
HAL Id: hal-01401056
https://hal.science/hal-01401056

Submitted on 22 Nov 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Control of three heat equations coupled with two cubic
nonlinearities

Jean-Michel Coron, Jean-Philippe Guilleron

To cite this version:
Jean-Michel Coron, Jean-Philippe Guilleron. Control of three heat equations coupled with two
cubic nonlinearities. SIAM Journal on Control and Optimization, 2017, 55 (2), pp.989-1019.
�10.1137/15M1041201�. �hal-01401056�

https://hal.science/hal-01401056
https://hal.archives-ouvertes.fr


Control of three heat equations coupled with two cubic
nonlinearities

Jean-Michel Coron∗, Jean-Philippe Guilleron†

Abstract

We study the null controllability of three parabolic equations. The control is acting
only on one of the three equations. The three equations are coupled by means of two
cubic nonlinearities. The linearized control system around 0 is not null controllable.
However, using the cubic nonlinearities, we prove the (global) null controllability of
the control system. The proof relies on the return method, an algebraic solvability and
smoothing properties of the parabolic equations.

1 Introduction

Let N be a positive integer and let Ω be a nonempty connected bounded subset of RN of class
C2. Let ω be a nonempty open subset of Ω. We denote by χω : Ω → R the characteristic
function of ω and let T ∈ (0,+∞). We are interested in the control system

(1.1)


αt −∆α = β3 in (0, T )× Ω,
βt −∆β = γ3 in (0, T )× Ω,
γt −∆γ = uχω in (0, T )× Ω,
α = β = γ = 0 in (0, T )× ∂Ω.

It is a control system where, at time t ∈ [0, T ], the state is (α(t, ·), β(t, ·), γ(t, ·))tr : Ω→ R3

and the control is u(t, ·) : Ω → R. Let us point out that, due to the recursive structure of
(1.1) (one first solves the last parabolic equation of (1.1), then the second one and finally
the first one), it follows from classical results on linear parabolic equations that the Cauchy
problem associated to (1.1) is globally well-posed in the L∞ setting, i.e. with bounded
measurable initial data, controls, and solutions.

The main goal of this paper is to prove the following global null controllability result on
control system (1.1).
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Theorem 1 For every (α0, β0, γ0)tr ∈ L∞(Ω)3, there exists a control u ∈ L∞((0, T ) × Ω)
such that the solution (α, β, γ)tr ∈ L∞((0, T )× Ω)3 to the Cauchy problem

(1.2)


αt −∆α = β3 in (0, T )× Ω,
βt −∆β = γ3 in (0, T )× Ω,
γt −∆γ = uχω in (0, T )× Ω,
α = β = γ = 0 in (0, T )× ∂Ω,
α(0, ·) = α0(·), β(0, ·) = β0(·), γ(0, ·) = γ0(·) in Ω,

satisfies

(1.3) α(T, ·) = β(T, ·) = γ(T, ·) = 0 in Ω.

The controllability of systems of partial differential equations with a small number of
controls is an important subject which has been recently investigated in a large number of
articles. For the case of linear systems, let us mention in particular

• For systems of parabolic equations in dimension 1 or larger: [21, 20, 26, 29]. A key
step in these papers is to establish suitable Carleman estimates. In dimension 1, the
method of moments can lead to very precise (and sometimes unexpected) results; see,
in particular [8, 7, 10, 11]. See also the survey paper [6] and the reference therein.

• For systems of Schrödinger equations: [2], which uses transmutation together with a
controllability result for systems of wave equations proved in the same article. See also
[30] for the controllability of a cascade system of conservative equations.

• For Stokes equations of incompressible fluids: [23, 28, 17, 12]. Again Carleman esti-
mates are key ingredients here.

• For hyperbolic equations: [1, 2], which rely on multiplier methods, and [4] which uses
microlocal analysis.

Let us assume that 0 is a trajectory (i.e. a solution) of the system of partial differential
equations. If the linearized control system is controllable, one can expect to get the local
null controllability. For systems of partial differential equations with a small number of
controls it has been proven to be the case, for example, for the Navier Stokes equations in
[12].

Note that the linearized control system of (1.1) around 0 is clearly not controllable.
When the linearized control system around 0 is not controllable one may still expect that
the nonlinearities can give the controllability. A method to treat this case is the return
method. It consists in looking for (nonzero) trajectories of the control system going from 0
to 0 such that the linearized control system is controllable. This method has been introduced
in [13] for a stabilization issue and used for the first time in [14] to get the controllability of a
partial differential equation (the Euler equation of incompressible fluids). This method can
also be used to get controllability of systems of partial differential equations with a small
number of controls. See, for example,

• [15] for a water tank control system modeled by means of the Saint-Venant equations.

• [17, 19] for the Navier-Stokes equations.
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• [18] for a system of two nonlinear heat equations.

Let us give more details about [18] since it deals with a control system related to our system
(1.1). The control system considered in [18] is

(1.4)


βt −∆β = γ3 in (0, T )× Ω,
γt −∆γ = uχω in (0, T )× Ω,
β = γ = 0 in (0, T )× ∂Ω,

where, at time t ∈ [0, T ], the state is (β(t, ·), γ(t, ·))tr : Ω → R2 and the control is u(t, ·) :
Ω → R. (In fact, slightly more general control systems of two coupled parabolic equations
are considered in [18].) Using the return method, it is proved in [18] that the control system
(1.4) is locally null controllable. We use the same method here. However the construction of
trajectories of the control system going from 0 to 0 such that the linearized control system is
(null) controllable is much more complicated for the control system (1.1) than for the control
system (1.4).

The construction of trajectories of the control system (1.1) going from 0 to 0 such that
the linearized control system is (null) controllable follows from simple scaling arguments (see
(4.2) to (4.5) below) and the following theorem.

Theorem 2 There exists (a, b, c) ∈ C∞0 (R× R)3 such that

the supports of a, b, and c are included in [−1, 1]× [−1, 1],(1.5)

{(t, r); r > 0, b(t, r) 6= 0 and c(t, r) 6= 0} 6= ∅,(1.6)

a(t, r) = a(t,−r), b(t, r) = b(t,−r), c(t, r) = c(t,−r), ∀(t, r) ∈ R× R,(1.7)

at − arr −
N − 1

r
ar = b3 in R× R∗,(1.8)

bt − brr −
N − 1

r
br = c3 in R× R∗.(1.9)

An important ingredient of the proof of Theorem 2 is the following proposition which is
related to Theorem 2 in the stationary case.

Proposition 3 There exists (A,B,C) ∈ C∞(R)3 and δA ∈ (0, 1/2) such that

the supports of A, B, and C are included in [−1, 1],(1.10)

{z; z > 0, B(z) 6= 0 and C(z) 6= 0} 6= ∅,(1.11)

A(z) = A(−z), B(z) = B(−z), C(z) = C(−z), ∀z ∈ R,(1.12)

A(z) = e−1/(1−z2) if 1− δA < z < 1,(1.13)

−A′′ − N − 1

z
A′ = B3 in R∗,(1.14)

−B′′ − N − 1

z
B′ = C3 in R∗,(1.15)

(B(z) = 0 and z ∈ [0, 1))⇔
(
z =

1

2

)
,(1.16)

B′
(

1

2

)
< 0,(1.17)

C

(
1

2

)
> 0,(1.18)

(C(z) = 0 and z ∈ [0, 1))⇒ (z ∈ (0, 1) and C ′(z) 6= 0) .(1.19)
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This proposition is proved in Section 2. In Section 3 we show how to use Proposition 3 in
order to prove Theorem 2. Finally, in Section 4, we deduce Theorem 1 from Theorem 2.

Remark 4 Looking to our proof of Theorem 1, it is natural to conjecture that this theorem
still holds if, in (1.2), β3 and γ3 are replaced by β2p+1 and γ2q+1 respectively, where p and q
are arbitrary nonnegative integers.

2 Proof of Proposition 3 (stationary case)

In order to construct A, one shall use the following lemma.

Lemma 5 There exists δ0 ∈ (0, 1) such that, for every δ ∈ (0, δ0), there exists a function
G ∈ C∞([0,+∞)) such that

G(z) = z3

(
z − 1

2

)3

for
1

2
− δ < z <

1

2
+ δ,(2.1)

(z − 1

2
)G(z) > 0 for 0 < z < 1, z 6= 1

2
,(2.2) {

z ∈ (0, 1); (G1/3)′′(z) +
N − 1

z
(G1/3)′(z) = 0

}
is finite,(2.3)

and such that the solution A : (0,+∞)→ R to the Cauchy problem

A(1) = A′(1) = 0, A′′(z) +
N − 1

z
A′(z) = G(z), z > 0,(2.4)

satisfies

there exists c0 ∈ R such that A(z) = c0 − z8 if 0 < z < δ,(2.5)

A(z) = e−1/(1−z2) if 1− δ < z < 1,(2.6)

A(z) = 0 if z ∈ [1,+∞).(2.7)

Proof of Lemma 5. Let us first emphasize that it follows from (2.1) and (2.2) that G1/3

is of class C∞ on (0, 1), hence (2.3) makes sense. Let δ ∈ (0, 1/4). Let Ḡ ∈ C∞([0,+∞)) be
such that (2.1) and (2.2) hold for G = Ḡ and

Ḡ(z) = −8(6 +N)z6,∀z ∈ (0, δ),(2.8)

Ḡ(z) =

(
−2 + 6z4

(1− z2)4
− 2(N − 1)

(1− z2)2

)
e−1/(1−z2), ∀z ∈ ((1− δ), 1),(2.9)

Ḡ(z) = 0, ∀z ∈ (1,+∞),(2.10)

Ḡ is analytic on (0, 1) \ {δ, (1/2)− δ, (1/2) + δ, 1− δ}.(2.11)

One easily sees that such Ḡ exists if δ ∈ (0, 1/4) is small enough, the smallness depending
on N . Frow now on, δ is always assumed to be small enough. Let κ ∈ R. Let us define
G ∈ C∞([0,+∞)) by

G := Ḡ in [0, δ] ∪ [(1/2)− δ, (1/2) + δ] ∪ [1− δ,+∞),(2.12)

G(z) := Ḡ(z) + min{κ, 0}e−1/(z−δ)e−1/(1−2δ−2z), ∀z ∈ (δ, (1/2)− δ),(2.13)

G(z) := Ḡ(z) + max{κ, 0}e−1/(2z−1−2δ)e−1/(1−δ−z), ∀z ∈ ((1/2) + δ, 1− δ).(2.14)
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Let A be the solution of the Cauchy problem (2.4). From (2.12), one has (2.1) and (2.2).
From (2.11), (2.13), and (2.14), one gets that

(2.15) G is analytic on (0, 1) \ {δ, (1/2)− δ, (1/2) + δ, 1− δ},

which implies (2.3) since (G1/3)′′ cannot be identically equal to 0 on one of the five intervals
(0, δ), (δ, (1/2)− δ), ((1/2)− δ, (1/2) + δ), ((1/2) + δ, 1− δ), and (1− δ, 1).

