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Control of three heat equations coupled with two cubic
nonlinearities

Jean-Michel Coron® Jean-Philippe Guilleron'

Abstract

We study the null controllability of three parabolic equations. The control is acting
only on one of the three equations. The three equations are coupled by means of two
cubic nonlinearities. The linearized control system around 0 is not null controllable.
However, using the cubic nonlinearities, we prove the (global) null controllability of
the control system. The proof relies on the return method, an algebraic solvability and
smoothing properties of the parabolic equations.

1 Introduction

Let N be a positive integer and let © be a nonempty connected bounded subset of RY of class
C?. Let w be a nonempty open subset of 2. We denote by ., : € — R the characteristic
function of w and let 7" € (0, 400). We are interested in the control system

a—Aa=p3" i (0,7)

(1 1) Bt_AB:73 n (07T) x €,
' v — Ay =uy, in (0,7)
a=0Ff=v=0 in(0,7)

It is a control system where, at time ¢ € [0, T, the state is (a(t,-), 8(t,-),y(t, )" : @ — R?
and the control is u(t,-) : £ — R. Let us point out that, due to the recursive structure of
(1.1) (one first solves the last parabolic equation of , then the second one and finally
the first one), it follows from classical results on linear parabolic equations that the Cauchy
problem associated to is globally well-posed in the L% setting, i.e. with bounded
measurable initial data, controls, and solutions.

The main goal of this paper is to prove the following global null controllability result on
control system ([1.1).
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Theorem 1 For every (a°, 3°,7°)" € L>®(Q)?, there exists a control u € L>((0,T) x )
such that the solution (a, 3,7)" € L®((0,T) x Q)* to the Cauchy problem

a — Aa = 3 in (0,T) x €,
Be— AR =77 in (0,T) x Q,
(1.2) Yo — Ay = ux, in (0,T) x €,
a=0=7=0 z’n(O,T)xé)Q,
04(07 ) - ao(')a 6(07 ) - 60(')7 7(07 ) = 70(') in €2,
satisfies

The controllability of systems of partial differential equations with a small number of
controls is an important subject which has been recently investigated in a large number of
articles. For the case of linear systems, let us mention in particular

e For systems of parabolic equations in dimension 1 or larger: [21 20, 26, 29]. A key
step in these papers is to establish suitable Carleman estimates. In dimension 1, the
method of moments can lead to very precise (and sometimes unexpected) results; see,
in particular [8, [7, 10} [I1]. See also the survey paper [6] and the reference therein.

e For systems of Schrodinger equations: [2], which uses transmutation together with a
controllability result for systems of wave equations proved in the same article. See also
[30] for the controllability of a cascade system of conservative equations.

e For Stokes equations of incompressible fluids: [23, 28| [17, 12]. Again Carleman esti-
mates are key ingredients here.

e For hyperbolic equations: [I}, 2], which rely on multiplier methods, and [4] which uses
microlocal analysis.

Let us assume that 0 is a trajectory (i.e. a solution) of the system of partial differential
equations. If the linearized control system is controllable, one can expect to get the local
null controllability. For systems of partial differential equations with a small number of
controls it has been proven to be the case, for example, for the Navier Stokes equations in
[12].

Note that the linearized control system of around 0 is clearly not controllable.
When the linearized control system around 0 is not controllable one may still expect that
the nonlinearities can give the controllability. A method to treat this case is the return
method. It consists in looking for (nonzero) trajectories of the control system going from 0
to 0 such that the linearized control system is controllable. This method has been introduced
in [I3] for a stabilization issue and used for the first time in [14] to get the controllability of a
partial differential equation (the Euler equation of incompressible fluids). This method can
also be used to get controllability of systems of partial differential equations with a small
number of controls. See, for example,

e [I5] for a water tank control system modeled by means of the Saint-Venant equations.

o [17, [19] for the Navier-Stokes equations.



o [I8] for a system of two nonlinear heat equations.

Let us give more details about [18] since it deals with a control system related to our system
(1.1). The control system considered in [18] is

Bi—AB=7"  in(0,T)xQ,
(1.4) v — Ay =uy, in(0,7) %,
B=~v=0 in (0,7") x 09,

where, at time ¢t € [0, T], the state is (8(¢,-),v(t,-))" : @ — R? and the control is u(t,-) :
2 — R. (In fact, slightly more general control systems of two coupled parabolic equations
are considered in [I8].) Using the return method, it is proved in [I8] that the control system
is locally null controllable. We use the same method here. However the construction of
trajectories of the control system going from 0 to 0 such that the linearized control system is
(null) controllable is much more complicated for the control system than for the control

system (|1.4)).
The construction of trajectories of the control system (1.1) going from 0 to 0 such that
the linearized control system is (null) controllable follows from simple scaling arguments (see

to below) and the following theorem.

Theorem 2 There exists (a,b,c) € C°(R x R)? such that

(1.5) the supports of a, b, and ¢ are included in [—1,1] x [—1,1],
(1.6) {(t,7); 7> 0,0b(t,7) # 0 and c(t,r) # 0} # 0,

(1.7) a(t,r) = a(t,—r), b(t,r) = b(t,—r), c(t,r) = c(t,—r), V(t,7) € R x R,
(1.8) N -1

r
N -1

r

ay — Qpp — a, = b in R x R,

(1.9) by — by — b, = in R x R*.

An important ingredient of the proof of Theorem [2]is the following proposition which is
related to Theorem [2 in the stationary case.

Proposition 3 There exists (A, B,C) € C*(R)? and §4 € (0,1/2) such that
(1.10) the supports of A, B, and C are included in [—1, 1],

(1.11) {2; 2>0,B(2) # 0 and C(z) # 0} # 0,

(1.12) A(z) = A(—=), B(z) = B(—=2), C(z) = C(—=2), Vz € R,
(1.13) Az) =e V0= 4 16, <2< 1,

(1.14) —-A" - %A’ = B% in R*,

(1.15) —B" — E =% in R¥,

(1.16) (B(z) = 0 and = € [0,1)) & < 1),

2
(1.17) <;) <0,

(1.18) (;) >0,

(1.19) (C(z) =0 and z €10,1)) = (2 € (0,1) and C'(z) #0) .



This proposition is proved in Section [2l In Section [3] we show how to use Proposition [3] in
order to prove Theorem [2] Finally, in Section [, we deduce Theorem [I] from Theorem [2|

Remark 4 Looking to our proof of Theorem ||, it is natural to conjecture that this theorem
still holds if, in (1.2)), B* and 7> are replaced by ™' and v**" respectively, where p and q
are arbitrary nonnegative integers.

2 Proof of Proposition 3| (stationary case)

In order to construct A, one shall use the following lemma.

Lemma 5 There exists 69 € (0,1) such that, for every § € (0,0q), there exists a function
G € C*([0,4+00)) such that

3

(2.1) G(z):z‘g(z—%) for%—(5<z<%+(5,

(2.2) (Z—%)G(z) >0 for0<z<1, z# %,

(2.3) {Z e (0,1); (GY?)"(2) + %(Gl/g)'(z) = O} is finite,

and such that the solution A : (0,+00) — R to the Cauchy problem

N -1
(2.4) A(l)=A'(1)=0, A"(2) + . Al(z) =G(z), z > 0,
satisfies
(2.5) there exists cy € R such that A(z) = cy — 2% if 0< 2z <6,
(2.6) A)=e VO 4 16 <2 <1,
(2.7) A(z) =0 if z € [1,+00).

Proof of Lemma . Let us first emphasize that it follows from (2.1 and (2.2)) that G/3
is of class C* on (0, 1), hence (2.3) makes sense. Let § € (0,1/4). Let G € C*([0, +00)) be
such that (2.1)) and (2.2) hold for G = G and

(2.8) G(z) = —8(6 + N)2° vz € (0,9),

29) 61 = (T — o ) v e (- 0))
(2.10) G(z) =0, Vz € (1,+00),

(2.11) G is analytic on (0,1)\ {9, (1/2) — §,(1/2) +6,1 — §}.

