhj , 2 ≤ j ≤ m}.

We have Dl−1 = span {g1, · · · , ad
l−1
f g1, hj , · · · , ad

l−1
f hj , 2 ≤ j ≤ m} and by the

definition of l either adlfhj ∈ Dl−1, for all 2 ≤ j ≤ m, i.e., adlfg1 6∈ Dl−1, or there

exists an integer 2 ≤ s ≤ m such that adlfhs 6∈ Dl−1.
In the first case:

Dj
p = span {

∂

∂y1
}+Dj−1, for j ≥ l,

The involutivity of the distribution Dj
p, associated to the prolonged system, implies

that of Dj−1. For j = k + 1, it contradicts the fact that Dk is noninvolutive.
In the second case, there exists an integer 2 ≤ s ≤ m such that adlfhs /∈ Dl−1.

Since rkDl = rkDl−1+1, we deduce that Dl = span {g1, · · · , ad
l−1
f g1, hj , · · · , ad

l−1
f hj ,

adlfhs, 2 ≤ j ≤ m}. Moreover, for Σ(1,0,··· ,0), we have

Dj
p = span {

∂

∂y1
}+Dj , for j ≥ l,
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and the involutivity of Dj
p implies that of Dj . For j = k, it follows that Dk is involutive,

which contradicts the assumption of noninvolutivity of Dk. Thus l, if it exists, satisfies
l ≥ k + 1 and rkDk − rkDk−1 ≥ 2.

Proposition 7.2. Assume k ≥ 1 and suppose that Dk contains an involutive
subdistribution Hk, of corank one.
(i) If cork (Dk ⊂ Dk + [Dk,Dk]) ≥ 2, then Hk satisfies Dk−1 ⊂ Hk.
(ii) If Hk satisfies Dk−1 ⊂ Hk, then there exists a distribution H, uniquely associated

to Hk, such that H ⊂ D0 is of corank one and Hk = Dk−1 + adkfH. Moreover,

all distributions Hi = Di−1 + adifH, for 0 ≤ i ≤ k − 1, where D−1 = {0} and

H0 = H, are involutive and are feedback invariant, that is, do not change if we
replace f by f +

∑m
i=1 αigi.

Remark 3. Notice that for 1 ≤ i ≤ k− 1, we actually have Hi+1 = Hi + [f,Hi].
Assume that there exists an integer ρ such that Hρ = TX and suppose that ρ is the
smallest integer satisfying that property. If we denote by rj the corank of the inclusion
Hρ−j ⊂ Hρ−j+1, for 1 ≤ j ≤ ρ, we clearly have 1 ≤ r1 ≤ r2 ≤ · · · ≤ rρ ≤ m.

Proof of (i). By cork (Dk ⊂ Dk+ [Dk,Dk]) ≥ 2 and according to Proposition 3.6,
if the distribution Dk contains an involutive subdistribution Hk, of corank one, then
Hk is unique. Using the Jacobi identity, it is easy to show that Dk−2 ⊂ Hk. To
prove (i), suppose Dk−1 6⊂ Hk, i.e., there exists a vector field v ∈ Dk−1, of the form
v =

∑m
i=1 αiad

k−1
f gimodDk−2, satisfying Dk = Hk + span {v}, where αi are smooth

functions, not vanishing simultaneously and such that v 6∈ Dk−2. The vector field v
can also be written as v = adk−1

f (
∑m
i=1 αigi)modDk−2 and we can always assume,

without loss of generality, that α1 is nonzero and adk−1
f g1 6∈ Dk−2. So replacing g1

by
∑m
i=1 αigi, we have Dk = Hk + span {adk−1

f g1}. From this, we deduce that the

involutive subdistribution Hk is given by

Hk = span {g1, · · · , ad
k−2
f g1, ad

k
fg1, gj , · · · , ad

k
fgj , 2 ≤ j ≤ m}.

Thus, the new directions, completing Dk to D
k
, where D

k
is the involutive closure

of Dk, are of the form [adkfgi, ad
k−1
f g1] for some indices i such that 1 ≤ i ≤ m,

and since cork (Dk ⊂ Dk + [Dk,Dk]) ≥ 2, there are at least two integers i satisfying
that property. Therefore at least one of them, say s, satisfies s 6= 0, and we have
[adkfgs, ad

k−1
f g1] 6∈ Dk. Applying the Jacobi identity, we obtain

[adkfgs, ad
k−1

f g1] = [[f, adk−1

f gs], ad
k−1

f g1] = [[f, adk−1

f g1], ad
k−1

f gs] + [f, [adk−1

f gs, ad
k−1

f g1]]

= [adkfg1, ad
k−1

f gs] modDk

and since the vector fields adkfg1 and adk−1
f gs belong to Hk, which is involutive,

[adkfg1, ad
k−1
f gs] ∈ Hk. It follows immediately that [adkfgs, ad

k−1
f g1] ∈ Dk, which

contradicts our assumption. Therefore, the inclusion Dk−1 ⊂ Hk holds.

Proof of (ii). Let us first show the existence of the distribution H. Denote
cork (Dk−1 ⊂ Dk) = q and suppose that the vector fields gi ∈ D0, for 1 ≤ i ≤ q,
satisfy

Dk = Dk−1 + span {adkfgi, 1 ≤ i ≤ q}.

Thus there exist smooth functions βij such that adkfgj =
∑q
i=1 βj

iadkfgimodDk−1, for

q + 1 ≤ j ≤ m. It follows adkf (gj −
∑q
i=1 βj

igi) = 0modDk−1. Denote hj = gj −
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∑r
i=1 βj

igi, for q+1 ≤ j ≤ m. We clearly have D0 = span {g1, · · · , gq, hq+1, · · · , hm},
with hj such that adkfhj ∈ Dk−1, for q + 1 ≤ j ≤ m.

Since Dk−1 ⊂ Hk and Hk ⊂ Dk is of corank one, there exist smooth functions
λij , for 1 ≤ i, j ≤ q, such that the q × q-matrix Λ = (λij) is invertible and the

distributions Hk and Dk verify

Hk = Dk−1 + span {

q
∑

i=1

λijad
k
fgi, 2 ≤ j ≤ q},

Dk = Hk + span {

q
∑

i=1

λi1ad
k
fgi}.

