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FLATNESS OF MULTI-INPUT CONTROL-AFFINE SYSTEMS
LINEARIZABLE VIA ONE-FOLD PROLONGATION*

FLORENTINA NICOLAU' AND WITOLD RESPONDEK?

Abstract. We study flatness of multi-input control-affine systems. We give a geometric charac-
terization of systems that become static feedback linearizable after an invertible one-fold prolongation
of a suitably chosen control. They form a particular class of flat systems. Namely, they are of dif-
ferential weight n + m + 1, where n is the dimension of the state-space and m is the number of
controls. We propose conditions (verifiable by differentiation and algebraic operations) describing
that class and provide a system of PDE’s giving all minimal flat outputs. We illustrate our results
by an example of the quadrotor helicopter.

Key words. flatness, flat outputs, differential weight, linearization.

1. Introduction. In this paper, we study flatness of nonlinear control systems
of the form

2 &= F(z,u),

where z is the state defined on a open subset X of R™ and u is the control taking
values in an open subset U of R™ (more generally, an n-dimensional manifold X and
an m-dimensional manifold U, respectively). The dynamics F' are smooth and the
word smooth will always mean C*°-smooth.

The notion of flatness was introduced in control theory in the 1990’s, by Fliess,
Lévine, Martin and Rouchon [8, 9], see also [13, 14, 17, 24], and has attracted a lot of
attention because of its multiple applications in the problem of constructive control-
lability and motion planning (see, e.g. [10, 16, 25, 29, 23, 18, 26, 27]). Flat systems
form a class of control systems whose set of trajectories can be parametrized by m
functions and their time-derivatives, m being the number of controls. More precisely,

the system Z : & = F(x,u) is flat if we can find m functions, o;(z,u, ... ,u)) such
that

(1.1) z=7(p,...,o" V) and u = 8(e, ..., "),

for a certain integer s, where ¢ = (@1,...,pn) is called a flat output. Therefore

the time-evolution of all state and control variables can be determined from that of
flat outputs without integration and all trajectories of the system can be completely
parameterized. A similar notion, of systems of undetermined differential equations
integrable without integration, has been studied by Hilbert [11] and Cartan [6], see
also [29], where connections between Cartan prolongations and flatness were studied.

Flatness is closely related to the notion of feedback linearization. It is well known
that systems linearizable via invertible static feedback are flat. Their description
(1.1) uses the minimal possible, which is n 4+ m, number of time-derivatives of the
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components of the flat output ¢. In general, a flat system is not linearizable by static
feedback, with the exception of the single-input case where flatness reduces to static
feedback linearization, see [7] and [24]. For any flat system that is not static feedback
linearizable, the minimal number of time-derivatives of ¢; needed to express x and u
(which is called the differential weight [26]) is thus greater than n + m and measures
actually the smallest possible dimension of a precompensator linearizing dynamically
the system. Therefore the simplest systems for which the differential weight is greater
than n + m are systems linearizable via one-dimensional precompensator, thus of
differential weight n +m + 1. They form the class that we are studying in the paper:
our goal is to give a geometric verifiable characterization of control-affine systems
that become static feedback linearizable after an invertible one-fold prolongation of a
suitably chosen control.

The paper is organized as follows. In Section 2, we recall the definition of flatness
and define the notion of differential weight of a flat system. In Section 3, we give
our main results: we characterize control-affine systems that become static feedback
linearizable after an invertible one-fold prolongation. They form a particular class of
flat systems, that is, flat systems of differential weight n+m-+1. We provide necessary
and sufficient conditions for flatness of differential weight n + m + 1 and explain in
Section 3.2 how to verify them. We describe all minimal flat outputs in Section 4.
For all results presented in Sections 3 and 4, we assumed that all ranks involved are
constant. In Section 5 we address the issue of the importance of the constant rank
assumption and clarify for which results it is necessary. We illustrate our results by
an example of the quadrotor helicopter in Section 6 and provide proofs in Section 7.

2. Flatness. The fundamental property of flat systems is that all their solutions
may be parametrized by a finite number of functions and their time-derivatives. Fix
an integer [ > —1 and denote U' = U x R™ and @' = (u,,...,u®)). For | = —1, the
set U~! is empty and ! in an empty sequence.

DEFINITION 2.1. The system = : & = F(x,u) is flat at (zg,u)) € X x U,
for 1 > —1, if there exists a neighborhood O' of (z,uh) and m smooth functions
Y = goi(%u,ﬂ,...,u(l)), 1 < i < m, defined in O, having the following property:
there exist an integer s and smooth functions v;, 1 <i <n, and 6;, 1 < j < m, such
that

Z; = 71(@7@7 s >S0(571)) and Uj = 53'(()0’ @7 ) @(S))

for any C*5-control u(t) and corresponding trajectory x(t) that satisfy (x(t),u(t),. ..,
uD(t)) € O, where p = (¢1,...,pm) and is called a flat output.

Whenever necessary to specify the number of derivatives of u on which the com-
ponents of the flat outputs ¢ depend, we say that the system Z is (z,u, - - ,u(r))—ﬁat
if the r-th-derivative is the highest involved. In the particular case ¢; = p;(x), for
1 < i < m, we say that the system is z-flat.

In general, r is not greater than the integer [ needed to define the neighborhood O
In our study, r will be proved to be -1, i.e., the flat outputs depend on z only, and [
is -1 or 0.

The minimal number of derivatives of components of a flat output, needed to ex-
press x and u, will be called the differential weight of that flat output and is formalized
as follows. By definition, for any flat output ¢ of = there exist integers si,..., Sm
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such that
’Y(‘Plasbla .. 'a@581)7 e a‘Pma@m: cee 790578['1))
u = 6((p1’¢17'"7(p:(lbl)""7(pm7¢m7""(p’£’im>)'
Moreover, we can choose (s1,...,5m), 7 and ¢ such that (see [26]) if for any other
m-tuple (81,...,38,,) and functions 4 and §, we have
i/(gahsbla .. .’905:91)7 e 7¢m7¢m7 cee 7905713«”1))
u = 6((p1’¢17'"7(p:(lbl)""7(pm7(pm7""(p’£§"l))7

then s; < §;, for 1 <i <m. We will call 31" (s; +1) = m+>_.", s; the differential
weight of p. A flat output of = is called minimal if its differential weight is the lowest
among all flat outputs of =Z. We define the differential weight of a flat system to be
equal to the differential weight of a minimal flat output.

The differential weight is n+m+p, where p > 0, can be interpreted as the minimal
dimension of a precompensator that dynamically linearizes the system. Indeed, p = 0
corresponds to static feedback linearizable systems (see Theorem 2.2 below) and the
case p = 1 is the subject of this paper.

Consider a control-affine system

m
(2.1) S i = fla) + Y wigi(e),
i=1
where f and ¢1,--- , g are smooth vector fields on X. The system X is linearizable

by static feedback if it is equivalent via a diffeomorphism z = ¢(z) and an invertible
static feedback transformation, v = a(z) + S(x)v, to a linear controllable system
A:z=Az+ Bv.

The problem of static feedback linearization was solved by Brockett [3] (for a
smaller class of transformations) and then by Jakubczyk and Respondek [15] and,
independently, by Hunt and Su [12], who gave geometric necessary and sufficient
conditions. The following theorem recalls their result and, furthermore, gives an
equivalent way of describing static feedback linearizable systems from the point of
view of differential weight.

Define inductively the sequence of distributions D! = D? + [f, D¢], where D° is
given by D® = span {g1,--- , g} and denote [f, D] = {[f,€] : £ € D}.

THEOREM 2.2. The following conditions are equivalent:
(FL1) X is locally static feedback linearizable, around xo € X;
(FL2) ¥ is locally static feedback equivalent, around xo € X, to the Brunovsky canon-

ical form
3 = It
(Bry: T

Z; =

m

where 1 <i<m,1<j<p;—1, and > " p; =n;

(FL3) For any q > 0, the distributions DY are of constant rank, around xo € X,
involutive, and D"~ ' = TX;

(FL4) ¥ is flat at o € X, of differential weight n + m.



4 TEX PRODUCTION

The geometry of static feedback linearizable systems is given by the following
sequence of nested involutive distributions:

DPPcplc--.cp 1 =TX.

It is well known that a feedback linearizable system is static feedback equivalent to
the Brunovsky canonical form, see [4], and is clearly flat with ¢ = (¢1, -+, m) =
(21,--+,2L) being a minimal flat output (of differential weight n + m). Therefore,
for static feedback linearizable systems, the representation of all states and controls
uses the minimal possible, which is n + m, number of time-derivatives of ¢; and an
equivalent way of describing them is that they are flat systems of differential weight
n+m.

In general, a flat system is not linearizable by static feedback, with the exception
of the single-input case. Any single input-system is flat if and only if it is static
feedback linearizable, see [7, 24], and thus of differential weight n + 1. Flat systems
can be seen as a generalization of static feedback linearizable systems. Namely they
are linearizable via dynamic, invertible and endogenous feedback, see [9, 8, 17, 24].
Our goal is thus to describe the simplest flat systems that are not static feedback
linearizable: control-affine systems that become static feedback linearizable after an
invertible one-fold prolongation, which is the simplest dynamic feedback. They are flat
systems of differential weight n +m + 1, see Proposition 3.1 below. In this paper, we
will completely characterize them (actually, almost completely, since for two particular
sub-cases we do not provide verifiable conditions, see Section 3.2) and show how their
geometry differs and how it reminds that given by the involutive distributions D? for
static feedback linearizable systems.

3. Main results. Throughout, we make the following assumption:

(Assumption 1) From now on, unless stated otherwise, we assume that all ranks
involved are constant in a neighborhood of a given zyp € X (or
(w0, 1) € X x U'). All results presented here are valid on an open
and dense subset of either X or X x U (or X x U') and hold locally,
around any given point of that set.

REMARK 1. The studied systems may display ranks that are not constant around
some points, but the results presented here are wvalid only around points where the
ranks are constant. We discuss in Section 5 why (Assumption 1) is important, for
which results it is necessary and for which it can be weakened or neglected.

ProprosITION 3.1.
Consider a control system E : & = F(x,u). The following conditions are equiva-
lent:
(i) = is flat at (zo,ul), of differential weight n+m + 1, for a certain | > —1;
(ii) = is z-flat at xo or (xo,uo), of differential weight n+m + 1;
(iii) There exists, around xo, an invertible static feedback transformation u = v (z, @)
bringing the system Z into = : & = F(z,4) = F(x,¢¥(x,4)), such that the pro-
longation

5(1,0,...,0),{ i = Fz,y1,v9, ,Un)
o= v

is locally static feedback linearizable, with y1 = 1, v; = Uy, for 2 <i <m.
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Moreover, if = is a control-affine system of the form ¥ : & = f(z)+Y i~ wigi(z), then
the equivalences (i) <= (ii) <= (iii) hold with the general feedback u = 1(x, ) being
replaced by u = (z, @) = a(z) + B(z)a, the system = by B : & = f(x) + S0, @gi(z)
and the prolongation Z(1:0:--0) py

$10:.0) :{ io= @)+ i)+ Xl vigi(@)
Yy = u

with yy, = Wy, v; = G, for2<i<m, f = f+ag and § = g, where g = (g1, , Gm)
andé = (glv' o ;gm)

The proofs of Proposition 3.1 and of all theorems of this section are given in
Section 7.

A system Z satisfying (i) is called dynamically linearizable via invertible one-
fold prolongation. Notice that E(1.0.-0) ig  as indicated by the notation, obtained by
prolonging the control 4, as v, = ﬁl and keeping v; = u;, for 2 < i < m. The above
result asserts that for systems of differential weight n +m + 1, flatness and z-flatness
coincide and that, moreover, these properties are equivalent to linearizability via the
simplest dynamic feedback, namely invertible one-fold preintegration.

To simplify the exposition of the paper, from now on, we will consider the control-
affine case only. The generalization for the control-nonlinear systems is straightfor-
ward.

Before giving our main theorems, let us introduce the notion of corank that will
be frequently used in the rest of the paper.

REMARK 2. If A C B, the corank of the inclusion A C B, denoted by cork (A C
B), equals the rank of the quotient B/ A, i.e., cork (A C B) =tk (B/A). Let A and B be
two distributions of constant rank and f a vector field. Denote [A, B] = {[a,b] : a € A,
b e B} and [f,B] = {[f,b] : b € B}. Clearly, A and B are sbdistributions of [A, B]

because we take all a € A and all b € B and not just generators.