One easily sees that such G exists if § € (0,1/4) is small enough, the smallness depending
on N. Frow now on, ¢ is always assumed to be small enough. Let k € R. Let us define
G € C*™(]0,4+00)) by

(2.12) G:=Gin [0,5]U[(1/2) =6, (1/2) + 6] U1 = §, +o0),

(2.13) G(2) := G(z) + min{x, 0}e VG0 V1=2-22) y» < (5 (1/2) — §),

(2.14) G(2) :== G(z) + max{r, 0} V/(F1=20)o=1/(1=0=2) "y> < ((1/2) + 5,1 — §).



Let A be the solution of the Cauchy problem (2.4)). From (2.12)), one has (2.1) and ({2.2)).
From (2.11)), (2.13]), and (2.14)), one gets that

(2.15) G is analytic on (0,1) \ {0, (1/2) — 9, (1/2) + 6,1 — 6},

which implies (2.3) since (G'/3)" cannot be identically equal to 0 on one of the five intervals
(07 5)7 (57 (1/2) - 5)7 ((1/2) - 57 (1/2) + 5)7 ((1/2) + 57 11— 6)7 and (1 - 57 1)

Remark 6 We require (2.15)) only to get (2.3)). However (2.3) can also be obtained without
requiring (2.15)) by using genericity arguments.

From , , and , one gets . From , , and , one gets .

It remains to prove that, for some £ € R, one has (2.5). Let us first point out that, for
every y € C*((0,9)),

(2.16) (y” + %y/ = o> =
(3 (co, 1) € R? such that y(z) = co + c1 E(2), Vz € (0,6)),
where
1
2.1 it N#2, F(z2) = ————
(2.17) if N #2, E(z) BN Vz € (0, +00),
(2.18) if N=2, E(z) := —In(z), Vz € (0, +0).

From ([2.4)), (2.§]), 12.12j , one gets that y := A+ 2% satisfies the assumption of the implication
(2.16)). Hence, by (2.16)), one gets the existence of (co, ;) € R? such that

(2.19) A(z) =cy— 2° + 1 E(2), ¥z € (0,0).

It suffices to check that, for some k € R,
(2.20) ¢y = 0.
From ({2.4), one has

(221) if N #2, A(z) = _W /12 sNLG(s)ds + ﬁ /: sG(s)ds, ¥z € (0,1],

(2.22) if N =2, A(z) = In(2) /Z sG(s)ds — /Z sln(s)G(s)ds, Vz € (0,1],

which, together with (2.17), (2.18)), (2.19), with z — 0, gives

(2.23) = /1 sV 1G(s)ds.

From (2:12), (ZI3), and (2.14), one has

1 1
(2.24) lim sN1G(s)ds = +oo and  lim s"1G(s)ds = —oo.

K—+00 0 K—r—00 0

In particular, with the intermediate value theorem, there exists x € R such that

1
(2.25) / sN1G(s)ds = 0,

0
which, together with (2.23)), concludes the proof of Lemma [ |
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We go back to the proof of Proposition [3] We extend A to all of R by requiring

(2.26) A(0) = co,

(2.27) A(z) = A(—2), Yz € (—00,0).

By 2.5). (2:26)), and (2.27), A € C®(R). Let B € C°(R*) be defined by
(2.28) B:=— (A” + NZ_ 1A’> 1/3.

From and , one gets that

(2.29) B(z) = B(—=z), Vz € R™.

From , one sees that

(2.30) B is of class C™ on the set {z € R*; B(z) # 0}.
From , , and , one has

(2.31) B(z) = 2(6 + N)Y322 vz € (=4,6) \ {0},

which allows to extend B to all of R by continuity by requiring
(2.32) B(0) = 0.

From and , we get that

(2.33) B is of class C* in (=6, 0).
From (2.2)), (2.4), and (2.28)), one gets that

(2.34) B #0in (0,1)\ {1/2},
which, with , implies that

(2.35) B is of class C* in (0,1) \ {1/2}.

From (1), @4), and [28), one has

1 1 1
2. B(z) = — - = ——0,=+0]).
(2.36) (2) z(z 2),‘v’z€(2 ,2—|—>
In particular (1.17)) holds. From (2.6 and (2.28)), one gets

—24624 2N =D\ e
(2.37) B(z) = — ((1_22)4 — (5_22?)) e VO3 e (1-6,1),

which implies the existence of dy > 0 such that, for every ¢ € (0, oy,

(2.38) B<0in (1—-46,1).

6



From ([2.7) and , one gets

(2.39) B(z) =0,Vz € (1,+00),
which, together with , implies that

(2.40) B is of class C* in (1 — 9, +00).
From (2.29), (2:33), (2-35), (2-36), and (2.40)), one gets that
(2.41) B is of class C*° in R.

Let us now define C' € C°(R*) by

N—1_)\"
(2.42) C(z):=— (B" +— B') , Vz e R™.
From and , one has
(2.43) C(z) =C(—=2), Vz € R".
From and , one gets that
(2.44) C' is of class C™ on the set {z € R*; C(z) # 0}.
From and , one has
(2.45) C(z) = —(4N)3(6 + N)5 < 0,Vz € [—5,4].
From and , one has
(2.46) C(Z’):(QN—N2;1>1/3,VZ€ %—5,%+5 .
In particular, since § > 0 is small enough,
(2.47) C' is positive and of class C* on % — 4, % +4].
From , , and , one gets that
(2.48) C>0in [1 —4,1) and C is of class C* in [1 — §, +00).
From (2.43), (2.44), (2.45), (2-47), and (2.48)), one sees that
(2.49) C e C*(R)
if
(2.50) C is of class C™ in (4, (1/2) —0) U ((1/2) + 4,1 —9).

Let us first point out that, by (2.3), (2.4)), (2.28)), and (2.42]),
(2.51)  the set of zy € (0, (1/2) — ) U ((1/2) 4+ 6,1 — ) such that C(zp) = 0 is finite.

We are going to prove that (2.50) indeed holds provided that one no longer requires (2.15))
and that one modifies G in a neighborhood of every z, € (4, (1/2) — ) U ((1/2) + 0,1 — 9)
such that C'(z) = 0. Since G = —B?, this comes from the following lemma.

7



Lemma 7 Let v > 0, ¢ > 0, and n > 0 be such that [( —n,( + n] C (0,400). Let
B e C*([( —n,(+mn)]) be such that

(2.52) BY(2) + M B(2) £0,z € [ .\ (G

Then, there exists B € C([C —n,( +n]) satisfying

(2.53) [B(z) = B(z)] < v, Vz € [ —n,¢ + 1],

(2.54) the support of B — B is included in ({ —n,( + 1),
N1\ B

(2.5 (B7+ 5 225)  ec(c-nc+n)

and such that, if A € C°°([¢ —n,¢ +n)) is the solution of

(2.56) ALy - B,
z
(2.57) A(C—n)=A(C—n), A(C—n) = A(¢—n),
then,
(2.58) A(C+n) = AC+n), A(C+n) = A +n).
Proof of Lemma [Tl Let us first consider the case where
" N -1 y N -1

@59 (Be-n+ T B0 (B + TG ) <o
Then, replacing if necessary B by —B and using , we may assume that

N -1
(2.60) B"(z) + . B'(z) <0,Vz€[¢—n,(),

N-—-1
(2.61) B"(z) + B'(z) > 0,Vz € (¢, +n).

z

Let ¢ € C*°(—00,+00) be such that

(2.62) po=1in[-1/2,1/2],
(2.63) ¢ =01in (—oo,—1] U1, +00),
(2.64) o(z) €10,1], Vz € (=00, 00).
Let

(2.65) & :={¢ € C*®([¢ —n,C¢+n]); the support of £ is included in (¢ —n,{+n) \ {C}}.

