N
N

N

HAL

open science

Actively Secure 1-out-of-N OT Extension with
Application to Private Set Intersection

Michele Orru, Emmanuela Orsini, Peter Scholl

» To cite this version:

Michele Orru, Emmanuela Orsini, Peter Scholl. Actively Secure 1-out-of-N OT Extension with Appli-
cation to Private Set Intersection. CT-RSA 2017 - RSA Conference Cryptographers’ Track, Feb 2017,

San Francisco, United States. pp.381-396, 10.1007/978-3-319-52153-4_22 . hal-01401005

HAL Id: hal-01401005
https://hal.science/hal-01401005
Submitted on 18 Dec 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-01401005
https://hal.archives-ouvertes.fr

Actively Secure 1-out-of-IN OT Extension with Application to
Private Set Intersection *

Michele Orrti' T, Emmanuela Orsini?, and Peter Scholl?

1 CNRS, ENS Paris, France
michele.orru@ens.fr
2 Department of Computer Science, University of Bristol
{Emmanuela.Orsini, Peter.Scholl}@bristol.ac.uk

Abstract. This paper describes a 1-out-of-N oblivious transfer (OT) extension protocol with active
security, which achieves very low overhead on top of the passively secure protocol of Kolesnikov and
Kumaresan (Crypto 2011). Our protocol obtains active security using a consistency check which requires
only simple computation and has a communication overhead that is independent of the total number of
OTs to be produced. We prove its security in both the random oracle model and the standard model,
assuming a variant of correlation robustness. We describe an implementation, which demonstrates our
protocol only costs around 5-30% more than the passively secure protocol.

Random 1-out-of-N OT is a key building block in recent, very efficient, passively secure private set
intersection (PSI) protocols. Our random OT extension protocol has the interesting feature that it
even works when N is exponentially large in the security parameter, provided that the sender only
needs to obtain polynomially many outputs. We show that this can be directly applied to improve the
performance of PSI, allowing the core private equality test and private set inclusion subprotocols to be
carried out using just a single OT each. This leads to a reduction in communication of up to 3 times
for the main component of PSI.

Keywords: Oblivious transfer; private set intersection; multi-party computation

*This is the full version of a paper published at CT-RSA 2017. The final publication is available at
http://link.springer.com.
"Work done while visiting University of Bristol

http://link.springer.com

Table of Contents

Actively Secure 1-out-of-N OT Extension with Application to Private Set Intersection 1
Michele Orru, Emmanuela Orsini, and Peter Scholl
1T Introduction e 3
1.1 ContribUtiOnsottt e e 3
2 Preliminariest 5
2.1 Passively Secure OT Extension: the KK Protocol 6
3 Actively Secure Random 1-out-of-N OT Extension 7
4 Security in the Standard Model 15
4.1 Parameter choices for code-correlation robustness 19
5 Application to Private Set Intersection i 20
5.1 Private Set Inclusion 20
6 Implementation 21
A Correlation Robust Function. i e 26
B Instantiating the Binary Linear Code i 26

1 Introduction

Oblivious transfer (OT) is a fundamental primitive in cryptography, first introduced by Rabin [Rab81]
and now employed in a variety of protocols, ranging from contract signing [EGLS85] to special-
purpose tasks such as private set intersection [PSZ14]. It plays a decisive role in protocols for secure
two-party and multi-party computation, including those based on Yao’s garbled circuits [Yao82]
and secret-sharing [NNOB12,L.OS14,KOS16]. The most commonly studied form of oblivious trans-
fer is 1-out-of-2 OT, where a sender has two messages (zg, 1) as input, and a receiver chooses a
bit b; the goal of the protocol is for the receiver to learn xj, but no information on z1_j, whilst the
sender learns nothing about b. This can be generalized to 1-out-of-N OT and k-out-of-N OT, in
which the receiver learns k of the sender’s N messages.

Unfortunately, due to a result of Impagliazzo and Rudich [IR89], oblivious transfer is highly
unlikely to be possible without the use of public-key cryptography; consequently, even the most
efficient oblivious transfer constructions [PVW08,CO15] come with a relatively high cost.