From now on, we deal only with systems that are not static feedback linearizable.
Therefore one of the distributions D? fails to satisfy condition (FL3) of Theorem 2.2.
Flat systems are always accessible so D"~! = T'X holds and all distributions D’ are
supposed to be of constant rank, see (Assumption 1) above. So there exists an integer &
such that D is not involutive. Suppose that k is the smallest integer satisfying that
property. The integer k plays a fundamental role in our study.

Our main result describing flat systems of differential weight n+m+1 is given by
the two following theorems corresponding to the first noninvolutive distribution DF
being either D, i.e., k = 0 (Theorem 3.3) or DF, for k > 1 (Theorem 3.2). These
two cases have slightly different geometries, but we are able to merge them into one
general result, Theorem 3.4, whose conditions although compact are less readable
and do not allow the reader to see the differences between flat systems of differential
weight n +m 4 1 with £ > 1 and those with £ = 0. Namely, if £ > 1 we never face
singularities in the control space (i.e., even if the minimal flat outputs are defined
locally around a given z, they are always global with respect to the control). This
is no longer the case if £ = 0 and the prolongation always creates singularities in the
control space. In order to highlight these differences, we start by presenting the two
cases separately.

THEOREM 3.2. Assume k > 1. The control system ¥ given by (2.1), is flat at
xo, of differential weight n +m + 1, if and only if it satisfies around xq:
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(A1) There exists an involutive distribution H* verifying D*=* C HF C DF, with the
second inclusion of corank one;

(A2) The distributions H?, fori > k+1, are involutive, where H' = H'=1 +[f, H71];

(A3) There exists p such that HP = TX.

The distributions DY, ..., D* are feedback invariant and, if H* exists, so are
HF, ..., HP. Therefore the geometry of systems described by the previous theorem
can be summarized by the following sequence of inclusions:

Pc...cD! c D¢ c D
o 1y N
HF C HEflC..CcHP=TX
where all distributions, except DF, are involutive, D" is the involutive closure of DF
and the inclusion H¥CD* is of corank one. The main structural condition is the
existence of a corank one involutive subdistribution H* in D containing D*~!. We
will discuss in Section 3.2, the uniqueness of ¥ and provide its construction. The
inclusion D*~1 ¢ HF yields DF c H**!' which gives D" C HFFL (since HFF! s
involutive by (A42)). Notice also that the inclusion D¥~1 C HF is of corank at least
one. Otherwise, D*~! = ¥ which would imply D¥ = #**! and thus D* would be
involutive. It is clear that in the particular case 5k =TX, we have p =k + 1.

If k = 0, i.e., the first noninvolutive distribution is D°, then a similar result
holds but in the chain of involutive subdistributions H° C H! € H? C --- (playing
the role of HF C H*+1 C HF*+2 C ...), the distribution H' is not defined as H! =
HO + [f,HO], but as H' = D° + [D°, DY) + [f,H"], (compare (A2) and (A2)’) and
satisfies an additional condition (A4)" which as we will see plays a double role (of
a nonsingularity condition and of a structural condition). In fact, flat systems with
k = 0 may exhibit singularities in the control space (created by one-fold prolongation
of the to-be-prolonged control) defined by

Using(z) = {u(z) € R™ : 1k (D" + [f + Zuigi,’HO}}(x) <tk H'(z)}

i=1

and excluded by (A4)". To describe the singular controls, apply an invertible feedback
u = Bu such that H° = span{ha,...,hy,} and D° = span{gi, ha, ..., hm}, where
(G1,h2, - hm) = (91,92, - - -, gm)B. Denote rkH! = r+m and for any 2 < iy < --- <
i < m, put

Cil,...,ir = (adfhil + ’l~J/1 [gl, h“D ANRREIVAN (defhir + ’l~1/1 [91, hlr]) A §1 A h2 FANRREIVAN hm
Then the set Usjpg can be written as:

Using(x) :{ﬁ(l') € R™: rkspan {ghh‘jv [f + algh hj}v 2 S .7 S m}(x) < I‘kHl(.%')}
={t(z) e R™ : ¢, . i (2,01) =0,2<i3 < -+ <ip <m},

where 4(z) = (t1(x), U2(x), . .., 4m(x)) and thus Ga(x),. .., Uy, (z) are arbitrary. Now
its is clear that for any x € X, the singular set Using(x) is an algebraic (empty or not)
subset of R™. In the particular case of tk H! = 2m—1, i.e, cork (D° C H!) =r =m—1
is maximal possible, the singular set Using(x) is the zero level set of the polynomial
_____ m(z,U1) of degree m — 1 with respect to @;. So for each fixed = € X, the singular
controls Uging(x) form the union of p affine hyperplanes in R™, where 0 < p <m —1
is the number of distinct real roots of the polynomial ca . n(x,%1). It follows that
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if m is even, then the one-fold prolongation always creates singularities in the control
space (in the particular case of two controls m = 2, the singular set is an affine line
in R?, see [21]) but if m is odd, then singularities of control may be absent, see normal
forms in Subsection 6.1.

Before giving our result, we introduce H, = D%+ [f + > 1" | u;g;, H"], which, for
each fixed u € R™, is a distribution defined on X.

THEOREM 3.3. Assume k = 0. The system ¥ given by (2.1), is flat at (xo,uo),
of differential weight n+m + 1, if and only if it satisfies around (xg,ug):
(A1)’ There exists an involutive distribution H® C D°, of corank one;
(A2)’ The distributions H?, for i > 1, are involutive, where H! = DY + [D° DY) +
[f, 1Y) and H' = HI= 4+ [f, 1Y, fori > 2;
(A3)’ There exists p such that HP = TX;
(A4)” HL(x) = HY(x), for any (z,u) in a neighborhood of (zo,ug).

Like in Theorem 3.2, if D’ =TX , then p = 1. Notice that the condition (A4)
plays a double role. First, it is a structural condition since it assures that for all values
of u € R™, we obtain the same distribution H! = H!, in other words, H. does not
depend on u. Now recall that since k = 0, the distribution D° = span {g1, h;, 2 < j <
m} (where we used the notations introduced just before Theorem 3.3) is noninvolutive,
thus the rank of span {g1, hj, [f +u1g1 + Y ;g wihi, hy], 2 < j < m}(x) could a priori
drop at u = ug. From (A4)', it is immediate that wy & Using(z0), where Uging(xo) =
{u e R™ : rk (span{g1, hj, [f + w191 + > ieg wihis hj],2 < j < m})(wo) < rkH (z0)}.
Hence (A4)’ is also a regularity condition, since it excludes the singular controls, that
is, the controls u for which rk H1(zo) < rk H' (o).

The cases k = 0 and k > 1 are similar, but they have slightly different ge-
ometries. Even if at first sight, it seems not possible to merge them (because of
different definitions of the distributions H' and #**' and of a possible existence of
singularities in the control space for k = 0), the following result enables us to unify
them. Theorem 3.4 is based on the observation that in both cases, we actually have
HF+L = Dk  [DF DF] + [f, H*] (by definition of H!, for k = 0, and as a direct conse-
quence of the definition of #*¥*1, for k > 1, see the comments following Theorem 3.2).

Similarly to H.(z), defined before the Theorem 3.3, for u fixed in R™, we consider
the distribution HE*! = DF + [f + Y7 u;g:, HF], defined on X. We have thus
introduced a family of distributions defined on X and parameterized by u.

THEOREM 3.4. The system X, given by (2.1), is flat either at xo, if k > 1, or at
(zo,u0), if k =0, of differential weight n +m + 1, if and only if it satisfies around
(xo,u0):

(A1)” There exists an involutive distribution H* wverifying D*~1 c H* C DF, with
the second inclusion of corank one (and where D~ = {0}, if k =0);

(A2)” The distributions H*, for i > k + 1, are involutive, where H*T! = DF +
[D*, D*] + [f, HF] and HITY = Hi + [f, H?], fori>k+1;

(A3)” There exists p such that HP = TX;

(A4)” (DF + [ + 30 wigs, HE)) () = HA+1(2).

Notice that taking in the above theorem k = 0 gives Theorem 3.3. Observe also
that the role of condition (A4)” changes with k. For k = 0, it immediately gives
that the distribution H!, = D% + [f + Y%, u;gi, H°] does not depend on u and that
U0 ¢ Using(z0), excluding singularities in the control space. So, in this case, (A4)”
plays the role of both a structural and a regularity condition. If £ > 1, it can be easily
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shown that HETL =D* + [f + 37" u;g;, H"*] does not depend on the control u and
that (A4)” can actually be written as D + [f, H¥] = HF¥T1. So, for k > 1, item (A4)"”
is only a structural condition assuring that, modulo D¥, the directions in [D*, D¥]
that are not in D* are in fact in [f,H*], implying that D' HEHL = Hk + [f, H¥].

The proofs of Theorems 3.2 and 3.3 are given in Section 7, whereas Theorem 3.4
is their direct consequence . The crucial problem of constructing the involutive sub-
distribution H* C DF will be treaded in Section 3.2.

The previous theorems enable us to define the control w, (which is given up to a
multiplicative function) to be prolonged in order to obtain the locally static feedback
linearizable $(1.9++0) Tn the next section, we will explain the construction of u,,.

3.1. To-be-prolonged control. We will construct in this section the control w,
to be prolonged (preintegrated) in order to dynamically linearize the system.

According to the following lemma (that we will prove as a part of Proposi-
tion 7.2(ii) in Section 7), to the involutive subdistribution H*, where k > 1, we
can associate a unique corank one subdistribution # in D that plays a crucial role
in defining the to-be-prolonged control. If k = 0, we simply put H = H.

LEMMA 3.5. Assume k > 1 and suppose that D* contains an involutive subdistri-
bution H*, of corank one satisfying D*~' C H*. Then there exists a distribution H,
uniquely associated to H*, such that H C D is of corank one and H* = Dk_l—l—ad’}’H.
Moreover, all distributions H* = D=1 + adj}?—[, for 0 <i<k—1, where D~ = {0}
and H° = H, are involutive and are feedback invariant, that is, do not change if we
replace f by f+ > 10, ig;.

Since rk’H = m—1, we can find m functions 81, ..., 3, (not vanishing simultane-
ously) such that uy(2)B1(z) 4 - + tum (2)Bm(x) = 0 if and only if 1", u;(z)gi(x) €
H(x). The to-be-prolonged control u, (becoming @; after feedback) that needs to be
preintegrated in order to dynamically linearize the system is

up =1 = u1(z)B1(z) + - + um () B (2)

and we put v; = %up = %ﬂl. Therefore u, is not unique and given up to multiplica-

tion by a non-vanishing function. Indeed, if u, is a to-be-prolonged control, then so
is @, = uy (x)1(x) + - 4 U () Bn (2), where B; = vB; and y(x) # 0. What is thus
canonical is not a to-be-prolonged control u, = @41 = uy(x)B1(z) + - - - + U (z) B (),
or the R™-valued vector function (81(z), ..., Bm(x)) defining it, but, respectively, the
collection of the to-be-prolonged controls y(z)u, and the field of lines [51(x) : f2(x) :
<+t Bm(x)] in R™, where the latter denotes projective coordinates in R™.

Finding u, requires knowing 3. ..,B,,, which in turn is reduced to calculating H
and, finally, to constructing the involutive subdistribution H*. The latter problem is
solved in the next section.

3.2. Verification of the conditions. Theorems 3.2 and Theorems 3.3 (stated
together as Theorem 3.4) describe all flat systems of differential weight n + m +
1. In order to verify their conditions, we have to check whether the distribution
DF (respectively D°) contains an involutive subdistribution H* (respectively H°) of
corank one. We will see that the corank r of the inclusion D¥ C D* + [D*, D*] plays
an important role in conditions verifications. Recall that, according to the Remark 2,
cork (D* C DF + [DF, D¥]) simply means rk (D* + [D*, D*])/DF).