Remark 6 We require (2.15) only to get (2.3). However (2.3) can also be obtained without
requiring (2.15) by using genericity arguments.

From (2.4), (2.9), and (2.12), one gets (2.6). From (2.4), (2.10), and (2.12), one gets (2.7).
It remains to prove that, for some κ ∈ R, one has (2.5). Let us first point out that, for

every y ∈ C2((0, δ)),

(2.16)

(
y′′ +

N − 1

z
y′ = 0

)
⇒(
∃ (c0, c1) ∈ R2 such that y(z) = c0 + c1E(z), ∀z ∈ (0, δ)

)
,

where

if N 6= 2, E(z) :=
1

(2−N)zN−2
, ∀z ∈ (0,+∞),(2.17)

if N = 2, E(z) := − ln(z), ∀z ∈ (0,+∞).(2.18)

From (2.4), (2.8), (2.12), one gets that y := A+z8 satisfies the assumption of the implication
(2.16). Hence, by (2.16), one gets the existence of (c0, c1) ∈ R2 such that

(2.19) A(z) = c0 − z8 + c1E(z), ∀z ∈ (0, δ).

It suffices to check that, for some κ ∈ R,

(2.20) c1 = 0.

From (2.4), one has

if N 6= 2, A(z) = − 1

(N − 2)zN−2

∫ z

1

sN−1G(s)ds+
1

N − 2

∫ z

1

sG(s)ds, ∀z ∈ (0, 1],(2.21)

if N = 2, A(z) = ln(z)

∫ z

1

sG(s)ds−
∫ z

1

s ln(s)G(s)ds, ∀z ∈ (0, 1],(2.22)

which, together with (2.17), (2.18), (2.19), with z → 0, gives

(2.23) c1 =

∫ 1

0

sN−1G(s)ds.

From (2.12), (2.13), and (2.14), one has

(2.24) lim
κ→+∞

∫ 1

0

sN−1G(s)ds = +∞ and lim
κ→−∞

∫ 1

0

sN−1G(s)ds = −∞.

In particular, with the intermediate value theorem, there exists κ ∈ R such that

(2.25)

∫ 1

0

sN−1G(s)ds = 0,

which, together with (2.23), concludes the proof of Lemma 5.
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We go back to the proof of Proposition 3. We extend A to all of R by requiring

A(0) = c0,(2.26)

A(z) = A(−z), ∀z ∈ (−∞, 0).(2.27)

By (2.5), (2.26), and (2.27), A ∈ C∞(R). Let B ∈ C0(R∗) be defined by

(2.28) B := −
(
A′′ +

N − 1

z
A′
)1/3

.

From (2.27) and (2.28), one gets that

(2.29) B(z) = B(−z), ∀z ∈ R∗.

From (2.28), one sees that

(2.30) B is of class C∞ on the set {z ∈ R∗; B(z) 6= 0}.

From (2.5), (2.27), and (2.28), one has

(2.31) B(z) = 2(6 +N)1/3z2,∀z ∈ (−δ, δ) \ {0},

which allows to extend B to all of R by continuity by requiring

(2.32) B(0) = 0.

From (2.31) and (2.32), we get that

(2.33) B is of class C∞ in (−δ, δ).

From (2.2), (2.4), and (2.28), one gets that

(2.34) B 6= 0 in (0, 1) \ {1/2},

which, with (2.30), implies that

(2.35) B is of class C∞ in (0, 1) \ {1/2}.

From (2.1), (2.4), and (2.28), one has

(2.36) B(z) = −z
(
z − 1

2

)
, ∀z ∈

(
1

2
− δ, 1

2
+ δ

)
.

In particular (1.17) holds. From (2.6) and (2.28), one gets

(2.37) B(z) = −
(
−2 + 6z4

(1− z2)4
− 2(N − 1)

(1− z2)2

)1/3

e−1/(3−3z2), ∀z ∈ (1− δ, 1),

which implies the existence of δ0 > 0 such that, for every δ ∈ (0, δ0],

(2.38) B < 0 in (1− δ, 1).
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From (2.7) and (2.28), one gets

(2.39) B(z) = 0,∀z ∈ (1,+∞),

which, together with (2.37), implies that

(2.40) B is of class C∞ in (1− δ,+∞).

From (2.29), (2.33), (2.35), (2.36), and (2.40), one gets that

(2.41) B is of class C∞ in R.

Let us now define C ∈ C0(R∗) by

(2.42) C(z) := −
(
B′′ +

N − 1

z
B′
)1/3

, ∀z ∈ R∗.

From (2.29) and (2.42), one has

(2.43) C(z) = C(−z), ∀z ∈ R∗.

From (2.41) and (2.42), one gets that

(2.44) C is of class C∞ on the set {z ∈ R∗; C(z) 6= 0}.

From (2.31) and (2.42), one has

(2.45) C(z) = −(4N)
1
3 (6 +N)

1
9 < 0,∀z ∈ [−δ, δ].

From (2.36) and (2.42), one has

(2.46) C(z) =

(
2N − N − 1

2z

)1/3

, ∀z ∈
[

1

2
− δ, 1

2
+ δ

]
.

In particular, since δ > 0 is small enough,

(2.47) C is positive and of class C∞ on

[
1

2
− δ, 1

2
+ δ

]
.

From (2.37), (2.39), and (2.42), one gets that

(2.48) C > 0 in [1− δ, 1) and C is of class C∞ in [1− δ,+∞).

From (2.43), (2.44), (2.45), (2.47), and (2.48), one sees that

(2.49) C ∈ C∞(R)

if

(2.50) C is of class C∞ in (δ, (1/2)− δ) ∪ ((1/2) + δ, 1− δ).

Let us first point out that, by (2.3), (2.4), (2.28), and (2.42),

(2.51) the set of z0 ∈ (δ, (1/2)− δ) ∪ ((1/2) + δ, 1− δ) such that C(z0) = 0 is finite.

We are going to prove that (2.50) indeed holds provided that one no longer requires (2.15)
and that one modifies G in a neighborhood of every z0 ∈ (δ, (1/2) − δ) ∪ ((1/2) + δ, 1 − δ)
such that C(z0) = 0. Since G = −B3, this comes from the following lemma.

7



Lemma 7 Let ν > 0, ζ > 0, and η > 0 be such that [ζ − η, ζ + η] ⊂ (0,+∞). Let
B ∈ C∞([ζ − η, ζ + η]) be such that

B′′(z) +
N − 1

z
B′(z) 6= 0, ∀z ∈ [ζ − η, ζ + η] \ {ζ}.(2.52)

Then, there exists B̄ ∈ C∞([ζ − η, ζ + η]) satisfying

|B̄(z)−B(z)| 6 ν, ∀z ∈ [ζ − η, ζ + η],(2.53)

the support of B̄ −B is included in (ζ − η, ζ + η),(2.54) (
B̄′′ +

N − 1

z
B̄′
)1/3

∈ C∞([ζ − η, ζ + η])(2.55)

and such that, if Ā ∈ C∞([ζ − η, ζ + η]) is the solution of

Ā′′ +
N − 1

z
Ā′ = −B̄3,(2.56)

Ā(ζ − η) = A(ζ − η), Ā′(ζ − η) = A′(ζ − η),(2.57)

then,

(2.58) Ā(ζ + η) = A(ζ + η), Ā′(ζ + η) = A′(ζ + η).

Proof of Lemma 7. Let us first consider the case where

(2.59)

(
B′′(ζ − η) +

N − 1

ζ − η
B′(ζ − η)

)(
B′′(ζ + η) +

N − 1

ζ + η
B′(ζ + η)

)
< 0.

Then, replacing if necessary B by −B and using (2.52), we may assume that

B′′(z) +
N − 1

z
B′(z) < 0, ∀z ∈ [ζ − η, ζ),(2.60)

B′′(z) +
N − 1

z
B′(z) > 0, ∀z ∈ (ζ, ζ + η).(2.61)

Let ϕ ∈ C∞(−∞,+∞) be such that

ϕ = 1 in [−1/2, 1/2],(2.62)

ϕ = 0 in (−∞,−1] ∪ [1,+∞),(2.63)

ϕ(z) ∈ [0, 1], ∀z ∈ (−∞,∞).(2.64)

Let

(2.65) E := {ξ ∈ C∞([ζ − η, ζ + η]); the support of ξ is included in (ζ − η, ζ + η) \ {ζ}} .

The vector space E is equipped with the norm

(2.66) |ξ| := max{|ξ(x)|; x ∈ [ζ − η, ζ + η]}.

For ε ∈ R and ξ ∈ E , one defines now Hε,ξ ∈ C∞([ζ − η, ζ + η]) by, if ε 6= 0,

(2.67) Hε,ξ(z) := ε2(z−ζ)3ϕ

(
z − ζ
|ε|

)
+

(
1− ϕ

(
z − ζ
|ε|

))(
B′′(z) +

N − 1

z
B′(z) + ξ(z)

)
,

8



for every z ∈ [ζ − η, ζ + η] and

(2.68) H0,ξ(z) := B′′(z) +
N − 1

z
B′(z) + ξ(z), ∀z ∈ [ζ − η, ζ + η].

We then define B̄ := Bε,ξ ∈ C∞([ζ − η, ζ + η]) by requiring

B′′ε,ξ(z) +
N − 1

z
B′ε,ξ(z) = Hε,ξ(z),(2.69)

Bε,ξ(ζ − η) = B(ζ − η), B′ε,ξ(ζ − η) = B′(ζ − η).(2.70)

Let Cε,ξ ∈ C0([ζ − η, ζ + η]) be defined by

(2.71) Cε,ξ(z) := −
(
B′′ε,ξ(z) +

N − 1

z
B′ε,ξ(z)

)1/3

= −Hε,ξ(z)1/3.

Note that by (2.62), (2.67), and (2.71), if ε 6= 0,

(2.72) C ′ε,ξ(ξ) = −|ε|2/3 6= 0.

Using (2.63), (2.65), (2.67), (2.68), and (2.69), one sees that, if ε < η (which is assumed
from now on), Bε,ξ and B are both solutions to the second order differential equation

(2.73) Y ′′(z) +
N − 1

z
Y ′(z) = B′′(z) +

N − 1

z
B′(z)

in a neighborhood of {ζ − η, ζ + η} in [ζ − η, ζ + η]. In particular, by (2.70), Bε,ξ and B are
equal in a neighborhood of ζ − η in [ζ − η, ζ + η] and (2.54) is equivalent to

(2.74) Bε,ξ(ζ + η) = B(ζ + η), B′ε,ξ(ζ + η) = B′(ζ + η).