The vector space &£ is equipped with the norm

(2.66) €] := max{[{(z)[; » € [ —n, ( +n}-
For e € R and € € &, one defines now H.¢ € C*([¢ — 1, + 1)) by, if € # 0,

267 Heeld) = =00 (20 + (1-0 (550)) (o + S B +ea)).

8



for every z € [( —n,({ +n] and

(2.68) Hog() = B(2) + %B'(z) FE(), Ve [C—n ¢+l

We then define B := B.¢ € C*([¢ — n,{ +n]) by requiring

N -1
(2.69) Bre(2) + ———Bie(2) = Heg(2),

(2.70) Bee(¢—n) = B(C=n), Bly(C—n) =B(C—n)
Let C.¢ € C°([¢ —n,¢ + 7)) be defined by

N -1

1/3
(2.71) Coe(z) = — <Bg’,£(z) + B;g(z)) = —H_¢(2)"3.

Note that by (Z62), [67), and @7I), if £ # 0,
(2.72) ! e(€) = —[e[*® # 0.

Using ([2.63)), (2.65), (2.67), (2.68), and (2.69)), one sees that, if € < n (which is assumed
from now on), B. ¢ and B are both solutions to the second order differential equation

N -1 N -1
Y'(2) = B"(2) +

z z

(2.73) Y"(2) + B'(2)

in a neighborhood of {¢ —7n,(+n} in [ —n, ¢ +n|. In particular, by (2.70)), B.¢ and B are
equal in a neighborhood of ¢ — 1 in [( — 1, + 1] and (2.54)) is equivalent to

(2.74) B.e(C+m) =B(C+n), Bie(C+n) =B(C+n)
Let A.¢e € C*°([¢ — 1,¢ + n]) be the solution of

N-1 ,
(2.75) Al +———Ale= Bl

(2.76) Ace(C—n) = A(C—n), AL(C—n) = A'(C—n).

Let F : (—n,n) x & — R* be defined by

(2.77) F(e,€) = (Beg(C+n) — B(C+n), Bee(C+n) — B'(C+n),
Ace(CHn) = AC+m), ALe(C+n) — A(C+n)™

One easily checks that

(2.78) F is of class C,
(2.79) F(0,0) = 0.

Let us assume, for the moment, that

oOF

(2.80) %

(0,0) is onto.



By (2.80)), there exists a 4-dimensional subspace &, of £ such that
oOF
2.81 ——(0,0)& = R".

By (2.81]) and the implicit function theorem, there exists gy € (0,7) and amap & : (—&¢,€0) —
&p such that

(2.82) £(0) =0,
(2.83) F(e,&(e)) =0, Ve € (=&, €0).

From ([2.60)), (2.61)), (2.65)), (2.66)), (2.67), (2.68), and (2.69)), one gets the existence of &1 > 0
such that

(2.84)
N -1
Ble(z) + TBéyg(z) <0,Vz€e[C—n,(), Ve € [—e1,e1], V& € & such that €| < ey,
(2.85)
N -1
B;ig(z) + 73;5(2) >0,Vz € (¢, +nl, Ve € [—¢e1,e1], V€ € & such that [€] < &.

From ([2.62)), (2.67), and (2.69) one gets that, for every ¢ € (0,+00) and for every £ € &,

one has

N -1
z

From (2.71)), (2.84), (2.85)), and (2.86]) one gets that, for every ¢ € [—&1,&1] \ {0} and for
every £ € & such that |£] < &1,

(2.87) Cee € C([C =, ¢+ 1)),
(2.88) (Cee(2) = 0) = (2 =),

which, together with (2.81) as above, (2.72)), (2.82), and (2.83)), conclude the proof of
Lemma 7] when (2.59) holds.

It remains to prove (2.80]). Simple computations show that

(2.86) B! (2) + Bl(z)=e*(z— () if |z = (] < e/2.

OF
(2.89) 2¢ (008 = (@1 (CHm), mo(C4m), 25(C+ ), 2alC )™,
where z : [¢ — 1, 4+ 1] — R* is the solution of
(2.90) = K(t)x + &(t)e,
with
0 1 0 0
N -1 0
0 —-=—— 0 0 1
(2.91) K(t) := 0 oo { AL
N -1 0

—3B*(t) 0 0 ——
which satisfies

(2.92) 2(C—n) =0.
Hence, using a standard density argument, (2.81)) comes from the following lemma.
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Lemma 8 Let v > 0, ¢ > 0, n > 0 be such that [( —n,{ +n] C (0,+00). Let B €
C*([¢ —n,¢ +n]) be such that

(2.93) B#0.

Then the control system (2.90)), where the state is x € R* and the control is ¢ € R, is
controllable on [C —n,C + )], i.e. for every X in R* there exists € € L=(C —n,( +n) such

that the solution of (2.90)) and (2.92)) satisfies x(¢ +n) = X.

Proof of Lemma [8. We use a classical result on the controllability of time-varying linear
finite-dimensional control systems (see e.g. [16, Theorem 1.18]). One defines, by induction
oni €N, e € C°(¢—n,(+n]) by requiring

(2.94) eo(t) :=e, Vt € [C =1, ¢ +n),
(2.95) ei(t) :=é;_1(t) — K(t)e;—1(t), Yt € [( —n,( + 1], Vi € N\ {0}.
Let 6 € C*°([¢ — n,¢ + n]) be defined by
(2.96) 0(t) = —?, Vte[(—n, ¢+
Straightforward computations lead to
1 ; 20—
(2.97) o — —09 ey — —6;92 ey = —0 +3?£§ — 03
0 —3B? 63%0 — 6B
From , , and , one gets
(2.98) det(eg, €1, €9, €3) = 9B,
which, with and |16, Theorem 1.18], concludes the proof of Lemma . [ |

We now turn to the case where (2.59) does not hold. Then, replacing if necessary B by
—B and using (2.52]), we may assume that

(2.99) B"(z2) + %B’(z) >0,Vze[C—n, +n\{C}.

In the definition of H, ¢ one replaces (2.67)) by
— — N -1
(2.100)  H.¢(2) == ep (g) + (1 —p (Z C)) (B”(z) + TB/(Z) + 5(z)> :

le] €]
and keeps ([2.68]). Now ([2.84]) and (2.85)) are replaced by
(2.101)  C.e(z) >0,Vz € [( —n, ¢+, Ve € [—e1,e1] \ {0}, V€ € & such that |{] < e;.

Therefore, (compare with (2.88))), provided that ¢ # 0, one can see that C. ¢(z) # 0 for every
z € [( —n,¢ +n] and consequently ([1.19)) is satisfied. Moreover

(2102) 0515 c Coo([c — 7],C—|— 77]), Ve € [—81,51] \ {0}, Vf S g() such that |§| < 1.

which, together with (2.102), (2-82)), (2.83), and (2.101), concludes the proof of Proposition 3|
u
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3 Proof of Theorem 2| (time-varying case)

In this section, we prove Theorem [2| We define A € C*°([—1,1]) and fo € C*([—1,1]) by
(3.1) At) == (1—1H?2 vt € [-1,1],

and

e =2 if |t] <1,

(3-2) fot) =9, 0.

Let € € (0,1]. Forr e R and t € (—1,1), we set

ERSYEY

(3.3) € [0, 400).

Let A, B, and C be as in Proposition |3| By (2.43)), (2.45)), (2.47), (2.48), and (2.51)), there
exist p € N and py, p2 ...p, in (—1,1) \ {0} such that

(3.4) {ze(-1,1);C(2) =0} ={p; L e {1,2,....,p}}.
Let
(3.5) po = % pot = —%.

Let 6 > 0 be such that

(36) [pl - 67 P+ 6] - <_17 1) \ {0}7 Vi € {_17 07 17 e 7p}7
(37) [Pl - 5, P+ (5] N [pl’ - 5, pr + (5] = (Z), V(l, l/) € {—1, O, 1, ce ,p}2 such that [ 7é I

Let D := {(t,r) € (=1,1) x R; |r| < eX(t)}. We look for a : (t,r) € D~ a(t,r) € Rin
the following form

(38) a(t,r) = fo()A() + Y Y fu(t)ga(2),

I=—1 i=1
where the functions f;;, gi; are to be determined with the requirement that
(3.9) the support of g; is included in (p; — §, p; + 9),Vi € {1,2,3}, Vi € {—1,0,1,...,p}.