In fact, if » > 2, then the existence of H* (and its construction, if it exists) is
given by Proposition 3.6 below. Also in the case r = 1 and [D*~! D*] ¢ D*, the
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involutive subdistribution H* can be uniquely identified as H* = C* + D*~1, where
C* is the characteristic distribution of D and is defined below. For both cases, we
thus get verifiable necessary and sufficient conditions for flatness od differential weight
n+m+ 1, stated as Theorem 3.7. If r = 1 and [D*~!, D*] € D*, we will introduce a
new index [. If [ exists, then it takes the role of k£ and leads to checkable conditions
given by Theorem 3.8. If [ does not exist, then still three sub-cases are possible. For
the first one, we provide verifiable conditions and for the second, we are not able to
distinguish between flatness of differential weight n+m+1 and n+m+2, respectively
in Theorem 3.9 ( vi) and ( vii). For the third sub-case (defined at the end of this
Section), we are not able to give verifiable conditions for flatness of differential weight
n+m+1.

Consider a distribution D of rank d, defined on a manifold X of dimension n and
define its annihilator D+ = {w € AY(X) :< w, f >= 0,Vf € D}, where A}(X) is
the space of smooth differentials 1-forms on X. Let cork (D C D + [D,D]) = r and
let wy,...,wp, Wrt1,...,ws, where s = n — d, be differential 1-forms such that locally
DL =span {wy,...,ws} and (D + [D, D))+ = span {w,41,...,ws}.

The Engel rank of D equals 1 at z if and only if D is non involutive and (dw; A
dw;)(z) = 0mod D+, for any 1 < 4,5 < s. For any w € D+, we define W(w) = {f €
D : fadw € D}, where | is the interior product. The characteristic distribution
C={feD:|[f,D] C D} of D is given by

c=_ W)

It follows directly from the Jacobi identity that the characteristic distribution is always
involutive. Define the distribution

B= ZW(wi).

Although the distributions W(w;) depend on the choice of w;’s, the distribution B
does not and we have the following result [22] based on [5].

PROPOSITION 3.6. Consider a distribution D of rank d and let cork (D C D +
[D,D]) =r.

(i) Assume r > 3. The distribution D contains an involutive subdistribution H of
corank one if and only if it satisfies
(ISD1) The Engel rank of D equals one;

(ISD2) The characteristic distribution C of D has rank d —r — 1.
Moreover, that involutive subdistribution is unique and is given by H = B.

(i) Assume r = 2. The distribution D contains a corank one involutive subdistribu-
tion H if and only D verifies (ISD1)-(1SD2) and the distribution B is involutive.
Then H is unique and given by H = B.

(ii) Assume r = 1. The distribution D contains an involutive subdistribution of
corank one H if and only it satisfies the condition (ISD2). In the case r =1, if
an involutive subdistribution of corank one H exists, it is never unique.

The above conditions are easy to check and a unique involutive subdistribution
of corank one can be constructed if r > 2, i.e., cork (D C D+ [D,D]) > 2.

Therefore, we can check (verifying (1SD1)-(1SD2) for D = D¥ and, only if r > 2,
the involutivity of B) whether an involutive subdistribution #* of corank one in D*
exists and if it exists, then it is unique and can be explicitly calculated. As a conse-
quence, for any given control-affine system satisfying cork (D¥ c DF 4 [D*, D*]) > 2,



10 TEX PRODUCTION

the conditions of Theorems 3.2, 3.3 and 3.4 are verifiable and we can thus check
whether the system is flat with the differential weight n + m + 1. Moreover, the veri-
fication involves differentiation and algebraic operations only, without solving PDE’s
or bringing the system into a normal form. Moreover, under the same assumption,
it can be shown (via the Jacobi identity, see Proposition 7.2 in Section 7.1) that if
D* contains an involutive subdistribution #* of corank one, then H* satisfies the
following inclusion D*~! ¢ H* and we no longer have to suppose it in the statement
of the theorems.

Let us now consider the case r = 1, that is, cork (D¥ C D* + [DF,DF]) = 1.
In that case, according to Proposition 3.6(iii), if an involutive subdistribution H* of
corank one of D¥ exists, then it is never unique. It is easy to see that not all choices
of an involutive subdistribution H* lead to dynamically feedback linearizable systems
via invertible one-fold prolongation. A natural question arises: how to identify the
“right” subdistribution ¥ (that is, the subdistribution H* that leads to a static
feedback linearizable prolongation) in the case cork (D* C D* + [DF, D*]) = 17

The involutivity of D can be lost in two different ways: either [D*~1 D¥] ¢ DF
(which makes sense only if k& > 1) or [D*~1, D¥] C D* and there exist 1 < i,j <
m such that [ad’}gi,adﬁgj] ¢ D*. As asserts Theorem 3.7 (ii) below, in the case
[DE=1 DF] ¢ DF, the corank one involutive subdistribution H* can be uniquely
identified by another argument. Namely, #* = C¥ 4+ D*~1, where C* is the character-
istic distribution (defined above) of D¥. The subdistribution H* has to verify some
additional conditions analogous to those of Theorem 3.2.

THEOREM 3.7. Assume k > 0 and consider the control system X, given by (2.1).
(i) Suppose that cork (D¥ C DF + [D*, D*]) > 2. The system ¥ is flat at z¢ (at
(xo,u0), if k = 0) of differential weight n+m-~+1, if and only if D* satisfies either
item (i) or item (it) of Proposition 3.6 and its unique involutive subdistribution
HE, given by that proposition, satisfies the conditions (A1) — (A4)" of Theo-
rem 3.4 (or equivalently, satisfies the conditions (A1) — (A3) of Theorem 3.2, if

k > 1, or the conditions (A1) — (A4)" of Theorem 3.3, if k =0).

(ii) Suppose that k > 1, cork (D* C D* + [D¥,D¥]) = 1 and [D¥~1,D*] ¢ DF. The
system X is flat at xg, of differential weight n+m+1, if and only if the following
conditions are satisfied:

(C1) 1k C* = 1k DX — 2, where C* is the characteristic distribution of D¥;

(C2) 1k (CxN DKL) =1k D1 —1;

(C3) The distributions H', for i > k, are involutive, where H¥ = C* 4+ DF~1
and in+1 — 'Hz + [f, szL

(C4) There exists p such that HP = TX.

For the case treated by item (i) of the above theorem, the to-be-prolonged control
is defined exactly as explained in Section 3.1. The proof of Theorem 3.7(i) is a direct
consequence of Theorems 3.2 and 3.3, and of Proposition 3.6. We present the proof
of Theorem 3.7(ii) in Section 7.

It can be shown that in the case [D*~!, D¥] ¢ D* (no matter what is the value of
cork (DF C D + [D*, D¥])), the involutive subdistribution #* can always be defined
as above, i.e., the computation of H”* using the procedure given by Proposition 3.6
and that provided by conditions (C1) — (C3) of the above theorem are equivalent if
[DE=1 DF] ¢ D*. This is not valid anymore if [D¥~1, D*] C D*; indeed, in that case,
we have D=1 € C*, the condition (C2) is not verified and (C3) would give H* = C¥.
Notice that in the case [D¥~!,D¥] C D*, the inclusion C¥ C H* is always satisfied
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(implying D¥~! € H*) and is of corank one if additionally cork (D¥ C D*+[D*, D*]) =
1, i.e., H* = C* 4 span {g}, where g is a vector field belonging to D*, but not to C*.
If cork (D* C DF + [DF, D¥)) = 1, [D*~1, D¥] € D* and there exist 1 <i,j <m
such that [ad’}’ Jis ad’;c g;] ¢ D* . any corank one involutive subdistribution ¥ may serve
to define a control (different distributions yield different controls) whose prolongation
gives a static feedback linearizable system. Thus, in order to verify flatness of differen-
tial weigh n+m + 1, we have to construct a corank one involutive subdistribution #*
(condition (A1)), check the involutivity of all distributions #*** defined with the help
of H* (condition (A2)) and the existence of p such that H” = TX (condition (A3)).
If (A2) — (A3) are satisfied for that choice of H*, then the system is flat of differential
weigh n+m+ 1 and becomes static feedback linearizable after the prolongation of the
control u,, associated to H* (see Section 3.1). If this is not the case, construct another
corank one involutive subdistribution H* and repeat the same procedure for #*. The
problem that we are facing with this algorithm, is the definition of a simple criterion
to decide when to stop, i.e., to conclude that the system is not flat of differential
weight n +m 4+ 1. We will explain next how we may overcome this difficulty and
propose verifiable conditions for flatness of differential weight n+m+ 1, for almost all
subcases of the particular case cork (D* C [D¥, D¥]) = 1 and [D*~1, D*] C D¥ (where
D=1 = {0}, if k = 0). To this end, let [ denote the smallest integer such that either

(l-cork) cork (D' c [D',D']) > 2
or
(l-struct) cork (D' ¢ [D',D']) = 1 and [D'!,D'] ¢ D"

Under our assumptions, if [ exists, then [ > k + 1 but it may not exists, in which case
all distributions D¢, for i > k, are either involutive or satisfy cork (D C [D¢, D?]) = 1
and [Di~1, D] C D! Tt can be shown that the distributions D¢, for k < i < I, are
in fact feedback invariant. If [ exists, then we will use the distribution D' (instead of
DF) to give the conditions for flatness of differential weight n +m + 1. The main idea
is that, instead of constructing the subdistribution H*, we will uniquely identify #!
and construct, with its help, the sequence of distributions H?, i > 0, see Theorem 3.8.
The obtained conditions are similar to those of Theorems 3.4 and 3.7 but with the
integer k being replaced by .

THEOREM 3.8. Consider the control system X, given by (2.1). Assume k > 0,
cork (D* C [D*, D*]) = 1 and [D*~1, Dk] C D* and the integer | exists.

(i43) Suppose that k > 1 and | satisfies (I-cork). The system X is flat at xo of
differential weight n +m + 1, if and only if D' satisfies either item (i) or item
(ii) of Proposition 8.6 and its unique involutive subdistribution H', given by that
proposition, fulfils the conditions (A1) — (A4)" of Theorem 3.4 (or equivalently,
satisfies the conditions (A1) — (A3) of Theorem 3.2) and additionally:

(A5)” The distributions H' = D'*~' + ad}H, for k < i <1—1, are involutive,
where H is the corank one subdistribution of D°, uniquely associated to
H!, such that H' = D=1 + adip’H.

(iv) Suppose that k > 1 and | satisfies (I-struct). The system ¥ is flat at zo of
differential weight n-+m+1, if and only if D' satisfies the conditions (C1)—(C4)
of Theorem 3.7 (i) and, additionally, condition (A5)", of the above item.

(v) Suppose that k = 0 and | satisfies (I-cork) (resp. (I-struct)). The system X is
flat at (zg,uo) of differential weight n+m + 1, if and only if D' satisfies either



12 TEX PRODUCTION

item (i) or item (ii) of Proposition 3.6 (resp. the conditions (C1) — (C4) of
Theorem 3.7 (ii)) and the corank one subdistribution H of D°, uniquely asso-
ciated to H! by H' = D1 + adlf’H, satisfies the conditions (A1) — (A4)" of
Theorem 3.4, where H' is the involutive subdistribution of D', given by Proposi-
tion 3.6 (respect. by condition (C3) of Theorem 3.7 (ii)).

If I does not exists, then all distributions D?, for i > 0, are feedback invariant and
we will denote by C* the characteristic distribution of D¥. Since [D¥~!, DF] C Dk, it
follows immediately that D*~! is contained in C¥. Moreover, it can be shown that

rk C¥ = 1tk DK — 2

is necessary for flatness of differential weight n 4+ m + 1, we can thus assume that this
relation holds for Theorem 3.9. Under that assumption, it can be proven that there
exist vector fields hs, ..., hy, € DO such that

C* = Dk + gpan {ad’}hj, 3<j<m}.
We introduce the following sequence of distributions:
E% = span{hs,...,hy} and £ = D' + span {ad}+1hj, 3<j<m}, fori>0.

Let s be the smallest integer such that £° is not involutive. Notice that the integer s
may not exist, i.e., all distributions £%, for 4 > 0, are involutive, and in that case, we
take s = 0o. It can be easily shown that all distributions £, for 0 < i < s, are in fact
feedback invariant. If s exists and [£%,E°] # T X, the obtained conditions are given
in terms of the distribution £¢, see Theorem 3.9(vi), and remind very much those for
two-input control systems that are flat of differential weight n + 3, see [21, 19].