Let Aε,ξ ∈ C∞([ζ − η, ζ + η]) be the solution of

A′′ε,ξ +
N − 1

z
A′ε,ξ = −B3

ε,ξ,(2.75)

Aε,ξ(ζ − η) = A(ζ − η), A′ε,ξ(ζ − η) = A′(ζ − η).(2.76)

Let F : (−η, η)× E → R4 be defined by

(2.77) F(ε, ξ) := (Bε,ξ(ζ + η)−B(ζ + η), B′ε,ξ(ζ + η)−B′(ζ + η),

Aε,ξ(ζ + η)− A(ζ + η), A′ε,ξ(ζ + η)− A′(ζ + η))tr.

One easily checks that

F is of class C1,(2.78)

F(0, 0) = 0.(2.79)

Let us assume, for the moment, that

(2.80)
∂F
∂ξ

(0, 0) is onto.
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By (2.80), there exists a 4-dimensional subspace E0 of E such that

(2.81)
∂F
∂ξ

(0, 0)E0 = R4.

By (2.81) and the implicit function theorem, there exists ε0 ∈ (0, η) and a map ξ : (−ε0, ε0)→
E0 such that

ξ(0) = 0,(2.82)

F(ε, ξ(ε)) = 0, ∀ε ∈ (−ε0, ε0).(2.83)

From (2.60), (2.61), (2.65), (2.66), (2.67), (2.68), and (2.69), one gets the existence of ε1 > 0
such that

B′′ε,ξ(z) +
N − 1

z
B′ε,ξ(z) < 0, ∀z ∈ [ζ − η, ζ), ∀ε ∈ [−ε1, ε1], ∀ξ ∈ E0 such that |ξ| 6 ε1,

(2.84)

B′′ε,ξ(z) +
N − 1

z
B′ε,ξ(z) > 0, ∀z ∈ (ζ, ζ + η], ∀ε ∈ [−ε1, ε1], ∀ξ ∈ E0 such that |ξ| 6 ε1.

(2.85)

From (2.62), (2.67), and (2.69) one gets that, for every ε ∈ (0,+∞) and for every ξ ∈ E0,
one has

(2.86) B′′ε,ξ(z) +
N − 1

z
B′ε,ξ(z) = ε2(z − ζ)3 if |z − ζ| 6 ε/2.

From (2.71), (2.84), (2.85), and (2.86) one gets that, for every ε ∈ [−ε1, ε1] \ {0} and for
every ξ ∈ E0 such that |ξ| 6 ε1,

Cε,ξ ∈ C∞([ζ − η, ζ + η]),(2.87)

(Cε,ξ(z) = 0)⇔ (z = ζ) ,(2.88)

which, together with (2.81) as above, (2.72), (2.82), and (2.83), conclude the proof of
Lemma 7 when (2.59) holds.

It remains to prove (2.80). Simple computations show that

(2.89)
∂F
∂ξ

(0, 0)ξ = (x1(ζ + η), x2(ζ + η), x3(ζ + η), x4(ζ + η))tr,

where x : [ζ − η, ζ + η]→ R4 is the solution of

(2.90) ẋ = K(t)x+ ξ(t)e,

with

(2.91) K(t) :=


0 1 0 0

0 −N − 1

t
0 0

0 0 0 1

−3B2(t) 0 0 −N − 1

t

 , e :=


0
1
0
0

 ,

which satisfies

(2.92) x(ζ − η) = 0.

Hence, using a standard density argument, (2.81) comes from the following lemma.
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Lemma 8 Let ν > 0, ζ > 0, η > 0 be such that [ζ − η, ζ + η] ⊂ (0,+∞). Let B ∈
C∞([ζ − η, ζ + η]) be such that

B 6≡ 0.(2.93)

Then the control system (2.90), where the state is x ∈ R4 and the control is ξ ∈ R, is
controllable on [ζ − η, ζ + η], i.e. for every X in R4 there exists ξ ∈ L∞(ζ − η, ζ + η) such
that the solution of (2.90) and (2.92) satisfies x(ζ + η) = X.

Proof of Lemma 8. We use a classical result on the controllability of time-varying linear
finite-dimensional control systems (see e.g. [16, Theorem 1.18]). One defines, by induction
on i ∈ N, ei ∈ C∞([ζ − η, ζ + η]) by requiring

e0(t) := e, ∀t ∈ [ζ − η, ζ + η],(2.94)

ei(t) := ėi−1(t)−K(t)ei−1(t), ∀t ∈ [ζ − η, ζ + η], ∀i ∈ N \ {0}.(2.95)

Let θ ∈ C∞([ζ − η, ζ + η]) be defined by

(2.96) θ(t) := −N − 1

t
, ∀t ∈ [ζ − η, ζ + η].

Straightforward computations lead to

(2.97) e1 =


−1
−θ
0
0

 , e2 =


θ

−θ̇ + θ2

0
−3B2

 , e3 =


2θ̇ − θ2

−θ̈ + 3θθ̇ − θ3

3B2

6B2θ − 6BḂ

 .

From (2.91), (2.94), and (2.97), one gets

(2.98) det(e0, e1, e2, e3) = 9B4,

which, with (2.93) and [16, Theorem 1.18], concludes the proof of Lemma 8.

We now turn to the case where (2.59) does not hold. Then, replacing if necessary B by
−B and using (2.52), we may assume that

B′′(z) +
N − 1

z
B′(z) > 0, ∀z ∈ [ζ − η, ζ + η] \ {ζ}.(2.99)

In the definition of Hε,ξ one replaces (2.67) by

(2.100) Hε,ξ(z) := ε2ϕ

(
z − ζ
|ε|

)
+

(
1− ϕ

(
z − ζ
|ε|

))(
B′′(z) +

N − 1

z
B′(z) + ξ(z)

)
,

and keeps (2.68). Now (2.84) and (2.85) are replaced by

Cε,ξ(z) > 0, ∀z ∈ [ζ − η, ζ + η], ∀ε ∈ [−ε1, ε1] \ {0}, ∀ξ ∈ E0 such that |ξ| 6 ε1.(2.101)

Therefore, (compare with (2.88)), provided that ε 6= 0, one can see that Cε,ξ(z) 6= 0 for every
z ∈ [ζ − η, ζ + η] and consequently (1.19) is satisfied. Moreover

Cε,ξ ∈ C∞([ζ − η, ζ + η]), ∀ε ∈ [−ε1, ε1] \ {0}, ∀ξ ∈ E0 such that |ξ| 6 ε1.(2.102)

which, together with (2.102), (2.82), (2.83), and (2.101), concludes the proof of Proposition 3.
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3 Proof of Theorem 2 (time-varying case)

In this section, we prove Theorem 2. We define λ ∈ C∞([−1, 1]) and f0 ∈ C∞([−1, 1]) by

(3.1) λ(t) := (1− t2)2, ∀t ∈ [−1, 1],

and

(3.2) f0(t) :=

 e
− 1

1−t2 if |t| < 1,

0 if t = 0.

Let ε ∈ (0, 1]. For r ∈ R and t ∈ (−1, 1), we set

(3.3) z :=
r

ελ(t)
∈ [0,+∞).

Let A, B, and C be as in Proposition 3. By (2.43), (2.45), (2.47), (2.48), and (2.51), there
exist p ∈ N and ρ1, ρ2 . . . ρp in (−1, 1) \ {0} such that

(3.4) {z ∈ (−1, 1); C(z) = 0} = {ρl; l ∈ {1, 2, . . . , p}} .

Let

(3.5) ρ0 :=
1

2
, ρ−1 := −1

2
.

Let δ > 0 be such that

[ρl − δ, ρl + δ] ⊂ (−1, 1) \ {0}, ∀l ∈ {−1, 0, 1, . . . , p},(3.6)

[ρl − δ, ρl + δ] ∩ [ρl′ − δ, ρl′ + δ] = ∅, ∀(l, l′) ∈ {−1, 0, 1, . . . , p}2 such that l 6= l′.(3.7)

Let D := {(t, r) ∈ (−1, 1) × R; |r| < ελ(t)}. We look for a : (t, r) ∈ D 7→ a(t, r) ∈ R in
the following form

a(t, r) = f0(t)A(z) +

p∑
l=−1

3∑
i=1

fil(t)gil(z),(3.8)

where the functions fil, gil are to be determined with the requirement that

(3.9) the support of gil is included in (ρl − δ, ρl + δ),∀i ∈ {1, 2, 3}, ∀l ∈ {−1, 0, 1, . . . , p}.

Then b : (t, r) ∈ D 7→ b(t, r) ∈ R is defined by

(3.10) b :=

(
at − arr −

N − 1

r
ar

)1/3

,

and, on every open subset of D on which b is of class C2 and br/r is bounded, c is defined by

(3.11) c :=

(
bt − brr −

N − 1

r
br

)1/3

.
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For l ∈ {−1, 0, 1, . . . , p}, let Σl ⊂ R× R be defined by

(3.12) Σl := {(t, r) ∈ (−1, 1)× R; z ∈ (ρl − δ, ρl + δ)} .

Let us first study the case where, for some

(3.13) l̄ ∈ {1, 2, . . . , p} ,

(t, r) ∈ Σl̄. By symmetry, we may only study the case where ρl̄ > 0. Note that (3.13),
together with (1.18) and (3.4), implies that

(3.14) ρl̄ 6=
1

2
.

From (3.7), (3.8), (3.9), and (3.12), we have

(3.15) a(t, r) = f0(t)A(z) +
3∑
i=1

fil̄(t)gil̄(z).

In order to simplify the notations, we omit the index l̄, and define g0 by

(3.16) g0 := A.

(This definition is used all throughout this section.) Then, (3.15) now reads

(3.17) a(t, r) =
3∑
i=0

fi(t)gi(z).

Note that (1.16), (3.14), and (3.16) imply that

B(ρ) 6= 0.(3.18)

Moreover, by (1.15), (1.19), (3.4), (3.13), and (3.16),(
B(2) +

N − 1

z
B(1)

)
(ρ) = 0,(3.19) (

B(2) +
N − 1

z
B(1)

)
z

(ρ) = 0,(3.20) (
B(2) +

N − 1

z
B(1)

)
zz

(ρ) = 0,(3.21) (
B(2) +

N − 1

z
B(1)

)
zzz

(ρ) 6= 0.(3.22)

To simplify the notations we assume that, for example,

B(ρ) < 0,(3.23) (
B(2) +

N − 1

z
B(1)

)
zzz

(ρ) < 0.(3.24)
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From (3.20), (3.21), (3.23), and (3.24), if δ ∈ (0, ρ) is small enough, there exists µ > 0 such
that

B(z) 6 −µ, ∀z ∈ [ρ− δ, ρ+ δ],(3.25) (
B(2) +

N − 1

z
B(1)

)
zzz

(z) 6 −µ, ∀z ∈ [ρ− δ, ρ+ δ].(3.26)

We now fix such a δ.
From (3.10) and (3.17),

(3.27) b = − 1

ε2/3λ2/3

(
3∑
i=0

(
fig

(2)
i +

N − 1

z
fig

(1)
i + zε2λλ̇fig

(1)
i − ε2λ2ḟigi

))1/3

.