Then b: (t,r) € D+ b(t,r) € R is defined by

N—1 \7°
(310) b:= (at — Qpy — ar) s
T

and, on every open subset of D on which b is of class C* and b, /r is bounded, c is defined by

N —1 1/3
(3.11) ci= (bt — by — b,,> )

r

12



For [ € {—1,0,1,...,p}, let £, C R x R be defined by

(3.12) Y= {t,r) € (=1,1) xR; 2 € (py — 8,0 +6)}.
Let us first study the case where, for some

(3.13) le{1,2,... p},

t,r) € ;. By symmetry, we may only study the case where p; > 0. Note that (3.13]),
I

together with (1.18)) and ([3.4]), implies that
1
(3.14) pi#

From (3.7), B8, (B-9), and (3.12), we have
3

(3.15) a(t,r) = fo(t)A(z) + Z fit(t)ga(2).
i=1

In order to simplify the notations, we omit the index [, and define gy by

(This definition is used all throughout this section.) Then, (3.15) now reads

3

(3.17) at,r) =Y fi(t)gi(2).
i=0

Note that ((1.16)), (3.14]), and (3.16) imply that

(3.18) B(p) # 0.

Moreover, by (I15). (C19). (53). (BT3). and (B10)

(3.19) (B<2> + EB@)) (p) =0,

z
N -1
z
N -1
z

(3.20) (B<2) + B(l))z (p) =0,

(3.21) (B<2> + B(1)>zz (p) =0,

(3.22) (8(2) LYo 1B<1>> (p) # 0.

z

To simplify the notations we assume that, for example,
(3.23) B(p) <0,

N-1
(3.24) (8(2) + B(1)> (p) < 0.




From ({3.20)), (3.21)), (3.23)), and (3.24), if § € (0, p) is small enough, there exists x> 0 such
that

z

N-—1
(3.26) <B<2> + B(l)) (2) < —p, Yz € [p—8,p+9].

We now fix such a 4.

From (B10) and (3.17),
1 : N-1 v
— 2) — (1) 23\ £.,00) 2232 ¢
(3.27) b= (; (figl- +———fig + 2" i — €A figl->> .
Let us denote by M : R x R* = R, (¢, 2) — M(t, z) € R, the function defined by:

(328) M(t,z) =) ( £ (z) + %fi(t)gi(”(z)

i=0

22 AOMD A0 (2) = X0 [ (2)).
For the moment, let us assume that
(329) M(t,Z) 7&07 V(t,z) < (_171) X (p_67p+5)

Using (3.3), (3.11)), (3.27)), (3.28)), and straightforward computations, one gets, on the open
set of the (¢,7) € ¥ such that M (¢, z) # 0,

(3.30) 9e8/BN3e3 =y,
with

| M2 3(N—1)

M, + 6°MAM — 3e2\2 M, + 3zg2AAMZ> .

z

The idea is to construct the f;’s and the g¢;’s in order to have a precise knowledge of
the places where v vanishes and the order of the vanishing so that v is the cube of a C*
function. More precisely, we are are going to check that one can construct the f;’s and the
gi’s so that, at least if ¢ € (0, 1] is small enough,

(3.32) v(t,p) =0, Vt € (=1,1),
(3.33) v.(t,p) =0, Vt € (—1,1),
(3.34) v..(t,p) =0, Vt € (—1,1),
(3.35) Voea(tp) > 0, VE € (=1, 1).

From (3.28)), one has
3
. . . N -1 N -1
(3.36) M, = Z (figi(g) + 82()\fi — )\fi))\gi(l) + 622)\)\figi(2) + Tfigi@) T2 igi(l)>,
=0
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3
(3:37) M. = > (fzgz + 220 — M)A + 22aM fig®)
3.37 —
N1 2N — 1 9N — 1
+——fig® - AN —1) ) ) 9+ 2V -1 5 )figl-(l)).
z z z

We impose that

(3.38) 9i (P)—{O 1f1 z<30 Jj<4and (i,7) # (1,4).

From (3.28)), (3.36), (3.37), and (3.38)), we have

(3.39) M(p) = fog®(p) + %fogé%) +22pAM fogt! (0) — €22 fagnlp),
510 M) = ool 0)+ Y 1l (0) ~ Y foal 0)
(Ao — Mo)AgiP (p) + 20xN fogl (),
(3.41)
Metop) = 5og®) 4+ YL pg®p) - 2V D g oy 2N . AN D) pot0(y)

+fi+ €220 o — Mo)Aas (p) + ¢ P)\)\fogo (p)-
From (1.14), (3.1), (3.2), (3.16)), (3.23)), (3.39)), and (3.40)), one has, at least if € > 0 is small

enough, which is from now on assumed,

(3.42) vVt e (—1,1),M(t,p) > 0.
Then, for z = p, one has
(3.43)
| ME(,p) BN = 1) )\
v(., = ——— (3M,(,p) —2—-2"2 + M.(.,p) + 6 AAM. (.,
) = 3ERC) ( 2 =2 M) p -7) (+#)

—32N2M, (., p) + 3pE2AAML(, p)>.

We then choose to define f; : t € (—1,1) — fi(t) € R by
N — N — N —
fi = —fog(()4)(P) - Tlfog(()g)( )+ A )fog(z)( ) — ufogé”(p)
3.40 —=*(2Afy 5 A)fowt?’( p) n P)\)\fog(g)( )
: 1/ M2(.,p) 3(N-1 -
+3 (2 e T, Melen) - 6=2AAM (., p)
132N, (., p) — 3pAAML(., p)).

Note that, even if M depends on f1, fo, and f3, the right hand side of ([3.44) does not depend
on fi, fa, and f3, and f; is indeed well-defined by ([3.44]). This definition of f;, together with

(3.41)) and (3.43)), implies that (3.32)) holds. (In fact, f; is defined by (3.44)) precisely in order

15



to have (3.32)).) From (3.1)), (3.2)), (3.19), (3.23)), (3.39), (3.40), and (3.44)), we obtain the

existence of two polynomials p;(g?,t) and ¢;(¢?,¢) in the variables £* and ¢ such that

_ 2 p1(527t)

In order to simplify the notations, we set:

C2M(t,2)* | B(N - 1)

(3.46) (,2) M{(t, ) : L(t,2) + 662 AAM (2, 2)
=3 N2 My(t, 2) + 328* AAM,(t, 2).
We then have

Differentiating this equality with respect to z, we obtain

2
(3.48) v, = M 3(3MM.,.., + MK, — 2M,M,, — M-I,

Differentiating (3.46|) with respect to z, we get

AMM,., 2M? 3(N—1) 3(N — 1)
(3.49) Ke = -/ tap t =7 Mem =
+9*AAM, — 3e*N° My, + 362 2AAM...
Then, differentiating (3.37) with respect to z, we have
3
—1 3(N -1 6(N —1

(350) 1=0
6(NV ‘
—%mﬁ + M figl) +2BA = AfAg”).

We impose that

551 o) 1 ifi=2,
' ST 0 e {1,3).

From - - and - we have

(3.52)

Mzzz(7p) - ng(5)<) fogo (p)_

_%fogél)(fo) + fot N - 1f1

e2(3Mfo — Mo)Ags” () + 2pAMfogl (p) + €2pAAfr.

3(N — 1) 6(N — 1)

fogs” (p) + fos” (p)
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We then define f5 : t €

N -1

o= =00 - T g0 + 2D g 0)
(3.53) _6(N—3_1)f09(()2) (p) + Wfogél)(p) - Al 1f1
2
—i-m(—M(.,p)Kz(.,p) +2M.(., p)M..(.,p) + §Mz

—2pAM gl (p) — E2pANF1 — 2230 fo — Mo)Agl (o).

