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Control of three heat equations coupled with two cubic nonlinearities

We study the null controllability of three parabolic equations. The control is acting only on one of the three equations. The three equations are coupled by means of two cubic nonlinearities. The linearized control system around 0 is not null controllable. However, using the cubic nonlinearities, we prove the (global) null controllability of the control system. The proof relies on the return method, an algebraic solvability and smoothing properties of the parabolic equations.

Introduction

Let N be a positive integer and let Ω be a nonempty connected bounded subset of R N of class C 2 . Let ω be a nonempty open subset of Ω. We denote by χ ω : Ω → R the characteristic function of ω and let T ∈ (0, +∞). We are interested in the control system (1.1)

       α t -∆α = β 3
in (0, T ) × Ω, β t -∆β = γ 3 in (0, T ) × Ω, γ t -∆γ = uχ ω in (0, T ) × Ω, α = β = γ = 0 in (0, T ) × ∂Ω.

It is a control system where, at time t ∈ [0, T ], the state is (α(t, •), β(t, •), γ(t, •)) tr : Ω → R 3 and the control is u(t, •) : Ω → R. Let us point out that, due to the recursive structure of (1.1) (one first solves the last parabolic equation of (1.1), then the second one and finally the first one), it follows from classical results on linear parabolic equations that the Cauchy problem associated to (1.1) is globally well-posed in the L ∞ setting, i.e. with bounded measurable initial data, controls, and solutions.

The main goal of this paper is to prove the following global null controllability result on control system (1.1).

Theorem 1 For every (α 0 , β 0 , γ 0 ) tr ∈ L ∞ (Ω) 3 , there exists a control u ∈ L ∞ ((0, T ) × Ω) such that the solution (α, β, γ) tr ∈ L ∞ ((0, T ) × Ω) 3 to the Cauchy problem

(1.2)            α t -∆α = β 3 in (0, T ) × Ω, β t -∆β = γ 3 in (0, T ) × Ω, γ t -∆γ = uχ ω in (0, T ) × Ω, α = β = γ = 0 in (0, T ) × ∂Ω, α(0, •) = α 0 (•), β(0, •) = β 0 (•), γ(0, •) = γ 0 (•) in Ω, satisfies (1.3) α(T, •) = β(T, •) = γ(T, •) = 0 in Ω.
The controllability of systems of partial differential equations with a small number of controls is an important subject which has been recently investigated in a large number of articles. For the case of linear systems, let us mention in particular

• For systems of parabolic equations in dimension 1 or larger: [START_REF] De | Identification of the class of initial data for the insensitizing control of the heat equation[END_REF][START_REF] De | Insensitizing controls for a semilinear heat equation[END_REF][START_REF] González | Controllability results for some nonlinear coupled parabolic systems by one control force[END_REF][START_REF] Guerrero | Null controllability of some systems of two parabolic equations with one control force[END_REF]. A key step in these papers is to establish suitable Carleman estimates. In dimension 1, the method of moments can lead to very precise (and sometimes unexpected) results; see, in particular [START_REF] Ammar-Khodja | Minimal time of controllability of two parabolic equations with disjoint control and coupling domains[END_REF][START_REF] Ammar-Khodja | Minimal time for the null controllability of parabolic systems: The effect of the condensation index of complex sequences[END_REF][START_REF] Benabdallah | Sharp Estimates of the One-Dimensional Boundary Control Cost for Parabolic Systems and Application to the N -Dimensional Boundary Null Controllability in Cylindrical Domains[END_REF][START_REF] Boyer | Approximate controllability conditions for some linear 1D parabolic systems with space-dependent coefficients[END_REF]. See also the survey paper [START_REF] Ammar-Khodja | Recent results on the controllability of linear coupled parabolic problems: A survey[END_REF] and the reference therein.

• For systems of Schrödinger equations: [START_REF] Alabau-Boussouira | Insensitizing exact controls for the scalar wave equation and exact controllability of 2-coupled cascade systems of PDE's by a single control[END_REF], which uses transmutation together with a controllability result for systems of wave equations proved in the same article. See also [START_REF] Rosier | Exact controllability of a cascade system of conservative equations[END_REF] for the controllability of a cascade system of conservative equations.

• For Stokes equations of incompressible fluids: [START_REF] Fernández-Cara | Some controllability results for the N -dimensional Navier-Stokes and Boussinesq systems with N -1 scalar controls[END_REF][START_REF] Guerrero | Controllability of systems of Stokes equations with one control force: existence of insensitizing controls[END_REF][START_REF] Coron | Local null controllability of the twodimensional Navier-Stokes system in the torus with a control force having a vanishing component[END_REF][START_REF] Carreño | Local null controllability of the N -dimensional Navier-Stokes system with N -1 scalar controls in an arbitrary control domain[END_REF]. Again Carleman estimates are key ingredients here.

• For hyperbolic equations: [START_REF] Alabau-Boussouira | A hierarchic multi-level energy method for the control of bidiagonal and mixed n-coupled cascade systems of PDE's by a reduced number of controls[END_REF][START_REF] Alabau-Boussouira | Insensitizing exact controls for the scalar wave equation and exact controllability of 2-coupled cascade systems of PDE's by a single control[END_REF], which rely on multiplier methods, and [START_REF] Alabau | Indirect controllability of locally coupled wave-type systems and applications[END_REF] which uses microlocal analysis.

Let us assume that 0 is a trajectory (i.e. a solution) of the system of partial differential equations. If the linearized control system is controllable, one can expect to get the local null controllability. For systems of partial differential equations with a small number of controls it has been proven to be the case, for example, for the Navier Stokes equations in [START_REF] Carreño | Local null controllability of the N -dimensional Navier-Stokes system with N -1 scalar controls in an arbitrary control domain[END_REF]. Note that the linearized control system of (1.1) around 0 is clearly not controllable. When the linearized control system around 0 is not controllable one may still expect that the nonlinearities can give the controllability. A method to treat this case is the return method. It consists in looking for (nonzero) trajectories of the control system going from 0 to 0 such that the linearized control system is controllable. This method has been introduced in [START_REF] Coron | Global asymptotic stabilization for controllable systems without drift[END_REF] for a stabilization issue and used for the first time in [START_REF] Coron | On the controllability of 2-D incompressible perfect fluids[END_REF] to get the controllability of a partial differential equation (the Euler equation of incompressible fluids). This method can also be used to get controllability of systems of partial differential equations with a small number of controls. See, for example,

• [START_REF] Coron | Local controllability of a 1-D tank containing a fluid modeled by the shallow water equations[END_REF] for a water tank control system modeled by means of the Saint-Venant equations.

• [START_REF] Coron | Local null controllability of the twodimensional Navier-Stokes system in the torus with a control force having a vanishing component[END_REF][START_REF] Coron | Local null controllability of the three-dimensional Navier-Stokes system with a distributed control having two vanishing components[END_REF] for the Navier-Stokes equations.

• [START_REF] Coron | Null controllability of a parabolic system with a cubic coupling term[END_REF] for a system of two nonlinear heat equations.

Let us give more details about [START_REF] Coron | Null controllability of a parabolic system with a cubic coupling term[END_REF] since it deals with a control system related to our system (1.1). The control system considered in [START_REF] Coron | Null controllability of a parabolic system with a cubic coupling term[END_REF] is

(1.4)    β t -∆β = γ 3 in (0, T ) × Ω, γ t -∆γ = uχ ω in (0, T ) × Ω, β = γ = 0 in (0, T ) × ∂Ω,
where, at time t ∈ [0, T ], the state is (β(t, •), γ(t, •)) tr : Ω → R 2 and the control is u(t, •) : Ω → R. (In fact, slightly more general control systems of two coupled parabolic equations are considered in [START_REF] Coron | Null controllability of a parabolic system with a cubic coupling term[END_REF].) Using the return method, it is proved in [START_REF] Coron | Null controllability of a parabolic system with a cubic coupling term[END_REF] that the control system (1.4) is locally null controllable. We use the same method here. However the construction of trajectories of the control system going from 0 to 0 such that the linearized control system is (null) controllable is much more complicated for the control system (1.1) than for the control system (1.4).

The construction of trajectories of the control system (1.1) going from 0 to 0 such that the linearized control system is (null) controllable follows from simple scaling arguments (see (4.2) to (4.5) below) and the following theorem.

Theorem 2 There exists (a, b, c) ∈ C ∞ 0 (R × R) 3 such that the supports of a, b, and c are included in [-1, 1] × [-1, 1], (1.5) {(t, r); r > 0, b(t, r) = 0 and c(t, r) = 0} = ∅, (1.6) a(t, r) = a(t, -r), b(t, r) = b(t, -r), c(t, r) = c(t, -r), ∀(t, r) ∈ R × R, (1.7) a t -a rr - N -1 r a r = b 3 in R × R * , (1.8) b t -b rr - N -1 r b r = c 3 in R × R * . (1.9)
An important ingredient of the proof of Theorem 2 is the following proposition which is related to Theorem 2 in the stationary case.