Let us denote by M : R× R∗ → R, (t, z) 7→M(t, z) ∈ R, the function defined by:

(3.28) M(t, z) :=
3∑
i=0

(
fi(t)g

(2)
i (z) +

N − 1

z
fi(t)g

(1)
i (z)

+ zε2λ(t)λ̇(t)fi(t)g
(1)
i (z)− ε2λ2(t)ḟi(t)gi(z)

)
.

For the moment, let us assume that

(3.29) M(t, z) 6= 0, ∀(t, z) ∈ (−1, 1)× (ρ− δ, ρ+ δ).

Using (3.3), (3.11), (3.27), (3.28), and straightforward computations, one gets, on the open
set of the (t, r) ∈ Σ such that M(t, z) 6= 0,

(3.30) 9ε8/3λ8/3c3 = ν,

with

(3.31) ν :=
1

M2/3

(
3Mzz − 2

M2
z

M
+

3(N − 1)

z
Mz + 6ε2λλ̇M − 3ε2λ2Mt + 3zε2λλ̇Mz

)
.

The idea is to construct the fi’s and the gi’s in order to have a precise knowledge of
the places where ν vanishes and the order of the vanishing so that ν is the cube of a C∞

function. More precisely, we are are going to check that one can construct the fi’s and the
gi’s so that, at least if ε ∈ (0, 1] is small enough,

ν(t, ρ) = 0, ∀t ∈ (−1, 1),(3.32)

νz(t, ρ) = 0, ∀t ∈ (−1, 1),(3.33)

νzz(t, ρ) = 0, ∀t ∈ (−1, 1),(3.34)

νzzz(t, ρ) > 0, ∀t ∈ (−1, 1).(3.35)

From (3.28), one has

(3.36) Mz =
3∑
i=0

(
fig

(3)
i + ε2(λ̇fi − λḟi)λg(1)

i + ε2zλλ̇fig
(2)
i +

N − 1

z
fig

(2)
i −

N − 1

z2
fig

(1)
i

)
,
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(3.37)
Mzz =

3∑
i=0

(
fig

(4)
i + ε2(2λ̇fi − λḟi)λg(2)

i + ε2zλλ̇fig
(3)
i

+
N − 1

z
fig

(3)
i −

2(N − 1)

z2
fig

(2)
i +

2(N − 1)

z3
fig

(1)
i

)
.

We impose that

(3.38) g
(j)
i (ρ) =

{
1 if i = 1 and j = 4,
0 if 1 6 i 6 3, 0 6 j 6 4 and (i, j) 6= (1, 4).

From (3.28), (3.36), (3.37), and (3.38), we have

M(·, ρ) = f0g
(2)
0 (ρ) +

N − 1

ρ
f0g

(1)
0 (ρ) + ε2ρλλ̇f0g

(1)
0 (ρ)− ε2λ2ḟ0g0(ρ),(3.39)

(3.40)
Mz(·, ρ) = f0g

(3)
0 (ρ) +

N − 1

ρ
f0g

(2)
0 (ρ)− N − 1

ρ2
f0g

(1)
0 (ρ)

+ε2(λ̇f0 − λḟ0)λg
(1)
0 (ρ) + ε2ρλλ̇f0g

(2)
0 (ρ),

Mzz(·, ρ) = f0g
(4)
0 (ρ) +

N − 1

ρ
f0g

(3)
0 (ρ)− 2(N − 1)

ρ2
f0g

(2)
0 (ρ) +

2(N − 1)

ρ3
f0g

(1)
0 (ρ)

+f1 + ε2(2λ̇f0 − λḟ0)λg
(2)
0 (ρ) + ε2ρλλ̇f0g

(3)
0 (ρ).

(3.41)

From (1.14), (3.1), (3.2), (3.16), (3.23), (3.39), and (3.40), one has, at least if ε > 0 is small
enough, which is from now on assumed,

(3.42) ∀t ∈ (−1, 1),M(t, ρ) > 0.

Then, for z = ρ, one has
(3.43)

ν(., ρ) =
1

M2/3(., ρ)

(
3Mzz(., ρ)− 2

M2
z (., ρ)

M(., ρ)
+

3(N − 1)

ρ
Mz(., ρ) + 6ε2λλ̇Mz(., ρ)

−3ε2λ2Mt(., ρ) + 3ρε2λλ̇Mz(., ρ)
)
.

We then choose to define f1 : t ∈ (−1, 1) 7→ f1(t) ∈ R by

(3.44)

f1 := −f0g
(4)
0 (ρ)− N − 1

ρ
f0g

(3)
0 (ρ) +

2(N − 1)

ρ2
f0g

(2)
0 (ρ)− 2(N − 1)

ρ3
f0g

(1)
0 (ρ)

−ε2(2λ̇f0 − λḟ0)λg
(2)
0 (ρ)− ε2ρλλ̇f0g

(3)
0 (ρ)

+
1

3

(
2
M2

z (., ρ)

M(., ρ)
− 3(N − 1)

ρ
Mz(., ρ)− 6ε2λλ̇M(., ρ)

+3ε2λ2Mt(., ρ)− 3ρε2λλ̇Mz(., ρ)
)
.

Note that, even if M depends on f1, f2, and f3, the right hand side of (3.44) does not depend
on f1, f2, and f3, and f1 is indeed well-defined by (3.44). This definition of f1, together with
(3.41) and (3.43), implies that (3.32) holds. (In fact, f1 is defined by (3.44) precisely in order
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to have (3.32).) From (3.1), (3.2), (3.19), (3.23), (3.39), (3.40), and (3.44), we obtain the
existence of two polynomials p1(ε2, t) and q1(ε2, t) in the variables ε2 and t such that

f1(t) = ε2 p1(ε2, t)

1 + q1(ε2, t)
f0(t), ∀t ∈ (−1, 1).(3.45)

In order to simplify the notations, we set:

(3.46)
K(t, z) := −2Mz(t, z)

2

M(t, z)
+

3(N − 1)

z
Mz(t, z) + 6ε2λλ̇M(t, z)

−3ε2λ2Mt(t, z) + 3zε2λλ̇Mz(t, z).

We then have

(3.47) ν = M− 2
3 (3Mzz +K).

Differentiating this equality with respect to z, we obtain

(3.48) νz = M− 5
3 (3MMzzz +MKz − 2MzMzz −

2

3
MzK).

Differentiating (3.46) with respect to z, we get

(3.49)
Kz = −4MzMzz

M2
+

2M3
z

M3
+

3(N − 1)

z
Mzz −

3(N − 1)

z2
Mz

+9ε2λλ̇Mz − 3ε2λ2Mtz + 3ε2zλλ̇Mzz.

Then, differentiating (3.37) with respect to z, we have

(3.50)
Mzzz =

3∑
i=0

(
fig

(5)
i +

N − 1

z
fig

(4)
i −

3(N − 1)

z2
fig

(3)
i +

6(N − 1)

z3
fig

(2)
i

−6(N − 1)

z4
fig

(1)
i + ε2zλλ̇fig

(4)
i + ε2(3λ̇fi − λḟi)λg(3)

i

)
.

We impose that

(3.51) g
(5)
i (ρ) =

{
1 if i = 2,

0 if i ∈ {1, 3}.

From (3.38), (3.50), and (3.51), we have
(3.52)

Mzzz(., ρ) = f0g
(5)
0 (ρ) +

N − 1

ρ
f0g

(4)
0 (ρ)− 3(N − 1)

ρ2
f0g

(3)
0 (ρ) +

6(N − 1)

ρ3
f0g

(2)
0 (ρ)

−6(N − 1)

ρ4
f0g

(1)
0 (ρ) + f2 +

N − 1

ρ
f1

+ε2(3λ̇f0 − λḟ0)λg
(3)
0 (ρ) + ε2ρλλ̇f0g

(4)
0 (ρ) + ε2ρλλ̇f1.
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We then define f2 : t ∈ (−1, 1) 7→ f2(t) ∈ R by

(3.53)

f2 := −f0g
(5)
0 (ρ)− N − 1

ρ
f0g

(4)
0 (ρ) +

3(N − 1)

ρ2
f0g

(3)
0 (ρ)

−6(N − 1)

ρ3
f0g

(2)
0 (ρ) +

6(N − 1)

ρ4
f0g

(1)
0 (ρ)− N − 1

ρ
f1

+
1

3M(., ρ)
(−M(., ρ)Kz(., ρ) + 2Mz(., ρ)Mzz(., ρ) +

2

3
Mz(., ρ)K(., ρ))

−ε2ρλλ̇f0g
(4)
0 (ρ)− ε2ρλλ̇f1 − ε2(3λ̇f0 − λḟ0)λg

(3)
0 (ρ).

Note that, again, even if M depends on f2 and f3, the right hand side of (3.53) does not
depend on f2 and f3 (it depends on f1, however f1 is already defined in (3.44)), and f2 is
indeed well defined by (3.53). This definition of f2, together with (3.48) and (3.52), implies
(3.33). From (3.1), (3.2), (3.20), (3.39), (3.40), (3.41), (3.45), (3.46), (3.49), and (3.53), we
obtain the existence of two polynomials p2(ε2, t) and q2(ε2, t) in the variables ε2 and t such
that

f2(t) = ε2 p2(ε2, t)

1 + q2(ε2, t)
f0(t), ∀t ∈ (−1, 1).(3.54)

Differentiating (3.48) with respect to z, we obtain

(3.55)
νzz = M− 8

3

(
− 4MMzMzzz −

7

3
MMzKz +

10

3
M2

zMzz +
10

9
M2

zK

+3M2Mzzzz +MMzKz +M2Kzz − 2MM2
zz −

2

3
MMzzK

)
.

Differentiating (3.49) with respect to z, we obtain
(3.56)

Kzz = −4M2
zz

M
− 4MzMzzz

M
+

10M2
zMzz

M2
− 4M4

z

M3
+

6(N − 1)

z3
Mz

−6(N − 1)

z2
Mzz +

3(N − 1)

z
Mzzz + 12ε2λλ̇Mzz − 3ε2λ2Mtzz + 3zε2λλ̇Mzzz.

Differentiating (3.50) with respect to z, one has

(3.57)

Mzzzz =
3∑
i=0

(
fig

(6)
i +

N − 1

z
fig

(5)
i −

4(N − 1)

z2
fig

(4)
i

+
12(N − 1)

z3
fig

(3)
i −

24(N − 1)

z4
fig

(2)
i +

24(N − 1)

z5
fig

(1)
i

+ε2(4λ̇fi − λḟi)λg(4)
i + ε2zλλ̇fig

(5)
i

)
.