OT Extensions. In 1996, Beaver [Bea96] first showed that it is possible to extend OT starting with
a small number (say, security parameter k) of “base” OTs, to create poly(x) additional OTs using
only symmetric primitives, with computational security . This construction is very impractical as
it requires the evaluation of pseudorandom generators within Yao’s garbled circuits.

Later, in 2003, Ishai et al. [IKNPO03] proposed a protocol for extending oblivious transfers: the
passively secure version of this protocol (hereafter IKNP) only requires black-box use of a correlation
robust hash function, and is very efficient. Concretely, an optimized version of IKNP for OT on
random strings (described in [ALSZ13,KK13]) requires sending x bits and computing three hash
function evaluations per OT, after a one-time cost of x base OTs, for computational security .
With a carefully optimized implementation, the dominant cost of this is communication [ALSZ16].

Kolesnikov and Kumaresan [KK13] showed how to modify the IKNP protocol using Walsh-
Hadamard error-correcting codes and obtain a passively secure protocol for l-out-of-N OT on
random strings. The cost is only a small constant factor more than the 1-out-of-2 IKNP for values
of N up 256.

Several recent works have proposed increasingly efficient protocols for 1-out-of-2 OT extension
with active security [NNOB12,ALSZ15,KOS15]. The latter work of Keller et al. [KOS15], which
is proven secure in the random oracle model, brings the cost of actively secure 1-out-of-2 OT to
essentially the same as the passive IKNP protocol by adding a simple consistency check.

1.1 Contributions

Actively Secure 1-out-of-N OT Extension. Our main contribution is a practical, actively
secure l-out-of-N OT extension protocol with very low overhead on top of the passively secure
protocol of Kolesnikov and Kumaresan [KK13]. For the case of random OT, where the sender’s
strings are sampled at random, our protocol (proven secure in the random oracle model) improves
upon [KK13] by allowing for much larger values of N with a suitable choice of binary linear code.
Our protocol even works when N is exponential in the security parameter, provided that the sender
is only required to learn polynomially many output strings. The protocol requires only x base OTs,
and the extension phase has an amortized communication cost of O(k) bits per random OT.

At a high level, our protocol starts with the passively secure [KK13] protocol and adds a simple
consistency check to obtain active security (similar to [KOS15] for 1-out-of-2 OT). However, there

are several technical challenges to solve on the way. In [KOS15], a check is used to verify that pairs
of strings are of the form (x;,x; + b) for a fixed correlation b (with addition modulo 2), when the
receiver only knows one string from each pair. In the [KK13] protocol, however, we must ensure that
strings are of the form x; +b® C(m;), where C encodes a message m; using an error-correcting code
and © denotes the component-wise product of bit vectors. The check of [KOS15] cannot be applied
to this situation. We overcome this by adapting a check used previously in additively homomorphic
UC commitments [FJNT16], which requires that C is a linear code with sufficiently large minimum
distance. ! The number of codewords in the binary linear code determines NN in the 1-out-of-N OT,
which gives a range of choices of N depending on the choice of code.

To be able to handle exponentially large N, it may seem that we just need to choose a suitable
binary linear code of the right length. However, we need to take care that the security reduction
does not contain any loss in security that scales with N: the reduction in [KK13] incurs a loss in
O(N?), which would give a meaningless security result in this case. To ensure this, we modify the
1-out-of-N random OT functionality so that the sender can only obtain N’ = poly(k) of the output
messages, and show that the loss in the resulting reduction is in O(N’).