Note that, again, even if M depends on f, and f3, the right hand side of (3.53) does not
depend on fy and f3 (it depends on f;, however f; is already defined in (3.44))), and f5 is

indeed well defined by
333). From (1), (2

3.53). This definition of f5, together with (3.48) and ({3.52

CB.20), (.39), (@.40), (3.41), (3.45), (3.46), (3.49), and

(o) K(.,p))

, implies

3.53)), we

obtain the existence of two polynomials po(¢?,¢) and go(?,t) in the variables * and t such

that

folt) = 2 2

3.54 —¢
(8:54) 1+ qa(e2,t)

fo(t), vt € (=1,1).

Differentiating (3.48]) with respect to z, we obtain

7 10 10
gMMZKZ + EMZ?MZZ + ngK

2
+3M2M,.... + MM,K, + M?K., — 2M M2 — gMMzzK)

M3 ( _AMM,M,,, —

VZZ

(3.55)

Differentiating (3.49)) with respect to z, we obtain

(3.56)
AMZ,  AM.M 102 ! -
Kzz _ 2 z ZZZ + OMZ Mzz . 4MZ 6<N 1) Mz
M M M?2 M3 >3
6(N —1 3(N -1 : .
—¥Mu + (—>Mm + 122 AAM.., — 36* N’ M., 4 32° AAM......
zZ ¥

Differentiating (3.50|) with respect to z, one has

3
N -1 4(N -1
Mo =) < figl® + sz'gi(s)) - %ﬁgf‘)
i=0
3.57 12(N —1 24(N -1 24(N -1
(357) %figz(g) - %figi@) + %figzo)
V4 z z

We then impose

(3.58)
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Evaluating M, .., at z = p in (3.57)) gives

Mea(op) = fot® )+ fot XL g () - 2 =D o)
12(N — 1 24(N — 1 24 N
50 +%fogff><p> CHWN D) ) B L o
+N‘3ﬁ—g5§ihﬁf%ﬂﬁ—AﬁM£Wm
+2(4Mf1 = M)A+ 220X fogl (p) + E2pANfo.
Then, we define f3 :t € (—1, 1) — f3(t) € R by
B =0 = a0+ T ) - 2= g )
+24(N b, () 24(N ) N-1, 4N -1)

fo ()— P Ja+ 7 fi

(3.60) eMVg%) (MR,MMWVEE%Mh—ﬂMﬁ—VM

3M2, (4M (ML p)Mecalc ) + 5 M, )M ) )
p)M

3
M) M. >—9M2< K(p) = MM K

—M2<., PV p) + 2M (., p)M2 (., p >+3M< PIM..(. VK () ).

Once more, even if M depends on f3, the right hand side of does not depend on f3,
and f3 is indeed well defined by - This definition of f3, together with (3.55)) and (3.59)),
implies that (3.34) holds. From (3.1), (3.2), (3:21), (3-39), (3.40), (3-41), (3.45)), (3.46),
(3.49), (3.52)), (3.54)), (3.56)), and - we obtain the existence of two polynomials p3(e?, 1)
and ¢s3(¢%,t) in the variables £? and ¢, such that

_ 2 p3(€2,t)
(361) f3<t) = mfo(t), vVt € (—1, 1)

We are now in a position to analyse the regularity of a, b, and ¢ on . Let us first

point out that, by (3.1), (3.2)), (3.8), , (3.54), and (3.61)), there exists ¥ : (t,z) €
[—1,1] x [p— 6, p+ 6] — ¥°(t, z) € R of class C* such that
(3.62) a(t,r) = fo(t)*(t, 2),Y(t,r) € X.

In particular, a is of class C* in ¥. From ((1.14)), (3.1)), (3.2), (3.16)), (3.27), (3.25), (3.45),
(3.54), and (3.61), we get that, at least if ¢ > 0 is small enough, there there exists 1°
(t,2) € [-1,1] x [p— d,p+ 6] = (¢, 2) € R of class C* such that

(3.63) b<0in 3,
(3.64) b(t,r) = N3 f,(0) Y390t 2),V(t, ) € X

In particular, b is of class C*° in X.
Let us now study c. Differentiating (3.55) with respect to z one gets

(3.65)
10 80 80
Vspo = M—%l< 10MM2M,., + — 2 —MM?K, — —M3>M., -5

0
—2M*M, K, + 10M M, M?, + gMMZMmK —8M*M..M.,..

2

MK — 6M*M,M,...
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Differentiating (3.57]) with respect to z, we get

N -1 5(N —1 200N —1
Mzzzzz = Z ( flgz(7) + —flgz(ﬁ) - %flgfl&) + ( 3 >flg7,(4)
- z z z

(3.66) = -1 120N — 1), o 120(N - 1)

—Tfigi(?’) + Tfigi Tfigi(l)
+e2(5Afi = Mg + e22A0figl® ).

Differentiating (3.56|) with respect to z, we get

M M M? M M3 M4
18(N —1 9V —1
(N-1),, 9W-1

23 z

6M2M.. AM.M,... 24M.M2 4M..M... 36M3M., 12M°
Kzzz = - + + +

(3.67) 18N 1)

4

3(N — 1)

z

z
+1552A5\Mzzz — 32N M,,., + 32€2A}\MZZZZ.

From (.1), (3.2), (3:26), (3-28), (-30), B.31), B.32), (3:33), (3-34), (3-36), B.37), (B.45),

(3.46), (3.49), (3.50), (3.54), (3.56)), (3.61), (3.65)), (3.66), and (3.67)), one gets the existence
,2) €[-1,1] x [p—=0,p+ 6] — ¢(t, z) € R of class C* such that

©)

iy
ASE

~

(3.68) Et,r) = NB L) V3p(t, 2),Y(t,r) € %,
(3.69) o(t,p) =0, vt € [-1,1],

(3.70) D.6(t,p) =0, Vt € [-1,1],

(3.71) 02,6(t,p) = 0, Vt € [-1,1],
(3.72) 2 _o(t,2) > 0,V(t,2) € [-1,1] x [p— 6, p+ 6].

zzz

Let ¢ : (t,2) € [-1,1] x [p— 0, p+ 0] — &(t, 2) € R be defined by

(373) Ot 2) = %/O (1= $)20°_o(t, p+ (= — p)))ds, ¥(t, 2) € [=1,1] x [p— 6, p +d].

Then, ¢ is of class C™ on [—1,1] x [p— 9, p+ 4] and, using (3.69)), (3.70), (3.71), and (3.72)),

(3.74) ¢(t,2) = (2= p)°o(t, 2), Y(t, 2) € [=1,1] x [p — &, p + 4],
(3.75) Bt 2) > 0, Y(t,2) € [~1,1] x [p— 6, p + 4.

Let ©°: (t,2) € [-1,1] x [p— 9, p+ ] = ¢°(t, z) € R be defined by

(3.76) YOty 2) = (2 — p)p(t, 2)Y/3, ¥(t, 2) € [-1,1] x [p— &, p + 4]
By (3.68), (3.74), (3.77)), and (3.76)), one gets that

(3.77) Pt e CF([=L1] x [p=d,p +9]),

(3.78) c(t,r) = X0 fo () YOUC(t, 2),Y(t, ) € X

In particular, ¢ is of class C° in X.
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Let us now study the case [ € {—1,0}, i.e. p = 1/2 or p, = —1/2. By symmetry, we
may assume that [ = 0 so that p; = 1/2. This case is simpler than the previous one. It is
already treated in [I8], except that we now have to take care of c¢. So, we will only briefly
sketch the arguments. By we may impose on ¢ to be small enough so that

(3.79) C(z) >0,Vz e [(1/2) —9,(1/2) + 4].
We now define (see (3.27) and compare with (3.31]))
3
(3.80) vi= S0 (fol® + S gl + Al — i)

i=0
We still want to ensure that (3.32) to (3.34). This is achieved by now imposing

(3.81) fii= —%52)\/\]”09(()1)(%) - eQAQfogo(%),

352 foim— |V = DA+ 3+ 3P () + Ak - el )]
f3 = — {(2(N — 1)+ %&A)fg + (22A\ — 8(N — 1)) f1 — 32X f;

o #3E M (3) + 2N - X 5)].

where the g¢;’s now satisfy

(3.84) gt (%) =g" (%) = gi" (%) =1,
(3.85) g9 (%) =0, V(i,5) € {1,2,3} x {0,1,2,3,4} \ {(1,2), (2,3), (3,4)}.