We then impose

(3.58) g
(6)
i (ρ) =

{
1 if i = 3,
0 if i ∈ {1, 2}.
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Evaluating Mzzzz at z = ρ in (3.57) gives

(3.59)

Mzzzz(., ρ) = f0g
(6)
0 (ρ) + f3 +

N − 1

ρ
f0g

(5)
0 (ρ)− 4(N − 1)

ρ2
f0g

(4)
0 (ρ)

+
12(N − 1)

ρ3
f0g

(3)
0 (ρ)− 24(N − 1)

ρ4
f0g

(2)
0 (ρ) +

24(N − 1)

ρ5
f0g

(1)
0 (ρ)

+
N − 1

ρ
f2 −

4(N − 1)

ρ2
f1 + ε2(4λ̇f0 − λḟ0)λg

(4)
0 (ρ)

+ε2(4λ̇f1 − λḟ1)λ+ ε2ρλλ̇f0g
(5)
0 (ρ) + ε2ρλλ̇f2.

Then, we define f3 : t ∈ (−1, 1) 7→ f3(t) ∈ R by

(3.60)

f3 := −f0g
(6)
0 (ρ)− N − 1

ρ
f0g

(5)
0 (ρ) +

4(N − 1)

ρ2
f0g

(4)
0 (ρ)− 12(N − 1)

ρ3
f0g

(3)
0 (ρ)

+
24(N − 1)

ρ4
f0g

(2)
0 (ρ)− 24(N − 1)

ρ5
f0g

(1)
0 (ρ)− N − 1

ρ
f2 +

4(N − 1)

ρ2
f1

−ε2ρλλ̇f0g
(5)
0 (ρ)− ε2(4λ̇f0 − λḟ0)λg

(4)
0 (ρ)− ε2ρλλ̇f2 − ε2(4λ̇f1 − λḟ1)λ

+
1

3M2(., ρ)

(
4M(., ρ)Mz(., ρ)Mzzz(., ρ) +

7

3
M(., ρ)Mz(., ρ)Kz(., ρ)

−10

3
M2

z (., ρ)Mzz(., ρ)− 10

9
M2

z (., ρ)K(., ρ)−M(., ρ)Mz(., ρ)Kz(., ρ)

−M2(., ρ)Kzz(., ρ) + 2M(., ρ)M2
zz(., ρ) +

2

3
M(., ρ)Mzz(., ρ)K(., ρ)

)
.

Once more, even if M depends on f3, the right hand side of (3.60) does not depend on f3,
and f3 is indeed well defined by (3.60). This definition of f3, together with (3.55) and (3.59),
implies that (3.34) holds. From (3.1), (3.2), (3.21), (3.39), (3.40), (3.41), (3.45), (3.46),
(3.49), (3.52), (3.54), (3.56), and (3.60), we obtain the existence of two polynomials p3(ε2, t)
and q3(ε2, t) in the variables ε2 and t, such that

f3(t) = ε2 p3(ε2, t)

1 + q3(ε2, t)
f0(t), ∀t ∈ (−1, 1).(3.61)

We are now in a position to analyse the regularity of a, b, and c on Σ. Let us first
point out that, by (3.1), (3.2), (3.8), (3.45), (3.54), and (3.61), there exists ψa : (t, z) ∈
[−1, 1]× [ρ− δ, ρ+ δ] 7→ ψa(t, z) ∈ R of class C∞ such that

(3.62) a(t, r) = f0(t)ψa(t, z),∀(t, r) ∈ Σ.

In particular, a is of class C∞ in Σ. From (1.14), (3.1), (3.2), (3.16), (3.27), (3.25), (3.45),
(3.54), and (3.61), we get that, at least if ε > 0 is small enough, there there exists ψb :
(t, z) ∈ [−1, 1]× [ρ− δ, ρ+ δ] 7→ ψb(t, z) ∈ R of class C∞ such that

b < 0 in Σ,(3.63)

b(t, r) = λ−2/3f0(t)1/3ψb(t, z),∀(t, r) ∈ Σ.(3.64)

In particular, b is of class C∞ in Σ.
Let us now study c. Differentiating (3.55) with respect to z one gets

(3.65)

νzzz = M− 11
3

(
10MM2

zMzzz +
10

3
MM2

zKz −
80

9
M3

zMzz −
80

27
M3

zK − 6M2MzMzzzz

−2M2MzKzz + 10MMzM
2
zz +

10

3
MMzMzzK − 8M2MzzMzzz

−2M2MzzKz + 3M3Mzzzzz +M3Kzzz −
2

3
M2MzzzK

)
.
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Differentiating (3.57) with respect to z, we get

(3.66)

Mzzzzz =
3∑
i=0

(
fig

(7)
i +

N − 1

z
fig

(6)
i −

5(N − 1)

z2
fig

(5)
i +

20(N − 1)

z3
fig

(4)
i

−60(N − 1)

z4
fig

(3)
i +

120(N − 1)

z5
fig

(2)
i −

120(N − 1)

z6
fig

(1)
i

+ε2(5λ̇fi − λḟi)λg(5)
i + ε2zλλ̇fig

(6)
i

)
.

Differentiating (3.56) with respect to z, we get

(3.67)

Kzzz =
6M2

zMzz

M
− 4MzMzzzz

M
+

24MzM
2
zz

M2
+

4MzzMzzz

M
− 36M3

zMzz

M3
+

12M5
z

M4

−18(N − 1)

z4
Mz +

18(N − 1)

z3
Mzz −

9(N − 1)

z2
Mzzz +

3(N − 1)

z
Mzzzz

+15ε2λλ̇Mzzz − 3ε2λ2Mtzzz + 3zε2λλ̇Mzzzz.

From (3.1), (3.2), (3.26), (3.28), (3.30), (3.31), (3.32), (3.33), (3.34), (3.36), (3.37), (3.45),
(3.46), (3.49), (3.50), (3.54), (3.56), (3.61), (3.65), (3.66), and (3.67), one gets the existence
of φ : (t, z) ∈ [−1, 1]× [ρ− δ, ρ+ δ] 7→ φ(t, z) ∈ R of class C∞ such that

c3(t, r) = λ8/3f0(t)1/3φ(t, z),∀(t, r) ∈ Σ,(3.68)

φ(t, ρ) = 0, ∀t ∈ [−1, 1],(3.69)

∂zφ(t, ρ) = 0, ∀t ∈ [−1, 1],(3.70)

∂2
zzφ(t, ρ) = 0, ∀t ∈ [−1, 1],(3.71)

∂3
zzzφ(t, z) > 0, ∀(t, z) ∈ [−1, 1]× [ρ− δ, ρ+ δ].(3.72)

Let φ̃ : (t, z) ∈ [−1, 1]× [ρ− δ, ρ+ δ] 7→ φ̃(t, z) ∈ R be defined by

φ̃(t, z) :=
1

2

∫ 1

0

(1− s)2∂3
zzzφ(t, ρ+ s(z − ρ)))ds, ∀(t, z) ∈ [−1, 1]× [ρ− δ, ρ+ δ].(3.73)

Then, φ̃ is of class C∞ on [−1, 1]× [ρ− δ, ρ+ δ] and, using (3.69), (3.70), (3.71), and (3.72),

φ(t, z) = (z − ρ)3φ̃(t, z), ∀(t, z) ∈ [−1, 1]× [ρ− δ, ρ+ δ],(3.74)

φ̃(t, z) > 0, ∀(t, z) ∈ [−1, 1]× [ρ− δ, ρ+ δ].(3.75)

Let ψc : (t, z) ∈ [−1, 1]× [ρ− δ, ρ+ δ] 7→ ψc(t, z) ∈ R be defined by

(3.76) ψc(t, z) := (z − ρ)φ̃(t, z)1/3, ∀(t, z) ∈ [−1, 1]× [ρ− δ, ρ+ δ].

By (3.68), (3.74), (3.75), and (3.76), one gets that

ψc ∈ C∞([−1, 1]× [ρ− δ, ρ+ δ]),(3.77)

c(t, r) = λ−8/9f0(t)1/9ψc(t, z),∀(t, r) ∈ Σ.(3.78)

In particular, c is of class C∞ in Σ.
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Let us now study the case l ∈ {−1, 0}, i.e. ρl = 1/2 or ρl = −1/2. By symmetry, we
may assume that l = 0 so that ρl = 1/2. This case is simpler than the previous one. It is
already treated in [18], except that we now have to take care of c. So, we will only briefly
sketch the arguments. By (1.18) we may impose on δ to be small enough so that

C(z) > 0, ∀z ∈ [(1/2)− δ, (1/2) + δ].(3.79)

We now define (see (3.27) and compare with (3.31))

(3.80) ν :=
3∑
i=0

(
fig

(2)
i +

N − 1

z
fig

(1)
i + zε2λλ̇fig

(1)
i − ε2λ2ḟigi

)
.

We still want to ensure that (3.32) to (3.34). This is achieved by now imposing

f1 := −1

2
ε2λλ̇f0g

(1)
0 (

1

2
) + ε2λ2ḟ0g0(

1

2
),(3.81)

f2 := −
[
(2(N − 1)f1 +

1

2
ε2λλ̇) +

1

2
ε2λλ̇f0g

(2)
0 (

1

2
) + (ε2λλ̇f0 − ε2λ2ḟ0)g

(1)
0 (

1

2
)

]
,(3.82)

f3 := −
[
(2(N − 1) +

1

2
ε2λλ̇)f2 + (2ε2λλ̇− 8(N − 1))f1 − ε2λ2ḟ1

+
1

2
ε2λλ̇f0g

(3)
0 (

1

2
) + (2ε2λλ̇f0 − ε2λ2ḟ0)g

(2)
0 (

1

2
)

]
,

(3.83)

where the gi’s now satisfy

g
(2)
1

(
1

2

)
= g

(3)
2

(
1

2

)
= g

(4)
3

(
1

2

)
= 1,(3.84)

g
(j)
i

(
1

2

)
= 0, ∀(i, j) ∈ {1, 2, 3} × {0, 1, 2, 3, 4} \ {(1, 2), (2, 3), (3, 4)}.(3.85)

Then a still satisfies (3.62) for some function ψa of class C∞ on [−1, 1] × [ρ − δ, ρ + δ].
Proceeding as we did to prove (3.78), we get the existence of ψb of class C∞ on [−1, 1]× [ρ−
δ, ρ+ δ] such that (3.64) holds. Now the case of the function c is simpler than before since,
at least for ε > 0 small enough, we get from (3.79) that c > 0 in Σ and the existence ψc of
class C∞ on [−1, 1]× [ρ− δ, ρ+ δ] such that (3.78) holds.

The case where

(t, r) ∈ Σ′ :=
{

(t, r) ∈ (−1, 1)× R; z ∈ (−1, 1) \
(
∪pl=−1[ρl − (δ/2), ρl + (δ/2)]

)}
(3.86)

is even simpler than the two previous ones since, by (3.9)

g1 = g2 = g3 = 0.(3.87)

One gets that (3.62), (3.64), and (3.78) hold on Σ′ where

(3.88) ψa, ψb, ψc ∈ C∞
(
[−1, 1]×

(
[−1, 1] \

(
∪pl=−1(ρl − (δ/2), ρl + (δ/2))

)))
.