Proposition 3 There exists (A, B, C) ∈ C ∞ (R) 3 and δ A ∈ (0, 1/2) such that the supports of A, B, and

C are included in [-1, 1], (1.10) {z; z > 0, B(z) = 0 and C(z) = 0} = ∅, (1.11) A(z) = A(-z), B(z) = B(-z), C(z) = C(-z), ∀z ∈ R, (1.12) A(z) = e -1/(1-z 2 ) if 1 -δ A < z < 1, (1.13) -A - N -1 z A = B 3 in R * , (1.14) -B - N -1 z B = C 3 in R * , (1.15) (B(z) = 0 and z ∈ [0, 1)) ⇔ z = 1 2 , (1.16) B 1 2 < 0, (1.17) C 1 2 > 0, (1.18) (C(z) = 0 and z ∈ [0, 1)) ⇒ (z ∈ (0, 1) and C (z) = 0) . (1.19)
This proposition is proved in Section 2. In Section 3 we show how to use Proposition 3 in order to prove Theorem 2. Finally, in Section 4, we deduce Theorem 1 from Theorem 2.

Remark 4 Looking to our proof of Theorem 1, it is natural to conjecture that this theorem still holds if, in (1.2), β 3 and γ 3 are replaced by β 2p+1 and γ 2q+1 respectively, where p and q are arbitrary nonnegative integers.

Proof of Proposition 3 (stationary case)

In order to construct A, one shall use the following lemma.

Lemma 5 There exists δ 0 ∈ (0, 1) such that, for every δ ∈ (0, δ 0 ), there exists a function

G ∈ C ∞ ([0, +∞)) such that G(z) = z 3 z - 1 2 3 for 1 2 -δ < z < 1 2 + δ, (2.1) (z - 1 2 )G(z) > 0 for 0 < z < 1, z = 1 2 , (2.2) z ∈ (0, 1); (G 1/3 ) (z) + N -1 z (G 1/3 ) (z) = 0 is finite, (2.3)
and such that the solution A : (0, +∞) → R to the Cauchy problem

A(1) = A (1) = 0, A (z) + N -1 z A (z) = G(z), z > 0, (2.4) satisfies there exists c 0 ∈ R such that A(z) = c 0 -z 8 if 0 < z < δ, (2.5) A(z) = e -1/(1-z 2 ) if 1 -δ < z < 1, (2.6) A(z) = 0 if z ∈ [1, +∞). (2.7)
Proof of Lemma 5. Let us first emphasize that it follows from (2.1) and (2.2) that G 1/3 is of class C ∞ on (0, 1), hence (2.3) makes sense. Let δ ∈ (0, 1/4). Let Ḡ ∈ C ∞ ([0, +∞)) be such that (2.1) and (2.2) hold for G = Ḡ and Ḡ(z) = -8(6 + N )z 6 , ∀z ∈ (0, δ), (2.8)

Ḡ(z) = -2 + 6z 4 (1 -z 2 ) 4 - 2(N -1) (1 -z 2 ) 2 e -1/(1-z 2 ) , ∀z ∈ ((1 -δ), 1), (2.9) Ḡ(z) = 0, ∀z ∈ (1, +∞), (2.10) Ḡ is analytic on (0, 1) \ {δ, (1/2) -δ, (1/2) + δ, 1 -δ}. (2.11)
One easily sees that such Ḡ exists if δ ∈ (0, 1/4) is small enough, the smallness depending on N . Frow now on, δ is always assumed to be small enough.

Let κ ∈ R. Let us define G ∈ C ∞ ([0, +∞)) by G := Ḡ in [0, δ] ∪ [(1/2) -δ, (1/2) + δ] ∪ [1 -δ, +∞), (2.12) G(z) := Ḡ(z) + min{κ, 0}e -1/(z-δ) e -1/(1-2δ-2z) , ∀z ∈ (δ, (1/2) -δ), (2.13) G(z) := Ḡ(z) + max{κ, 0}e -1/(2z-1-2δ) e -1/(1-δ-z) , ∀z ∈ ((1/2) + δ, 1 -δ). (2.

14)

Let A be the solution of the Cauchy problem (2.4) 

y + N -1 z y = 0 ⇒ ∃ (c 0 , c 1 ) ∈ R 2 such that y(z) = c 0 + c 1 E(z), ∀z ∈ (0, δ) , where if N = 2, E(z) := 1 (2 -N )z N -2 , ∀z ∈ (0, +∞), (2.17) if N = 2, E(z) := -ln(z), ∀z ∈ (0, +∞). (2.18)
From (2.4), (2.8), (2.12), one gets that y := A+z 8 satisfies the assumption of the implication (2.16). Hence, by (2.16), one gets the existence of (c 0 , c 1 ) ∈ R 2 such that (2. [START_REF] Coron | Local null controllability of the three-dimensional Navier-Stokes system with a distributed control having two vanishing components[END_REF])

A(z) = c 0 -z 8 + c 1 E(z), ∀z ∈ (0, δ).
It suffices to check that, for some κ ∈ R,

(2.20) c 1 = 0.
From (2.4), one has

if N = 2, A(z) = - 1 (N -2)z N -2 z 1 s N -1 G(s)ds + 1 N -2 z 1 sG(s)ds, ∀z ∈ (0, 1], (2.21) if N = 2, A(z) = ln(z) z 1 sG(s)ds - z 1 s ln(s)G(s)ds, ∀z ∈ (0, 1], (2.22)
which, together with (2.17), (2.18), (2.19), with z → 0, gives (2.23)

c 1 = 1 0 s N -1 G(s)ds.
From (2.12), (2.13), and (2.14), one has

(2.24) lim κ→+∞ 1 0 s N -1 G(s)ds = +∞ and lim κ→-∞ 1 0 s N -1 G(s)ds = -∞.
In particular, with the intermediate value theorem, there exists κ ∈ R such that (2.25)

1 0 s N -1 G(s)ds = 0,
which, together with (2.23), concludes the proof of Lemma 5.

We go back to the proof of Proposition 3. We extend A to all of R by requiring 

A(0) = c 0 , (2.26) A(z) = A(-z), ∀z ∈ (-∞, 0). (2.
B(z) = -z z - 1 2 , ∀z ∈ 1 2 -δ, 1 2 + δ .
In particular (1.17) holds. From (2.6) and (2.28), one gets (2.37)

B(z) = - -2 + 6z 4 (1 -z 2 ) 4 - 2(N -1) (1 -z 2 ) 2 1/3 e -1/(3-3z 2 ) , ∀z ∈ (1 -δ, 1),
which implies the existence of δ 0 > 0 such that, for every δ ∈ (0, δ 0 ],

(2.38) 

B < 0 in (1 -δ, 1
(2.41) B is of class C ∞ in R. Let us now define C ∈ C 0 (R * ) by (2.42) C(z) := -B + N -1 z B 1/3 , ∀z ∈ R * .
From (2.29) and ( 2.42), one has

(2.43) C(z) = C(-z), ∀z ∈ R * .
From (2.41) and (2.42), one gets that

(2.44) C is of class C ∞ on the set {z ∈ R * ; C(z) = 0}.
From (2.31) and ( 2.42), one has

(2.45) C(z) = -(4N ) 1 3 (6 + N ) 1 9 < 0, ∀z ∈ [-δ, δ].
From (2.36) and ( 2.42), one has

(2.46) C(z) = 2N - N -1 2z 1/3 , ∀z ∈ 1 2 -δ, 1 2 + δ .
In particular, since δ > 0 is small enough,

(2.47) C is positive and of class C ∞ on 1 2 -δ, 1 2 + δ .
From (2.37), (2.39), and (2.42), one gets that

(2.48) C > 0 in [1 -δ, 1) and C is of class C ∞ in [1 -δ, +∞).
From (2.43), (2.44), (2.45), (2.47), and (2.48), one sees that

(2.49) C ∈ C ∞ (R) if (2.50) C is of class C ∞ in (δ, (1/2) -δ) ∪ ((1/2) + δ, 1 -δ).
Let us first point out that, by (2.3), (2.4), (2.28), and (2.42),

(2.51) the set of z 0 ∈ (δ, (1/2) -δ) ∪ ((1/2) + δ, 1 -δ) such that C(z 0 ) = 0 is finite.
We are going to prove that (2.50) indeed holds provided that one no longer requires (2.15) and that one modifies G in a neighborhood of every

z 0 ∈ (δ, (1/2) -δ) ∪ ((1/2) + δ, 1 -δ) such that C(z 0 ) = 0. Since G = -B 3
, this comes from the following lemma.