Denote g̃1 =
∑q
i=1 λ

i
1gi and hj =

∑q
i=1 λ

i
jgi, for 2 ≤ j ≤ q. We putH = span {hj , 2 ≤

j ≤ m}, which is clearly of corank one in D0 = span {g̃1, hj , 2 ≤ j ≤ m} and satisfies
Hk = Dk−1 + adkfH.

We will prove next the involutivity of all distributions Hi, for 0 ≤ i ≤ k − 1.
Assume that the distribution Hk−1 given by

Hk−1 = Dk−2 + adk−1
f H = Dk−2 + span {adk−1

f hj , 2 ≤ j ≤ m}

is not involutive. Since the inclusion Hk−1 ⊂ Dk−1 is of corank one and Dk−1 is
involutive, it follows thatH

k−1
= Dk−1.Moreover, Dk−2 ⊂ Hk−1 and Dk−2 involutive

imply that the new direction completing Hk−1 to its involutive closure is given by
a vector field of the form [adlfhi, ad

k−1
f hj ] or of the form [adsf g̃1, ad

k−1
f hj ], where

2 ≤ i, j ≤ m, 0 ≤ l ≤ k − 1 and 0 ≤ s ≤ k − 2, and is necessarily collinear with
adk−1
f g̃1 modHk−1.

Let us suppose that there exist two integers 2 ≤ i, j ≤ m such that [adlfhi, ad
k−1
f hj ]

6∈ Hk−1. Hence, there exists a non zero smooth function α such that [adlfhi, ad
k−1
f hj ] =

αadk−1
f g̃1 modHk−1. From this, applying the Jacobi identity and the involutivity

of Hk, it follows

[adlfhi, ad
k
fhj ] = [adlfhi, [f, ad

k−1
f hj ]] = [f, [adlfhi, ad

k−1
f hj ]]− [adl+1

f hi, ad
k−1
f hj ]

= [f, αadk−1
f g̃1] modHk = αadkf g̃1 modHk.

On the other hand, [adlfhi, ad
k
fhj ] ∈ Hk, and consequently adkf g̃1 ∈ Hk, which contra-

dicts our assumption, otherwise Dk = Hk and Dk would be involutive. We conclude
that Hk−1 is involutive. Following the same line, the involutivity of Hi implies that
of Hi−1, for 1 ≤ i ≤ k − 1.

An analogous reasoning applies if [adlf g̃1, ad
k−1
f hj ] 6∈ Hk−1.

7.2. Proof of Proposition 3.1. We will show the implications (i) ⇒ (ii) ⇒
(iii) ⇒ (i).

(i) ⇒ (ii). Consider the control system Ξ : ẋ = F (x, u) and assume that Ξ is flat
at (x0, ū

l
0), of differential weight n+m+ 1. Let ϕ = (ϕ1, · · · , ϕm) be a minimal flat

output. We will denote by si the order of the highest derivative of ϕi, for 1 ≤ i ≤ m,
involved in the expression of x and u, i.e.,

(7.1) x = γ(ϕ̄s11 , . . . , ϕ̄
sm
m ) and u = δ(ϕ̄s11 , . . . , ϕ̄

sm
m ),
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where ϕ̄ji = (ϕi, ϕ̇i, · · · , ϕ
(j)
i ) and

∑m
i=1 si+m = n+m+1. We will denote by d.w.(ϕ)

the differential weight of ϕ so d.w.(ϕ) = n+m+1. Denote X = span {dx1, · · · , dxn}
and U = span {du1, · · · , dum}.

Assume that there exists ϕq = ϕq(x, u, u̇, · · · , u
(j)), where j ≥ 1. The differential

weight of ϕ being n + m + 1 implies that, clearly, sq = 0. Indeed, if sq ≥ 1, then

dϕq ∧ · · · ∧ dϕ
(sq)
q 6= 0mod (X +U) and d.w.(ϕ) would be n+m+ sq +1 > n+m+1.

Denote θ = ϕq(x, u, u̇, · · · , u
(j)). If there exists a flat output ϕi such that dϕi ∧ dθ 6=

0mod (X+U), then d.w.(ϕ) would be at least n+m+2. We thus have ϕi = ϕi(x, u, θ),
for 1 ≤ i ≤ m, and we bring together the components ϕi that depend explicitly on
θ by permuting ϕi’s such that ϕi = ϕi(x, u), for 1 ≤ i ≤ p, and ϕj = ϕj(x, u, θ), for

p + 1 ≤ j ≤ m, where
∂ϕj

∂θ
6= 0. We assume, without loss of generality, that q = m,

i.e., ϕm = θ. Clearly, si = 0, for p + 1 ≤ i ≤ m (if not, dϕi ∧ dϕ̇i 6= 0mod (X + U)
contradicting d.w.(ϕ) = n+m+ 1).

Let ρi, for 1 ≤ i ≤ p, be the relative degree of ϕi, that is, the smallest integer such

that the derivative ϕ
(ρi)
i depends explicitly on the control u. In particular, ρi = 0,

if ϕi depends explicitly on u. For 1 ≤ i ≤ p and 1 ≤ j ≤ m, denote rk
(

∂ϕi

∂uj

)

= r0 and

rk

(

∂ϕ
(ρi)

i

∂uj

)

= r1 and assume that there exist r2− r0 flat outputs that do not depend

on θ and whose relative degree ρi ≥ 1. Clearly, 0 ≤ r0 ≤ r1 ≤ r2 ≤ p. Permute ϕi,
for 1 ≤ i ≤ p, and apply an invertible static feedback u = ψ(x, v) such that

ϕi = vi, 1 ≤ i ≤ r0,

ϕ
(ρi)
i = vi, r0 + 1 ≤ i ≤ r1.