In conclusion, from these three cases we get the existence of three functions ψa, ψb, and ψc

such that

ψa, ψb, ψc ∈ C∞([−1, 1]× [−1, 1]),(3.89)

a(t, r) = f0(t)ψa(t, z),∀(t, r) ∈ D,(3.90)

b(t, r) = λ(t)−2/3f0(t)ψb(t, z),∀(t, r) ∈ D,(3.91)

c(t, r) = λ(t)−8/9f0(t)ψc(t, z),∀(t, r) ∈ D,(3.92)
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which, together with (3.1) and (3.2), imply that, if a, b, and c are extended to all of R× R
by 0 outside D, then a, b, and c are of class C∞ on R × R. This concludes the proof of
Theorem 2.

4 Proof of Theorem 1

In this section, we show how to deduce Theorem 1 from Theorem 2 by means of the return
method, an algebraic solvability and classical controllability results.

Let x0 ∈ ω. Let r̄ > 0 be small enough so that

(4.1)

(∣∣∣∣t− T

2

∣∣∣∣ 6 r̄2 and |x− x̄0| 6 r̄

)
⇒ (t ∈ (0, T ) and x ∈ ω) .

Let ᾱ : R × RN → R, β̄ : R × RN → R, γ̄ : R × RN → R and ū : R × RN → R be defined
by, for every (t, x) ∈ R× RN ,

ᾱ(t, x) := r̄8a

(
t− (T/2)

r̄2
,
1

r̄
|x− x0|

)
,(4.2)

β̄(t, x) := r̄2b

(
t− (T/2)

r̄2
,
1

r̄
|x− x0|

)
,(4.3)

γ̄(t, x) := c

(
t− (T/2)

r̄2
,
1

r̄
|x− x0|

)
,(4.4)

ū(t, x) := γ̄t(t, x)−∆γ̄(t, x).(4.5)

From (1.5), (1.7), (1.8), (1.9), (4.2), (4.3), (4.4), and (4.5), the functions ᾱ, β̄, γ̄, and ū are
of class C∞ and satisfy

ᾱt −∆ᾱ = β̄3 in R× RN ,(4.6)

β̄t −∆β̄ = γ̄3 in R× RN ,(4.7)

γ̄t −∆γ̄ = ūχω in R× RN ,(4.8)

the supports of ᾱ, β̄, γ̄, and ū are included in (0, T )× ω.(4.9)

Let (α0, β0, γ0)tr ∈ L∞(Ω)3. For (α, β, γ)tr ∈ L∞((0, T )×Ω)3 and u ∈ L∞((0, T )×Ω), let us
define (α̂, β̂, γ̂)tr ∈ L∞((0, T )×Ω)3 and û ∈ L∞((0, T )×Ω) by, for every (t, x) ∈ (0, T )×Ω,

α̂(t, x) := α(t, x)− ᾱ(t, x),(4.10)

β̂(t, x) := β(t, x)− β̄(t, x),(4.11)

γ̂(t, x) := γ(t, x)− γ̄(t, x),(4.12)

û(t, x) := u(t, x)− ū(t, x).(4.13)

From (4.6), (4.7), (4.8), and (4.9), (α, β, γ)tr ∈ L∞((0, T )×Ω)3 is the solution of the Cauchy
problem (1.2) if and only if (α̂, β̂, γ̂)tr ∈ L∞((0, T )×Ω)3 is the solution of the Cauchy problem

(4.14)



α̂t −∆α̂ = 3β̄2β̂ + 3β̄β̂2 + β̂3 in (0, T )× Ω,

β̂t −∆β̂ = 3γ̄2γ̂ + 3γ̄γ̂2 + γ̂3 in (0, T )× Ω,
γ̂t −∆γ̂ = ûχω in (0, T )× Ω,

α̂ = β̂ = γ̂ = 0 in (0, T )× ∂Ω,

α̂(0, ·) = α0(·), β̂(0, ·) = β0(·), γ̂(0, ·) = γ0(·) in Ω.
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Moreover, by (4.9), (4.10), (4.11) and (4.12), one has

(4.15) α(T, ·) = α̂(T, ·), β(T, ·) = β̂(T, ·), γ(T, ·) = γ̂(T, ·) in Ω.

Let us consider the system

(4.16)


α̂t −∆α̂ = 3β̄2β̂ + 3β̄β̂2 + β̂3 in (0, T )× Ω,

β̂t −∆β̂ = 3γ̄2γ̂ + 3γ̄γ̂2 + γ̂3 in (0, T )× Ω,
γ̂t −∆γ̂ = ûχω in (0, T )× Ω,

α̂ = β̂ = γ̂ = 0 in (0, T )× ∂Ω,

as a control system where, at time t ∈ [0, T ], the state is (α̂(t, ·), β̂(t, ·), γ̂(t, ·))tr ∈ L∞(Ω)3,
and the control is û(t, ·) ∈ L∞(Ω). Note that (α̂, β̂, γ̂)tr = 0 and û = 0 is a trajectory (i.e. a
solution) of this control system. The linearized control system around this (null) trajectory
is the linear control system

(4.17)


α̂t −∆α̂ = 3β̄2β̂ in (0, T )× Ω,

β̂t −∆β̂ = 3γ̄2γ̂ in (0, T )× Ω,
γ̂t −∆γ̂ = ûχω in (0, T )× Ω,

α̂ = β̂ = γ̂ = 0 in (0, T )× ∂Ω,

where, at time t ∈ [0, T ], the state is (α̂(t, ·), β̂(t, ·), γ̂(t, ·))tr ∈ L∞(Ω)3, and the control is
û(t, ·) ∈ L∞(Ω).

By (1.6), (4.3), and (4.4), there exists a nonempty open subset ω1 of ω, t1 ∈ (0, T ) and
t2 ∈ (0, T ) such that

ω1 ⊂ ω,(4.18)

0 < t1 < t2 < T,(4.19)

β̄(t, x) 6= 0, ∀(t, x) ∈ [t1, t2]× ω1,(4.20)

γ̄(t, x) 6= 0, ∀(t, x) ∈ [t1, t2]× ω1.(4.21)

Let ω2 be a nonempty open subset of ω1 such that

(4.22) ω2 ⊂ ω1.

Let us recall that, by (the proof of) [24, Theorem 2.4, Chapter 1], the linear control system

(4.23)


α̂t −∆α̂ = 3β̄2β̂ + v1χ(t1,t2)×ω2 in (0, t2)× Ω,

β̂t −∆β̂ = 3γ̄2γ̂ + v2χ(t1,t2)×ω2 in (0, t2)× Ω,
γ̂t −∆γ̂ = v3χ(t1,t2)×ω2 in (0, t2)× Ω,

α̂ = β̂ = γ̂ = 0 in (0, t2)× ∂Ω,

where, at time t ∈ [0, t2], the state is (α̂(t, ·), β̂(t, ·), γ̂(t, ·))tr ∈ L∞(Ω)3 and the control is
(v1(t, ·), v2(t, ·), v3(t, ·))tr ∈ L∞(Ω)3 is null controllable. We next point out that, with the
terminology of [27, page 148] (see also [19]), the underdetermined system

(4.24)


α̃t −∆α̃ = 3β̄2β̃ + v1 in (t1, t2)× ω1,

β̃t −∆β̃ = 3γ̄2γ̃ + v2 in (t1, t2)× ω1,
γ̃t −∆γ̃ = v3 + ũ in (t1, t2)× ω1,
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where the data is (v1, v2, v3)tr : (t1, t2)×ω1 → R3 and the unknown is (α̃, β̃, γ̃, ũ)tr : (t1, t2)×
ω1 → R4 is algebraically solvable, i.e. there are solutions of (4.24) such that the unknown can
be expressed in terms of the derivatives of the data. Indeed, for (v1, v2, v3)tr ∈ D′((t1, t2) ×
ω1)3, if (α̃, β̃, γ̃, ũ)tr ∈ D′((t1, t2)× ω1)4 is defined by

α̃ := 0,(4.25)

β̃ := − v1

3β̄2
,(4.26)

γ̃ :=
1

3γ̄2

(
−
(
v1

3β̄2

)
t

+ ∆

(
v1

3β̄2

)
− v2

)
,(4.27)

(4.28)
ũ := −v3 +

(
1

3γ̄2

(
−
(
v1

3β̄2

)
t

+ ∆

(
v1

3β̄2

)
− v2

))
t

−∆

(
1

3γ̄2

(
−
(
v1

3β̄2

)
t

+∆

(
v1

3β̄2

)
− v2

))
,

then (4.24) holds. This algebraic solvability is a key ingredient for the following proposition.

Proposition 9 There exists η > 0 such that, for every (α0, β0, γ0)tr ∈ L∞(Ω)3 satisfying

(4.29) |α0|L∞(Ω) + |β0|L∞(Ω) + |γ0|L∞(Ω) < η,

there exists û ∈ L∞((0, t2) × Ω) such that the solution (α̂, β̂, γ̂)tr ∈ L∞((0, t2) × Ω)3 of the
Cauchy problem

(4.30)



α̂t −∆α̂ = 3β̄2β̂ + 3β̄β̂2 + β̂3 in (0, t2)× Ω,

β̂t −∆β̂ = 3γ̄2γ̂ + 3γ̄γ̂2 + γ̂3 in (0, t2)× Ω,
γ̂t −∆γ̂ = ûχω in (0, t2)× Ω,

α̂ = β̂ = γ̂ = 0 in (0, t2)× ∂Ω,

α̂(0, ·) = α0(·), β̂(0, ·) = β0(·), γ̂(0, ·) = γ0(·) in Ω,

satisfies

(4.31) α̂(t2, ·) = β̂(t2, ·) = γ̂(t2, ·) = 0 in Ω.

The proof of Proposition 9 is given in Appendix A. It is an adaptation of [19], which deals
with Navier-Stokes equations, to our parabolic system. Besides a suitable inverse mapping
theorem, it mainly consists of the following two steps.

(i) Prove that the control system (4.30) with two “fictitious” controls added on the first
two equations is null controllable by means of smooth controls. See Proposition 11.

(ii) Remove the two “fictitious” controls by using the algebraic solvability, as in [13] and
[19]. See (the proof of) Proposition 14.

With the notations of Proposition 9, we extend (α̂, β̂, γ̂)tr and û to all of (0, T ) × Ω by
requiring

α̂(t, x) = β̂(t, x) = γ̂(t, x) = û(t, x) = 0, ∀(t, x) ∈ (t2, T )× Ω.(4.32)
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Then, by (4.30) and (4.31), one has (4.14) and

(4.33) α̂(T, ·) = β̂(T, ·) = γ̂(T, ·) = 0 in Ω.