Lemma 7 Let ν > 0, ζ > 0, and η > 0 be such that [ζ -η, ζ + η] ⊂ (0, +∞). Let B ∈ C ∞ ([ζ -η, ζ + η]) be such that B (z) + N -1 z B (z) = 0, ∀z ∈ [ζ -η, ζ + η] \ {ζ}. (2.52) Then, there exists B ∈ C ∞ ([ζ -η, ζ + η]) satisfying | B(z) -B(z)| ν, ∀z ∈ [ζ -η, ζ + η], (2.53) the support of B -B is included in (ζ -η, ζ + η), (2.54) B + N -1 z B 1/3 ∈ C ∞ ([ζ -η, ζ + η]) (2.55) and such that, if Ā ∈ C ∞ ([ζ -η, ζ + η]) is the solution of Ā + N -1 z Ā = -B3 , (2.56) Ā(ζ -η) = A(ζ -η), Ā (ζ -η) = A (ζ -η), (2.57) then, (2.58) Ā(ζ + η) = A(ζ + η), Ā (ζ + η) = A (ζ + η).
Proof of Lemma 7. Let us first consider the case where

(2.59) B (ζ -η) + N -1 ζ -η B (ζ -η) B (ζ + η) + N -1 ζ + η B (ζ + η) < 0.
Then, replacing if necessary B by -B and using (2.52), we may assume that

B (z) + N -1 z B (z) < 0, ∀z ∈ [ζ -η, ζ), (2.60) B (z) + N -1 z B (z) > 0, ∀z ∈ (ζ, ζ + η). (2.61) Let ϕ ∈ C ∞ (-∞, +∞) be such that ϕ = 1 in [-1/2, 1/2], (2.62) ϕ = 0 in (-∞, -1] ∪ [1, +∞), (2.63) ϕ(z) ∈ [0, 1], ∀z ∈ (-∞, ∞). (2.64) Let (2.65) E := {ξ ∈ C ∞ ([ζ -η, ζ + η]); the support of ξ is included in (ζ -η, ζ + η) \ {ζ}} .
The vector space E is equipped with the norm (2.66)

|ξ| := max{|ξ(x)|; x ∈ [ζ -η, ζ + η]}. For ε ∈ R and ξ ∈ E, one defines now H ε,ξ ∈ C ∞ ([ζ -η, ζ + η]) by, if ε = 0, (2.67) H ε,ξ (z) := ε 2 (z-ζ) 3 ϕ z -ζ |ε| + 1 -ϕ z -ζ |ε| B (z) + N -1 z B (z) + ξ(z) , for every z ∈ [ζ -η, ζ + η] and (2.68) H 0,ξ (z) := B (z) + N -1 z B (z) + ξ(z), ∀z ∈ [ζ -η, ζ + η].
We then define B : 

= B ε,ξ ∈ C ∞ ([ζ -η, ζ + η]) by requiring B ε,ξ (z) + N -1 z B ε,ξ (z) = H ε,ξ (z), (2.69) B ε,ξ (ζ -η) = B(ζ -η), B ε,ξ (ζ -η) = B (ζ -η). (2.70) Let C ε,ξ ∈ C 0 ([ζ -η, ζ + η]) be defined by (2.71) C ε,ξ (z) := -B ε,ξ (z) + N -1 z B ε,ξ (z) 1/3 = -H ε,ξ (z)
Y (z) + N -1 z Y (z) = B (z) + N -1 z B (z) in a neighborhood of {ζ -η, ζ + η} in [ζ -η, ζ + η]. In particular, by (2.70), B ε,ξ and B are equal in a neighborhood of ζ -η in [ζ -η, ζ + η] and (2.54) is equivalent to (2.74) B ε,ξ (ζ + η) = B(ζ + η), B ε,ξ (ζ + η) = B (ζ + η). Let A ε,ξ ∈ C ∞ ([ζ -η, ζ + η]) be the solution of A ε,ξ + N -1 z A ε,ξ = -B 3 ε,ξ , (2.75) A ε,ξ (ζ -η) = A(ζ -η), A ε,ξ (ζ -η) = A (ζ -η). (2.76) Let F : (-η, η) × E → R 4 be defined by (2.77) F(ε, ξ) := (B ε,ξ (ζ + η) -B(ζ + η), B ε,ξ (ζ + η) -B (ζ + η), A ε,ξ (ζ + η) -A(ζ + η), A ε,ξ (ζ + η) -A (ζ + η)) tr .

One easily checks that

F is of class C 1 , (2.78) F(0, 0) = 0. (2.
= R 4 .
By (2.81) and the implicit function theorem, there exists ε 0 ∈ (0, η) and a map ξ : (-ε 0 , ε 0 ) → E 0 such that

ξ(0) = 0, (2.82) F(ε, ξ(ε)) = 0, ∀ε ∈ (-ε 0 , ε 0 ). (2.83)
From (2.60), (2.61), (2.65), (2.66), (2.67), (2.68), and (2.69), one gets the existence of ε 1 > 0 such that

B ε,ξ (z) + N -1 z B ε,ξ (z) < 0, ∀z ∈ [ζ -η, ζ), ∀ε ∈ [-ε 1 , ε 1 ], ∀ξ ∈ E 0 such that |ξ| ε 1 , (2.84) B ε,ξ (z) + N -1 z B ε,ξ (z) > 0, ∀z ∈ (ζ, ζ + η], ∀ε ∈ [-ε 1 , ε 1 ], ∀ξ ∈ E 0 such that |ξ| ε 1 .
(2.85) From (2.62), (2.67), and (2.69) one gets that, for every ε ∈ (0, +∞) and for every ξ ∈ E 0 , one has

(2.86) B ε,ξ (z) + N -1 z B ε,ξ (z) = ε 2 (z -ζ) 3 if |z -ζ| ε/2.
From (2.71), (2.84), (2.85), and (2.86) one gets that, for every ε ∈ 

[-ε 1 , ε 1 ] \ {0} and for every ξ ∈ E 0 such that |ξ| ε 1 , C ε,ξ ∈ C ∞ ([ζ -η, ζ + η]), (2.87) (C ε,ξ (z) = 0) ⇔ (z = ζ) , ( 
∂F ∂ξ (0, 0)ξ = (x 1 (ζ + η), x 2 (ζ + η), x 3 (ζ + η), x 4 (ζ + η)) tr , where x : [ζ -η, ζ + η] → R 4 is the solution of (2.90) ẋ = K(t)x + ξ(t)e, with (2.91) K(t) :=        0 1 0 0 0 - N -1 t 0 0 0 0 0 1 -3B 2 (t) 0 0 - N -1 t        , e :=     0 1 0 0     , which satisfies (2.92) x(ζ -η) = 0.
Hence, using a standard density argument, (2.81) comes from the following lemma.

Lemma 8 Let ν > 0, ζ > 0, η > 0 be such that [ζ -η, ζ + η] ⊂ (0, +∞). Let B ∈ C ∞ ([ζ -η, ζ + η]) be such that B ≡ 0. (2.

93)

Then the control system (2.90), where the state is x ∈ R 4 and the control is

ξ ∈ R, is controllable on [ζ -η, ζ + η], i.e. for every X in R 4 there exists ξ ∈ L ∞ (ζ -η, ζ + η) such that the solution of (2.90) and (2.92) satisfies x(ζ + η) = X.
Proof of Lemma 8. We use a classical result on the controllability of time-varying linear finite-dimensional control systems (see e.g. [START_REF] Coron | Control and nonlinearity[END_REF]Theorem 1.18]). One defines, by induction

on i ∈ N, e i ∈ C ∞ ([ζ -η, ζ + η]) by requiring e 0 (t) := e, ∀t ∈ [ζ -η, ζ + η], (2.94) e i (t) := ėi-1 (t) -K(t)e i-1 (t), ∀t ∈ [ζ -η, ζ + η], ∀i ∈ N \ {0}. (2.95) Let θ ∈ C ∞ ([ζ -η, ζ + η]) be defined by (2.96) θ(t) := - N -1 t , ∀t ∈ [ζ -η, ζ + η].
Straightforward computations lead to (2.97) We now turn to the case where (2.59) does not hold. Then, replacing if necessary B by -B and using (2.52), we may assume that

e 1 =     -1 -θ 0 0     , e 2 =     θ -θ + θ 2 0 -3B 2     , e 3 =     2 θ -θ 2 -θ + 3θ θ -θ 3 3B 2 6B 2 θ -6B Ḃ     . From (2.
B (z) + N -1 z B (z) > 0, ∀z ∈ [ζ -η, ζ + η] \ {ζ}. (2.99)
In the definition of H ε,ξ one replaces (2.67) by

(2.100) H ε,ξ (z) := ε 2 ϕ z -ζ |ε| + 1 -ϕ z -ζ |ε| B (z) + N -1 z B (z) + ξ(z) ,
and keeps (2.68). Now (2.84) and (2.85) are replaced by

C ε,ξ (z) > 0, ∀z ∈ [ζ -η, ζ + η], ∀ε ∈ [-ε 1 , ε 1 ] \ {0}, ∀ξ ∈ E 0 such that |ξ| ε 1 . (2.101)
Therefore, (compare with (2.88)), provided that ε = 0, one can see that

C ε,ξ (z) = 0 for every z ∈ [ζ -η, ζ + η] and consequently (1.19) is satisfied. Moreover C ε,ξ ∈ C ∞ ([ζ -η, ζ + η]), ∀ε ∈ [-ε 1 , ε 1 ] \ {0}, ∀ξ ∈ E 0 such that |ξ| ε 1 . (2.102)
which, together with (2.102), (2.82), (2.83), and (2.101), concludes the proof of Proposition 3.

3 Proof of Theorem 2 (time-varying case)

In this section, we prove Theorem 2. We define

λ ∈ C ∞ ([-1, 1]) and f 0 ∈ C ∞ ([-1, 1]) by (3.1) λ(t) := (1 -t 2 ) 2 , ∀t ∈ [-1, 1],
and 

(3.2) f 0 (t) :=    e -1 1-t 2 if |t| < 1, 0 if t = 0. Let ε ∈ (0, 1]. For r ∈ R
ρ 0 := 1 2 , ρ -1 := - 1 2 . 
Let δ > 0 be such that

[ρ l -δ, ρ l + δ] ⊂ (-1, 1) \ {0}, ∀l ∈ {-1, 0, 1, . . . , p}, (3.6) [ρ l -δ, ρ l + δ] ∩ [ρ l -δ, ρ l + δ] = ∅, ∀(l, l ) ∈ {-1, 0, 1, . . . , p} 2 such that l = l . (3.7)
Let D := {(t, r) ∈ (-1, 1) × R; |r| < ελ(t)}. We look for a : (t, r) ∈ D → a(t, r) ∈ R in the following form

a(t, r) = f 0 (t)A(z) + p l=-1 3 i=1 f il (t)g il (z), (3.8)
where the functions f il , g il are to be determined with the requirement that (3.9) the support of g il is included in (ρ l -δ, ρ l + δ), ∀i ∈ {1, 2, 3}, ∀l ∈ {-1, 0, 1, . . . , p}. .