By a supplementary permutation we get ρi ≥ 1, for r0 + 1 ≤ i ≤ r2, and for those in-
dices we introduce zji = Lj−1

F ϕi, for 1 ≤ j ≤ ρi. Let w be complementary coordinates,
that is, dim z + dimw = n. The system in the (z, w)-coordinates reads
(7.2)

żji = zj+1
i , żji = zj+1

i ,
żρii = vi, r0 + 1 ≤ i ≤ r1, żρii = ai(z, w, v1, · · · , vr1), r1 + 1 ≤ i ≤ r2,

ẇ = G(z, w, v),

for some smooth functions ai and a smooth map G, and is flat with flat outputs

(7.3)

ϕi = vi, 1 ≤ i ≤ r0,
ϕi = z1i , r0 + 1 ≤ i ≤ r2,
ϕi = bi(z, w, v1, . . . , vr0), r2 + 1 ≤ i ≤ p,
ϕi = ci(z, w, v, θ), p+ 1 ≤ i ≤ m,

for some smooth functions bi and ci. The z-part is affected by at most r1 controls
(by vr0+1, . . . , vr1 and perhaps by some among v1, . . . , vr0). So the remaining m− r1
controls vi, for r1 + 1 ≤ i ≤ m, have to be present in the w-part implying that

dimw ≥ m − r1. For r1 + 1 ≤ i ≤ p, the functions ϕ
(ρi)
i (equal either ai or bi)

depend explicitly on (some of) v1, · · · , vr1 so dϕ
(ρi+1)
i 6∈ X + U and thus si ≤ ρi + 1

and, moreover, if si = ρi + 1, then dϕ
(ρi+1)
i ∧ dθ = 0mod (X + U). From flatness it

follows that using at most 2(p− r1) functions ϕ
(ρi)
i , ϕ

(ρi+1)
i , for r1+1 ≤ i ≤ p (equal,

respectively, either ai and ȧi or bi and ḃi), and m−p functions ϕj = cj , p+1 ≤ j ≤ m,

we should be able to express (via functions that depend also on zji and v1,. . . ,vr1) at
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least m − r1 state variables wj and m − r1 control variables vi, for r1 + 1 ≤ i ≤ m.
So we need

2(p− r1) +m− p ≥ 2(m− r1),

which is equivalent to p ≥ m, yielding a contradiction since p ≤ m− 1. Therefore the
components ϕi of any minimal flat output do not depend on uj , for j ≥ 1.

It remains to consider the case of Ξ being (x, u)-flat. As we have just proved, we
can bring the system Ξ into the form (7.2), with p = m, whose minimal flat output
is given by (7.3), with the components ϕi = ci absent. The system is flat so we need
derivatives (at least of first order) of all functions ai, for r1 + 1 ≤ i ≤ r2, and of all
functions bi, for r2 + 1 ≤ i ≤ m, to express m − r1 controls vr1+1, . . . , vm. By the
definition of the relative degree, all functions ai and bi depend explicitly on some of vq.

It follows that, for s ≥ 1, a
(s)
i and b

(s)
i depend on v̇q, . . . , v

(q)
q . Notice that, obviously,

dv
(j)
q , for 1 ≤ j ≤ s, are independent modulo X + U . The differential weight of ϕ is

n+m+1 so in order to express the remaining controls vr+1, · · · , vm, firstly, only first
order derivatives of ai and bi may be involved and, secondly, only one control among
v1, . . . , vr1 , say vl, can be explicitly present in ai and bi (and thus only dv̇l /∈ X + U ,
assuring that d.w.(ϕ) = n+m+ 1).

We will consider two cases depending on whether the control vl (whose deriva-
tive v̇l is involved) satisfies either 1 ≤ l ≤ r0 or r0 + 1 ≤ l ≤ r1.

Consider the case r0+1 ≤ l ≤ r1. The functions ai are of the form ai = ai(z, w, vl)
but the functions bi are absent since, on one hand, they have to (nontrivially) depend
on vl but, on the other hand, they depend on v1, . . . , vr0 only (by the definition of
r0). It follows that r2 = m. The system takes the form

żji = zj+1
i , żji = zj+1

i ,
żρii = vi, r0 + 1 ≤ i ≤ r1, żρii = ai(z, w, vl), r1 + 1 ≤ i ≤ m,

ẇ = G(z, w, v),

for some smooth functions ai, and is flat with flat outputs

ϕi = vi, 1 ≤ i ≤ r0,
ϕi = z1i , r0 + 1 ≤ i ≤ m.

Now notice that the first r0 controls v1, · · · , vr0 and the lastm−r1 controls vr1+1, · · · , vm
do not affect the z-subsystem, so they must be present in the w-subsystem. There-
fore, we have dimw ≥ r0 +m − r1. So for flatness we should be able to express (at
least) r0 +m− r1 components of w and m− r1 controls vr1+1, · · · , vm with the help
of 2(m− r1) functions ai and ȧi, for r1 + 1 ≤ i ≤ m (using the functions zji and the
controls v1, · · · , vr0 as well). To do so, we need

2(m− r1) ≥ 2(m− r1) + r0,

implying r0 = 0. Moreover, it follows that dimw = m− r1 so by a suitable invertible
static feedback and permuting the variables to rename vl as v1 we can bring the
system into the form

żji = zj+1
i , żji = zj+1

i ,
żρii = vi, 1 ≤ i ≤ r1, żρii = ai(z, w, v1),

ẇi = vi, r1 + 1 ≤ i ≤ m,
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which is x-flat with flat outputs ϕi = z1i , for 1 ≤ i ≤ m.

Now we will consider the case 1 ≤ l ≤ r0. The functions ai and bi (the latter
may now exist contrary to the previous case) are of the form ai = ai(z, w, vl) and
bi = bi(z, w, vl), respectively, and depend nontrivially on vl. The system takes the
form

żji = zj+1
i , żji = zj+1

i ,
żρii = vi, r0 + 1 ≤ i ≤ r1, żρii = ai(z, w, vl), r1 + 1 ≤ i ≤ r2,

ẇ = G(z, w, v),

for some smooth functions ai and a smooth map G, and is (x, u)-flat with flat outputs

ϕi = vi, 1 ≤ i ≤ r0,
ϕi = z1i , r0 + 1 ≤ i ≤ r2
ϕi = bi(z, w, vl), r2 + 1 ≤ i ≤ m.