If s does not exist (i.e., all distributions £¢ are involutive) and there exists p such
that €7 = TX, then the system actually becomes static feedback linearizable after
two prolongations without any additional condition and thus, it is flat of differential
weight at most n + m + 2. Indeed, apply an invertible static feedback to bring the
system ¥ into the form % : & = f(x) + G161 (@) + U2g2(x) + > oiv 5 @ih;. Then the
prolonged system

~ i = f(@)+nd (@) +yade(r) + S yih
501050 . ) o )
: U1 1
Y2 = U2

where y; = 4;, for 1 <7 <2, and v; = 4y, for 3 < j < m, is static feedback lineariz—
able, since all its linearizability distributions are of the form D), = span {2 Em &
and thus involutive.

’ 32!2

THEOREM 3.9. Consider the control system X, given by (2.1). Assume that

k >0, cork (D* C [D*, D¥]) = 1 and [D*¥~',D*] C DF, cork (C* C D*) = 2 and the
integer | does not exist.
(vi) Suppose that k > 0, the integer s exists and [E°,E°] # TX. The system X is flat

at xo (at gaco, ug), if k=0) of dzﬁerentzal weight n +m + 1, if and only if

(D1) vk & =1k E* + 1, where & is the involutive closure of &*;

(D2) rk (E + D) = rk Ds =1k& +1, zmplymg the existence of a vector field

hy € DY such that hy ¢ E° and ad“‘ he € E;
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(D3) The distributions H*, for i > s — 1, are involutive, where H*~1 = £571 +
span {ad;‘;_lhg} and HiTt = HE+ [f,HY), fori>s—1, if s > 1, (resp.,
the distributions H', for i > 0, are involutive, where H° = £+ span {hs},
H' =D°+[D°, DI+ [f, H°] and H'™*' =H' +[f, H'], fori =1, if s =0);

(D4) There exists p such that HP = TX;

(D5) HL(z) = H(z), around (zo,up), where H.(z) = DO+ [f+> 1" wigi, H°],
if k= 0.

(vii) Suppose that k > 0 and the integer s does not exist. The system X is flat at

(zo,uo) of differential weight at most n+m + 2.

The proofs of Theorems 3.8 and 3.9 follow a similar line as those of, respectively,
Theorem 3.2 and Theorem 3.1 in [21] and are left to the reader.

Now, notice that, in the case of two-input control-affine systems, i.e., m = 2,
any corank one involutive subdistribution H* of DF satisfies cork (D* c H*¥*1) = 1,

therefore, D" =1+ and we necessarily have cork (D* C D + [D*, D¥]) = 1. Thus
neither item () nor item (i7) of Proposition 3.6 occurs for two-input flat systems of
differential weight n +m + 1 = n 4+ 3. Thus we cannot check flatness of differential
weight n 4+ 3 using Theorem 3.7(i). On the other hand, Theorem 3.7 (ii) covers the
case m = 2, but only if [DF~1 DF] ¢ D*. In [21] (see also [19]), we treat the case
m = 2 in its full generality. Namely, we define (by another method) the involutive
subdistribution H* in all cases satisfying D* + [D¥, D] # TX (no mater whether
[DF-1, Dk ¢ Dk or [DE-1,D*] c D* and [ad’;gl,ad’}gg] ¢ DF). Moreover, in the
particular case D¥ + [D¥ DF] = TX and [D*~!, D¥] ¢ DF, the subdistribution H* is
defined as in Theorem 3.7 (ii). Finally, if D* + [D¥, D¥] = TX and [D*~!, D*] C DF,
we have shown, in [21], that the system is flat of differential weight n+3 without any
additional structural condition.

To summarize, the conditions of Theorems 3.2-3.4, restated as in Theorems 3.7 -
3.9, are always checkable (with the help of Proposition 3.6) in terms of the vector
fields of the original system, except for three particular cases: m = 2, for which the
authors presented in [21], see also [19], verifiable necessary and sufficient conditions
for flatness of differential weight n+3, and the case m > 3, if cork (D* C [D¥, D¥]) =1
and [D¥~1 D*] C DF and either | does not exist and [£°,£%] = TX or both [ and
s do not exist. The last two sub-cases need a separate analysis (for the last one,
we only do not know to distinguish between flatness of differential weight n +m + 1
and n 4+ m + 2). Moreover, the verification of conditions involves differentiation and
algebraic operations only.

4. Calculating flat outputs. The goal of this section is to answer the question
whether a given m-tuple of smooth functions forms a minimal z-flat output.

Recall that, according to Lemma 3.5 in Section 3.1, we can always construct the
following sequence of nested involutive distributions:

(4.1) HOCcH ' Cc-o-CHITPCH =TX

where either £ = 0 and then H? is the involutive corank one subdistribution of D, the
distribution H' is defined by H' = D + [D°, D] + [f, H°] and HT' = H' + [f, H],
for 1 <i<p—1,o0rk>1and then #° is the involutive corank one subdistribution
of DY associated to H* and H* = D~ ! + adl]}H, 1<i< k-1 1If k > 1, then,
for i > 2, we actually have H? = H'~! + [f,H'"!]. For both cases, p stands the
smallest integer such that H” = T'X. We will denote by r; the corank of the inclusion
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HP—I C HPIFL for 1 < j < p. We clearly have 1 <7y <7y < -+ < rp < m and we
put ro = 0.

We can now state our result describing all minimal z-flat outputs of differential
weight n+m 4 1. The following proposition answers the question whether a given m-
tuple of smooth functions (1, -+, ¢r,, ¥r, 41, ,%¥m) forms a minimal z-flat output
and holds for both cases £ = 0 and k£ > 1. If , = m, then in the above m-tuple the
functions 1; are missing.

PROPOSITION 4.1. Consider the control system %, given by (2.1), that is flat
at xo (resp. at (xo,u0), if k =0), of differential weight n 4+ m + 1. Then an m-tuple
(1,500, Yrp41,s -+ %m) of smooth functions defined on a neighborhood of x¢ is a
minimal z-flat output at xo (resp. at (xo,uo)) if and only if (after permuting them,
if mecessary):

(FO1) for 1 < j < p, the differentials dyp; annihilate HP~7, where 1 < i <rj;
(FO2) the differentials dcpgq) and di; are independent at xq, where r, +1 <1 < 'm,
and1<j<p, 0<qg<p—j,r;1+1<i<r;.

A proof of Proposition 4.1 is given in Section 7.

5. Constant rank assumptions and systems with singularities. Recall
that for all results presented in this paper we have supposed in (Assumption 1) that all
ranks involved are constant in a neighborhood of a given g € X (or (wo,u}) € X xU").
A natural question is whether (some of) our results hold around points of the singular
sets where certain ranks drop. In particular, which ranks are allowed to vary and
which have to be constant.

The constant rank assumption is necessary for Proposition 3.1, claiming the equiv-
alence between flatness of differential weight n+m+ 1, z-flatness of differential weight
n + m + 1, and dynamic feedback linearization via invertible one-fold prolongation.
Without (Assumption 1), that equivalence no longer holds as the following example
shows.

Example. Consider the following control system

O

To = T1 + TaUg,

where z € R? and w € R?. It is easy to see that (S) is (z,u)-flat at (zo,uo) of
differential weight n +m + 1 = 5, where 2o = 0 and ug € R?, with (22, u2) a minimal
flat output, but it is not z-flat at (xo,uo).

So the equivalence (i) <= (i) does not hold. Neither holds (i7) <= (iii) because
the system prolonged via u; = v1, @2 = ve, whose state is (1,22, u2) and controls
are (v1,v2), is static feedback linearizable at zp = 0 € R2. The reason for which
the equivalences (i) <= (i7) and (ii) <= (i4i) are not valid is that the distribution
DO = span {52, 2252} is not of constant rank around zo = 0 € R?.

To understand the role of the constant rank assumption for Theorems 3.2, 3.3, 3.4,
recall that if a system is static feedback linearizable (i.e., of differential weight n+m),
then the distributions D¢ of Theorem 2.2 have to be of constant rank. It turns
out that if a system X is flat of differential weight n + m + 1 around (zg,ug), then
the distributions D' need not be of constant rank as shows the system (S) of the
above example that is flat of differential weight n +m +1 = 242+ 1 =5 around
(zo,up) = (0,up), for any ug, but whose distribution D° is not of constant rank
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around zg. Even under the stronger requirement of z-flatness, the distributions D?
of Theorems 3.2 and 3.4 need not be of constant rank. Indeed, for the system (S)
prolonged via 1i; = vy, g = v9, the distribution D! is not of constant rank althought
the system is x-flat.

On the other hand, if we study linearizability under invertile one-fold prolongation
(instead of flatness), then we can reformulate Theorems 3.2-3.4 around any (x¢, uo)
(around which D* are of constant rank or not). It turns out that the ranks of the
involutive distributions H* have to be constant, while that of D* may vary (but not
those of D%, for i < k—1). Namely, the following theorem, an analogue of Theorem 3.3,
holds for the problem of linearization via an invertible one-fold prolongation.

Let k be the smallest integer such that the distribution D does not satisfy
the static feedback linearizability conditions of Theorem 2.2, i.e., the smallest k
such that either DF is not involutive or not of constant rank, and denote d =
max dim(D*(z)/D*~1(z)) around xp. By the latter we mean that there exists a
neighborhood of zy such that the dimension of the quotient is not greater than d and
in any neighborhood of xg there are points at which it is d.

THEOREM 5.1. Suppose k > 1. The system X is locally, around (xo,uq), feedback
linearizable via an invertible one-fold prolongation if and only if there exists a (m X
d)-matriz f = (Bij), where Bi; are C*-smooth functions in a neighborhood of xo,
tk B(z) = d, and such that

(A0)s span {ad’}gl, ce ad’}gm}(x) = span {ad’}g}l, . ,ad’}ﬁd}(:ﬁ) mod D*~1(z), for any
x in a neighborhood of xg, where § = g8, with ¢ = (g1,--.,9m) and § =
(G1,---,9a) = (1, h2,..., ha);

(A1)s The distribution H* = D*~! + span {ad’}hg, e 7ad§hd} is involutive and of
constant rank tk H* = rkD*1 +d —1;

(A2)s The distributions H, fori > k+1, where H' = H'=1+[f, HI™Y], are involutive
and of constant rank;

(A3)s There exists p such that HP =TX.

Notice that, indeed, the involutive distributions H® have to be of constant rank.
On the other hand, the rank of D* may vary. Conditions (A40), - (A1), actually imply
that DF is generated, as a module, by the involutive sub-distribution of constant
rank H* and just one more vector field of the form ad’} g1 that may or may not vanish
at zo (for g1 = 3./, giB1,i, not all 31 ; vanishing at z¢). If it does vanish, then the
rank of D, indeed, drops at xy. The proof of the above theorem follows the same
line as that of Theorem 3.2. The fact that H’ have to be of constant rank is a direct
consequence of the constant rank of the linearizability distributions D;, associated to
the static feedback linearizable prolongation %(1:0::0) (see the proof of Theorem 3.2).
In the same way as in the proof of Theorem 3.2, we deduce that D*~1 ¢ H* c DF, but
now the codimension of the inclusion #*(x) C D¥(z) is either 1 or 0 and, moreover,
the distribution D* has to be generated by H”* and just one more vector field adl}gl
that satisfies condition (A0)s.

Example. We will show that the conditions of Theorem 5.1 cannot be re-
placed by their pointwise analogue, that is, by the requirement: there exists an
involutive distribution H* of constant rank, satisfying (A2)s and (A3)s, such that
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codim (H*(z) € D¥(x)) < 1. To this aim, consider the system

T = w3
iy = x4+ 3(af+a})
r3 = U1
Ty = U
.’i‘s = us.

We have DY = span{%, 9 9% and D' = D° + span{%,m%,xs%}, so 4 <

Oxy’ Oxs
dim D!(x) < 5 and the involutive distribution H! = span {8%17 8%3, 6%4, 8%5} satisfies
DO cH! € D! and rkH!(x) = 4. Moreover, H? = H' + [f,H!] = TX. Nevertheless
the system is not static feedback linearizable via an invertible one-fold prolongation.
An attempt would be to put Z; = x1 + %(xi + x%) giving ¥ = T3 + Taus + Tsusz.
But then Z; depends on both @y and 3 implying that two one-fold prolongations are
needed.

To see the reason, notice that tk D% = 3, the maximal dimension of D! (z)/D(x),
in a neighborhood of 0 € R?, is 2, and there does not exist any smooth vector field
g1 = Bi1g1 + B2ge + P393 (with 8; smooth and not all vanishing at 0 € R%) such
that span {ad§1} = span {z4 5%, 75 52-} mod D°, so D! cannot be generated by the
involutive sub-distribution #* of constant rank 4 and just one more vector field ad ;g .
Thus (because of Theorem 5.1) we are, indeed, not able to linearize the system via
an invertible one-fold prolongation.