Then b : (t, r) ∈ D → b(t, r) ∈ R is defined by (3.10) b := a t -a rr - N -1 r a r 1 
For l ∈ {-1, 0, 1, . . . , p}, let Σ l ⊂ R × R be defined by

(3.12) Σ l := {(t, r) ∈ (-1, 1) × R; z ∈ (ρ l -δ, ρ l + δ)} .
Let us first study the case where, for some From (3.7), (3.8), (3.9), and (3.12), we have

(3.15) a(t, r) = f 0 (t)A(z) + 3 i=1 f i l(t)g i l(z).
In order to simplify the notations, we omit the index l, and define g 0 by (3.16)

g 0 := A.
(This definition is used all throughout this section.) Then, (3.15) now reads (3.17) a(t, r) = 

B (2) + N -1 z B (1) (ρ) = 0, (3.19) B (2) + N -1 z B (1) 
z (ρ) = 0, (3.20)

B (2) + N -1 z B (1) 
zz (ρ) = 0, (3.21)

B (2) + N -1 z B (1) zzz (ρ) = 0. (3.22)
To simplify the notations we assume that, for example, B(ρ) < 0, (3.23)

B (2) + N -1 z B (1) zzz (ρ) < 0. (3.24)
From (3.20), (3.21), (3.23), and (3.24), if δ ∈ (0, ρ) is small enough, there exists µ > 0 such that

B(z) -µ, ∀z ∈ [ρ -δ, ρ + δ], (3.25) B (2) + N -1 z B (1) zzz (z) -µ, ∀z ∈ [ρ -δ, ρ + δ]. (3.26)
We now fix such a δ.

From (3.10) and (3.17),

(3.27) b = - 1 ε 2/3 λ 2/3 3 i=0 f i g (2) i + N -1 z f i g (1) 
i + zε 2 λ λf i g

i -ε 2 λ 2 ḟi g i

1/3 .
Let us denote by M : R × R * → R, (t, z) → M (t, z) ∈ R, the function defined by:

(3.28) M (t, z) := 3 i=0 f i (t)g (2) 
i (z) +

N -1 z f i (t)g (1) 
i (z)

+ zε 2 λ(t) λ(t)f i (t)g (1) 
i (z) -ε 2 λ 2 (t) ḟi (t)g i (z) .

For the moment, let us assume that 

(3.29) M (t, z) = 0, ∀(t, z) ∈ (-1, 1) × (ρ -δ, ρ + δ).
ν := 1 M 2/3 3M zz -2 M 2 z M + 3(N -1) z M z + 6ε 2 λ λM -3ε 2 λ 2 M t + 3zε 2 λ λM z .
The idea is to construct the f i 's and the g i 's in order to have a precise knowledge of the places where ν vanishes and the order of the vanishing so that ν is the cube of a C ∞ function. More precisely, we are are going to check that one can construct the f i 's and the g i 's so that, at least if ε ∈ (0, 1] is small enough,

ν(t, ρ) = 0, ∀t ∈ (-1, 1), (3.32) ν z (t, ρ) = 0, ∀t ∈ (-1, 1), (3.33) ν zz (t, ρ) = 0, ∀t ∈ (-1, 1), (3.34) ν zzz (t, ρ) > 0, ∀t ∈ (-1, 1). (3.35) From (3.28), one has (3.36) M z = 3 i=0 f i g (3) i + ε 2 ( λf i -λ ḟi )λg (1) i + ε 2 zλ λf i g (2) i + N -1 z f i g (2) 
i -

N -1 z 2 f i g (1) i , 14 (3.37) 
M zz = 3 i=0 f i g (4) i + ε 2 (2 λf i -λ ḟi )λg (2) 
i + ε 2 zλ λf i g

(3) i + N -1 z f i g (3) 
i -

2(N -1) z 2 f i g (2) i + 2(N -1) z 3 f i g (1) i 
.

We impose that (3.38) g (j)

i (ρ) = 1 if i = 1 and j = 4, 0 if 1 i 3, 0 j 4 and (i, j) = (1, 4).

From (3.28), (3.36), (3.37), and (3.38), we have Then, for z = ρ, one has (3.43)

M (•, ρ) = f 0 g (2) 0 (ρ) + N -1 ρ f 0 g (1) 0 (ρ) + ε 2 ρλ λf 0 g (1) 0 (ρ) -ε 2 λ 2 ḟ0 g 0 (ρ), (3.39) (3.40) M z (•, ρ) = f 0 g (3) 0 (ρ) + N -1 ρ f 0 g (2) 0 (ρ) - N -1 ρ 2 f 0 g (1) 0 (ρ) +ε 2 ( λf 0 -λ ḟ0 )λg (1) 0 (ρ) + ε 2 ρλ λf 0 g (2) 0 (ρ), M zz (•, ρ) = f 0 g (4) 0 (ρ) + N -1 ρ f 0 g (3) 0 (ρ) - 2(N -1) ρ 2 f 0 g (2) 0 (ρ) + 2(N -1) ρ 3 f 0 g (1) 0 (ρ) +f 1 + ε 2 (2 λf 0 -λ ḟ0 )λg (2) 0 (ρ) + ε 2 ρλ λf 0 g (3) 0 (ρ).
ν(., ρ) = 1 M 2/3 (., ρ) 3M zz (., ρ) -2 M 2 z (., ρ) M (., ρ) + 3(N -1) ρ M z (., ρ) + 6ε 2 λ λM z (., ρ) -3ε 2 λ 2 M t (., ρ) + 3ρε 2 λ λM z (., ρ) .
We then choose to define

f 1 : t ∈ (-1, 1) → f 1 (t) ∈ R by (3.44) f 1 := -f 0 g (4) 0 (ρ) - N -1 ρ f 0 g (3) 0 (ρ) + 2(N -1) ρ 2 f 0 g (2) 0 (ρ) - 2(N -1) ρ 3 f 0 g (1) 0 (ρ) -ε 2 (2 λf 0 -λ ḟ0 )λg (2) 0 (ρ) -ε 2 ρλ λf 0 g (3) 0 (ρ) + 1 3 2 M 2 z (., ρ) M (., ρ) - 3(N -1) ρ M z (., ρ) -6ε 2 λ λM (., ρ) +3ε 2 λ 2 M t (., ρ) -3ρε 2 λ λM z (., ρ) .
Note that, even if M depends on f 1 , f 2 , and f 3 , the right hand side of (3.44) does not depend on f 1 , f 2 , and f 3 , and f 1 is indeed well-defined by (3.44). This definition of f 

f 1 (t) = ε 2 p 1 (ε 2 , t) 1 + q 1 (ε 2 , t) f 0 (t), ∀t ∈ (-1,

1). (3.45)

In order to simplify the notations, we set:

(3.46) K(t, z) := - 2M z (t, z) 2 M (t, z) + 3(N -1) z M z (t, z) + 6ε 2 λ λM (t, z) -3ε 2 λ 2 M t (t, z) + 3zε 2 λ λM z (t, z).
We then have

(3.47) ν = M -2 3 (3M zz + K).
Differentiating this equality with respect to z, we obtain

(3.48) ν z = M -5 3 (3M M zzz + M K z -2M z M zz - 2 3 M z K).
Differentiating (3.46) with respect to z, we get

(3.49) K z = - 4M z M zz M 2 + 2M 3 z M 3 + 3(N -1) z M zz - 3(N -1) z 2 M z +9ε 2 λ λM z -3ε 2 λ 2 M tz + 3ε 2 zλ λM zz .
Then, differentiating (3.37) with respect to z, we have (3.50)

M zzz = 3 i=0 f i g (5) i + N -1 z f i g (4) 
i -

3(N -1) z 2 f i g (3) i + 6(N -1) z 3 f i g (2) i - 6(N -1) z 4 f i g (1) i + ε 2 zλ λf i g (4) i + ε 2 (3 λf i -λ ḟi )λg (3) i 
.