Now notice that the first r0 − 1 controls among v1, · · · , vr0 (all but vl that is present
in żρii , for r1 + 1 ≤ i ≤ r2) and the last m − r1 controls vr1+1, · · · , vm do not affect
the z-subsystem, so they must be present in the w-subsystem. Therefore we have
dimw ≥ r0 − 1 + m − r1. So for flatness we should be able to express (at least)
r0 − 1 + m − r1 components of w and m − r1 controls vr1+1, · · · , vm with the help
of 2(m − r1) functions ai, ȧi, bj , and ḃj , where r1 + 1 ≤ i ≤ r2 and r2 + 1 ≤ j ≤ m

(using the functions zji and the controls v1, · · · , vr0 as well). To do so, we need

2(m− r1) ≥ 2(m− r1) + r0 − 1,

implying r0 = 0 or r0 = 1. The first case is impossible since 1 ≤ l ≤ r0. Therefore
r0 = 1 implying l = 1. Moreover, it follows that dimw = m − r1 so by a suitable
invertible static feedback we can bring the system into the form

żji = zj+1
i , żji = zj+1

i ,
żρii = vi, żρii = ai(z, w, v1), ẇi = vi,

2 ≤ i ≤ r1, r1 + 1 ≤ i ≤ r2, r1 + 1 ≤ i ≤ m,

and is (x, u)-flat with minimal flat outputs

ϕ1 = v1,
ϕi = z1i , 2 ≤ i ≤ r2
ϕi = bi(z, w, v1), r2 + 1 ≤ i ≤ m.

We will show that this system is also x-flat. To this end, observe that rk ( ∂a
∂(v1,w) ) =

r2 − r1, where a = (ar1+1, . . . , ar2), and that all ai depend explicitly on v1. Therefore

there exist m− r2 +1 components wi of w such that rk (∂(a,w
2)

∂(v1,w) ) = m− r1 +1, where

w2 = (wi), with i ∈ I2 ⊂ {r1 + 1, . . . ,m} and the set of indices I2 is of cardinality
m − r2 + 1. Let I1 ⊂ {r1 + 1, . . . ,m} be the set of remaining indices. We claim
that the system is x-flat with flat outputs ψi = z1i , for 2 ≤ i ≤ r2, and ψi = wi,
for i ∈ I2. Indeed, differentiating (ρi − 1)-times ψi = z1i , for 2 ≤ i ≤ r2, we get

zji , v2, . . . , vr1 , and ar1+1, . . . , ar2 . Since rk (∂(a,w
2)

∂(v1,w) ) = m − r1 + 1, it follows by the

implicit function theorem that knowing aj and ψi = wi, for i ∈ I2, we can express v1
and the components wi, for i ∈ I1. Knowing all components wi, for r1 + 1 ≤ i ≤ m,
we get all remaining controls via ẇi = vi.
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Notice that in the just considered case (for which we have proven to have l =
r0 = 1), we can bring the system together with the components ψi’s of its flat output
to the following form. Rename zjr1+1 as zj1 and ar1+1 as a1, then wi, for i ∈ I2,
as z1r1+1, . . . , z

1
m−r2+r1+1, respectively, and wi, for i ∈ I1, as wm−r2+r1+2, . . . , wm,

respectively, and, finally, the old zji , for r1 + 2 ≤ i ≤ r2, as zjm−r2+r1+2, . . . , z
j
m.

Applying the invertible static feedback ṽ1 = a1(z, w, v1), which transforms ai into
ãi(z, w, ṽ1), and keeping the notation v1 and a1 for the tilde-variables, we bring the
system into

żji = zj+1
i , żji = zj+1

i ,
żρii = vi, 1 ≤ i ≤ q1, żρii = ai(z, w, v1),

ẇi = vi, q1 + 1 ≤ i ≤ m,

where q1 = m−r2+r1+1 (and hence dimw = r2−r1−1) and ρi = 1, for r1+1 ≤ i ≤ q1,
which is x-flat with minimal flat output ψi = z1i , for 1 ≤ i ≤ m.

(ii) ⇒ (iii).We will use the notations from the proof of the implication (i) ⇒ (ii)
above. Assume that the system is x-flat, let ϕ1(x), . . . , ϕm(x) be components of its

flat output, ρi their relative degrees and denote rk

(

∂ϕ
(ρi)

i

∂uj

)

= r (we use r instead

of r1 because the two other integers are trivial: r0 = 0 since the system is x-flat
and thus r2 = m). As above, we introduce the functions zji = Lj−1

F ϕi, apply an
invertible static feedback and permute the flat outputs to get żρii = vi, for 1 ≤ i ≤ r

and żρii = ai(z, w, v1, . . . , vr), for r + 1 ≤ i ≤ m, where w completes the zji ’s to a
coordinate system. The system is x-flat of differential weight n = m + 1, so using
the same argument as above (in the first case r0 + 1 ≤ l ≤ r1), we prove that all
functions ai depend on one control only, say v1, and that their first derivatives only
can be used to express the missing controls vr+1, . . . , vm. So the system can be brought
via an invertible static feedback to the form

(7.4)
żji = zj+1

i , żji = zj+1
i ,

żρii = vi, 1 ≤ i ≤ r, żρii = ai(z, w, v1),
ẇi = vi, r + 1 ≤ i ≤ m,

with x-flat outputs ϕi = z1i , for 1 ≤ i ≤ m.
Notice that the above form perfectly coincides with both forms that we have

obtained when proving the implication (i) ⇒ (ii). Indeed, in the case r0 + 1 ≤ l ≤ r1
we have proved that the system is x-flat and admits the above form with r = r1.
In the case 1 ≤ l ≤ r0, we have proved that although the system is (x, u)-flat with
differential weight n+m+ 1, it is also x-flat and admits the above form with r = q1.

Obviously the system becomes static feedback linearizable via the preintegration
v1 = y1, ẏ1 = ṽ1, ṽi = vi, 2 ≤ i ≤ m. Notice that, if Ξ is the control-affine
system Σ, then the feedback transformation bringing Σ into the above form is actually
a control-affine transformation u = α(z) + β(z)v yielding żρii = vi, 1 ≤ i ≤ r, and
żρii = ai(z, w, v1) = αi(z, w) + βi(z, w)v1, for r + 1 ≤ i ≤ m.

(iii) ⇒ (i). Suppose that the one-fold prolongation of the first control of Ξ : ẋ =
F (x, u), given by

Ξ(1,0,··· ,0) :

{

ẋ = F (x, y1, v2, · · · , vm)
ẏ1 = v1
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where u1 = y1 and ui = vi, 2 ≤ i ≤ m, is locally static feedback linearizable. We will
prove that Ξ is flat of differential weight n+m+ 1.