Security in the Standard Model. For random OT extension, it is not known how to prove
security without using a programmable random oracle as in [ALSZ13] and [KOS15]. However,
for the case of non-random 1-out-of-N OT, we prove our protocol secure in the standard model,
assuming a hash function that satisfies a variant of correlation robustness on high min-entropy
secrets. This is a similar assumption to the protocol in [ALSZ15], but more general as we require
the assumption to hold for a range of different parameters. This gives the first actively secure OT
extension protocol needing only s base OTs for security parameter x and is proven secure without
random oracles, even in the 1-out-of-2 case. 2

Faster Private Set Intersection. We show that random 1-out-of-N OT with an exponentially
large N can be directly applied to improve the efficiency of the previous fastest (semi-honest)
private set intersection protocols. OT-based PSI protocols [PSZ14,PSSZ15] use random 1-out-of-INV
OT as a building block for a private equality test protocol, where two parties learn whether their
inputs are equal (and nothing more). In that protocol, one random OT is used to perform an
equality test on log N-bit inputs. Since the random OT protocol of [KK13] only works for values
of N up to 256 (due to the use of small Walsh-Hadamard codes) several OTs are XORed together
to construct a protocol for comparing large (e.g. up to 128 bit) messages. Using our protocol with
N = 2F gives a very simple private equality test on k-bit messages, for any k = poly(x), using just
a single 1-out-of-N random OT. This can be generalized to perform private set inclusion — where
one party holds a single value and another party a set of m values — at the cost of one random OT
and sending m - s bits, where s is the statistical security parameter. This results in a reduction in
communication of around 2-5 times (depending on the bit-length of the input) for this component
of the semi-honest PSI protocol in [PSSZ15].

We observe an interesting connection between our protocol and additively homomorphic UC commitment
schemes [FJNT16,CDD"16]: our protocol essentially runs a homomorphic commitment protocol and hashes the
resulting commitments to obtain random OTs. However, this mechanism seems very specific to the workings of these
commitment schemes and appears unlikely to lead to a generic transformation.

2Note that our security reduction requires fixing the adversary’s random coins, so is non-uniform. Obtaining a
uniform reduction seems to need at least x + s base OTs, for statistical security parameter s.

Implementation. We have implemented and benchmarked our l-out-of-N random OT exten-
sion protocol and compared its performance with the passive protocol of [KK13]. Although our
implementation is not heavily optimized (it occupies around 800 lines of C in all), we show that
the overhead of our consistency check for achieving active security is very low: the actively secure
protocol takes only around 20% more time than the passive version, depending on parameters.

Towards Efficient Actively Secure PSI. Currently, the most efficient PSI protocols are the
OT-based ones mentioned above, but these are only secure against a passive adversary. Since
l-out-of-N random OT is a key component in these protocols, our work can be seen as a step
towards constructing more efficient PSI with active security. Actively secure PSI was recently
studied by Lambaek [Laml6], who showed the protocol of [PSSZ15] can be modified to provide
active security for one party, assuming the underlying OT protocol is actively secure; our protocol
therefore provides an instantiation of this proposal.

Recent Work and Open Problems. In a very recent, independent work, Kolesnikov et al. [KKRT16]
describe a batched oblivious PRF evaluation protocol with application to private set intersection.
Although their protocol is phrased in the language of oblivious PRFs rather than 1-out-of-V OT,
it is very similar to ours, only with passive security. Instead of using a traditional error-correcting
code, they show that a random oracle has the necessary properties for passive security. In contrast,
our protocol requires the linearity and erasure decoding properties of the binary code to achieve
active security. They describe the same application to improved performance of PSI (with slightly
better parameters than ours due to use of a random oracle) and give a thorough efficiency evalua-
tion and implementation of the resulting PSI protocol. We note that it is still an interesting open
problem to obtain a fully actively secure variant of the PSI protocol in [PSSZ15] with low overhead.

Regarding OT extension in general, there are still some interesting unsolved problems. Our 1-
out-of-N OT extension cannot be used directly to improve performance of 1-out-of-2 OT on short
secrets (as was done for the passive case in [KK13]), since the standard reduction from 1-out-of-INV
to 1l-out-of-2 OT [NP99] is only passively secure. Therefore, it is still an open problem to construct
a practical 1-out-of-2 OT extension on short strings with communication sublinear in the security
parameter. Also, the case of constructing k-out-of-N OT with active security using OT extensions
is still open; there is an elegant passively secure protocol [SSRO8], but it seems difficult to make
this actively secure.