We impose that (3.51) g

(5)

i (ρ) = 1 if i = 2, 0 if i ∈ {1, 3}.
From (3.38), (3.50), and (3.51), we have (3.52)

M zzz (., ρ) = f 0 g (5) 0 (ρ) + N -1 ρ f 0 g (4) 0 (ρ) - 3(N -1) ρ 2 f 0 g (3) 0 (ρ) + 6(N -1) ρ 3 f 0 g (2) 0 (ρ) - 6(N -1) ρ 4 f 0 g (1) 0 (ρ) + f 2 + N -1 ρ f 1 +ε 2 (3 λf 0 -λ ḟ0 )λg (3) 0 (ρ) + ε 2 ρλ λf 0 g (4) 0 (ρ) + ε 2 ρλ λf 1 .
We then define

f 2 : t ∈ (-1, 1) → f 2 (t) ∈ R by (3.53) f 2 := -f 0 g (5) 0 (ρ) - N -1 ρ f 0 g (4) 0 (ρ) + 3(N -1) ρ 2 f 0 g (3) 0 (ρ) - 6(N -1) ρ 3 f 0 g (2) 0 (ρ) + 6(N -1) ρ 4 f 0 g (1) 0 (ρ) - N -1 ρ f 1 + 1 3M (., ρ) (-M (., ρ)K z (., ρ) + 2M z (., ρ)M zz (., ρ) + 2 3 M z (., ρ)K(., ρ)) -ε 2 ρλ λf 0 g (4) 0 (ρ) -ε 2 ρλ λf 1 -ε 2 (3 λf 0 -λ ḟ0 )λg (3) 0 (ρ).
Note that, again, even if M depends on f 2 and f 3 , the right hand side of ( 

f 2 (t) = ε 2 p 2 (ε 2 , t) 1 + q 2 (ε 2 , t) f 0 (t), ∀t ∈ (-1, 1
ν zz = M -8 3 -4M M z M zzz - 7 3 M M z K z + 10 3 M 2 z M zz + 10 9 M 2 z K +3M 2 M zzzz + M M z K z + M 2 K zz -2M M 2 zz - 2 3 M M zz K .
Differentiating (3.49) with respect to z, we obtain (3.56)

K zz = - 4M 2 zz M - 4M z M zzz M + 10M 2 z M zz M 2 - 4M 4 z M 3 + 6(N -1) z 3 M z - 6(N -1) z 2 M zz + 3(N -1) z M zzz + 12ε 2 λ λM zz -3ε 2 λ 2 M tzz + 3zε 2 λ λM zzz .
Differentiating (3.50) with respect to z, one has (3.57)

M zzzz = 3 i=0 f i g (6) i + N -1 z f i g (5) 
i -

4(N -1) z 2 f i g (4) i + 12(N -1) z 3 f i g (3) 
i -

24(N -1) z 4 f i g (2) i + 24(N -1) z 5 f i g (1) i +ε 2 (4 λf i -λ ḟi )λg (4) i + ε 2 zλ λf i g (5) i 
.

We then impose

(3.58) g (6) i (ρ) = 1 if i = 3, 0 if i ∈ {1, 2}.
Evaluating M zzzz at z = ρ in (3.57) gives (3.59)

M zzzz (., ρ) = f 0 g (6) 0 (ρ) + f 3 + N -1 ρ f 0 g (5) 0 (ρ) - 4(N -1) ρ 2 f 0 g (4) 0 (ρ) + 12(N -1) ρ 3 f 0 g (3) 0 (ρ) - 24(N -1) ρ 4 f 0 g (2) 0 (ρ) + 24(N -1) ρ 5 f 0 g (1) 0 (ρ) + N -1 ρ f 2 - 4(N -1) ρ 2 f 1 + ε 2 (4 λf 0 -λ ḟ0 )λg (4) 0 (ρ) +ε 2 (4 λf 1 -λ ḟ1 )λ + ε 2 ρλ λf 0 g (5) 0 (ρ) + ε 2 ρλ λf 2 .
Then, we define f 3 : t ∈ (-1, 1) → f 3 (t) ∈ R by (3.60)

f 3 := -f 0 g (6) 0 (ρ) - N -1 ρ f 0 g (5) 0 (ρ) + 4(N -1) ρ 2 f 0 g (4) 0 (ρ) - 12(N -1) ρ 3 f 0 g (3) 0 (ρ) 
+ 24(N -1) ρ 4 f 0 g (2) 
0 (ρ) -

24(N -1) ρ 5 f 0 g (1) 0 (ρ) - N -1 ρ f 2 + 4(N -1) ρ 2 f 1 -ε 2 ρλ λf 0 g (5) 0 (ρ) -ε 2 (4 λf 0 -λ ḟ0 )λg (4) 0 (ρ) -ε 2 ρλ λf 2 -ε 2 (4 λf 1 -λ ḟ1 )λ + 1 3M 2 (., ρ) 4M (., ρ)M z (., ρ)M zzz (., ρ) + 7 3 M (., ρ)M z (., ρ)K z (., ρ) - 10 3 M 2 z (., ρ)M zz (., ρ) - 10 9 M 2 z (., ρ)K(., ρ) -M (., ρ)M z (., ρ)K z (., ρ) -M 2 (., ρ)K zz (., ρ) + 2M (., ρ)M 2 zz (., ρ) + 2 3 M (., ρ)M zz (., ρ)K(., ρ) .
Once more, even if M depends on f 3 , the right hand side of (3.60) does not depend on f 3 , and f 3 is indeed well defined by (3.60). This definition of f 3 , together with (

, we obtain the existence of two polynomials p 3 (ε 2 , t) and q 3 (ε 2 , t) in the variables ε 2 and t, such that 

f 3 (t) = ε 2 p 3 (ε 2 , t) 1 + q 3 (ε 2 , t) f 0 (t), ∀t ∈ (-
: (t, z) ∈ [-1, 1] × [ρ -δ, ρ + δ] → ψ a (t, z) ∈ R of class C ∞ such that (3.62) a(t, r) = f 0 (t)ψ a (t, z), ∀(t, r) ∈ Σ.
In particular, a is of class C ∞ in Σ. From (1.14), (

, and (3.61), we get that, at least if ε > 0 is small enough, there there exists

ψ b : (t, z) ∈ [-1, 1] × [ρ -δ, ρ + δ] → ψ b (t, z) ∈ R of class C ∞ such that b < 0 in Σ, (3.63) b(t, r) = λ -2/3 f 0 (t) 1/3 ψ b (t, z), ∀(t, r) ∈ Σ. (3.64) In particular, b is of class C ∞ in Σ.
Let us now study c. Differentiating (3.55) with respect to z one gets (3.65)

ν zzz = M -11 3 10M M 2 z M zzz + 10 3 M M 2 z K z - 80 9 M 3 z M zz - 80 27 M 3 z K -6M 2 M z M zzzz -2M 2 M z K zz + 10M M z M 2 zz + 10 3 M M z M zz K -8M 2 M zz M zzz -2M 2 M zz K z + 3M 3 M zzzzz + M 3 K zzz - 2 3 M 2 M zzz K .
Differentiating (3.57) with respect to z, we get (3.66)

M zzzzz = 3 i=0 f i g (7) i + N -1 z f i g (6) 
i -

5(N -1) z 2 f i g (5) 
i + 20(N -1)

z 3 f i g (4) i - 60(N -1) z 4 f i g (3) 
i + 120(N -1)

z 5 f i g (2) 
i -

120(N -1) z 6 f i g (1) i +ε 2 (5 λf i -λ ḟi )λg (5) 
i + ε 2 zλ λf i g

.

Differentiating (3.56) with respect to z, we get (3.67) 

K zzz = 6M 2 z M zz M - 4M z M zzzz M + 24M z M 2 zz M 2 + 4M zz M zzz M - 36M 3 z M zz M 3 + 12M 5 z M 4 - 18(N -1) z 4 M z + 18(N -1) z 3 M zz - 9(N -1) z 2 M zzz + 3(N -1) z M zzzz +15ε 2 λ λM zzz -3ε 2 λ 2 M tzzz + 3zε
φ : (t, z) ∈ [-1, 1] × [ρ -δ, ρ + δ] → φ(t, z) ∈ R of class C ∞ such that c 3 (t, r) = λ 8/3 f 0 (t) 1/3 φ(t, z), ∀(t, r) ∈ Σ, (3.68) φ(t, ρ) = 0, ∀t ∈ [-1, 1], (3.69) ∂ z φ(t, ρ) = 0, ∀t ∈ [-1, 1], (3.70) ∂ 2 zz φ(t, ρ) = 0, ∀t ∈ [-1, 1], (3.71) ∂ 3 zzz φ(t, z) > 0, ∀(t, z) ∈ [-1, 1] × [ρ -δ, ρ + δ]. (3.72) Let φ : (t, z) ∈ [-1, 1] × [ρ -δ, ρ + δ] → φ(t, z) ∈ R be defined by φ(t, z) := 1 2 1 0 (1 -s) 2 ∂ 3 zzz φ(t, ρ + s(z -ρ)))ds, ∀(t, z) ∈ [-1, 1] × [ρ -δ, ρ + δ]. (3.73) Then, φ is of class C ∞ on [-1, 1] × [ρ -δ, ρ + δ]
φ(t, z) = (z -ρ) 3 φ(t, z), ∀(t, z) ∈ [-1, 1] × [ρ -δ, ρ + δ], (3.74) φ(t, z) > 0, ∀(t, z) ∈ [-1, 1] × [ρ -δ, ρ + δ]. (3.75) Let ψ c : (t, z) ∈ [-1, 1] × [ρ -δ, ρ + δ] → ψ c (t, z) ∈ R be defined by (3.76) ψ c (t, z) := (z -ρ) φ(t, z) 1/3 , ∀(t, z) ∈ [-1, 1] × [ρ -δ, ρ + δ].
By (3.68), (3.74), (3.75), and (3.76), one gets that

ψ c ∈ C ∞ ([-1, 1] × [ρ -δ, ρ + δ]), (3.77) c(t, r) = λ -8/9 f 0 (t) 1/9 ψ c (t, z), ∀(t, r) ∈ Σ. (3.78) In particular, c is of class C ∞ in Σ.
Let us now study the case l ∈ {-1, 0}, i.e. ρ l = 1/2 or ρ l = -1/2. By symmetry, we may assume that l = 0 so that ρ l = 1/2. This case is simpler than the previous one. It is already treated in [START_REF] Coron | Null controllability of a parabolic system with a cubic coupling term[END_REF], except that we now have to take care of c. So, we will only briefly sketch the arguments. By (1.18) we may impose on δ to be small enough so that

C(z) > 0, ∀z ∈ [(1/2) -δ, (1/2) + δ]. (3.79)
We now define (see (3.27) and compare with (3.31)) (3.80) ν :=

3 i=0 f i g (2) i + N -1 z f i g (1) 
i + zε 2 λ λf i g

i -ε 2 λ 2 ḟi g i .