Ξ(1,0,··· ,0) is equivalent via a diffeomorphism z = φ(x, y1) and an invertible trans-
formation v = ψ(x, y1, ṽ), to the Brunovský canonical form

żji = zj+1
i , 1 ≤ j ≤ ρi − 1,

żρii = ṽi, 1 ≤ i ≤ m,

where dim z =
∑m
i=1 ρi = n + 1, for which ϕ = (z11 , · · · , z

1
m) is a minimal flat output

of differential weight n +m + 1. It follows that z = (ϕ̄ρ1−1
1 , . . . , ϕ̄ρm−1

m ) = φ(x, y1),

where ϕ̄ji = (ϕi, ϕ̇i, . . . , ϕ
(j)
i ), thus for the original variables x and the first component

u1 = y1 of u, we have (x, u1)
t = φ−1(z) = φ−1(ϕ̄ρ1−1

1 , . . . , ϕ̄ρm−1
m ). Moreover, ṽ =

(ϕ
(ρ1)
1 , . . . , ϕ

(ρm)
m ), the map being invertible with respect to v = (v1, . . . , vm), so we

deduce that ui = vi = δi(ϕ̄
ρ1
1 , . . . , ϕ̄

ρm
m ), for 2 ≤ i ≤ m (for suitable components δi of

the inverse), showing that ϕ is a flat output of Ξ of differential weight n+m+ 1.

7.3. Proof of Theorem 3.2. Necessity. Let us consider a flat control system Σ :
ẋ = f(x)+

∑m
i=1 uigi(x), of differential weight n+m+1. According to Proposition 3.1,

there exists an invertible feedback transformation u = α(x) + β(x)ũ, bringing Σ into
the form Σ̃ : ẋ = f̃(x) + ũ1g̃1(x) +

∑m
i=1 ũih̃i(x), such that the prolongation

Σ̃(1,0,··· ,0) :

{

ẋ = f̃(x) + y1g̃1(x) +
∑m
i=2 vih̃i(x)

ẏ1 = v1,

with y1 = ũ1 and vj = ũj , for 2 ≤ j ≤ m, is locally static feedback linearizable. For
simplicity of notation, we will drop the tildes redbut we will keep distinguishing g1
from hj (which could also be denoted gj , 2 ≤ j ≤ m) whose controls are not prein-
tegrated. Recall that, see Section 7.1, that Di

p denote the linearizability distributions

of the prolonged system Σ(1,0,··· ,0). Since Σ(1,0,··· ,0) is locally static feedback lineariz-
able, Di

p are involutive, of constant rank, for any i ≥ 0, and there exists an integer ρ
such that rkDρ

p = n+ 1. We have

D0
p = span { ∂

∂y1
, hj , 2 ≤ j ≤ m},

D1
p = span { ∂

∂y1
, g1, hj , adfhj + y1[g1, hj ], 2 ≤ j ≤ m}.

Since k ≥ 1, the distribution D0 = span {g1, hj , 2 ≤ j ≤ m} is involutive, thus

[g1, hj ] ∈ D0 and hence D1
p = span { ∂

∂y1
, g1, hj , adfhj , 2 ≤ j ≤ m}. It is easy to prove

(by an induction argument) that, for 1 ≤ i ≤ k,

Di
p = span {

∂

∂y1
, g1, · · · , ad

i−1

f g1, hj , · · · , ad
i
fhj , 2 ≤ j ≤ m}.

Define

Hk = span {g1, · · · , ad
k−1
f g1, hj , · · · , ad

k
fhj , 2 ≤ j ≤ m}.

Since the intersection of involutive distributions is an involutive distribution, Hi =
Di
p∩TX = span {g1, · · · , ad

i−1
f g1, hj , · · · , ad

i
fhj , 2 ≤ j ≤ m} is involutive, for 1 ≤ i ≤

k. In particular, we have Hk involutive. Moreover Hk is a well defined distribution
on X (it does not depend on y). It is immediate that Dk−1 ⊂ Hk ⊂ Dk, where the
second inclusion is of corank one, otherwise Hk = Dk and Dk would be involutive or
Hk = Dk−1 and rkDk−rkDk−1 = 1, which contradicts Proposition 7.1 asserting that
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rkDk − rkDk−1 ≥ 2 is necessary for flatness of differential weight n+m+ 1. Recall
that Hi = Hi−1 + [f,Hi−1], for i ≥ k + 1. We have

Dk+1
p = span {

∂

∂y1
}+Hk + [f,Hk] = span {

∂

∂y1
}+Hk+1

and by an induction argument

Dk+i
p = span {

∂

∂y1
}+Hk+i, i ≥ 2.

Consequently, the involutivity of Dk+i
p implies that of Hk+i, for i ≥ 1. Moreover,

rkDρ
p = n+ 1, proving that rkHρ = n, i.e., Hρ = TX.

Sufficiency. Consider a control system satisfying (A1) − (A3) and let H0 =
span {hj , 2 ≤ j ≤ m} be the distribution defined by Proposition 7.2(ii). This system
is static feedback equivalent to Σ : ẋ = f(x) + u1g1(x) +

∑m
i=2 uihi(x). By the same

proposition, the involutivity of Hi = Di−1 + adifH follows for 0 ≤ i ≤ k − 1. It is
immediate to see that the prolongation

Σ(1,0,··· ,0) :

{

ẋ = f(x) + y1g1(x) +
∑m
i=2 vihi(x)

ẏ1 = v1

with y1 = u1 and vj = uj , for 2 ≤ j ≤ m, is locally static feedback linearizable.
Indeed, the linearizability distributions Di

p, associated to Σ(1,0,··· ,0), are of the form

Di
p = span { ∂

∂y1
}+Hi, i ≥ 0,

and the involutivity of Hi implies that of Di
p, because Hi does not depend on y1.

Moreover, rkHρ = n, thus rkDρ
p = n + 1 and Σ(1,0,··· ,0) is locally static feedback

linearizable. By Proposition 3.1, the system Σ is flat of differential weight n+m+1.