2 Preliminaries

Notation. We denote by x and s the computational, resp. statistical, security parameters. We use
bold lower case letters for vectors. Given a matrix A, we let a; denote the i-th row of A, and a’
denote the j-th column of A. When referring to a vector v € F”, we write v[i], with 1 <i <mn, to
mean the i-th component of v. We identify bit strings as vectors over the finite field Fo, and use
“+” and “” to mean addition and multiplication in this field. We use the notation a ® b to denote
the component-wise product of vectors a,b € Fy. Given an integer N, we denote by [N] the set of
integers {1,...,N}.

Error-correcting Codes. Our protocol uses an [n¢, k¢, dc| binary linear code C, where n, is the
length, k- the dimension and d, the distance of C. So, ¢ : F gf — F5¢ is a linear map such that
for every pair of messages my, mo € F’;C, the Hamming weight of the sum of the encodings of the
messages satisfies wty(C(my) + C(my)) > d..

Oblivious Transfer Functionalities. We now recall some definitions of oblivious transfer. Fol-
lowing Even et al. [EGL85], 1-out-of-2 OT is a two-party protocol between a sender Pg, who inputs
two messages vg, v1, and a receiver Pr who inputs a choice bit ¢ and learns as output v. and nothing
about v1_., in such a way that Pg remains oblivious as what message was received by Pgr. Formally,
the general case of 1-out-of-N OT on k-bit strings is defined as the functionality:

fN-OT((v07 o 7VN—1)7C) - (J~7VC)7

where x; € {0,1}" are the sender’s inputs and ¢ € {0,..., N —1} is the receiver’s input. We denote
by Fy o7 the functionality that runs Fy_ot m times on messages in {0, 1}"*. For example, in 7o,
Pg inputs (v;0,v;1) and Pg inputs ¢; for ¢ € [m], and Pg receives the output v;,.

Another important variant is the random OT functionality]-"]'f,’_rgo.r, in which the sender provides
no input, but receives random messages (v, ..., vy—_1) from the functionality as output.

2.1 Passively Secure OT Extension: the KK Protocol

We now recall the passively secure KK protocol for 1-out-of-N OT extension described in [KK13],
which is a generalized version of the IKNP protocol for 1-out-of-2 OT [IKNPO03].

Suppose the two parties wish to perform m sets of l-out-of-N random OTs, where N is a
power of two. There is a sender Pg with no input, and a receiver Pr, who inputs the choices
Wi,y ..y Wy € {0,..., N — 1}, which are represented as vectors w; € IFIQOgN. The two parties begin
by performing n. base 1-out-of-2 OTs on random inputs, with the roles of sender and receiver

reversed. So, Pr obtains n, pairs of random strings (r),r]) of length x and Ps obtains (bj,rij),
where b; & {0,1}, for j € [nc].

Next, both parties locally extend their base OT outputs to length m using a pseudorandom
generator, where m is the final number of OTs desired. This results in x sets of 1l-out-of-2 OTs

on m-bit strings, which we represent as matrices Ty, T € F5'*"¢, held by Pg, whilst Pg holds the
vector b = (by,...,b,.) € F5¢ and the matrix

Ty, o= (t), - ¢) € By,

where té, t{ are the columns of Ty, Ty, for j € [nc].

At this point Pr constructs a matrix C' € Fy"*"¢, where each row c; is the encoding ¢(w;) of
the input w; € IE"Q“C , where C is a binary code of length n., dimension k. = log, N and minimum
distance d. > k. Then Py sends to Pg the matrix

U=To+T, +C.

Note that for each column of U, all information on the receiver’s encoded input is masked by the
value tjl_b]_, which is unknown to Pg.

After this step Pg defines an m x n, matrix QQ with columns ¢’ = b; - u + tij =b; - ¢/ + t%
(where ¢/ are the columns of C'). Notice that the rows of @ are given by

qi:Cin—f—ti,

where t; are the rows of Tj. Here, Pg holds t; and Pg holds (q;, b), for ¢ € [m]. The key observation
to turn these values into OTs is that for each of the possible receiver choices w € ka, Pg can

compute the value q; + C(w) ® b. If w = w; then this is equal to t; so is known to Pr. Otherwise,
for any w # w;, Pr must guess x bits of Pg’s secret b to be able to compute q; + C(w)©®b, since the
minimum distance of ¢ guarantees that ¢(w) and C(w;) are at least Hamming distance x apart.