We still want to ensure that (3.32) to (3.34). This is achieved by now imposing

f 1 := - 1 2 ε 2 λ λf 0 g (1) 0 ( 1 2 ) + ε 2 λ 2 ḟ0 g 0 ( 1 2 
), (3.81)

f 2 := -(2(N -1)f 1 + 1 2 ε 2 λ λ) + 1 2 ε 2 λ λf 0 g (2) 0 ( 1 2 ) + (ε 2 λ λf 0 -ε 2 λ 2 ḟ0 )g (1) 0 ( 1 2 
) , (3.82)

f 3 := -(2(N -1) + 1 2 ε 2 λ λ)f 2 + (2ε 2 λ λ -8(N -1))f 1 -ε 2 λ 2 ḟ1 + 1 2 ε 2 λ λf 0 g (3) 0 ( 1 2 ) + (2ε 2 λ λf 0 -ε 2 λ 2 ḟ0 )g (2) 0 ( 1 2 ) , (3.83) 
where the g i 's now satisfy 

g (2) 1 1 2 = g (3) 2 1 2 = g (4) 3 1 2 = 1, (3.84) g (j) i 1 2 = 0, ∀(i, j) ∈ {1, 2, 3} × {0, 1, 2, 3, 4} \ {(1, 2), (2, 3), (3, 4) 
(3.88) ψ a , ψ b , ψ c ∈ C ∞ [-1, 1] × [-1, 1] \ ∪ p l=-1 (ρ l -(δ/2), ρ l + (δ/2)) .
In conclusion, from these three cases we get the existence of three functions ψ a , ψ b , and ψ c such that 

ψ a , ψ b , ψ c ∈ C ∞ ([-1, 1] × [-1, 1]), (3.89) a(t, r) = f 0 (t)ψ a (t, z), ∀(t, r) ∈ D, (3.90) b(t, r) = λ(t) -2/3 f 0 (t)ψ b (t, z), ∀(t, r) ∈ D, (3.91) c(t, r) = λ(t) -8/9 f 0 (t)ψ c (t,

Proof of Theorem 1

In this section, we show how to deduce Theorem 1 from Theorem 2 by means of the return method, an algebraic solvability and classical controllability results.

Let x 0 ∈ ω. Let r > 0 be small enough so that Let ᾱ : R × R N → R, β : R × R N → R, γ : R × R N → R and ū : R × R N → R be defined by, for every (t,

x) ∈ R × R N , ᾱ(t, x) := r8 a t -(T /2) r2 , 1 r |x -x 0 | , (4.2) β(t, x) := r2 b t -(T /2) r2 , 1 r |x -x 0 | , (4.3) γ(t, x) := c t -(T /2) r2 , 1 r |x -x 0 | , (4.4) ū(t, x) := γt (t, x) -∆γ(t, x). (4.5)
From (1.5), (1.7), (1.8), (1.9), (4.2), (4.3), (4.4), and (4.5), the functions ᾱ, β, γ, and ū are of class C ∞ and satisfy

ᾱt -∆ᾱ = β3 in R × R N , (4.6) βt -∆ β = γ3 in R × R N , (4.7) γt -∆γ = ūχ ω in R × R N , (4.8)
the supports of ᾱ, β, γ, and ū are included in (0, T ) × ω. (4.9)

Let (α 0 , β 0 , γ 0 ) tr ∈ L ∞ (Ω) 3 . For (α, β, γ) tr ∈ L ∞ ((0, T ) × Ω) 3 and u ∈ L ∞ ((0, T ) × Ω), let us define (α, β, γ) tr ∈ L ∞ ((0, T ) × Ω) 3 and û ∈ L ∞ ((0, T ) × Ω) by, for every (t, x) ∈ (0, T ) × Ω, α(t, x) := α(t, x) -ᾱ(t, x), (4.10) β(t, x) := β(t, x) -β(t, x), (4.11) γ(t, x) := γ(t, x) -γ(t, x), (4.12) û(t, x) := u(t, x) -ū(t, x). (4.13)
From (4.6), (4.7), (4.8), and (4.9), (α, β, γ) tr ∈ L ∞ ((0, T ) × Ω) 3 is the solution of the Cauchy problem (1.2) if and only if (α, β, γ) tr ∈ L ∞ ((0, T )×Ω) 3 is the solution of the Cauchy problem (4.14)

             αt -∆α = 3 β2 β + 3 β β2 + β3 in (0, T ) × Ω, βt -∆ β = 3γ 2 γ + 3γγ 2 + γ3 in (0, T ) × Ω, γt -∆γ = ûχ ω in (0, T ) × Ω, α = β = γ = 0 in (0, T ) × ∂Ω, α(0, •) = α 0 (•), β(0, •) = β 0 (•), γ(0, •) = γ 0 (•) in Ω.
Moreover, by (4.9), (4.10), (4.11) and (4.12), one has

(4.15) α(T, •) = α(T, •), β(T, •) = β(T, •), γ(T, •) = γ(T, •) in Ω.
Let us consider the system (4.16)

       αt -∆α = 3 β2 β + 3 β β2 + β3 in (0, T ) × Ω, βt -∆ β = 3γ 2 γ + 3γγ 2 + γ3 in (0, T ) × Ω, γt -∆γ = ûχ ω in (0, T ) × Ω, α = β = γ = 0 in (0, T ) × ∂Ω,
as a control system where, at time t ∈ [0, T ], the state is (α(t, •), β(t, •), γ(t, •)) tr ∈ L ∞ (Ω) 3 , and the control is û(t, •) ∈ L ∞ (Ω). Note that (α, β, γ) tr = 0 and û = 0 is a trajectory (i.e. a solution) of this control system. The linearized control system around this (null) trajectory is the linear control system (4.17) 

       αt -∆α = 3 β2 β in (0, T ) × Ω, βt -∆ β = 3γ 2 γ in (0, T ) × Ω, γt -∆γ = ûχ ω in (0, T ) × Ω, α = β = γ = 0 in (0, T ) × ∂Ω, where, at time t ∈ [0, T ], the state is (α(t, •), β(t, •), γ(t, •)) tr ∈ L ∞ (Ω)
       αt -∆α = 3 β2 β + v 1 χ (t 1 ,t 2 )×ω 2 in (0, t 2 ) × Ω, βt -∆ β = 3γ 2 γ + v 2 χ (t 1 ,t 2 )×ω 2 in (0, t 2 ) × Ω, γt -∆γ = v 3 χ (t 1 ,t 2 )×ω 2 in (0, t 2 ) × Ω, α = β = γ = 0 in (0, t 2 ) × ∂Ω, where, at time t ∈ [0, t 2 ], the state is (α(t, •), β(t, •), γ(t, •)) tr ∈ L ∞ (Ω) 3 and the control is (v 1 (t, •), v 2 (t, •), v 3 (t, •)) tr ∈ L ∞ (Ω)
3 is null controllable. We next point out that, with the terminology of [27, page 148] (see also [START_REF] Coron | Local null controllability of the three-dimensional Navier-Stokes system with a distributed control having two vanishing components[END_REF]), the underdetermined system (4.24)

   αt -∆α = 3 β2 β + v 1 in (t 1 , t 2 ) × ω 1 , βt -∆ β = 3γ 2 γ + v 2 in (t 1 , t 2 ) × ω 1 , γt -∆γ = v 3 + ũ in (t 1 , t 2 ) × ω 1 ,
where the data is (v 1 , v 2 , v 3 ) tr : (t 1 , t 2 ) × ω 1 → R 3 and the unknown is (α, β, γ, ũ) tr : (t 1 , t 2 ) × ω 1 → R 4 is algebraically solvable, i.e. there are solutions of (4.24) such that the unknown can be expressed in terms of the derivatives of the data. Indeed, for (v

1 , v 2 , v 3 ) tr ∈ D ((t 1 , t 2 ) × ω 1 ) 3 , if (α, β, γ, ũ) tr ∈ D ((t 1 , t 2 ) × ω 1 ) 4 is defined by α := 0, (4.25) β := - v 1 3 β2 , (4.26) γ := 1 3γ 2 - v 1 3 β2 t + ∆ v 1 3 β2 -v 2 , (4.27) (4.28) ũ := -v 3 + 1 3γ 2 - v 1 3 β2 t + ∆ v 1 3 β2 -v 2 t -∆ 1 3γ 2 - v 1 3 β2 t +∆ v 1 3 β2 -v 2 ,
then (4.24) holds. This algebraic solvability is a key ingredient for the following proposition.

Proposition 9 There exists η > 0 such that, for every (α 0 , β 0 , γ 0 ) tr ∈ L ∞ (Ω) 3 satisfying The proof of Proposition 9 is given in Appendix A. It is an adaptation of [START_REF] Coron | Local null controllability of the three-dimensional Navier-Stokes system with a distributed control having two vanishing components[END_REF], which deals with Navier-Stokes equations, to our parabolic system. Besides a suitable inverse mapping theorem, it mainly consists of the following two steps.