7.4. Proof of Theorem 3.3. Necessity.
Repeating the beginning of the necessity part of the Proof of Theorem 3.2, we

conclude that the linearizability distributions Di
p of the prolonged system Σ(1,0,··· ,0)

(we drop the tildes) are involutive, of constant rank, for any i ≥ 0, and there exists
an integer ρ such that rkDρ

p = n+ 1. We have

D0
p = span {

∂

∂y1
, hj , 2 ≤ j ≤ m}

involutive. It follows immediately that

H0 = span {hj , 2 ≤ j ≤ m}

is a well defined distribution on X, is involutive (as intersection of involutive distri-
butions H0 = D0

p ∩TX) and of corank one in D0. This shows (A1)′. The distribution

D1
p = span {

∂

∂y1
, g1, hj , adfhj + y1[g1, hj ], 2 ≤ j ≤ m}

is involutive and we deduce that [g1, hj ] ∈ D1
p and adfhj ∈ D1

p. Thus

D1
p = span {

∂

∂y1
, g1, hj , adfhj , [g1, hj ], 2 ≤ j ≤ m} = span {

∂

∂y1
}+D0+[D0,D0]+[f,H0]
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and, in particular, we deduce that D0 + [D0,D0] + [f,H0] = span {g1, hj , adfhj +
y1[g1, hj ], 2 ≤ j ≤ m}. From this, it is immediate that

H1(x) = span {g1, hj , adfhj + u1[g1, hj ], 2 ≤ j ≤ m} = H1
u(x),

around (x0, u0), implying (A4)′.
The involutivity of D1

p implies that of H1 = D0 + [D0,D0] + [f,H0], because
H1 = D1

p ∩ TX is the intersection of two involutive distributions.
The rest of the proof follows the same line as that of Theorem 3.2.

Sufficiency. Consider a control system Σ : ẋ = f(x) + u1g1(x) +
∑m
i=2 uihi(x)

satisfying (A1)′ − (A4)′, where the corank one involutive subdistribution is given by
H0 = span {hj , 2 ≤ j ≤ m}. We will prove that the prolongation

Σ(1,0,··· ,0) :

{

ẋ = f(x) + y1g1(x) +
∑m
i=2 vihi(x)

ẏ1 = v1

with y1 = u1 and vi = ui, for 2 ≤ i ≤ m, is locally static feedback linearizable, around
(x0, y0). We have D0

p = span { ∂
∂y1

, hj , 2 ≤ j ≤ m} = span { ∂
∂y1

}+H0, which is clearly

involutive (since so is H0 by (A1)′), and

D1
p = span {

∂

∂y1
, g1, hj , adfhj + y1[g1, hj ], 2 ≤ j ≤ m}.

According to (A4)′ we have, around (x0, u0),

H1
u(x) = span {g1, hj , [f + u1g1 +

m
∑

i=2

uihi, hj ], 2 ≤ j ≤ m} = H1(x),

and thus

D1
p = span {

∂

∂y1
}+H1.

It follows, by an induction argument, that all linearizability distributions Di
p,

associated to Σ(1,0,··· ,0), are of the form

Di
p = span { ∂

∂y1
}+Hi, i ≥ 1,

and the involutivity of Hi implies that of Di
p. Moreover, rkHρ = n, thus rkDρ

p = n+1

and Σ(1,0,··· ,0) is locally static feedback linearizable. By Proposition 3.1, the system
Σ is flat of differential weight n+m+ 1.

7.5. Proof of Theorem 3.7 (ii). Before giving the proof of Theorem 3.7 (ii),
notice that under the assumption Di involutive, for all 0 ≤ i ≤ k − 1, we have
Dk−2 ⊂ Ck, where Ck is the characteristic distribution of Dk. We will use that
property in our proof.

Necessity. Repeating the beginning of the necessity part of the Proof of Theorem
3.2, we conclude that the linearizability distributions Di

p of the prolonged system

Σ(1,0,··· ,0) (we drop the tildes) are involutive, of constant rank, for any i ≥ 0, and
there exists an integer ρ such that rkDρ

p = n + 1. Since k ≥ 1, the distribution
D0 = span {g1, hj , 2 ≤ j ≤ m} is involutive, thus [g1, hj ] ∈ D0 and hence D1

p =
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span { ∂
∂y1

, g1, hj , adfhj , 2 ≤ j ≤ m}. It is easy to prove (by an induction argument)
that, for 1 ≤ i ≤ k,

Di
p = span {

∂

∂y1
, g1, · · · , ad

i−1
f g1, hj , · · · , ad

i
fhj , 2 ≤ j ≤ m}.

Since the intersection of involutive distributions is an involutive distribution, Di
p∩

TX = span {g1, · · · , ad
i−1
f g1, hj , · · · , ad

i
fhj , 2 ≤ j ≤ m} is involutive, for 1 ≤ i ≤ k.

We deduce that the distribution

Ek = span {g1, · · · , ad
k−1
f g1, hj , · · · , ad

k
fhj , 2 ≤ j ≤ m}

is involutive. Next we will prove that Ek = Hk (recall that Hk = Ck+Dk−1, where Ck

is the characteristic distribution of Dk).
It is immediate that Dk−1 ⊂ Ek ⊂ Dk, where the second inclusion is of corank

one, otherwise Ek = Dk and Dk would be involutive, which contradicts our hypothesis.
Applying the Jacobi identity, it can be proved that [adk−1

f hj , ad
k
fg1] ∈ Dk, for

all 2 ≤ j ≤ m, and since Ek is involutive, we immediately have [adk−1
f hj ,D

k] ⊂ Dk,

for 2 ≤ j ≤ m. Thus adk−1
f hj ∈ Ck, for all 2 ≤ j ≤ m, where Ck is the char-

acteristic distribution of Dk. Moreover, since Dk = Ek + span {adkfg1} is nonin-

volutive and [Dk−1,Dk] 6⊂ Dk, we deduce that the new direction completing Dk

to D
k
is given by [adk−1

f g1, ad
k
fg1] 6∈ Dk. Hence there exists smooth functions αj

such that [adkfhj , ad
k
fg1] = αj [ad

k−1
f g1, ad

k
fg1] modDk, for 2 ≤ j ≤ m. It follows

[adkfhj − αjad
k−1
f g1, ad

k
fg1] = 0modDk. It is easy to show that

Ck = Dk−2 + span {adk−1
f hj , ad

k
fhj − αjad

k−1
f g1, 2 ≤ j ≤ m}

thus Hk = Ck + Dk−1 = span {g1, · · · , ad
k−1
f g1, hj , · · · , ad

k
fhj 2 ≤ j ≤ m}, rk Ck =

rkDk−2 = Ek proving involutivity of Hk and implying rk (Ck ∩Dk−1) = rkDk−1−1.
The proof of the involutivity of Hi, for i ≥ k + 1 and of the existence of ρ such

that Hρ = TX follows the same line as that of Theorem 3.2.
Sufficiency. Consider a control system Σ : ẋ = f(x) +

∑m
i=1 uigi(x) satisfying

(C1)-(C4). We start our proof by showing that conditions (C1)-(C2) enable us to
define a distribution H such that H ⊂ D0, of corank one, and Hk = Dk−1 + adkfH.