Then a still satisfies for some function ¥* of class C* on [—1,1] x [p — &, p + ¢].
Proceeding as we did to prove , we get the existence of ¥ of class C™ on [—1,1] x [p—
J, p + 0] such that holds. Now the case of the function c is simpler than before since,
at least for ¢ > 0 small enough, we get from that ¢ > 0 in ¥ and the existence ¢“ of
class C* on [—1,1] x [p — 0, p + §] such that holds.

The case where

(386) (t.r) € X i= {(t.r) € (<1.1) x B 2 € (=1, 1)\ (U_,[pu — (5/2), i+ (6/2)])}
is even simpler than the two previous ones since, by

(3.87) g1=¢92=g3=0.

One gets that (3.62), (3.64), and hold on ¥’ where

(3.88) v et et € O ([=1,1) x (=1, 1\ (U_y (o = (6/2), 1+ (6/2))))) -

In conclusion, from these three cases we get the existence of three functions 9%, ¥°, and ¢

such that
(3.89) v, Pyt e CF([=1,1] x [-1, ]),
a(t,r) = fo(t)y*(t,2),V(t,r) € D,

(3.90) , )
(3.91) b(t, 1) = A1) fo(t)e(t, 2), V(t,7) €
(3.92) c(t,r) = M) fo(t)p(t, 2),V(t, 1) €
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which, together with (3.1) and (3.2)), imply that, if a, b, and ¢ are extended to all of R x R
by 0 outside D, then a, b, and ¢ are of class C"™ on R x R. This concludes the proof of
Theorem [2 n

4 Proof of Theorem [1

In this section, we show how to deduce Theorem (1| from Theorem [2| by means of the return
method, an algebraic solvability and classical controllability results.
Let ¢y € w. Let 7 > 0 be small enough so that

T
(4.1) <‘t— 5‘ <7 and | — 7| < 7’> = (t € (0,7) and z € w).

Let a:RxRY 5 R, B:RxRY 5 R, 7:RxRY - Rand @: R xRY = R be defined
by, for every (t,z) € R x RY,

(4.2) a(t,r) ;= a (#, % |z — x0|) :
(43 Bt = (=52 Do - ).
(4.4) F(t,x) = c (% = |lx — a:0|)
(4.5) u(t,x) ==y (t,x) — Ay(t, z).

From (T3), (T7), [3), [9). @2, @3). @A), and (L), the functions &, f, 7, and @ are

of class C* and satisfy

(4.6) a; —Aa =3 in R x RY,

(4.7) B —AB =7 inRxRY,

(4.8) ¥ — Ay = iy, in R x RN,

(4.9) the supports of @, 3, 4, and @ are included in (0,7) x w.

Let (a°, OA,’y ) e L=(Q)%. For (o, B,7)" € L®((0,T) x 2)* and u € L*®((0,T) x ), let us
define (&, 8,4)™ € L*=((0,T) x Q)* and @& € L>=((0,T) x Q) by, for every (t,x) € (0,T) x
(4.10) a(t,z) == a(t,zr) — alt,x),

(4.11) B(t,x) = B(t,x) = B(t, ),

(4.12) Yt x) =t x) —3(t x),

(4.13) (t,z) == u(t,z) — ult, ).

u(t
From ({4.6]), ([@.8), and (4.9 - a, B,7)™ € L*=((0, T) x Q)? is the solution of the Cauchy
problem 1-) 1f and only if (&, B, fy)tr € L*((0,T)x Q)? is the solution of the Cauchy problem

(6, — AG =353+ 355 + 5 in (OT)xQ
Bt AB =379+ 377" +4° n (0,7) x
(4.14) Ft — A =ty n (0,7) x
d=pf=4=0 n (0,7) x aQ
a(0,) = a’(), B(0,) = B°(), 4(0,-) =7°(-) in Q.
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Moreover, by . - and , one has
(415) a(T, ) = OA‘(Ta ')7 B(Ta ) = B(Tv ')7 ’V(T7 ) = ’?(T7 ) in €2.

Let us consider the system

— A& =338+3362+ 3 in(0,T) x €,

(4 16) 615 - Aﬁ = 3’72/3/ + 3’7’?2 + ,3/3 in (07T) X Qa

' Y — AY = Uy in (0,7) x Q,
Ga=pF=4=0 in (0,T) x 09,

as a control system where, at time ¢ € [0, 7], the state is (&(t,-), B(t,-), 4(t, )™ € L®(Q)?,
and the control is a(t,-) € L®(Q). Note that (&, 3,4)" = 0 and @ = 0 is a trajectory (i.e. a
solution) of this control system. The linearized control system around this (null) trajectory
is the linear control system

&y — Ad = 35°6 in (0,T) x

N Y oo
(4.17) b= AB=3v% in(0.1)x

— Ay =ayx, in(0,7) x

(0,T)

a=f=4=0 in (0, xaQ
where, at time ¢ € [0, 7], the state is (a(t,-), 5(t,-), 4(t, )" € L=()*, and the control is
u(t,-) € L=(Q).

By (1.6, (4.3), and (4.4), there exists a nonempty open subset w; of w, t; € (0,7) and
ty € (0,T) such that

(4.18) w1 Cw,

(4.19) O<ti<ta<T,

(4.20) B(t,x) #0,V(t,z) € [tr, ta] x BT,
(4.21) (t,x) # 0, Y(t,x) € [t1,ta] X 1.

Let wo be a nonempty open subset of w; such that
(4.22) Wy C wy.

Let us recall that, by (the proof of) [24, Theorem 2.4, Chapter 1], the linear control system

O}t o AO} - 352B T VIX(t1,t2) xw2 n (Oa t2)
(4.23) ?t o AAB = 3,72’3/ + V2 X (t1,t2) xw2 ‘n (O, t2>
- AA’Y = U3 X(t1,t2)xwa in (0,%9) %

a=p=7=0 n(O,tg)xaQ

where, at time ¢ € [0,t,], the state is (&(t,-), B(t,-),4(t, )" € L®()? and the control is
(v1(t, ), v2(t, ), v3(t, )™ € L®(Q)? is null controllable. We next point out that, with the
terminology of [27, page 148] (see also [19]), the underdetermined system

—Aa=33*84uv in (t,ty) X wi,
(4.24) By — AB =3¥F+wvy in (t,tz) X wi,
Y —A’?ng—f—ﬂ n (tl,tg)xwl,
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where the data is (v1,va,v3)" @ (t1,t2) x w; — R?® and the unknown is (&, B,’y, )™ 1 (ty,tp) ¥
w1 — R* is algebraically solvable, i.e. there are solutions of such that the unknown can
be expressed in terms of the derivatives of the data. Indeed, for (vy, vy, v3)" € D'((ty,t2) X
wi)3, if (&, 3,7, 0)" € D'((t, 1) x wy)* is defined by

(4.25) a =0,
~ U1
(426) —3—62,

() )

v © (e (), o () ) 2 (G G),
@ (3B2> _“2)) ’

then (4.24)) holds. This algebraic solvability is a key ingredient for the following proposition.

Proposition 9 There exists n > 0 such that, for every (a°, 3°,~7°)" € L=(Q)? satisfying

(4.29) [ oo () + 18] (0) + [V (0) <1,

~

there exists i € L™®((0,t5) x Q) such that the solution (&, 3,9)" € L=((0,t;) x Q)* of the
Cauchy problem

;

Gy — Ad = 35°3 + 335" + B?’ in (0,t5) x
By — AB = 374 + 354% + 4° in (0,t3) X
(4.30) B — A =l in (0,t) x
G=p=4=0 zn(Otg)xﬁQ
| 4(0,)) =a®(), B0,-) = B°C), 4(0,-) =°() inQ,
satisfies

The proof of Proposition[J]is given in Appendix[A] It is an adaptation of [19], which deals
with Navier-Stokes equations, to our parabolic system. Besides a suitable inverse mapping
theorem, it mainly consists of the following two steps.