6. Examples.

6.1. An example: normal form for & = 0 and singularities in the control
space. Consider a three-input control-affine systems ¥ flat of differential weight n +
3+ 1 at (zo,up), with & = 0 and cork (DY c D° + [P, D)) = 2. ¥ is locally
static feedback equivalent, around xy € X, to the the following normal form in a
neighborhood of zy € R”

-1 .2 .1 _ 2
21 = 22 i = 2
k=0 .p1—1 .pi—1 0
(NFy=3)q 20 = f* 2y =z
101 -~ 2P — , pitl s
24 = U Z = a;(2)+ z:'
Lt s
2 =1

where j = 2 or 3, p1 + p2 + p3 = n, and a; are arbitrary smooth functions such that
pi+1_
ke (2O M) (g ) = 2, where 2 <4, < 3.
The above normal form is generalizing the Brunovsky canonical form. Namely,
for three-input control systems, at most two components (i.e., at most only one com-
ponent for each chain) are replaced by arbitrary (nonlinear) functions. It is easy to
see that (NF5=9) is flat with the top variables ¢ = (2}, 23, 2}) being minimal flat out-
puts of differential weight n+3+ 1 and that (NEF¥=%) becomes locally static feedback
linearizable after a one-fold prolongation of %7, which is the to-be-prolonged control.
Moreover, if we replace @; by 41 = 8(z)t1, with 8(z) # 0, and we prolong @4 instead of
i1, the prolonged system is also locally static feedback linearizable. The normal form
(NFE=9) allows us to see that in the case k = 0 (and according to our results only
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in that casel), the precompensator may create singularities in the control space (de-

daj (z)+z;j +

pending on state). Indeed, the controls iy satisfying rk ( “ ) (20, Ug) < 2,

azf""+l
where 2 < 4,5 < 3, are singular for (NFX=9%) | an invariant description of that set of
singular controls being given by Usng. It follows that (NEF5Z%) ceases to be flat of
differential weigh n + 3 + 1 at (2o, @), with g for which the above rank is at most 1

daq ~ day
. §oP1T1 + U §,P2T1
or, equivalently, det 3 3 . = 0. For each fixed z € R”, the
as az
6zf1+1 6z§2+1 + U

determinant is a polynomial of 4y of degree 2, so it may have 2, 1, or 0 distinct real
roots. Therefore for a given z € R”, the values of the singular controls, respectively,
form two affine planes in the control space R3, one affine plane in R3, or are absent.

6.2. Quadrotor helicopter. A quadrotor is a four rotor helicopter. Assume
that a body frame is fixed at the center of gravity of the quadrotor, with the z-axis
pointing up-wards. The body frame is related to the inertial frame by a position
vector (z1,y1,21) and 3 angles (6,1, @) representing pitch, roll and yaw, respectively.
The equations of motion are given by the following control system [1, 2] (see also [28],
where a quadrotor with a cable-suspended load is considered):

i‘l = X2

Zo = wuy(cossinfcost + sinpsiny)

g1 = Y2

Y2 = uy(singsinfcosy — cospsiny)
EQH . 21 = 22

Zo = —g+ ui(cosfcosy))

é = U

Y = ug

o = w

The control u; represents the total thrust on the body in the z-axis, us and ugz are the
pitch and roll inputs and w4 is the yawing moment. The quadrotor helicopter has been
shown to be flat, with (z1,y1,21,¢) a flat output, see [2]. The system is not static
feedback linearizable, but it becomes static feedback linearizable after an invertible
one-fold prolongation. To illustrate our results, fix & € X = R® x SO(3) such that
(cos @ costpcosp (cospsinfcosy + sinpsiny))(&) # 0. In order to simplify the
bracket computations, we apply the following static feedback transformation (which
is supposed invertible around the nominal point &)

U1 = uy(cos @sind cosp + sin psin )
U =g, 2<1<4,

and get
T = I Y1 = Yo
Ty = U QQ = wa(,y, )
_ 0 =
Yoy . . _
21 = 22 Y = U4,
2'.2 = _g+alb(97wag0)
(0 U3,

where
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__ sinpsin @ cos ®p—cos p sin Y

and b= cos 6 cos ¢
. . cos psinf cosp+sinpsiny " cos psin 0 cos P+sin psin
The distribution

DY san{i—i-ai—i-bi ﬁﬁ 0
- Dys 02 00" 00 D
is not involutive. Indeed, the vector fields g;, 1 < ¢ < 4, [g1,¢92] and [g1, g3] are
independent at & (provided that cosfy cos g cos pg # 0, which is verified according
to our assumption). We obtain

DO_i_[IDO’rDO]:Span{g i ﬁ i i 9 }

Here k = 0 and cork (DY C [D°, D)) = 2, consequently we are in the case of Theo-
rem 3.3. It is immediate to identify the unique corank one involutive subdistribution
of DY, that is #° = span {2, %, % .
We have H! = D° + [D° DO + [f,H°] = DY + [DY, D] (since [f,g;] = O, for
2 < i < 4), which is clearly involutive, and H? = TX. The system EQ p satisfies all
conditions of Theorem 3.3, hence the corresponding prolongation given by

T = X2 o= Yo
To = U yg = ala(971/}a QO)
(1,0,0,0 U = v A= 2
EEQ}-I’ ,0) . ,7%’2 = _g+ alb(97’d)7(p)
0 = v
Y o= wv3
Qb = U4,

where v; = @;, for 2 < i < 4, is locally static feedback linearizable. Indeed, apply-
ing the following change of coordinates 0 = @1a(0,v, ) and ¥ = —g + 41b(0, ¢, @)
(which is valid in a neighborhood of &, and for @9 # 0) and a suitable feedback
transformation, we get

x.l = 2 yl — yz 2';1 — 212 g@ = U4
28}2’0’0) Qo d = w Yo =0 L=
w = U 6 = Vg 1; = s,

which is the Brunovsky canonical form with (x1,y1, 21, ¢) playing the role of the top
variables. From this, it is obvious that (x1,y1, 21, ¢) is a minimal flat output, i.e., of
differential weight n4+m+1=9+4+4+1=14.

7. Proofs.

7.1. Notations and useful results . Consider a control system of the form

X +Zuzgz f(@) +urg1(x) +ZUh(93

=2

where the change of notation is to distinguish the first control (respectively, the
first vector field g1) from the remaining controls u; (respectively, remaining vector
fields g;), for 2 < i < m. By X100 we will denote the system ¥ with one-fold
prolongation of the first control, that is,

w00, [ & = (@) +yg1(@) + 2L, vihi(w)
= n
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with y1 = uy and v; = u;, for 2 < i < m.

To £(1:0-:0) we associate the distributions Dit! = Di + [F,Di], for i > 0,
where F =" | (f; +y191i)a%i stands for the drift of £(:0-0) and DY = span{aiyl,
Sy hjia%,-,v 2 < j < m} is the distribution spanned by the control vector fields of
the prolonged system, the subindex p referring to the prolonged system 3(1:0:+:0),

In our proofs we will need the two following technical results. Consider the control
system X, given by (2.1), and let DF be the first noninvolutive distribution.

PROPOSITION 7.1. Assume that 3 is dynamically linearizable via invertible one-
fold prolongation. If k> 1, then rkD* — rkDF-1 > 2.

Proof. Assume rkD* — tk D*~! = 1 and let [ be the smallest integer such that
tkD! — tkD!"! = 1. It is clear that 1 < | < k. Since ¥ is dynamically lin-
earizable via invertible one-fold prolongation, there exists an invertible static feed-

back transformation, u(z) = «a(z) + B(x)u, bringing ¥ into the form ¥ : & =

f(z) 4+ @161 (x) + > i~ Uihi(z), such that the prolongation

2(1707... ,0) : { 17 = f(l‘) + y1§1 (1‘) + Z:’;2 vzhl(x)
B = n
with y; = 41 and v; = 4;, for 2 < i < m, is locally static feedback linearizable. For
simplicity of notation, we will drop the tildes, but we will keep distinguishing g; from
h; (which could also be denoted g¢;) whose controls are not preintegrated.
Since L(1:0:0) ig Jocally static feedback linearizable, for any i > 0 the distri-

butions D; are involutive, of constant rank, and there exists an integer p such that
rk Dy = n+ 1. We have

Dy = span{ail,hj7 2<j<m},
D, = span{g -, g1,hjadsh; +yilgr,hyl, 2 <j < m}.

For k > 1, the distribution DY = span{gi, h;, 2 < j < m} is involutive, thus
[91,h;] € DY, for 2 < j < m, and D} = span{a%l,ghhj,adfhj, 2<j<m} Itis
easy to prove (by an induction argument) that, for 1 <i </,

) 0 - i .
’D; = span{aiylhgh. .. ’ad; 1gl,hj7' .. ,ad}hj, 2<35< m}

We have D!~! = span {g, - ,adiflgl, hj, -+ 7ad§flhj, 2 < j <'m} and by the
definition of [ either adlfhj e D=1 for all 2 < j < m, ie., adlfgl ¢ D=1, or there
exists an integer 2 < s < m such that adlfhs & DL

In the first case:

. o ,
D) = span {=—}+ D', for j > 1,
P { oy }

The involutivity of the distribution Di, associated to the prolonged system, implies
that of DI~!. For j = k + 1, it contradicts the fact that D* is noninvolutive.

In the second case, there exists an integer 2 < s < m such that adlfhs ¢ D1,
Since rk D! = rk D!~ +1, we deduce that D! = span {g;, - - - ,ozdlf_lgl7 hj, - ,adlf_lhj,
adéphs, 2 < j < 'm}. Moreover, for $(1.0..0) " we have

, P .
Dj = span {a—yl} + D7, for j > 1,
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and the involutivity of Dg; implies that of D7. For j = k, it follows that D* is involutive,

which contradicts the assumption of noninvolutivity of D*. Thus [, if it exists, satisfies
[ >k+1and tkD* — tkDF-1 > 2.

PROPOSITION 7.2. Assume k > 1 and suppose that D* contains an involutive
subdistribution H*, of corank one.

(i) If cork (D* C D* + [D*, D)) > 2, then H* satisfies D*~' C HE.

(ii) If H* satisfies D*~1 C HE, then there exists a distribution H, uniquely associated
to HE, such that H C D° is of corank one and H* = DF~1 + ad’}?—[. Moreover,
all distributions H* = D=1 + ad}?—[, for 0 <i < k—1, where D=1 = {0} and
HO = H, are involutive and are feedback invariant, that is, do not change if we
replace f by f+ > i, ;g

REMARK 3. Notice that for 1 <i <k —1, we actually have H'1 = H' + [f, H1].
Assume that there exists an integer p such that HP = TX and suppose that p is the
smallest integer satisfying that property. If we denote by r; the corank of the inclusion
HP—I C HPTITL, for 1 < j < p, we clearly have 1 <711 <719 <--- <71, <m.

Proof of (i). By cork (D* c DF + [D¥, D¥]) > 2 and according to Proposition 3.6,
if the distribution D* contains an involutive subdistribution ¥, of corank one, then
HF is unique. Using the Jacobi identity, it is easy to show that DF=2 C H*. To
prove (i), suppose DF~1 ¢ H*  i.e., there exists a vector field v € D*~!, of the form
v=>y ", aiadiflgi mod D*~2 satisfying D*¥ = H* + span {v}, where «; are smooth
functions, not vanishing simultaneously and such that v ¢ D*=2. The vector field v
can also be written as v = adlfc—l(zgl a;g;) mod D*~2 and we can always assume,
without loss of generality, that «; is nonzero and ad?i1 g1 € DF=2. So replacing g;
by Y, a;gi, we have D* = H* 4 span {adl;_lgl}. From this, we deduce that the
involutive subdistribution #* is given by

Hk = Span{gh"' 7adl;'_2gl7a‘d];‘gla gj, 7a‘d];‘gja 2 S] < m}

—k —k
Thus, the new directions, completing D* to D, where D is the involutive closure
of DF, are of the form [ad’}gi7ad§i_lgl] for some indices i such that 1 < i < m,

and since cork (D* C D* 4 [DF, D¥]) > 2, there are at least two integers i satisfying
that property. Therefore at least one of them, say s, satisfies s # 0, and we have
[ad’fpgs7 ad’;_l g1] € D*. Applying the Jacobi identity, we obtain

ladgs, adi ™ g1] = [[f, ad§ " gs), ad i) = [[f, ad} ' g1], ad§ ™ g + [f, [ady ' gs, ad " g1 ]]
= [ad?gl, ad';_lgs} mod DF
and since the vector fields adfcgl and adlj_lgS belong to H*, which is involutive,
[ad’}gl,adfflgs] € H*. It follows immediately that [ad’;gs,ad’;flgl] € DF, which
contradicts our assumption. Therefore, the inclusion D*~1 C H* holds.
Proof of (ii). Let us first show the existence of the distribution #. Denote

cork (D¥=! C D*) = ¢ and suppose that the vector fields g; € D°, for 1 < i < gq,
satisfy

DF = DF1 4 span {ad’}gi, 1<i<gq}.