(i) Prove that the control system (4.30) with two "fictitious" controls added on the first two equations is null controllable by means of smooth controls. See Proposition 11.

(ii) Remove the two "fictitious" controls by using the algebraic solvability, as in [START_REF] Coron | Global asymptotic stabilization for controllable systems without drift[END_REF] and [START_REF] Coron | Local null controllability of the three-dimensional Navier-Stokes system with a distributed control having two vanishing components[END_REF]. See (the proof of) Proposition 14.

With the notations of Proposition 9, we extend (α, β, γ) tr and û to all of (0, T ) × Ω by requiring α(t, x) = β(t, x) = γ(t, x) = û(t, x) = 0, ∀(t, x) ∈ (t 2 , T ) × Ω. Let us define (α, β, γ) tr ∈ L ∞ ((0, T )×Ω) 3 and u ∈ L ∞ ((0, T )×Ω) by imposing (4.10), (4.11), (4.12), and (4.13). Then, from (4.14), one has (1.2) and, using (4.15) together with (4.33), one has (1.3). This concludes the proof of Theorem 1 if (4.29) holds. However, assumption (4.29) can be removed by using the following simple homogeneity argument: If ((α, β, γ) tr , u) ∈ L ∞ ((0, T )×Ω) 3 ×L ∞ ((0, T )×Ω) is a trajectory (i.e. a solution) of the control system (1.1), then for every s > 0, ((α s , β s , γ s ) tr , u s ) := ((s 9 α, s 3 β, sγ) tr , su) is a trajectory (i.e. a solution) of the control system (1.1). This concludes the proof of Theorem 1.

A Proof of Proposition 9

Let 1ω 2 : R 3 → [0, 1] be a function of class C ∞ which is equal to 1 on ω 2 and whose support is included in ω 1 , and let ζ : R → [0, 1] be such that ζ is equal to 0 on (-∞, (2t 1 + t 2 )/3] and is equal to 1 on ((t 1 + 2t 2 )/3, +∞). Let ϑ : R × R 3 → R be defined by From now on, we set, Q := (t 1 , t 2 ) × Ω and, for η ∈ (0, 1) and K > 0, Lemma 10 Let η ∈ (0, 1). There exist K := K(η) > 0 and C := C(K) > 0 such that, for every g = (g 1 , g 2 , g 3 ) tr ∈ L 2 ((t 1 , t 2 ) × Ω) 3 and for every solution z = (α, β, γ) tr ∈ L 2 ((t 1 , t 2 ), H 2 (Ω) 3 ) ∩ H 1 ((t 1 , t 2 ), L 2 (Ω) 3 ) of the parabolic system, which is the adjoint of (4.17), (A.3)

       -α t -∆α = g 1 in (t 1 , t 2 )
× Ω, -βt -∆ β -3 β2 α = g 2 in (t 1 , t 2 ) × Ω, -γ t -∆γ -3γ 2 β = g 3 in (t 1 , t 2 ) × Ω, α = β = γ = 0 in (t 1 , t 2 ) × ∂Ω, one has

(A.4) | √ ρ η z| 2 L 2 (Q) 3 + |z(t 1 , •)| 2 L 2 (Ω) 3 C (t 1 ,t 2 )×Ω ϑρ 1 |z| 2 + (t 1 ,t 2 )×Ω ρ 1 |g| 2 .
Let us now derive from Lemma 10 a proposition on the null-controllability with controls which are smooth functions for the control system (4.17) with a right hand side term.

Proposition 11 Let η ∈ (0, 1) be such that

(A.5) η > 2 3

/ 3 ,

 3 and, on every open subset of D on which b is of class C 2 and b r /r is bounded, c is defined by (3.11) c := b t -b rr -N -

( 3 .

 3 [START_REF] Coron | Global asymptotic stabilization for controllable systems without drift[END_REF] l ∈ {1, 2, . . . , p} , (t, r) ∈ Σl. By symmetry, we may only study the case where ρl > 0. Note that (3.13), together with (1.18) and(3.4)

3 i=0f

 3 i (t)g i (z). Note that (1.16), (3.14), and (3.16) imply that B(ρ) = 0. (3.18) Moreover, by (1.15), (1.19), (3.4), (3.13), and (3.16),

Using ( 3 . 3 )

 33 , (3.11), (3.27), (3.28), and straightforward computations, one gets, on the open set of the (t, r) ∈ Σ such that M (t, z)

  14), (3.1), (3.2), (3.16), (3.23), (3.39), and (3.40), one has, at least if ε > 0 is small enough, which is from now on assumed, (3.42) ∀t ∈ (-1, 1), M (t, ρ) > 0.

  in a position to analyse the regularity of a, b, and c on Σ. Let us first point out that, by (3.1), (3.2), (3.8), (3.45), (3.54), and (3.61), there exists ψ a

  and, using (3.69), (3.70), (3.71), and (3.72),

  }. (3.85) Then a still satisfies (3.62) for some function ψ a of class C ∞ on [-1, 1] × [ρ -δ, ρ + δ]. Proceeding as we did to prove (3.78), we get the existence of ψ b of class C ∞ on [-1, 1] × [ρδ, ρ + δ] such that (3.64) holds. Now the case of the function c is simpler than before since, at least for ε > 0 small enough, we get from (3.79) that c > 0 in Σ and the existence ψ c of class C ∞ on [-1, 1] × [ρ -δ, ρ + δ] such that (3.78) holds.The case where(t, r) ∈ Σ := (t, r) ∈ (-1, 1) × R; z ∈ (-1, 1) \ ∪ p l=-1 [ρ l -(δ/2), ρ l + (δ/2)] (3.86)is even simpler than the two previous ones since, by (3.9)g 1 = g 2 = g 3 = 0. (3.87) One gets that (3.62), (3.64), and (3.78) hold on Σ where

  z), ∀(t, r) ∈ D, (3.92) which, together with (3.1) and (3.2), imply that, if a, b, and c are extended to all of R × R by 0 outside D, then a, b, and c are of class C ∞ on R × R. This concludes the proof of Theorem 2.

  |x -x0 | r ⇒ (t ∈ (0, T ) and x ∈ ω) .

(4. 29 )

 29 |α 0 | L ∞ (Ω) + |β 0 | L ∞ (Ω) + |γ 0 | L ∞ (Ω) < η, there exists û ∈ L ∞ ((0, t 2 ) × Ω) such that the solution (α, β, γ) tr ∈ L ∞ ((0, t 2 ) × Ω) -∆α = 3 β2 β + 3 β β2 + β3 in (0, t 2 ) × Ω, βt -∆ β = 3γ 2 γ + 3γγ 2 + γ3 in (0, t 2 ) × Ω, γt -∆γ = ûχ ω in (0, t 2 ) × Ω, α = β = γ = 0 in (0, t 2 ) × ∂Ω, α(0, •) = α 0 (•), β(0, •) = β 0 (•), γ(0, •) = γ 0 (•) in Ω, satisfies (4.31) α(t 2 , •) = β(t 2 , •) = γ(t 2 , •) = 0 in Ω.

  (4.32) Then, by (4.30) and (4.31), one has (4.14) and (4.33) α(T, •) = β(T, •) = γ(T, •) = 0 in Ω.

  (A.1) ϑ(t, x) := ζ(t) 1ω 2 (x), ∀(t, x) ∈ R × R 3 .

ρ

  η (t) := e -K η(t 2 -t) , ρ 1 (t) := e -K (t 2 -t) , ∀t ∈ [t 1 , t 2 ). (A.2)We have the following Carleman estimates proven in [24,Chapter 1].

  1/3 .

	Note that by (2.62), (2.67), and (2.71), if ε = 0,
	(2.72)	C

ε,ξ (ξ) = -|ε| 2/3 = 0. Using (2.63), (2.65), (2.67), (2.68), and (2.69), one sees that, if ε < η (which is assumed from now on), B ε,ξ and B are both solutions to the second order differential equation

(2.73) 

  From (3.1), (3.2),(3.19),(3.23), (3.39),(3.40), and (3.44), we obtain the existence of two polynomials p 1 (ε 2 , t) and q 1 (ε 2 , t) in the variables ε 2 and t such that

[START_REF] Alabau-Boussouira | A hierarchic multi-level energy method for the control of bidiagonal and mixed n-coupled cascade systems of PDE's by a reduced number of controls[END_REF] 

, together with (3.41) and (3.43), implies that (3.32) holds. (In fact, f 1 is defined by

(3.44) 

precisely in order to have

(3.32)

.)

  3.53) does not depend on f 2 and f 3 (it depends on f 1 , however f 1 is already defined in (3.44)), and f 2 is indeed well defined by(3.53). This definition of f 2 , together with (3.of two polynomials p 2 (ε 2 , t) and q 2 (ε 2 , t) in the variables ε 2 and t such that

	48) and (3.52), implies
	(3.33). From (3.1), (3.2), (3.20), (3.39), (3.40), (3.41), (3.45), (3.46), (3.49), and (3.53), we
	obtain the existence

  2 λ λM zzzz .