Therefore, the parties can convert these values to random 1-out-of-N OTs by simply hashing
their outputs with a random oracle, H. Pg outputs the values vy, ; = H(i,q; + C(w) ® b), for all
w e IFSC, and Pg outputs vy, ; = H(7, t;).

Instantiating the Code. As noticed in [KK13], if we instantiate the binary linear code ¢ with the
[k, 1, k] binary repetition code, we obtain the 1l-out-of-2 IKNP protocol [IKNPO03]. In this case,
each row of the matrix C' constructed by the receiver is either 0" or 1*, depending on the receiver’s
choice bits. If instead C is chosen to be a Walsh-Hadamard code as in [KK13], then the result is a
l-out-of-2%¢ OT. This needs a code length of N = 2*¢ with security parameter N/2; this turns out
to be more efficient than constructing 1-out-of-N OT from 1-out-of-2 OT for values of N < 256
with 128-bit security.

Security. The KK protocol (and hence IKNP) is actively secure against a corrupt sender, since
after the base OTs, there is no opportunity for Pg to cheat. However, it only provides passive
security against a corrupt receiver, since Pr may incorrect compute the encodings of their input in
the matrix U. It was explained in [IKNP03,ALSZ15] that if Pr cheats in this way, and also learns
(via a side-channel, for instance) the sender’s outputs in just x of the random OTs then Pr can
compute the sender’s secret b, and thus learn all of the sender’s outputs in every remaining OT.

3 Actively Secure Random 1-out-of-IN OT Extension

In this section we present our actively secure OT extension protocol in the random oracle model.
Since we want to construct l-out-of-N random OT when N may be exponential in the security
parameter, our protocol implements a modified random OT functionality Fn_rots+ (Fig. 1), which
allows the sender to query the functionality to obtain their random OT outputs one at a time, so
that all N need not be produced.

Functionality Fy Ror,
Upon receiving (ROT) from Pg and (ROT, (w1, ..., wm)), where Vi € [m],0 < w; < N, from Pg, do the following:
- Sample v;; & F5 for each j € {0,...,N — 1} and i € [m)].

- Send the outputs v, ; to Pr for each i € [m)]
- Upon receiving (SenderOutput, j, i) from Pg, where ¢ € [m] and j € {0,..., N — 1}, send v;; to Ps.

Fig. 1: Ideal functionality Fn_ro1s for m l-out-of-(< N) random OTs on k-bit strings between a
sender Pg and receiver Pr

The high-level idea of our protocol (Fig. 2) is that, to deal with a malicious receiver in the
KK protocol, we add a consistency check that ensures Pr inputs codewords as rows of the matrix
C when sending the matrix U in step 3. If the check passes then the protocol carries on and the
correlated OTs are hashed to obtain random OTs. Otherwise, the protocol aborts.

Protocol N-ROT™™

CoMMON INPUT: k and s are the computational and statistical security parameters, respectively; C is an
[ne, ke, dc] binary linear code such that kc = log, N and d¢ > k.

INPUT OF Pgr: m selection integers (w1, ..., wm), each in {0, ..., N —1}, encoded as bit strings w1,...,wn, € IF’;C.
INPUT OF Ps: m subsets S; C F5¢, with |S;| = poly(k), for i € [m].

REQUIRE: H: [m] xF3¢ — F5 is a random oracle and PRG : {0,1}" — {0, 1}ml, m’ = m+ s, is a pseudorandom
generator.