To this aim, let us denote by r the corank of Dk−2 ⊂ Dk−1. Assume that the
vector fields gi ∈ D0, for 1 ≤ i ≤ r, satisfy

Dk−1 = Dk−2 + span {adk−1
f gi, 1 ≤ i ≤ r}.

Applying similar arguments to those used in the proof of Proposition 7.2(ii), we can
define m − r vector fields hj , for r + 1 ≤ j ≤ m, such that D0 = span {g1, · · · , gr,
hr+1, · · · , hm} and adk−1

f hj ∈ Dk−2, for r + 1 ≤ j ≤ m.

It is clear that Dk−2 ⊂ Ck and, since rk (Ck ∩ Dk−1) = rkDk−1 − 1, we have

Ck ∩ Dk−1 = Dk−2 + span {cj , 1 ≤ j ≤ r − 1},

where the vector fields cj are of the form

cj =
r
∑

i=1

λijad
k−1
f gi = adk−1

f (
r
∑

i=1

λijgi)modDk−2,
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with λij smooth functions such that the matrix Λ = (λij), where 1 ≤ i ≤ r and

1 ≤ j ≤ r − 1, is of full rank r − 1. Denote hj+1 =
∑r
i=1 λ

i
jgi, for 1 ≤ j ≤ r − 1, and

suppose, without loss of generality, that g1 is independent with them.
Since adk−1

f hj ∈ Ck, for 2 ≤ j ≤ m, we have [adk−1
f hj ,D

k] ⊂ Dk. From this

it can be shown, applying the Jacobi identity, that [adk−1
f g1, ad

k
fhj ] ∈ Dk, for 2 ≤

j ≤ m. Therefore, the new direction completing Dk to D
k
= Dk+[Dk−1,Dk] is given

by [adk−1
f g1, ad

k
fg1] and there exist smooth functions αj such that [adkfhj , ad

k
fg1] =

αj [ad
k−1
f g1, ad

k
fg1] modDk, for 2 ≤ j ≤ m. This gives [adkfhj −αjad

k−1
f g1, ad

k
fg1] = 0

modDk and it can be easily verified that the characteristic distribution Ck is given by

Ck = Dk−2 + span {adk−1
f hj , ad

k
fhj − αjad

k−1
f g1, 2 ≤ j ≤ m}.

It follows immediately

Hk = Dk−1 + span {adkfhj , 2 ≤ j ≤ m} = Dk−1 + adkfH,

where the corank one subdistribution H of D0 is given by

H = span {hj , 2 ≤ j ≤ m}.

The involutivity of Hk implies that of all distributions Hi = Di−1 + adifH, for 0 ≤

i ≤ k− 1, where D−1 = {0} and H0 = H. The proof of that statement follows by the
same method as that used in the proof of Proposition 7.2(ii).

We are now in position to show that the control system Σ : ẋ = f(x)+
∑m
i=1 uigi(x)

is dynamically linearizable via an invertible one-fold prolongation. Transform Σ via
an invertible static feedback into the form Σ̃ : ẋ = f̃(x) + ũ1g̃1(x) +

∑m
i=2 ũihi(x),

where the vector fields hi are defined as above. Applying the same arguments as in
the proof of Theorem 3.2, it is immediate to see that the prolongation

Σ̃(1,0,··· ,0) :

{

ẋ = f̃(x) + y1g̃1(x) +
∑m
i=2 vihi(x)

ẏ1 = v1,

with y1 = ũ1 and vj = ũj , for 2 ≤ j ≤ m, is locally static feedback linearizable.

7.6. Proof of Proposition 4.1. Recall that to any flat system of differential
weight n+m+1 we can attach, according to Lemma 3.5 in Section 3.1, the following
sequence of nested involutive distributions:

H0 ⊂ H1 ⊂ · · · ⊂ Hρ−1 ⊂ Hρ = TX

where either k = 0 and then H0 is the involutive corank one subdistribution of D0, the
distribution H1 is defined by H1 = D0 + [D0,D0] + [f,H0] and Hi+1 = Hi + [f,Hi],
for 1 ≤ i ≤ ρ− 1, or k ≥ 1 and then H0 is the involutive corank one subdistribution
of D0 associated to Hk and Hi = Di−1+adifH, 1 ≤ i ≤ k−1. If k ≥ 1, then, for i ≥ 2,

we actually have Hi = Hi−1 + [f,Hi−1]. For both cases, ρ stands for the smallest
integer such that Hρ = TX. Recall that we denote by rj the corank of the inclusion
Hρ−j ⊂ Hρ−j+1, for 1 ≤ j ≤ ρ. We clearly have 1 ≤ r1 ≤ r2 ≤ · · · ≤ rρ ≤ m. We will
prove Proposition 4.1 in the case k ≥ 1. If k = 0, then similar arguments apply.

Necessity. Let (ϕ1, · · · , ϕr1 , ψr1+1, · · · , ψm) be a minimal flat output of Σ, defined
on a neighborhood X of x0. According to the proof of Proposition 7.2, around any
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point of X ′, an open and dense subset of X , there exists a valid local change of
coordinates in which the system, after applying a suitable invertible static feedback,
takes the form (7.4), with ϕj and ψl being equal to the top variables z1i , for 1 ≤ i ≤ m,
where ψl correspond to z1i such that ρi = 1. The system under consideration is control-
affine so, compare the comment following (7.4), we have żρii = ai(z)+ bi(z)v1 and, by

changing coordinates and applying a static feedback, we can assume ai = zρi+1
i (since

we consider the case k ≥ 1). For 0 ≤ j ≤ ρ, we have

Hj = span {
∂

∂zρ1−j+1
1

, . . . ,
∂

∂zρ11
}

+ span {
∂

∂zρi−ji

, . . . ,
∂

∂zρii
, 2 ≤ i ≤ r}

+ span {
∂

∂zρi−j+1
i

, . . . ,
∂

∂zρi+1
i

, r + 1 ≤ i ≤ m}.