	From (3.1), (3.2), (3.26), (3.28), (3.30), (3.31), (3.32), (3.33), (3.34), (3.36), (3.37), (3.45),
	(3.46), (3.49), (3.50), (3.54), (3.56), (3.61), (3.65), (3.66), and (3.67), one gets the existence
	of
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and let K be as in Lemma 10. Let k ∈ N and let p ∈ [2, +∞). Then, for every f = (f 1 , f 2 , f 3 ) tr ∈ L p (Q) 3 such that ρ η -1/2 f ∈ L p (Q) 3 and for every (α 0 , β 0 , γ 0 ) tr ∈ W 1,p 0 (Ω) 3 ∩ W 2,p (Ω) 3 , there exists u = (u 1 , u 2 , u 3 ) ∈ L 2 (Q) 3 satisfying e Kη 2 2(t 2 -t) ϑu ∈ L 2 ((t 1 , t 2 ), H 2k (Ω) 3 ) ∩ H k ((t 1 , t 2 ), L 2 (Ω) 3 ), (A.6) such that the solution ŷ := (α, β, γ) tr of (A.7)

Proof of Proposition 11. We adapt the proof of [START_REF] Coron | Local null controllability of the three-dimensional Navier-Stokes system with a distributed control having two vanishing components[END_REF]Proposition 4] to our situation. Modifying if necessary f , we may assume without loss of generality that (A.9) (α 0 , β 0 , γ 0 ) tr = 0.

Let us define a linear operator S :

We define a closed linear unbounded operator S :

For m ∈ N \ {0}, we set

is a scalar product on X m . From now on X m is equipped with this scalar product. Then X m is an Hilbert space. For m ∈ Z ∩ (-∞, 0), let

where X -m denotes the dual space of X -m . We choose the pivot space L 2 (Q) 3 = X 0 . In particular (A. [START_REF] Coron | Control and nonlinearity[END_REF]) is an equality for m = 0. For every (k, l) ∈ Z 2 such that k l, one has (A.17)

However, even with Ω only of class C 2 , by classical results on the interior regularity of parabolic systems, for every m ∈ N, for every open subset Ω 0 such that Ω 0 ⊂ Ω, and for every z ∈ X m ,

(Note that this property is not known to hold for the linearized Navier-Stokes equations considered in [START_REF] Coron | Local null controllability of the three-dimensional Navier-Stokes system with a distributed control having two vanishing components[END_REF] for Ω only of class C 2 ; this is why Ω is assumed to be of class C ∞ in [START_REF] Coron | Local null controllability of the three-dimensional Navier-Stokes system with a distributed control having two vanishing components[END_REF].) For m ∈ N, one can define S * as an operator from X -m into X -m-1 by setting, for every z 1 ∈ X -m-1 and for every z 2 ∈ X m+1 ,

(One easily checks that this definition is consistent: it gives the same image if z 1 is also in X -m for some m ∈ N). This implies in particular that, for every z 1 ∈ L 2 (Q) 3 and for every z 2 ∈ X m , one has, for every 0 j l,

Let q be the following bilinear form defined on H 0 :

(This is the analogue of the bilinear form denoted by a in [START_REF] Coron | Local null controllability of the three-dimensional Navier-Stokes system with a distributed control having two vanishing components[END_REF].) From (A.4), we deduce that q is a scalar product on H 0 . Let H be the completion of H 0 for this scalar product. Note that, still from (A.4) and also from the definition of H, H is a subspace of L 2 loc ((t 1 , t 2 ), H 1 0 (Ω) 3 ) and, for every z ∈ H, one has (A.22), (A.23), and

As in [START_REF] Coron | Local null controllability of the three-dimensional Navier-Stokes system with a distributed control having two vanishing components[END_REF], using the Riesz representation theorem together with (A.25), one gets that there exists a unique ẑ ∈ H (A. [START_REF] González | Controllability results for some nonlinear coupled parabolic systems by one control force[END_REF] verifying, for every w ∈ H,

We then set

We want to gain regularity on ỹ by accepting to have a weaker exponential decay rate for ỹ when t is close to t 2 (in the spirit of [24, Theorem 2.4, Chapter 1] and [START_REF] Barbu | Local controllability of the phase field system[END_REF]). Let ψ ∈ C ∞ ([t 1 , t 2 ]) and y ∈ X -1 . One can define ψy ∈ X -1 in the following way. Since S * : X 0 → X -1 is onto, there exists h ∈ X 0 such that S * h = y. We define ψy by

This definition is compatible with the usual definition of ψy if y ∈ X 0 . We can then define by induction on m ψy ∈ X -m for ψ ∈ C ∞ ([t 1 , t 2 ]) and y ∈ X -m in the same way. Using (A.29), this allows us to define

From (A.27), (A.28), (A.29), and (A.31), one gets

Let K ∈ (0, K) and ρ1 := e -K/(t 2 -t) . (A.33) Using (A.28), (A.29), and (A.32), one has

We want to deduce from (A.34) some information on the regularity of ỹ. This can be achieved thanks to the following lemma, the proof of which is similar to the proof of [START_REF] Coron | Local null controllability of the three-dimensional Navier-Stokes system with a distributed control having two vanishing components[END_REF]Lemma 4].

From (A.31), (A.34), and Lemma 12, one gets that

Using an easy induction argument together with Lemma 12 (and the fact that one can choose K < K arbitrarily close to K), we deduce that, for every K ∈ (0, K), √ ρ 1 / ρ1 ỹ ∈ X 0 . Let us now focus on u. Let us define (A.35) v := ρ 1 ẑ.

Using (A.25), one gets that

Using (A.26) together with regularity results for S applied on ρ-1 3 and, as above for the proof of (A.36), a bootstrap argument (together with the fact that one can choose K ∈ (0, K) arbitrarily close to K), one obtains that ρ-1 

From (A.32), (A.40), and (A.37), we deduce (by looking at the parabolic system verified by (1/ ρ1 )ŷ and using usual regularity results for linear parabolic systems) that

which, together with (A.32), concludes the proof of Proposition 11.

To end the proof of Proposition 9, we are going to apply the following inverse mapping theorem (see [5, Chapter 2, Section 2.3]).

Proposition 13 Let E and F be two Banach spaces. Let F : E → F be of class C 1 in a neighborhood of 0. Let us assume that the operator F (0) ∈ L(E, F ) is onto. Then there exist η > 0 and C > 0 such that for every g ∈ F verifying |g -F(0)| < η, there exists e ∈ E such that (i) F(e) = g,

We now use the same technique as in [START_REF] Fursikov | Controllability of evolution equations[END_REF]Theorem 4.2]. For y := (α, β, γ) tr ∈ D (Q) 3 and for

Let η ∈ (0, 1) and let K = K(η) > 0 be as in Lemma 10. We apply Proposition 13 with E and F defined in the following way. Let E be the space of the functions 3 , equipped with the following norm which makes it a Banach space:

Let F be the space of the functions (h,

equipped with the following norm which makes it a Banach space:

We define

One easily sees that F is of class

From now on, we assume p > 2 and η ∈ (0, 1) are chosen so that (A.47) holds. Note that the second inequality of (A.47) implies that (A.5) holds. Let us assume for the moment that the following proposition holds.

Proposition 14 One has

Then the assumptions of Proposition 13 hold. Since Proposition 9 follows from the conclusion of Proposition 13 by taking û = 0 in (0, t 1 ) × Ω, this concludes the proof of Proposition 9.

It only remains to prove Proposition 14. Let f = (f 1 , f 2 , f 3 ) tr and y 0 = (α 0 , β 0 , γ 0 ) tr be such that (f, y 0 ) ∈ F . Let us choose k large enough so that (A.49)

Using Proposition 11, we get the existence of u = (u 1 , u 2 , u 3 ) ∈ L 2 (Q) 3 satisfying (A.6) such that the solution ŷ := (α, β, γ) tr of (A. 

From (4.25), (4.26), (4.27) (4.28), (A.6), (A.8), (A.49), (A.50), and (A.52), we get that (y, u) ∈ E. Then, from (4.24), (A.7), (A.50), (A.51), and (A.52), we get that F (0, 0)(y, u) = (y 0 , f ). This concludes the proof of Proposition 14 and therefore also the proof of Proposition 9.

Remark 15 1. Instead of proceeding as in [START_REF] Coron | Local null controllability of the three-dimensional Navier-Stokes system with a distributed control having two vanishing components[END_REF] in order to prove Proposition 9, one can also proceed as in [START_REF] Coron | Null controllability of a parabolic system with a cubic coupling term[END_REF]. For that, an important step is to prove that small (in a suitable sense) perturbations of the linear control system (4.17) are controllable by means of bounded controls (see [START_REF] Coron | Null controllability of a parabolic system with a cubic coupling term[END_REF]Section 3.1.2]. This controllability property follows from [START_REF] González | Controllability results for cascade systems of m coupled parabolic PDEs by one control force[END_REF]Theorem 4.1] and one can also get it by following [18, Section 3.1.2] or [START_REF] Duprez | Indirect controllability of some linear parabolic systems of m equations with m-1 controls involving coupling terms of zero or rst order[END_REF]. 2. Let us emphasize that the algebraic solvability of (4.24) leads to a loss of derivatives. This problem is managed in our situation thanks to hypoelliptic properties of parabolic equations. These properties do not hold, for example, for hyperbolic equations. However, for these last equations, the loss of derivatives problem can be solved thanks to a Nash-Moser inverse mapping theorem due to Gromov [27, Section 2.3.2, Main Theorem]. See [START_REF] Alabau-Boussouira | Internal controllability of first order quasilinear hyperbolic systems with a reduced number of controls[END_REF] for the first use of this inverse mapping theorem in the context of control of partial differential equations.