Init: Both parties call F,°J¢, with Pr playing the role of the sender and Ps playing the role of the receiver,

inputing n, random bits. Pg receives {(b;, rjb'j)}je[nd € Fa x F5 and Pr receives {(r),17)}jen-
Extend: Let m' =m+s. o
1. Pg constructs matrices Tp, 71 € Fo™ *"¢ from seeds {(r},r])} so that the respective columns are:
t) = PRG(r)) € F3"',] =PRG(r]) € F5", j € [n.
In the same way Pg produces tij7 for each j € [n¢]. Summarizing, Pr holds {(t?, t{)}je[nc] and Pg holds
{t3, Yicme

2. Pr samples random w, ¢ & Fg‘f, for £ € [s], and then constructs a matrix C' € IFQ’”/X"C such that each
row c¢; is the codeword C(w;). Then, Pgr sends to Pg the values

W=ty +c, jend, (1)
where ¢’ is the j-th column of C.
3. Pg receives v’ € F5' and computes

q =b;-u’ +t] =b; ¢+t (2)

that form the columns of an (m’ x n.) matrix Q. Denoting the rows of Tp, Q by t;,q;, Pr now holds
c;,t; and Pg holds b, q; so that
a;i=c¢;, ®©b+t;.

4. Consistency check:
- Pg samples s random strings {(xﬁ“, . ,mgﬁ)) € F3"}rels) and sends them to Pr.
- Pgr computes and sends, for £ € [s]:

t = Z t; - CUEE) + tmte, w = Z Wi - CE,(Z) + Winpe
i€[m] i€[m]

- Ps computes q([) = Zie[m] q; - :CEZ) ~+ Qm+e¢, and checks that:
tO 4+ q¥ =cw?ob, Viels. (3)

If the check fails, Ps sends Abort, otherwise continue.
Output: Ps sets Vi € [m] and w € S;: vy ; = H(4,q; + C(w) © b) and Pr sets Vi € [m]: v, = H(Z, t;).

Fig. 2: An actively secure protocol for Fy'rot ., extending Foos

We begin by running the KK protocol to create m’ = m + s OTs, where s is the statistical
security parameter, in steps 1-3. Recall from the previous section that after running KK, the
receiver holds vectors t;, ¢; and the sender holds b = (b1, ...,b.) € F§ and q; such that

qi:ti—i-ci@b, iE[ml].
If PR is honest then ¢; = C(w;), where w; € FSC represents the i-th choice of Pg.

To verify this, Pg samples s random m-bit strings (l’gz), . ,a:%)) € F, for £ € [s], and sends
these to PR, who then computes for each ¢ the linear combinations

t) = Z t; 961@) +tmpe, W = Z Wi SUZ('E) + Winte
i€m] i€[m]

and sends these to Pg. Note that adding the random, dummy OT values t,,1, and w,, 1y ensures
that the inputs of Pr are perfectly masked in this step.

Next, Pg computes q(¥) = Zie[m} qi - xz(z) + s and checks that) =t 4+ c(w®) © b for
each ¢ € [s]. If the check goes through, both parties hash their outputs to obtain the random OTs.

The intuition behind security is that if not all the Pr’s inputs ¢; are codewords then to pass the
(0
i

values used in the consistency check are unknown when Py chooses c¢; so this can only happen with

check, the errors must ‘cancel out’ when taking the random linear combinations. However, the z

negligible probability; since each xz@) € {0, 1}, there is a 1/2 probability that c; is not included in
the linear combination, so s sets of checks are needed to ensure a negligible cheating probability.

Compared with the consistency check of [KOS15] (for the 1-out-of-2 case), our check is simpler
as we only require XOR operations instead of multiplications in the finite field Fa<. However, being
over [Fy means that we must repeat the check s times, whereas [KOS15] only needs one check; in
our case, working in Fa= would not allow the linear encoding relation to be verified, which is why
we use .

We observe that our protocol, minus the final hashing step, is essentially the same as the addi-
tively homomorphic commitment protocol from [FJNT16] (which inspired our consistency check).
Although our security proof requires quite some extra work to implement OT instead of commit-
ments, it is interesting to see how the same construction can lead to two very different applications
with just a small modification. More recently, another scheme [CDD16] improved upon [FJNT16]
by using a linear-time computable consistency check based on a special class of universal hash
functions, and constructing a linear-time encodable error-correcting code. These changes can also
be applied to our protocol, but it is not clear how efficient these would be in practice, and since we
aim for practical (rather than asymptotic) efficiency we do not present this here.