Thus there exist smooth functions B; such that ad’}gj =37, ,Bjiad]}gi mod DF~1, for
¢+ 1<j <m. It follows adf(g; — Y7, Bi'g:) = 0mod D*~1. Denote h; = g; —
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Sy 6jigi, for g+1 < j < m. We clearly have D° = span {g1, - , gq, hgt1," " » b},
with h; such that adjh; € D¥!, for ¢+ 1 < j < m.

Since DF~! ¢ HF and H* C DF is of corank one, there exist smooth functions
Ay, for 1 < 4,5 < g, such that the g x g-matrix A = (A}) is invertible and the
distributions H* and D* verify

q
HE =D 4 span{z )\;»ad]}gi, 2<j<gq}
i=1

q
DF = H* 4 span {Z N ad}g:}.
i=1

Denote g1 = > ¢, Nigiand h; = > %, )\;’-gi, for2 < j <¢q. Weput H =span{h;, 2 <
j < m}, which is clearly of corank one in D° = span {g1,h;, 2 < j < m} and satisfies
HY =D 4 adfH.

We will prove next the involutivity of all distributions H?, for 0 < ¢ < k — 1.
Assume that the distribution #*~! given by

HET = DF2 4 adh ' = DF2 4 span {adh " hy, 2 < < m)

is not involutive. Since ﬁl}gﬁilnclusion HE=1 ¢ DF1 is of corank one and DF~1! is
involutive, it follows that H = DF~'. Moreover, D*~2 C H*~! and D*~2 involutive
imply that the new direction completing H*~! to its involutive closure is given by
a vector field of the form [adlfhi,ad];*lhj] or of the form [adj-gl,adl;*lhj], where
2<i,j<m0<I<k—-—1and0<s < k-2, and is necessarily collinear with
ad];flgl mod H* 1.

Let us suppose that there exist two integers 2 < i, 7 < m such that [adlfhi, ad';_lhj}
¢ HF~1. Hence, there exists a non zero smooth function « such that [ad?hi, adé‘flhj] =
aad’Jf*lQl mod H*~1. From this, applying the Jacobi identity and the involutivity
of H*, it follows

lad’hi, adbh;) = [adyha, [, ady " hy]) = [f, [adyhi, adb ™ hy)] — [ad' g, adly " hy]
=[f, aadl;_lgﬂ mod H* = ozad?gl mod H*.

On the other hand, [adlf hi, ad’}hj] € H*, and consequently ad’}ﬁl € H*, which contra-
dicts our assumption, otherwise D* = H* and D¥ would be involutive. We conclude
that #*~' is involutive. Following the same line, the involutivity of 7* implies that
of Hi=t for1 <i<k—1.

An analogous reasoning applies if [adécgl, ad?_lhj] ¢ HFL

7.2. Proof of Proposition 3.1. We will show the implications (i) = (ii) =

(i) = (i1). Consider the control system = : & = F(z,u) and assume that = is flat
at (zo,u)), of differential weight n 4+ m + 1. Let ¢ = (@1, ,¢m) be a minimal flat

output. We will denote by s; the order of the highest derivative of ¢;, for 1 < i < m,
involved in the expression of z and u, i.e.,

(7.1) x=5(@,...,opm) and u=0(@5t, ..., @0m),
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where @7 = (i, @i, - - - 730§])) and >, s;+m = n+m+1. We will denote by d.w.(¢)
the differential weight of ¢ so d.w.(p) =n+m+1. Denote X = span {dx1,--- ,dz,}
and Y = span {duq,- -, duy,}.

Assume that there exists ¢, = ¢4 (2, u, 0, - ,u?)), where j > 1. The differential
weight of ¢ being n + m + 1 implies that, clearly, s, = 0. Indeed, if s, > 1, then

dgoq/\~~/\dg0((15‘1) # 0mod (X +U) and d.w.(¢) would be n +m+s,+1>n+m+1.
Denote 0 = @q(x,u,a, - - - ,ul)). If there exists a flat output ¢; such that dp; A df #
0mod (X +U), then d.w.(¢) would be at least n+m+2. We thus have ¢; = p;(z,u,0),
for 1 < i < m, and we bring together the components ¢; that depend explicitly on
6 by permuting ¢;’s such that ¢; = p;(z,u), for 1 <i < p, and ¢; = ¢;(z,u,0), for
p+1<j <m, where 652”' # 0. We assume, without loss of generality, that ¢ = m,
e, om = 6. Clearly, s;, =0, for p+ 1 < i < m (if not, dp; A dp; # 0mod (X + U)
contradicting d.w.(p) =n+m+1).

Let p;, for 1 < S( p, be the relative degree of ;, that is, the smallest integer such
Pi

i

if ¢; depends explicitly on u. For 1 <7 <pand 1 < j < m, denote rk (a‘pi) =rg and

B’U,j

that the derivative ¢ ) depends explicitly on the control u. In particular, p; = 0,

6‘95;)”
8Uj

rk = r1 and assume that there exist ro — rg flat outputs that do not depend

on 0 and whose relative degree p; > 1. Clearly, 0 < ry < r; < ry < p. Permute ¢,
for 1 < i < p, and apply an invertible static feedback v = ¥ (x, v) such that

P = v, 1<i<nr,

@E”” = v, rmo+l<e<ry.
By a supplementary permutation we get p; > 1, for 7o +1 < ¢ < 73, and for those in-
dices we introduce 2/ = L3 ¢;, for 1 < j < p;. Let w be complementary coordinates,
that is, dim z + dim w = n. The system in the (z, w)-coordinates reads

(7.2)
¥ _ Jj+1 % A Jj+1
Zi‘ = Zz y Zi_ = Zz s
Zfl = Uy, TO+1SZST1, Zipl = ai(zaw7v17"'av7'1)7 T1+1§Z§T27
i = G(z,w,v),

for some smooth functions a; and a smooth map G, and is flat with flat outputs

Qi = Uy, 1§i§7"07
(73) wi = Zilv T0+1§i§T2,
’ (Y2J3 == bi(zawvvh"'av’ro)a T2+1§Z§p»
Yi = Ci(z7w7v79)7 p+1<i<m,

for some smooth functions b; and ¢;. The z-part is affected by at most r; controls
(by Vrg+1,- - -, vr, and perhaps by some among vy, ..., v ). So the remaining m — 1
controls v;, for r1 + 1 < ¢ < m, have to be present in the w-part implying that
dimw > m —r;. For r; +1 < i < p, the functions gp(-pi)

K3
depend explicitly on (some of) vy, ,v,, SO dgol(p"’ﬂ) g X +U and thus s; < p; + 1
and, moreover, if s; = p; + 1, then dgoEpiH) A df = 0mod (X + U). From flatness it
follows that using at most 2(p — r1) functions wgpi), @Epi+1), for r1 +1 < i < p (equal,

respectively, either a; and @; or b; and b;), and m—p functions ¢; = ¢;, p+1 < j < m,

J
%

(equal either a; or b;)

we should be able to express (via functions that depend also on z] and vy,...,v,,) at



USING SIAM’S IATEX MACROS 23

least m — 7y state variables w; and m — ry control variables v;, for r1 +1 < i < m.
So we need

2(p—7r1) +m—p=>2(m—ry),

which is equivalent to p > m, yielding a contradiction since p < m — 1. Therefore the
components ¢; of any minimal flat output do not depend on w’, for j > 1.

It remains to consider the case of Z being (z,u)-flat. As we have just proved, we
can bring the system = into the form (7.2), with p = m, whose minimal flat output
is given by (7.3), with the components ¢; = ¢; absent. The system is flat so we need
derivatives (at least of first order) of all functions a;, for r1 +1 < i < ry, and of all
functions b;, for ro +1 < ¢ < m, to express m — r; controls vy, 4+1,...,0,. By the
definition of the relative degree, all functions a; and b; depend explicitly on some of v,.

It follows that, for s > 1, ags) and bl(-s) depend on vy, ... ,vSQ). Notice that, obviously,

dv((f ), for 1 < j <'s, are independent modulo X + U. The differential weight of ¢ is
n-+m+1 so in order to express the remaining controls v,y1, - - - , Uy, firstly, only first
order derivatives of a; and b; may be involved and, secondly, only one control among
V1, ..., Up, SAY vy, can be explicitly present in a; and b; (and thus only di; ¢ X + U,
assuring that d.w.(p) =n+m+1).

We will consider two cases depending on whether the control v; (whose deriva-
tive ¥; is involved) satisfies either 1 <! <rgorrg+1<1<r;.

Consider the case ro+1 <1 < ry. The functions a; are of the form a; = a;(z, w, v;)
but the functions b; are absent since, on one hand, they have to (nontrivially) depend
on v; but, on the other hand, they depend on vy, ..., v, only (by the definition of
r0). It follows that ro = m. The system takes the form

3 = It = It
= vy, ro+1<i <, 2 = ai(z,w,v), m+1<i<m,
= G(z,w,v),

for some smooth functions a;, and is flat with flat outputs

wi = v, 1<i<r,
p; = zil, ro+1<7<m.
Now notice that the first g controls vy, - - - , vy, and the last m—ry controls vr, 41, , v,

do not affect the z-subsystem, so they must be present in the w-subsystem. There-
fore, we have dimw > ro + m — 1. So for flatness we should be able to express (at

least) ro + m — 1 components of w and m — ry controls vy, 11, , Uy with the help
of 2(m — r1) functions a; and a;, for 71 + 1 < i < m (using the functions zf and the
controls vy, - -+, vy, as well). To do so, we need

2(m —ry) > 2(m —r1) + 10,

implying 7o = 0. Moreover, it follows that dimw = m — r1 so by a suitable invertible
static feedback and permuting the variables to rename v; as v; we can bring the
system into the form
zf = z{ +1, zf =z,
=y, 1<i<ry, 2 = ai(z,w,v),
W = v, r+1<i<m,

j+1
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which is z-flat with flat outputs ¢; = zil, for 1 <i<m.

Now we will consider the case 1 < 1 < ry. The functions a; and b; (the latter
may now exist contrary to the previous case) are of the form a; = a;(z,w,v;) and
b; = bi(z,w,v;), respectively, and depend nontrivially on v;. The system takes the
form

S R S N R FS1

L= 5, L= 5,

o= vy, ro+1<i <, 2 = ai(z,w,v), rm+1<i<ry,
w = G(Z,U},’U),

for some smooth functions a; and a smooth map G, and is (z,u)-flat with flat outputs

wi = v, 1 <4 <o,

i =z, ro+1<i<r

wi = bi(z,w,u), re+1<i<m.
Now notice that the first ro — 1 controls among vy, -+ , v, (all but v; that is present
in 2%, for 11 + 1 <4 < 73) and the last m — ry controls v, 41, , vy, do not affect

the z-subsystem, so they must be present in the w-subsystem. Therefore we have
dimw > rg — 14+ m — r;. So for flatness we should be able to express (at least)

ro — 1 + m — r; components of w and m — ryp controls vy, 41, -, v, with the help
of 2(m — ry) functions a;, a;, b;, and b;, where r; +1<i<rgandro+1<j<m
(using the functions z] and the controls vy, -, v, as well). To do so, we need

2(m—1r1) >2(m—7r1) +1ro—1,

implying 79 = 0 or 79 = 1. The first case is impossible since 1 < [ < ry. Therefore
ro = 1 implying [ = 1. Moreover, it follows that dimw = m — r; so by a suitable
invertible static feedback we can bring the system into the form

5 J _ Jj+1 27 _ Jj+1
Z,;) = Z s Z,;] = z s
Zii = Uy, Zil = (li(Z,w,'Ul), w; = Uy,
2<i<nry, r1+1<i<ry, r+1<i<m,

and is (x,u)-flat with minimal flat outputs

$1 = i,
So’i = Zilv QSZSTQ
vi = bi(z,w,v), Ta+1<i<m.