It follows that Hρ−1 (recall that ρ is the smallest integer such that Hρ = TX) is
annihilated by dz1i such that ρi = ρ + 1, if 2 ≤ i ≤ r, and ρi = ρ, if either i = 1 or
r + 1 ≤ i ≤ m. There are r1 differentials of the form dz1i satisfying one of the above
conditions. Similarly, we show thatHj is annihilated by dzli such that 1 ≤ l ≤ ρi−j−1,
if 2 ≤ i ≤ r, and 1 ≤ l ≤ ρi − j, if either i = 1 or r + 1 ≤ i ≤ m. Among them
there are rρ−j differentials of the form dz1i . It follows that rj differentials of the form
dz1i annihilate Hρ−j , for 1 ≤ j ≤ ρ, which (after a permutation, if necessary) are,
respectively, dz1i = dϕi proving that the functions ϕ1, · · · , ϕrρ satisfy condition (FO1)
on X ′. Since all functions ϕi, for 1 ≤ i ≤ r1, as well as all involved distributions Hj

are defined on X , by continuity (FO1) is valid on X .

The differentials of flat outputs and those of their successive time-derivatives are
always independent, so (FO2) follows.

Sufficiency. Let (ϕ1, · · · , ϕrρ , ψrρ+1
, · · · , ψm) be an m-tuple of functions satisfy-

ing conditions (FO1)-(FO2). For any 1 ≤ j ≤ ρ, define the functions zli = Ll−jf ϕi,

where j ≤ l ≤ ρ and rj−1 + 1 ≤ i ≤ rj . Notice that now the variables zli are indexed
not the same way as those of the form (7.4), in particular, in the actual definition,
the z1i exist only for 1 ≤ i ≤ r1, the z

2
i only for 1 ≤ i ≤ r2 and, in general, zji only for

1 ≤ i ≤ rj . The differentials dzli = dLl−jf ϕi are independent because of (FO2) and

we have dim zj = rj = cork (Hρ−j ⊂ Hρ−j+1), for 1 ≤ j ≤ ρ. Since rkH0 = m− 1, it

follows that rankHρ = n = (m− 1)+ r1+ · · ·+ rρ. Complete (z1, . . . , zρ) by zρ+1
i , for

2 ≤ i ≤ m, such that z = (z1, . . . , zρ, zρ+1) forms a local coordinate system around z0.

Using condition (FO1) and Hj = Hj−1 + [f,Hj−1] (which is valid for j ≥ 2) we
conclude that the differentials dz1i ,. . . ,dz

j
i annihilate the distribution Hρ−j . Recall

that D0 = span {g1, . . . , gm} ⊂ H1, so the relative degree of zji , for 1 ≤ j ≤ ρ is at
least ρ− j + 1. It follows that in the z-coordinates, the system takes the form

ż1i = z2i for 1 ≤ i ≤ r1
ż2i = ż3i for 1 ≤ i ≤ r2

...

żρ−1
i = zρi for 1 ≤ i ≤ rρ−1

żρi = fρi (z) +
∑m
j=1 ujg

ρ
ji(z) for 1 ≤ i ≤ rρ

żρ+1
i = fρ+1

i (z) +
∑m
j=1 ujg

ρ+1
ji (z) for 2 ≤ i ≤ m.
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The involutive distribution H0 = span { ∂

∂z
ρ+1
i

, 2 ≤ i ≤ m} is of corank one in D0 =

span {g1, . . . , gm} so by a suitable static feedback transformation u = α(z) + β(z)v
and a permutation of the z-variables we can transform the zρ- and zρ+1-subsystems
into

żρi∗ = vi∗
żρi = ai(z) + bi(z)vi∗ for 1 ≤ i ≤ rρ, i 6= i∗

żρ+1
i = vi for 1 ≤ i ≤ m, i 6= i∗

(the relative degree of ϕi∗ leading to vi∗ can be any between 1 and ρ). Recall that

H1 = D0 + [f,H0] is of rank m+ rρ − 1. It follows that rk

(

∂ai
∂z

ρ+1
j

)

= rρ − 1, where

1 ≤ i ≤ rρ and 1 ≤ j ≤ m, with i, j 6= i∗. We introduce the new coordinates (but

keep the same notation for them) zρ+1
i = ai(z), for 1 ≤ i ≤ rρ, i 6= i∗, and apply a

suitable static feedback (keeping the notation vi for the modified controls), to get

żρi∗ = vi∗

żρi = zρ+1
i + bi(z)vi∗ for 1 ≤ i ≤ rρ, i 6= i∗

żρ+1
i = vi for 1 ≤ i ≤ m, i 6= i∗.

Notice that the assumption k ≥ 1 implies that the components bi(z) do not depend
on zρ+1

i , for i 6= i∗. Now if rρ = m, then, clearly, the functions ϕi = zji , where
1 ≤ j ≤ ρ and rj−1 + 1 ≤ i ≤ rj , are flat outputs of the system around z0.

If rρ < m, then let ψrρ+1, . . . , ψm be any functions satisfying (FO2). We have

zli = Ll−jf ϕi, where 1 ≤ j ≤ l ≤ ρ and rj−1 + 1 ≤ i ≤ rj . Taking the next derivatives

Ll−j+1
f ϕi we can express the functions zρ+1

i , for 1 ≤ i ≤ rρ, i 6= i∗. It thus follows

by (FO2) that rk
(

∂ψj

∂z
ρ+1
i

)

= m − rρ, where rρ + 1 ≤ i, j ≤ m. Therefore the ψi’s,

together with Lj−1
f ϕi’s with j ≤ ρ + 1, allow to express the components zρ+1

i , for
rρ ≤ i ≤ m and differentiating them one time will yield the corresponding vi. Notice
that any functions ψi satisfying the above rank condition will work, which explains
why they do not have to fulfil any structural condition but just (FO2).
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