Let us define (α, β, γ)tr ∈ L∞((0, T )×Ω)3 and u ∈ L∞((0, T )×Ω) by imposing (4.10), (4.11),
(4.12), and (4.13). Then, from (4.14), one has (1.2) and, using (4.15) together with (4.33),
one has (1.3). This concludes the proof of Theorem 1 if (4.29) holds.

However, assumption (4.29) can be removed by using the following simple homogeneity
argument: If ((α, β, γ)tr, u) ∈ L∞((0, T )×Ω)3×L∞((0, T )×Ω) is a trajectory (i.e. a solution)
of the control system (1.1), then for every s > 0, ((αs, βs, γs)tr, us) := ((s9α, s3β, sγ)tr, su)
is a trajectory (i.e. a solution) of the control system (1.1). This concludes the proof of
Theorem 1.

A Proof of Proposition 9

Let 1̂ω2 : R3 → [0, 1] be a function of class C∞ which is equal to 1 on ω2 and whose support
is included in ω1, and let ζ : R → [0, 1] be such that ζ is equal to 0 on (−∞, (2t1 + t2)/3]
and is equal to 1 on ((t1 + 2t2)/3,+∞). Let ϑ : R× R3 → R be defined by

(A.1) ϑ(t, x) := ζ(t)1̂ω2(x), ∀(t, x) ∈ R× R3.

From now on, we set, Q := (t1, t2)× Ω and, for η ∈ (0, 1) and K > 0,

ρη(t) := e
−K

η(t2−t) , ρ1(t) := e
−K

(t2−t) , ∀t ∈ [t1, t2).(A.2)

We have the following Carleman estimates proven in [24, Chapter 1].

Lemma 10 Let η ∈ (0, 1). There exist K := K(η) > 0 and C := C(K) > 0 such that,
for every g = (g1, g2, g3)tr ∈ L2((t1, t2) × Ω)3 and for every solution z = (α̂, β̂, γ̂)tr ∈
L2((t1, t2), H2(Ω)3) ∩ H1((t1, t2), L2(Ω)3) of the parabolic system, which is the adjoint of
(4.17),

(A.3)


−α̂t −∆α̂ = g1 in (t1, t2)× Ω,

−β̂t −∆β̂ − 3β̄2α̂ = g2 in (t1, t2)× Ω,

−γ̂t −∆γ̂ − 3γ̄2β̂ = g3 in (t1, t2)× Ω,

α̂ = β̂ = γ̂ = 0 in (t1, t2)× ∂Ω,

one has

(A.4) |√ρηz|2L2(Q)3 + |z(t1, ·)|2L2(Ω)3 6 C

(∫
(t1,t2)×Ω

ϑρ1|z|2 +

∫
(t1,t2)×Ω

ρ1|g|2
)
.

Let us now derive from Lemma 10 a proposition on the null-controllability with controls
which are smooth functions for the control system (4.17) with a right hand side term.

Proposition 11 Let η ∈ (0, 1) be such that

(A.5) η >
2

3
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and let K be as in Lemma 10. Let k ∈ N and let p ∈ [2,+∞). Then, for every f =
(f1, f2, f3)tr ∈ Lp(Q)3 such that ρη

−1/2f ∈ Lp(Q)3 and for every (α0, β0, γ0)tr ∈ W 1,p
0 (Ω)3 ∩

W 2,p(Ω)3, there exists u = (u1, u2, u3) ∈ L2(Q)3 satisfying

e
Kη2

2(t2−t)ϑu ∈ L2((t1, t2), H2k(Ω)3) ∩Hk((t1, t2), L2(Ω)3),(A.6)

such that the solution ŷ := (α̂, β̂, γ̂)tr of

(A.7)



α̂t −∆α̂ = 3β̄2β̂ + f1 + ϑu1 in (t1, t2)× Ω,

β̂t −∆β̂ = 3γ̄2γ̂ + f2 + ϑu2 in (t1, t2)× Ω,
γ̂t −∆γ̂ = f3 + ϑu3 in (t1, t2)× Ω,

α̂ = β̂ = γ̂ = 0 in (t1, t2)× ∂Ω,

α̂(t1, ·) = α0(·), β̂(t1, ·) = β0(·), γ̂(t1, ·) = γ0(·) in Ω,

satisfies

e
K

2(t2−t) ŷ ∈ Lp((t1, t2),W 2,p(Ω)3) ∩W 1,p((t1, t2), Lp(Ω)3).(A.8)

Proof of Proposition 11. We adapt the proof of [19, Proposition 4] to our situation.
Modifying if necessary f , we may assume without loss of generality that

(A.9) (α0, β0, γ0)tr = 0.

Let us define a linear operator S : D′(Q)3 → D′(Q)3 by

Sz :=

 −αt −∆α
−βt −∆β − 3β̄2α
−γt −∆γ − 3γ̄2β

 , ∀z =

αβ
γ

 ∈ D′(Q)3.(A.10)

We define a closed linear unbounded operator S : D(S) ⊂ L2(Q)3 → L2(Q)3 by

(A.11) D(S) := {z = (α, β, γ)tr ∈ L2((t1, t2), H1
0 ∩H2(Ω)3)

∩H1((t1, t2), L2(Ω)3); z(t2, ·) = 0},

Sz = Sz.(A.12)

Let

(A.13) X0 := L2(Q).

For m ∈ N \ {0}, we set

Xm := D(Sm),(A.14)

Let us point out that

(A.15) < z1, z2 >Xm :=< Smz1,Smz2 >L2(Q)3
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is a scalar product on Xm. From now on Xm is equipped with this scalar product. Then Xm

is an Hilbert space. For m ∈ Z ∩ (−∞, 0), let

Xm := X ′−m,(A.16)

where X ′−m denotes the dual space of X−m. We choose the pivot space L2(Q)3 = X0. In
particular (A.16) is an equality for m = 0. For every (k, l) ∈ Z2 such that k 6 l, one has

(A.17) Xl ⊂ Xk.

Note that, since Ω is only of class C2, in general, for m ∈ N \ {0, 1},

(A.18) Xm 6⊂ L2((t1, t2), H2m(Ω)3) ∩Hm((t1, t2), L2(Ω)3).

However, even with Ω only of class C2, by classical results on the interior regularity of
parabolic systems, for every m ∈ N, for every open subset Ω0 such that Ω0 ⊂ Ω, and for
every z ∈ Xm,

(A.19) z|(t1,t2)×Ω0 ∈ L2((t1, t2), H2m(Ω0)3) ∩Hm((t1, t2), L2(Ω0)3).

(Note that this property is not known to hold for the linearized Navier-Stokes equations
considered in [19] for Ω only of class C2 ; this is why Ω is assumed to be of class C∞ in [19].)

For m ∈ N, one can define S∗ as an operator from X−m into X−m−1 by setting, for every
z1 ∈ X−m−1 and for every z2 ∈ Xm+1,

< S∗z1, z2 >X−m−1,Xm+1 :=< z1,Sz2 >X−m,Xm .(A.20)

(One easily checks that this definition is consistent: it gives the same image if z1 is also in
X−m′ for some m′ ∈ N). This implies in particular that, for every z1 ∈ L2(Q)3 and for every
z2 ∈ Xm, one has, for every 0 6 j 6 l,

< (S∗)lz1, z2 >X−l,Xl=< (S∗)l−jz1, (S)jz2 >Xj−l,Xl−j .(A.21)

Let H0 be the set of z ∈ H1((t1, t2), L2(Ω)3) ∩ L2((t1, t2), H2(Ω)3) such that

√
ρ1Sz ∈ Xk,(A.22) √

ϑρ1z ∈ L2(Q)3.(A.23)

Let q be the following bilinear form defined on H0:

q(z, w) :=<
√
ρ1Sz,

√
ρ1Sw >Xk +

∫
Q

ϑρ1z · w.(A.24)

(This is the analogue of the bilinear form denoted by a in [19].) From (A.4), we deduce that q
is a scalar product on H0. Let H be the completion of H0 for this scalar product. Note that,
still from (A.4) and also from the definition of H, H is a subspace of L2

loc((t1, t2), H1
0 (Ω)3)

and, for every z ∈ H, one has (A.22), (A.23), and

|ρη1/2z|L2(Q)3 6 C
√
q(z, z), ∀z ∈ H.(A.25)
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As in [19], using the Riesz representation theorem together with (A.25), one gets that there
exists a unique

ẑ ∈ H(A.26)

verifying, for every w ∈ H,

< Sk(√ρ1Sẑ),Sk(√ρ1Sw) >L2(Q)3 −
∫
Q

u · w =

∫
Q

f · w,(A.27)

with

u := −ρ1ẑ.(A.28)

We then set

ỹ := (S∗)kSk(√ρ1Sẑ) ∈ X−k.(A.29)

We want to gain regularity on ỹ by accepting to have a weaker exponential decay rate for ỹ
when t is close to t2 (in the spirit of [24, Theorem 2.4, Chapter 1] and [9]). Let ψ ∈ C∞([t1, t2])
and y ∈ X−1. One can define ψy ∈ X−1 in the following way. Since S∗ : X0 → X−1 is onto,
there exists h ∈ X0 such that S∗h = y. We define ψy by

ψy = ψS∗h := −ψ′h+ S∗(ψh).(A.30)

This definition is compatible with the usual definition of ψy if y ∈ X0. We can then define
by induction on m ψy ∈ X−m for ψ ∈ C∞([t1, t2]) and y ∈ X−m in the same way. Using
(A.29), this allows us to define

ŷ :=
√
ρ1ỹ ∈ X−k.(A.31)

From (A.27), (A.28), (A.29), and (A.31), one gets

S∗ŷ = f + ϑu in X−k−1.(A.32)

Let

K̃ ∈ (0, K) and ρ̃1 := e−K̃/(t2−t).(A.33)

Using (A.28), (A.29), and (A.32), one has

S∗
((√

ρ1/
√
ρ̃1

)
ỹ
)

=
(

1/
√
ρ̃1

)′√
ρ1ỹ +

(
1/
√
ρ̃1

)
(f + u) in X−k.(A.34)

We want to deduce from (A.34) some information on the regularity of ỹ. This can be achieved
thanks to the following lemma, the proof of which is similar to the proof of [19, Lemma 4].

Lemma 12 Let m ∈ N. If y ∈ X−m and S∗y ∈ X−m, then y ∈ X−m+1.
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From (A.31), (A.34), and Lemma 12, one gets that(√
ρ1/
√
ρ̃1

)
ỹ ∈ X−k+1, ∀K̃ ∈ (0, K).

Using an easy induction argument together with Lemma 12 (and the fact that one can choose

K̃ < K arbitrarily close to K), we deduce that, for every K̃ ∈ (0, K),
(√

ρ1/
√
ρ̃1

)
ỹ ∈ X0.

Let us now focus on u. Let us define

(A.35) v := ρ1ẑ.