We will show that this system is also x-flat. To this end, observe that rk (%) =
ro — 711, where a = (@y, 41, ..., ar,), and that all a; depend explicitly on v;. Therefore

2
there exist m — ro + 1 components w; of w such that rk (ggz;ww;) =m —r1;+ 1, where

w? = (w;), with i € Iy C {ry +1,...,m} and the set of indices I, is of cardinality
m—re+ 1. Let I C {r1 +1,...,m} be the set of remaining indices. We claim
that the system is z-flat with flat outputs v; = zil, for 2 < i < ry, and ¥; = w;,
for i € I,. Indeed, differentiating (p; — 1)-times 1; = 2z}, for 2 < i < r9, we get
g, V2o vy Upyy AN Gpy g1y ...y Qpy. Since rk(gEZ’;’ig) =m — 1y + 1, it follows by the
implicit function theorem that knowing a; and 1; = w;, for i € Iz, we can express v;
and the components w;, for ¢ € I;. Knowing all components w;, for r1 +1 < i < m,
we get all remaining controls via w; = v;.

z
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Notice that in the just considered case (for which we have proven to have | =
rg = 1), we can bring the system together with the components 1;’s of its flat output
to the following form. Rename 2 , as z{ and a, 41 as a1, then w;, for i € Iy,

1 1 . .
aS Zp 1155 Zm_pytr 11, TeSpectively, and w;, for i € I, as Wm—ryiri 425+ -+ Win,
respectively, and, finally, the old 2], for 71 +2 < i < 1o, as 2, 4y jor--) 2

Applying the invertible static feedback 01 = a1(z,w,v1), which transforms a; into
ai(z,w, 01), and keeping the notation v; and a1 for the tilde-variables, we bring the
system into

J _ Jj+1 1 Jj+1
Z’p = 2z, z% =z,
Zil = Vi, 1 Slﬁ(ha Ziv/ = &7;(27’11),’1)1),
w; = v, @+1<i<m,

where ¢ = m—ra+r1+1 (and hence dimw = ro—r1—1) and p; = 1, for r+1 < ¢ < gy,
which is z-flat with minimal flat output ¢; = 2}, for 1 <i < m.

(1) = (#9i). We will use the notations from the proof of the implication (i) = (i7)

above. Assume that the system is z-flat, let p1(x),..., pm(z) be components of its
(pi)

flat output, p; their relative degrees and denote rk 6&_ = r (we use r instead
J

of r; because the two other integers are trivial: ro = 0 since the system is z-flat
and thus 7o = m). As above, we introduce the functions z] = L%_lgpu apply an
invertible static feedback and permute the flat outputs to get 2" = v;, for 1 <i <r
and 20" = a;(z,w,v1,...,v,), for r+1 < i < m, where w completes the zg’s to a
coordinate system. The system is z-flat of differential weight n = m + 1, so using
the same argument as above (in the first case 1o + 1 < [ < r1), we prove that all
functions a; depend on one control only, say vi, and that their first derivatives only
can be used to express the missing controls v,41, ..., vy,. So the system can be brought
via an invertible static feedback to the form

N B S S B N5
o= 47, o= 2T
(7.4) o=y, 1<i<r, 2= ai(z,w,v1),
w; = v, r+1<41<m,

with z-flat outputs ¢; = 2}, for 1 <i < m.

Notice that the above form perfectly coincides with both forms that we have
obtained when proving the implication (i) = (4¢). Indeed, in the case ro+1 <1 <r;
we have proved that the system is xz-flat and admits the above form with r = ry.
In the case 1 <1 < rp, we have proved that although the system is (z,u)-flat with
differential weight n +m + 1, it is also z-flat and admits the above form with r = ¢;.

Obviously the system becomes static feedback linearizable via the preintegration
v1 = Y1, Y1 = U1, U; = v, 2 < i < m. Notice that, if = is the control-affine
system X, then the feedback transformation bringing ¥ into the above form is actually
a control-affine transformation v = a(z) + B(z)v yielding 2" = v;, 1 <4 < r, and

20 = a;(z,w,v1) = ai(z,w) + Bi(z,w)vy, for r+1 < i < m.

(i43) = (4). Suppose that the one-fold prolongation of the first control of = : & =
F(x,u), given by

=100 . ) T = F(z,y1,v2, - ,vm)
' Y1 = U1
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where u; = y1 and u; = v;, 2 < i < m, is locally static feedback linearizable. We will
prove that = is flat of differential weight n +m + 1.

=(1,0:+.0) jg equivalent via a diffeomorphism z = ¢(z,y1) and an invertible trans-
formation v = ¢ (x,y1,?), to the Brunovsky canonical form

g 0= AT 1<i<p -1,

Po= i, 1<i<m,
where dimz =>1" | p; = n+ 1, for which ¢ = (2{,---,2},) is a minimal flat output
of differential weight n + m + 1. Tt follows that z = (¢ ", ..., @~ 1) = é(x,y1),
where @g = (@i, Piy - - ,@Ej )), thus for the original variables z and the first component
uy = y1 of u, we have (z,u1)" = ¢~ '(2) = ¢~ (@} ',..., @~ 1). Moreover, 7 =
(cpgpl), . ,@55*”)), the map being invertible with respect to v = (v1,..., V), SO We
deduce that u; = v; = 6;(¢]*, ..., @%), for 2 <4 < m (for suitable components §; of

the inverse), showing that ¢ is a flat output of E of differential weight n + m + 1.

7.3. Proof of Theorem 3.2. Necessity. Let us consider a flat control system X :
&= f(z)+> 1", uigi(x), of differential weight n+m+1. According to Proposition 3.1,
there exists an invertible feedback transformation u = «(x) + 8(z), bringing X into
the form ¥ : & = f(z) + @1 g1 (x) + Siv, @;hi(x), such that the prolongation

g(lyo,---,m:{ & = f@)+ngie) + X7, vihi()
yl = V1,

with y1 = @, and v; = 4y, for 2 < j < m, is locally static feedback linearizable. For
simplicity of notation, we will drop the tildes redbut we will keep distinguishing ¢;
from h; (which could also be denoted g;, 2 < j < m) whose controls are not prein-
tegrated. Recall that, see Section 7.1, that D; denote the linearizability distributions
of the prolonged system X(1:0:0)  Since 2(1:0:+:0) ig locally static feedback lineariz-

able, D;, are involutive, of constant rank, for any ¢ > 0, and there exists an integer p
such that rk Dy = n + 1. We have

8 .
Dg = Span{Tm7hj,2 S ¥ S m},
Dy = span { 32-, g1, hj, adsh; + yi[g1, hy), 2 < j < m}.
Since k > 1, the distribution D° = span{gi,h;, 2 < j < m} is involutive, thus
[91,h;] € D° and hence D; = spaun{a%l,gl7 hj,adeh;,2 < j < m}. It is easy to prove
(by an induction argument) that, for 1 <14 <k,

. ol . .
D;’ :Span{aivgla"' 7ad} lglvh]'v"' 7adlfh‘]'7 2 S] S m}
Y1
Define

Hr = span{gy,- - ,ad;‘é*lgl,hj,~~~ ,adl}’hj, 2<j<m}.

Since the intersection of involutive distributions is an involutive distribution, #? =
DiNTX = span{gi, - ,ad}_lgl,hj, -+ yadyhy, 2 < j <m}is involutive, for 1 <4 <
k. In particular, we have H* involutive. Moreover H* is a well defined distribution
on X (it does not depend on y). It is immediate that D*~' ¢ H* C D*, where the
second inclusion is of corank one, otherwise #¥ = D* and D* would be involutive or
HF = DF=1 and rk D* —rk D*~! = 1, which contradicts Proposition 7.1 asserting that
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tk D* — 1k DF~1 > 2 is necessary for flatness of differential weight n + m + 1. Recall
that H! = H=L + [f, Hi71], for i > k + 1. We have

DY = span {3} + W (1] = span () + )
and by an induction argument
D;;'H = span{i} +HE P> 2.
oy
Consequently, the involutivity of DA™ implies that of H**, for i > 1. Moreover,

rk Df = n + 1, proving that tk’H” =n, ie, H =TX.

Sufficiency. Consider a control system satisfying (A1) — (43) and let H° =
span {h;,2 < j < m} be the distribution defined by Proposition 7.2(ii). This system
is static feedback equivalent to ¥ : @ = f(z) + u1g1(x) + Y 1oy u;h;(z). By the same
proposition, the involutivity of H* = D! + ad}’H follows for 0 < i < k—1. It is
immediate to see that the prolongation

(10,0 . { z F@) +y191(2) + 2530, vihi (@)

o= v

with y1 = w; and v; = u;, for 2 < j < m, is locally static feedback linearizable.
Indeed, the linearizability distributions D, associated to £(:0:0) are of the form

_ 5 o
D, = span{z-}+H' i>0,

and the involutivity of 7' implies that of D}, because H' does not depend on y;.

Moreover, tk’H? = n, thus rk sz) =n+ 1 and »(1.0,-,0) g locally static feedback
linearizable. By Proposition 3.1, the system X is flat of differential weight n + m + 1.

7.4. Proof of Theorem 3.3. Necessity.

Repeating the beginning of the necessity part of the Proof of Theorem 3.2, we
conclude that the linearizability distributions D;', of the prolonged system X(1,0::0)
(we drop the tildes) are involutive, of constant rank, for any ¢ > 0, and there exists
an integer p such that tk D) =n + 1. We have

0
O .
D, = span{—ayl,hj, 2<j<m}

involutive. It follows immediately that
H° =span {hj, 2 < j <m}

is a well defined distribution on X, is involutive (as intersection of involutive distri-
butions H® = DY NTX) and of corank one in D°. This shows (A1)’. The distribution

0 )
D, = Span{fay s 91, hyyadghy +y1[g1, hyl, 2 < j <m}
1
is involutive and we deduce that [g1, h;] € D; and adsh; € ’Dzl,. Thus

0 0
D117 = Span{ay » J1, hj>adfhj’ [g17 h‘j]7 2 < .] < m} = Span{@}+po+[D07D0}+[.f.7 HO]
1 1
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and, in particular, we deduce that D° + [D% D] + [f,H°] = span{gi,h;,adsh; +
y1[g1, hj], 2 < j <m}. From this, it is immediate that

H'(z) = span {91, hj,adshj +uifg1, hj], 2 <j<m} = ’Ht(w),

around (zg,ug), implying (A4)’.

The involutivity of D, implies that of H' = D° + [D°, D] + [f, 1], because
H = Dzl, N TX is the intersection of two involutive distributions.

The rest of the proof follows the same line as that of Theorem 3.2.

Sufficiency. Consider a control system ¥ : & = f(z) + u1g1(x) + > iy uihi(z)
satisfying (A1)’ — (A4)’, where the corank one involutive subdistribution is given by
HO = span {h;,2 < j < m}. We will prove that the prolongation

$(L0,--.0) { @ f(@) +yig1(x) + 2075 vihi(x)
M = un

with y; = w1 and v; = w4, for 2 < i < m, is locally static feedback linearizable, around
(z0,y0). We have Dg = span{%, hj,2<j<m}= span{%}+?’-lo7 which is clearly
involutive (since so is H° by (A1)’), and

0 .
D, = Span{@ﬂhhj,adfhj +yilg1, byl 2 < j < m}.
1

According to (A4)" we have, around (zo, uo),

Hi(.’[)) = Span {gl,hj, [f +U1g1 =+ Zuzh,,h]],Q S] S m} = H1($)7
=2

and thus
D! = span{i} +H!
P Oy '

It follows, by an induction argument, that all linearizability distributions D;,

(1,0,

associated to X -0)are of the form

D;, = span{a%l} +H, P>,
and the involutivity of #* implies that of D},. Moreover, rk H? = n, thus rk Df = n+1

and X100 is Jocally static feedback linearizable. By Proposition 3.1, the system
3 is flat of differential weight n +m + 1.