(i) Prove that the control system (4.30)) with two “fictitious” controls added on the first
two equations is null controllable by means of smooth controls. See Proposition |11}

(ii) Remove the two “fictitious” controls by using the algebraic solvability, as in [13] and
[19]. See (the proof of) Proposition [14]

With the notations of Proposition |§|, we extend (&, BA,&)“ and @ to all of (0,7") x 2 by
requiring

(4.32) a(t,z) = B(t,z) = A(t,x) = a(t,z) = 0, V(t,z) € (t2,T) x Q.
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Then, by (4.30) and (4.31]), one has (4.14]) and

(4.33) a(T,-) = B(T,-) =4(T,-) =0 in Q.

Let us define (o, 3,7)" € L=((0,T) x Q)* and u € L*((0,T) x Q) by imposing (4.10)), (.11,
, and . Then, from (4.14]), one has and, using together with (4.33)),
one has . This concludes the proof of Theorem 1] if holds.

However, assumption can be removed by using the following simple homogeneity
argument: If ((a, 8,7)™,u) € L®((0,T) x Q2)*x L>=((0, T) x Q) is a trajectory (i.e. a solution)
of the control system (L.1)), then for every s > 0, ((a*, 8%,7*)",u*) := ((s°a, s°B, s7)™, su)
is a trajectory (i.e. a solution) of the control system (|I.1J). Thls concludes the proof of
Theorem [1 n

A Proof of Proposition [9

Let 1, : R* — [0,1] be a function of class C* which is equal to 1 on w, and whose support
is included in wy, and let ¢ : R — [0,1] be such that ( is equal to 0 on (—oo, (2t; + ta)/3]
and is equal to 1 on ((t; + 2t5)/3, +00). Let ¥ : R x R* — R be defined by

(A1) I(t,2) == C(t)1uy (), ¥(t, ) € R x R,

From now on, we set, @ := (t1,t2) x Q and, for € (0,1) and K > 0,

—K

-K
(A.2) py(t) == en2=0 py(t) :==el2-0 Vt € [ty,15).
We have the following Carleman estimates proven in [24, Chapter 1].

Y

Lemma 10 Let n € (0,1). There erist K := K(n) > 0 and C := C(K) > 0 such that,
for every g = (91,92,9 ) oe ((tl,tg) Q)% and for every solution » = (&,B3,9)" €
LQ((t17t2),H2( ¥ N HY((ty,t2), L*(Q)®) of the parabolic system, which is the adjoint of

@),

—Aa =g in (t1,t2) x Q,
(A.3) —B —AB =3B =gy in (t1,ta) X L,
' —’A}/t —A A’S/ — 3’3/2ﬁ = Jgs m (tl,t2> X Q,
OAé:B:’A}/ZO in(tl,tg)xaﬂ,
one has
A0 Wl + e <O ([ aplkP [ )
(tl,tz)XQ (tl,tQ)XQ

Let us now derive from Lemma [10] a proposition on the null-controllability with controls
which are smooth functions for the control system (4.17) with a right hand side term.

Proposition 11 Let n € (0,1) be such that

9
A. Z
(A.5) >3
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and let K be as in Lemma . Let k € N and let p € [2,+00). Then, for every f =
(f1, f2, f3)" € LP(Q)? such that p, " /*f € LP(Q)® and for every (a°, B°,1°)" € Wy P()* N
W?2P(Q)3, there exists u = (uy, up, us) € L*(Q)? satisfying

(A.6) T 09 € L2((t, ty), H(Q)P) 0 H*((t1, £2), L2(Q)?),

such that the solution §j = (&, 5,%)" of

/

Gy — AG = 3526 + f1 + in (t1,t5) X €,
Bt — Aﬂ = 3"7)/2:}/ + fg + 19U2 mn (tl,tg) X Q,
(A7) Ve — AA’AV = f3 + Yus in (t1,ty) X €,
a=p=4=0 in (b1, t2) x 9%,
. OA'/(tlv ) = ao(')v ﬁ(th ) = 60(')7 ’?(tla ) = 70() in (2,
satisfies
(A.8) e € LP((t, ta), W2P(Q)3) N WP (1, 12), LP(Q)?).

Proof of Proposition We adapt the proof of [19, Proposition 4] to our situation.
Modifying if necessary f, we may assume without loss of generality that

(A.9) (@, 8%9%)" = 0.

Let us define a linear operator S : D'(Q)* — D'(Q)* by

—ay — A B o
(A.10) Szi=|-B—AB=3B| Vz= | B| € D(Q)"
— — Ay = 37%3 g

We define a closed linear unbounded operator S : D(S) C L*(Q)* — L*(Q)* by

(A11) D(S) == {z = (a,8,7)" € L*((t:,12), Hy N H*(Q)?)
N Hl((tth)? LQ(Q)S); Z(t27 ) - O},

(A.12) Sz =Sz
Let
(A.13) Xy = L*(Q).

For m € N\ {0}, we set
(A.14) X :=D(S™),
Let us point out that

(A15> < 21,22 >x,, =< szl,SmZQ >12(Q)3
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is a scalar product on X,,,. From now on X,, is equipped with this scalar product. Then X,,
is an Hilbert space. For m € Z N (—00,0), let

(A.16) X=X,

where X’ denotes the dual space of X_,,. We choose the pivot space L*(Q)* = X,. In
particular (A.16)) is an equality for m = 0. For every (k,[) € Z* such that k < [, one has

(A.17) X, C X;.
Note that, since € is only of class C?, in general, for m € N\ {0,1},
(A.18) X & L*((th, t2), H*™(Q)*) N H™((t1,t2), L*(2)%).

However, even with € only of class C?, by classical results on the interior regularity of
parabolic systems, for every m € N, for every open subset )y such that €2y C €2, and for
every z € X,,,

(A.19) 2 tayxan € L2((t1, £2), H™(Q0)%) N H™ (1, 1), LX(Q)?).

(Note that this property is not known to hold for the linearized Navier-Stokes equations
considered in [19] for © only of class C? ; this is why € is assumed to be of class C* in [19].)

For m € N, one can define §* as an operator from X_,, into X_,,,_; by setting, for every
z1 € X_,,,—1 and for every zo € X411,

(A.20) < S 2,2 >x X =< 21,82 >x X, -

(One easily checks that this definition is consistent: it gives the same image if z; is also in
X _, for some m’ € N). This implies in particular that, for every z; € L*(Q)* and for every
25 € X,,, one has, for every 0 < j <,

(A21) < (S*)lzl,ZQ >x_,x,=< (S*)l_jzl, (S)jZQ >Xj—l7Xl—j .
Let Ho be the set of z € H((t1,t5), L*(Q2)*) N L*((t1,t2), H*(Q)?) such that
(A.22) Vp1Sz € Xy,

(A.23) Vipz e LHQ).

Let g be the following bilinear form defined on Hy:
(A.24) q(z,w) =< \/p1Sz,\/p1Sw >x, —I—/ Up1z - w.
Q

(This is the analogue of the bilinear form denoted by @ in [19].) From (A.4)), we deduce that ¢

is a scalar product on Hy. Let H be the completion of Hg for this scalar product. Note that,
still from (A.4)) and also from the definition of H, H is a subspace of L} ((t1,ts), Hy(Q)?)

loc
and, for every z € H, one has (A.22)), (A.23]), and

(A.25) |Pn1/22’|L2(Q)3 < Cvq(z,2), Vz € H.
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As in [19], using the Riesz representation theorem together with (A.25)), one gets that there
exists a unique

(A.26) zeH

verifying, for every w € H,

(A.27) < 8 (\/p152), SF(Vp1Sw) >r2(qyp —/Qu Sw = /Qf - w,
with

(A.28) U= —piZ.

We then set

(A.29) = (S")ESH(\/p1S2) € X .