Using (A.25), one gets that

ρ1
−1ρη

1/2v ∈ L2(Q)3.(A.36)

Using (A.26) together with regularity results for S applied on ρ̃−1
1 ρη

1/2v ∈ L2(Q)3 and, as
above for the proof of (A.36), a bootstrap argument (together with the fact that one can
choose K̃ ∈ (0, K) arbitrarily close to K), one obtains that

ρ̃−1
1 ρη

1/2v ∈ Xk, ∀K̃ ∈ (0, K).(A.37)

Let us point out that (A.5) implies that

(A.38) η2 − 2 +
1

η
< 0.

From (A.5), (A.19), (A.28), (A.35), (A.37), and (A.38), one gets (A.6).
Let us now deal with ŷ. Without loss of generality, we may assume that

(A.39) 4k > 2 +N,

so that

(A.40) L2((t1, t2), H2k(Ω)3) ∩Hk((t1, t2), L2(Ω)3) ⊂ L∞(Q).

From (A.32), (A.40), and (A.37), we deduce (by looking at the parabolic system verified by

(1/
√
ρ̃1)ŷ and using usual regularity results for linear parabolic systems) that(

1/
√
ρ̃1

)
ŷ ∈ Lp((t1, t2),W 2,p(Ω)3) ∩W 1,p((t1, t2), Lp(Ω)3), ∀K̃ ∈ (0, K),(A.41)

which, together with (A.32), concludes the proof of Proposition 11.

To end the proof of Proposition 9, we are going to apply the following inverse mapping
theorem (see [5, Chapter 2, Section 2.3]).

Proposition 13 Let E and F be two Banach spaces. Let F : E → F be of class C1 in a
neighborhood of 0. Let us assume that the operator F ′(0) ∈ L(E,F ) is onto. Then there
exist η > 0 and C > 0 such that for every g ∈ F verifying |g−F(0)| < η, there exists e ∈ E
such that

(i) F(e) = g,
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(ii) |e|E 6 C|g −F(0)|F .

We now use the same technique as in [24, Theorem 4.2]. For y := (α, β, γ)tr ∈ D′(Q)3

and for v ∈ D′(Q), one defines L(y, v) ∈ D′(Q)3 by

(A.42) L(y, v) :=

αt −∆α− 3β̄2β
βt −∆β − 3γ̄2γ
γt −∆γ − v

 .

Let η ∈ (0, 1) and let K = K(η) > 0 be as in Lemma 10. We apply Proposition 13 with
E and F defined in the following way. Let E be the space of the functions

(y, v) ∈ Lp(Q)3 × L∞(Q)

such that

(i) e
η3K

2(t2−t)y ∈ Lp((t1, t2),W 2,p(Ω)3) ∩W 1,p((t1, t2), Lp(Ω)3),

(ii) e
η3K

2(t2−t)v ∈ L∞(Q)3 and the support of v is included in (t1, t2)× ω,

(iii) e
K

2η(t2−t)L(y, v) ∈ Lp(Q)3,

(iv) y(t1, ·) ∈ W 1,p
0 (Ω)3 ∩W 2,p(Ω)3,

equipped with the following norm which makes it a Banach space:

(A.43) |(y, v)|E := |e
η3K

2(t2−t)y|Lp((t1,t2),W 2,p(Ω)3)∩W 1,p((t1,t2),Lp(Ω)3)

+ |e
η3K

2(t2−t)v|L∞(Q) + |e
K

2η(t2−t)L(y, v)|Lp(Q)3 + |y(t1, ·)|W 2,p(Ω)3 .

Let F be the space of the functions (h, y0) ∈ Lp(Q)3 ×
(
W 1,p

0 (Ω)3 ∩W 2,p(Ω)3
)

such that

(A.44) e
K

2η(t2−t)h ∈ Lp(Q)3

equipped with the following norm which makes it a Banach space:

(A.45) |(h, y0)|F := |e
ηK1

2(t2−t)h|Lp(Q)3 + |y0|W 2,p(Ω)3 .

We define F : E → F by

(A.46) F(y, v) =

L(y, v)−

3β̄β2 + β3

3γ̄γ2 + γ3

0

 , y(t1, ·)

 .

One easily sees that F is of class C1 if

(A.47) p >
N + 2

2
and η >

1

21/4
.

From now on, we assume p > 2 and η ∈ (0, 1) are chosen so that (A.47) holds. Note that
the second inequality of (A.47) implies that (A.5) holds. Let us assume for the moment that
the following proposition holds.
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Proposition 14 One has

(A.48) F ′(0, 0)(E) = F.

Then the assumptions of Proposition 13 hold. Since Proposition 9 follows from the conclusion
of Proposition 13 by taking û = 0 in (0, t1)× Ω, this concludes the proof of Proposition 9.

It only remains to prove Proposition 14. Let f = (f1, f2, f3)tr and y0 = (α0, β0, γ0)tr be
such that (f, y0) ∈ F . Let us choose k large enough so that

(A.49) N + 2 < 4(k − 2).

Using Proposition 11, we get the existence of u = (u1, u2, u3) ∈ L2(Q)3 satisfying (A.6) such
that the solution ŷ := (α̂, β̂, γ̂)tr of (A.7) satisfies (A.8). We now use the algebraic solvability
of (4.24) (i.e. that (4.25), (4.26), (4.27), and (4.28) imply (4.24)) with

(A.50) v := ϑu.

We get that, if (α̃, β̃, γ̃, ũ)tr ∈ D′((t1, t2)×ω1)4 is defined by (4.25), (4.26), (4.27), and (4.28),
then (4.24) holds. We extend α̃, β̃, γ̃, and ũ to (t1, t2)×Ω by 0 outside (t1, t2)× (Ω\ω1) and
still denote by α̃, β̃, γ̃, and ũ these extensions. Note that (4.24) still holds on (t1, t2) × Ω
and that (see, in particular (A.1))

α̃(t1, ·) = β̃(t1, ·) = γ̃(t1, ·) = 0.(A.51)

Finally we define y := (α, β, γ)tr ∈ D′((t1, t2)× ω1)3 and u ∈ D′((t1, t2)× ω1) by

(A.52) α := α̂− α̃, β := β̂ − β̃, γ := γ̂ − γ̃, u := −ũ.

From (4.25), (4.26), (4.27) (4.28), (A.6), (A.8), (A.49), (A.50), and (A.52), we get that
(y, u) ∈ E. Then, from (4.24), (A.7), (A.50), (A.51), and (A.52), we get that F ′(0, 0)(y, u) =
(y0, f). This concludes the proof of Proposition 14 and therefore also the proof of Proposi-
tion 9.

Remark 15 1. Instead of proceeding as in [19] in order to prove Proposition 9, one can
also proceed as in [18]. For that, an important step is to prove that small (in a suitable
sense) perturbations of the linear control system (4.17) are controllable by means of bounded
controls (see [18, Section 3.1.2]. This controllability property follows from [25, Theorem 4.1]
and one can also get it by following [18, Section 3.1.2] or [22]. 2. Let us emphasize that
the algebraic solvability of (4.24) leads to a loss of derivatives. This problem is managed
in our situation thanks to hypoelliptic properties of parabolic equations. These properties do
not hold, for example, for hyperbolic equations. However, for these last equations, the loss of
derivatives problem can be solved thanks to a Nash-Moser inverse mapping theorem due to
Gromov [27, Section 2.3.2, Main Theorem]. See [3] for the first use of this inverse mapping
theorem in the context of control of partial differential equations.
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Sergĕı Vasil′evich Fomin. Optimal control. Contemporary Soviet Mathematics.
Consultants Bureau, New York, 1987. Translated from the Russian by V. M. Volosov.

[6] Farid Ammar-Khodja, Assia Benabdallah, Manuel González-Burgos, and Luz de Teresa.
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Sharp Estimates of the One-Dimensional Boundary Control Cost for Parabolic Systems
and Application to the N -Dimensional Boundary Null Controllability in Cylindrical
Domains. SIAM J. Control Optim., 52(5):2970–3001, 2014.

[11] Franck Boyer and Guillaume Olive. Approximate controllability conditions for some
linear 1D parabolic systems with space-dependent coefficients. Math. Control Relat.
Fields, 4(3):263–287, 2014.

[12] Nicolás Carreño and Sergio Guerrero. Local null controllability of the N -dimensional
Navier-Stokes system with N − 1 scalar controls in an arbitrary control domain. J.
Math. Fluid Mech., 15(1):139–153, 2013.

[13] Jean-Michel Coron. Global asymptotic stabilization for controllable systems without
drift. Math. Control Signals Systems, 5(3):295–312, 1992.

[14] Jean-Michel Coron. On the controllability of 2-D incompressible perfect fluids. J. Math.
Pures Appl. (9), 75(2):155–188, 1996.

31



[15] Jean-Michel Coron. Local controllability of a 1-D tank containing a fluid modeled by
the shallow water equations. ESAIM Control Optim. Calc. Var., 8:513–554 (electronic),
2002. A tribute to J. L. Lions.

[16] Jean-Michel Coron. Control and nonlinearity, volume 136 of Mathematical Surveys and
Monographs. American Mathematical Society, Providence, RI, 2007.

[17] Jean-Michel Coron and Sergio Guerrero. Local null controllability of the two-
dimensional Navier-Stokes system in the torus with a control force having a vanishing
component. J. Math. Pures Appl. (9), 92(5):528–545, 2009.

[18] Jean-Michel Coron, Sergio Guerrero, and Lionel Rosier. Null controllability of a
parabolic system with a cubic coupling term. SIAM J. Control Optim., 48(8):5629–
5653, 2010.

[19] Jean-Michel Coron and Pierre Lissy. Local null controllability of the three-dimensional
Navier-Stokes system with a distributed control having two vanishing components. In-
vent. Math., 198(3):833–880, 2014.

[20] Luz de Teresa. Insensitizing controls for a semilinear heat equation. Comm. Partial
Differential Equations, 25(1-2):39–72, 2000.

[21] Luz de Teresa and Enrique Zuazua. Identification of the class of initial data for the
insensitizing control of the heat equation. Commun. Pure Appl. Anal., 8(1):457–471,
2009.

[22] Michel Duprez and Pierre Lissy. Indirect controllability of some linear parabolic systems
of m equations with m−1 controls involving coupling terms of zero or rst order. Preprint,
https://hal.archives-ouvertes.fr/hal-01162108v2.

[23] Enrique Fernández-Cara, Sergio Guerrero, Oleg Yu. Imanuvilov, and Jean-Pierre Puel.
Some controllability results for the N -dimensional Navier-Stokes and Boussinesq sys-
tems with N − 1 scalar controls. SIAM J. Control Optim., 45(1):146–173 (electronic),
2006.

[24] Andrei V. Fursikov and Oleg Yu. Imanuvilov. Controllability of evolution equations,
volume 34 of Lecture Notes Series. Seoul National University Research Institute of
Mathematics Global Analysis Research Center, Seoul, 1996.
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