7.5. Proof of Theorem 3.7 (ii). Before giving the proof of Theorem 3.7 (ii),
notice that under the assumption D! involutive, for all 0 < i < k — 1, we have
DF=2 C CF, where C* is the characteristic distribution of D*. We will use that
property in our proof.

Necessity. Repeating the beginning of the necessity part of the Proof of Theorem
3.2, we conclude that the linearizability distributions D]’; of the prolonged system
»(1,0,+,0) (we drop the tildes) are involutive, of constant rank, for any ¢ > 0, and
there exists an integer p such that rkDf = n + 1. Since k£ > 1, the distribution
DY = span{gi,h;, 2 < j < m} is involutive, thus [g1,h;] € D° and hence D} =
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span{aiyl,gl7 hj,adsh;,2 < j < m}. It is easy to prove (by an induction argument)
that, for 1 <14 <k,

) a - ; ;
Di — span{ai%ﬂh... cadlgy by, adihy, 2 < j < m).

Since the intersection of involutive distributions is an involutive distribution, D;,ﬂ
TX = span{g,- - ,adif*lgl,hj,--- ,ad}hj, 2 < j < m} is involutive, for 1 < i < k.
We deduce that the distribution

gk :Span{gl7"' aad’;_lglahja"' 7ad]]€‘hja 2 S.j < m}

is involutive. Next we will prove that E¥ = H* (recall that H* = C* +D*~1 where C*
is the characteristic distribution of D¥).

It is immediate that D*~' ¢ £ ¢ DF, where the second inclusion is of corank
one, otherwise £¥ = D* and D* would be involutive, which contradicts our hypothesis.

Applying the Jacobi identity, it can be proved that [ad';_lhj7ad’;egl] € D*, for
all 2 < j < m, and since £ is involutive, we immediately have [adl;_lhj,Dk] C D*,
for 2 < j < m. Thus ad];flhj e CF, for all 2 < 7 < m, where C* is the char-
acteristic distribution of D*. Moreover, since D¥ = £* + span {ad’}gl} is nonin-
volutive and [D*~!,D¥] ¢ DF we deduce that the new direction completing D*
to D" is given by [ad’;_lghad’}gl] ¢ D*. Hence there exists smooth functions a;
such that [adl}hj,ad’;gl] = aj[adlfflgl,ad’}gl]modl?’“, for 2 < j < m. It follows
[ad’;hj - ajad";_lgl, adl}gl} = 0mod D¥. It is easy to show that

CF = DF2 4 gpan {ad?ﬁflhj, ad'}hj - ozjad’;*lgl7 2<j<m}

thus H* = C* + D*~! = span{gy,--- ,ad];flgl,hj,--~ ,ad’;hJ»Q < j < m}, 1kCk =
rk DF — 2 = £F proving involutivity of #* and implying rk (C¥ N DF~1) = rk DF—1 — 1.
The proof of the involutivity of H?, for i > k 4 1 and of the existence of p such
that H? = T X follows the same line as that of Theorem 3.2.
Sufficiency. Consider a control system ¥ : & = f(z) + >/~ u;g:(x) satisfying
(C1)-(C4). We start our proof by showing that conditions (C'1)-(C2) enable us to
define a distribution H such that H C D°, of corank one, and H*¥ = D+~ ad’}?—[.

To this aim, let us denote by r the corank of D¥~2 c D*F~1. Assume that the
vector fields g; € DY, for 1 < i < r, satisfy

D¢t = DF=2 4 gpan {ad?_lgm 1<i<r}

Applying similar arguments to those used in the proof of Proposition 7.2(ii), we can
define m — r vector fields hj, for r +1 < j < m, such that D° = span{g1,--- ,gr,
hry1,+  hm} and ad’}_lhj eDF2 forr+1< ji<m.
It is clear that D¥=2 C C* and, since tk (C* N D*~1) =tk D¥~1 — 1, we have
CFNpF! =DF2 4 span {¢j, 1 <j<r—1},

where the vector fields ¢; are of the form

T T
cj = Z )xéad];_lgi = ad];_l(z Az»gi) mod D*~2,
i=1

i=1
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with )\;- smooth functions such that the matrix A = (Aé-), where 1 < ¢ < r and
1<j<r—1,isof full rank » — 1. Denote hj; = 22:1 )\égi, for1<j<r—1,and
suppose, without loss of generality, that g; is independent with them.

Since ad]jflhj € CF, for 2 < j < m, we have [adljﬁflhj,Dk] C D*. From this
it can be shown, applying the Jacobi identity, that [ad’;_lgl,ad’;hj] € DF, for 2 <
j < m. Therefore, the new direction completing D* to D =Dk y [DF=1 DF] is given
by [adl;flgl, ad’}gl] and there exist smooth functions «; such that [ad’;hj, ad?gl] =
o [ad’;_lghad’;gl] mod D¥, for 2 < j < m. This gives [ad’;hj fajad’;_lgl,ad’;gl] =0
mod D* and it can be easily verified that the characteristic distribution C* is given by

C* = DF2 4 span {ad’;_lhj7ad’;hj — ajad’;_lgl, 2<j<m}
It follows immediately
H* = DF1 4 span {ad’}hj, 2<j<m}=D"1+ ad’}?—[,
where the corank one subdistribution H of D is given by
H =span{h;, 2 <j <m}.

The involutivity of #* implies that of all distributions H’ = D*~! + ad’#, for 0 <
i <k—1, where D~! = {0} and H° = H. The proof of that statement follows by the
same method as that used in the proof of Proposition 7.2(ii).

We are now in position to show that the control system X : & = f(z)+>..~, u;g:(x)
is dynamically linearizable via an invertible one-fold prolongation. Transform ¥ via
an invertible static feedback into the form % : & = f(z) + @11 (z) + Sy @hi(z),
where the vector fields h; are defined as above. Applying the same arguments as in
the proof of Theorem 3.2, it is immediate to see that the prolongation

$3(1,0,+,0) { z F(@) + g1 () + 75 vihi(w)
o o= v,

with y; = @, and v; = 4y, for 2 < j < m, is locally static feedback linearizable.

7.6. Proof of Proposition 4.1. Recall that to any flat system of differential
weight n+m + 1 we can attach, according to Lemma 3.5 in Section 3.1, the following
sequence of nested involutive distributions:

HOcH ' c---cH P CHP =TX

where either £ = 0 and then H° is the involutive corank one subdistribution of DY, the
distribution H! is defined by H! = D° + [D°, D] + [f, H°] and H1 = H + [f, H],
for1<i<p-—1,ork >1and then 1O is the involutive corank one subdistribution
of D% associated to H* and H' = D' +ad}H, 1 <i < k—1. If k > 1, then, fori > 2,
we actually have H! = H'~1 + [f, Hi"!]. For both cases, p stands for the smallest
integer such that H?” = T'X. Recall that we denote by r; the corank of the inclusion
HP—I C HPTIT for 1 < j < p. We clearly have 1 <7 <7y <--- <7, <m. We will
prove Proposition 4.1 in the case k£ > 1. If £ = 0, then similar arguments apply.

Necessity. Let (01, @y s ¥r+1, -+ ¥m) be a minimal flat output of X, defined
on a neighborhood X of zg. According to the proof of Proposition 7.2, around any
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point of X’, an open and dense subset of X, there exists a valid local change of
coordinates in which the system, after applying a suitable invertible static feedback,
takes the form (7.4), with ¢; and v, being equal to the top variables z}, for 1 <i < m,
where 1, correspond to 2} such that p; = 1. The system under consideration is control-

affine so, compare the comment following (7.4), we have 20" = a;(z) + b;(z)v1 and, by
pi+1

i

changing coordinates and applying a static feedback, we can assume a; = 2
we consider the case k > 1). For 0 < j < p, we have

(since

0 0

;lj— q gy
span { Dz It 9z }
1o} 0
+span{——,..., —5-, 2<i<r
P {8zfi_] 0zf" J
+ span { 0 r+1<i<m}
L, <i<mj.
azipi*H»l azzpz+1

It follows that HP~! (recall that p is the smallest integer such that H? = TX) is
annihilated by dz} such that p; = p+ 1, if 2 < i < r, and p; = p, if either i = 1 or
r+ 1 <4¢ <m. There are r; differentials of the form dzil satisfying one of the above
conditions. Similarly, we show that 7 is annihilated by dz! such that 1 <1 < p;—j—1,
if2<i<r,and1<1[<p;—j,ifeitheri=1o0rr+1<i<m. Among them
there are r,_; differentials of the form dz}. It follows that r; differentials of the form
dz} annihilate H*~7, for 1 < j < p, which (after a permutation, if necessary) are,
respectively, dz} = dp; proving that the functions ¢4, - - - , r, satisfy condition (FO1)
on X'’. Since all functions ;, for 1 < i < r, as well as all involved distributions #?
are defined on X, by continuity (FO1) is valid on X.

The differentials of flat outputs and those of their successive time-derivatives are
always independent, so (FO2) follows.

Sufficiency. Let (o1, ,@r,, ¥r, .1, ,¥m) be an m-tuple of functions satisfy-
ing conditions (FO1)-(FO2). For any 1 < j < p, define the functions z! = L?fjapi,
where j <1 < pandr;_; +1<i<r;. Notice that now the variables zf are indexed
not the same way as those of the form (7.4), in particular, in the actual definition,
the 211 exist only for 1 <14 <y, the 23 only for 1 < i < ry and, in general, zf only for
1 <4 < 7. The differentials dzll- = dLl]fj% are independent because of (FO2) and
we have dim 27 = r; = cork (H#™7 C HP~IT1), for 1 < j < p. Since tk H” = m — 1, it
follows that rank H” =n = (m—1)+ry +---+r,. Complete (2!,...,2") by zf“, for
2 <i < m,such that z = (z1,..., 27, 2°*!) forms a local coordinate system around zy.

Using condition (FOI) and HJ = HI~ + [f,H7~'] (which is valid for j > 2) we
conclude that the differentials dz},...,dz] annihilate the distribution #”~7. Recall
that DY = span {g1,...,9m} C H!, so the relative degree of zf, for 1 < j<pisat
least p — j + 1. It follows that in the z-coordinates, the system takes the form

Z,1 = 2’12 for 1<i<mr
2 = % for 1<i<ry
# = P for 1<i<r,;
P _ 14 m P .

2 = [(z)+ 2250, uig(2) for 1<i<r,

= ff“(z)—f—zgn:lujgfjl(z) for 2<i<m.
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1o}

The involutive distribution H° = span{ =2+, 2 < i < m} is of corank one in DO =
92PT

span{gi,...,gm} so by a suitable static feedback transformation u = a(z) + B(z)v
and a permutation of the z-variables we can transform the z”- and zT!-subsystems
into

2P

Zyx =  U;*

P = a;(2) +bi(2)v for 1<i<r,, i#i*
P =y for 1<i<m, i%#i*

(the relative degree of ¢;« leading to v;~ can be any between 1 and p). Recall that
H! =DO + [f,H"] is of rank m + r, — 1. It follows that rk (%) =r, — 1, where

0z"

J
1<i<r,and 1l < j <m, with ¢,j # ¢*. We introduce the new coordinates (but
keep the same notation for them) 2P = a;(z), for 1 <4 <r,, i # i*, and apply a

i

suitable static feedback (keeping the notation v; for the modified controls), to get

ziﬂ* (R
P o= 2T (2 for 1<i<r,, i#i*
#H =y for 1<i<m, i7"

Notice that the assumption k& > 1 implies that the components b;(z) do not depend
on zf“, for i # ¢*. Now if r, = m, then, clearly, the functions ¢; = z], where
1<j<pandrj—;+1<i<r;, are flat outputs of the system around z.

If r, < m, then let ¢, 11,...,%, be any functions satisfying (FO2). We have
zf = Llij(pi, where 1 < j <l <pandr;_; +1<4<r;. Taking the next derivatives
Lifjﬂgoi we can express the functions zf“, for 1 <4 <7y, 4 # 4% It thus follows

by (FO2) that 1k (5247 ) = m — 1y, whete 7, +1 < i,j < m. Therefore the v;'s

8zf+1
together with L?flgpi’s with j < p + 1, allow to express the components 2/ 1 for
r, <4 < m and differentiating them one time will yield the corresponding v;. Notice
that any functions ; satisfying the above rank condition will work, which explains
why they do not have to fulfil any structural condition but just (FO2).
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