We want to gain regularity on y by accepting to have a weaker exponential decay rate for y
when ¢ is close to 5 (in the spirit of [24, Theorem 2.4, Chapter 1] and [9]). Let ¢» € C*°([t1, t2))
and y € X_1. One can define ¢y € X_; in the following way. Since §* : Xy — X_; is onto,
there exists h € X such that S*h = y. We define 1y by

(A.30) by = pS*h 1= —'h + S*(Ph).

This definition is compatible with the usual definition of ¥y if y € Xy. We can then define
by induction on m ¢y € X_,, for v € C*([t1,t3]) and y € X_,,, in the same way. Using

(A.29)), this allows us to define

(A.31) U=y € X_i.

From (A.27), (A.28), (A29), and (A.31)), one gets

(A.32) SYy=f+Yuin X_j ;.
Let

(A.33) K €(0,K) and py 1= e K/(2-1),

Using , , and , one has
(A.34) s ((vorivim) a) = (Uv/a) vari+ (1v/@) (F+u) in X i

We want to deduce from ({A.34)) some information on the regularity of y. This can be achieved
thanks to the following lemma, the proof of which is similar to the proof of [19, Lemma 4].

Lemma 12 Letm e N. Ifye X_,, and Sy € X_,,,, theny € X_,,41.
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From ({A.31)), (A.34), and Lemma [12] one gets that
(\/ﬁ/\/m) 7€ X _pp1, VK € (0, K).

Using an easy induction argument together with Lemma (and the fact that one can choose
K < K arbitrarily close to K), we deduce that, for every K € (0, K), <\/p_1/\/,51> 7 € Xo.
Let us now focus on u. Let us define

(A.35) V= pp 2.
Using (|A.25]), one gets that
(A.36) p o P € LP(Q).

Using (A-26) together with regularity results for S applied on p;'p,"?v € L*(Q)? and, as
above for the proof of (A.306), a bootstrap argument (together with the fact that one can
choose K € (0, K) arbitrarily close to K), one obtains that

(A.37) ol pgtPu € X, VK € (0, K).

Let us point out that (A.5)) implies that

1
(A.38) -2+ - <0.
U]

From (A.5)), (A.19), (A.28)), (A.35), (A.37), and (A.38)), one gets (A.6).

Let us now deal with . Without loss of generality, we may assume that

(A.39) 4k > 2+ N,
so that
(A.40) L2((t1, t2), H**(Q0)) N H*((t1,t2), L*(Q)*) € L™(Q).

From (A.32)), (A.40)), and (A.37)), we deduce (by looking at the parabolic system verified by
(1/4/p1)y and using usual regularity results for linear parabolic systems) that

(A.41) (1/\/51) § € LP((t, 1), W2P(QP) N WEP((1h, 1), LP(Q)?), VK € (0, K),
which, together with (A.32)), concludes the proof of Proposition [

To end the proof of Proposition [9] we are going to apply the following inverse mapping
theorem (see [5, Chapter 2, Section 2.3]).

Proposition 13 Let E and F be two Banach spaces. Let F : E — F be of class C' in a
neighborhood of 0. Let us assume that the operator F'(0) € L(E,F) is onto. Then there
exist 1 > 0 and C' > 0 such that for every g € F verifying |g — F(0)| <n, there exists e € E
such that

(1) Fle) =y,
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(i) lele < Clg = F(0)[

We now use the same technique as in [24, Theorem 4.2]. For y := (o, 3,7)" € D'(Q)?
and for v € D'(Q), one defines L(y,v) € D'(Q)* by

ay — Ao — 352
(A.42) L(y,v) = | B — AB - 37y
Y — Ay —v

Let n € (0,1) and let K = K(n) > 0 be as in Lemma We apply Proposition [13| with
FE and F defined in the following way. Let E be the space of the functions

(y,v) € LP(Q)?* x L™(Q)
such that

K

(i) eXa=0y € LP((t1,to), WHP(Q)*) N WP ((ty,ts), LP(2)?),

K

(ii) e*2-9y € L™(Q)* and the support of v is included in (t;,%5) X w,
(ifi) 70 L(y,v) € L(Q)°,
(iv) y(tr,) € Wo"(Q)* N W27(Q),

equipped with the following norm which makes it a Banach space:

773K
(A43)  [(y, v)|E = €20 Y| 1o((y 1), W20 (Q)3) AW LR ((81,12), L2 (Q)?)

3K K
+ |€2(t2_t)U|L°°(Q) + |62n(t2—t)£(y’ U)|LP(Q)3 + |y(t1’ ')|W2»P(Q)3-

Let I be the space of the functions (h,y°) € LP(Q)? x (Wol’p(Q)?’ N W??()?) such that

K
(A.44) et h € LP(Q)?
equipped with the following norm which makes it a Banach space:

nkKj
(A.45) |(h, y0)|p = |62(t2_‘)h|Lp(Q)3 + |yO|W2,p(Q)3.

We define F : E — F' by

366% + 5°
(A.46) Fly.v) = | Lly,v) = | 397" +° | y(ts, )
0
One easily sees that F is of class C! if
N+2 1
(A.A4T) p>— and n > Ui

From now on, we assume p > 2 and n € (0,1) are chosen so that (A.47) holds. Note that

the second inequality of (A.47)) implies that (A.5]) holds. Let us assume for the moment that
the following proposition holds.
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Proposition 14 One has
(A.48) F'(0,0)(E) = F.

Then the assumptions of Proposition[I3/hold. Since Proposition [J]follows from the conclusion
of Proposition [13| by taking @& = 0 in (0,%;) x €, this concludes the proof of Proposition [0}

It only remains to prove Proposition Let f = (f1, f2, f3)™ and y° = (a°, 3°,7°)" be
such that (f,4°) € F. Let us choose k large enough so that

(A.49) N +2<4(k—2).

Using Proposition (11} we get the existence of u = (uy, ug, u3) € L*(Q)? satisfying (A 6] such
that the solution § := (&, 3,4)™ of (A.7) satisfies (A.§]). We now use the algebraic solvability
of (4.24)) (i.e. that (4.25)), (4.26), (4.27)), and (4.28) imply (4.24))) with

(A.50) v = Yu.

We get that, if (&, 3,7, @)™ € D'((t1,t2) x wi)* is defined by ([{#-25), [{:26), [@.27), and ([@#-28),
then holds. We extend &, B, 4, and @ to (t1,t2) x Q by 0 outside (t1,5) x (2 \w;) and
still denote by &, 3, 4, and @ these extensions. Note that still holds on (t1,%3) x
and that (see, in particular (A.1]))

(A.51) a(ty, ) = B(ty,-) = A(t1,-) = 0.
Finally we define y := (a, 8, 7)™ € D'((t1,t2) x wy)® and u € D'((t1,t3) X wy) by
(A.52) a=&—a, B:=B—FB, vi=4—F,u:=—i.

From (4.25)), (4.26), (4.27) (4.28), (A.6), (A.8), (A.49), (A.50), and (A.52)), we get that
(y,u) € E. Then, from (4.24)), (A.7)), (A.50)), (A.51), and (A.52)), we get that F'(0,0)(y,u) =
i

(°, f). This concludes the proof of Proposition [14| and therefore also the proof of Proposi-
tion [ -

Remark 15 1. Instead of proceeding as in [19] in order to prove Proposition @ one can
also proceed as in [18]. For that, an important step is to prove that small (in a suitable
sense) perturbations of the linear control system are controllable by means of bounded
controls (see [18, Section 3.1.2]. This controllability property follows from [25, Theorem 4.1]
and one can also get it by following [18, Section 3.1.2] or [22]. 2. Let us emphasize that
the algebraic solvability of leads to a loss of derivatives. This problem is managed
in our situation thanks to hypoelliptic properties of parabolic equations. These properties do
not hold, for example, for hyperbolic equations. However, for these last equations, the loss of
deriwatives problem can be solved thanks to a Nash-Moser inverse mapping theorem due to
Gromovw [27, Section 2.3.2, Main Theorem/. See [3] for the first use of this inverse mapping
theorem in the context of control of partial differential equations.
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