Theorem 1. Assuming that H is a random oracle and PRG a pseudo-random generator, the pro-
tocol N-ROT™™ in Fig. 2 securely implements f]'?/fgoﬂ (Fig. 1) in the Fo.or1-hybrid model with
computational security parameter k and statistical security parameter s against a static malicious
adversary.

The case of a corrupt sender is straightforward and reduces to the security of PRG, similar to
previous works [ALSZ16,KOS15]. For a corrupt receiver, the first main challenge is for the simulator
to extract the receiver’s inputs, w;, to send to the functionality Fy_roTs. This is done by using
the values sent during the check to identify a set of positions where the receiver has attempted to
‘guess’ some bits of the sender’s secret, b. Removing these positions from the c; values used by Pgr
leaves behind an incomplete codeword, which can be erasure decoded to recover the message.

After decoding the inputs, the simulator must then respond to random oracle queries made
by the environment. We do this in an optimistic manner, meaning, we do not abort if conflicting
queries are made, but answer at random in that case; the environment may not always notice this
inaccurate behaviour if the sender did not learn all N outputs from the OTs. This allows us to
obtain a security bound that depends on N’, the mazimum number of outputs learnt by Pg in any
OT, rather than N, which may be exponential in .

Proof. First of all we show that the consistency check will always pass in case of honest parties.
Upon receiving t® and w®), Ve e [s], from Ppg, the sender Pg computes

:(Z ti ’ ng) + tm—‘r(Z q; - + Qm—i-Z)

i€[m] 1€[m]
=St 2l Ftret Y (i ODb4t) 2l e O b+ b
i€[m] i€[m]
=Y (cob) -2l temeob=Y (c(wi) ©b) - 2i” + C(Winie) ©b
i€[m] i€[m]
:< 3 cwi) -2l + C(me)) ob= Y (wi 2 G Wi G) ®b
i€[m) i€[m]
=3 (el + W) G) b = clw®) b,
1€[m)]

where G is the generator matrix of the code C in standard form.

Now we prove the security starting with the case of a corrupt sender P;. We describe a simula-
tor, S, that interacts with the functionality Fx_roTs, such that no environment Z can distinguish
between an interaction with § and Fy_roTe and an interaction with P; and the protocol N-ROT.
After describing the simulator we then argue indistinguishability of the real and ideal worlds.

Simulation for corrupt sender Pg:

- S runs Init honestly, receiving bj € Fy for j € [nc] from PS It runs an internal copy of Frdt,
sending random values rbj, j € [ng], to Ps-

- In the Extend phase, S computes ti], using the internal values (rgj), j € [n¢]. Then it samples
uniformly random u/, j € [n.], sends these values to P;, and also compute ¢ as Pg would.

- In the consistency check step, S receives z¥) € Fo™, £ € [s], from Pg, then computes q) as
P; would, and samples random w(®) € Fgf . It computes t© = ¢ (W(Z)) ® b+ q and sends
(t©, wO) for ¢ € [s].

- In the Output step, output whatever P; outputs and halt.

Now we argue indistinguishability. The values rij obtained by Pg are identically distributed in

the ideal and real processes because they are uniformly random in both cases. The real world u’
values are computationally indistinguishable from the simulated random values, since each t]1—bj

is a fresh output of PRG that is independent of the view of Z, so hides the receiver’s input c¢’.
During the check P; receives t(, ... t(®) and w), ... w() The real world random values W4t

act as a one-time pad to perfectly hide Zie[m] w; - x; , V0 € [s], and the simulated t@ values
are constructed so that the check always passes, so these values are identically distributed in both
worlds.

. . . . *
Now we describe a simulator S in the case of a corrupt receiver Pp,.

. . . *
Simulation for corrupt receiver Ppy:

H’VLC

- & runs Init honestly, it emulates Fgyt and forwards (ro,rl) J € [n¢] to PE.

10

- During the Extend phase S receives the values u/ for j € [n.] from P*R. Using the internal
values t, t], the simulator reconstructs the matrices C' and Q.
In the check step, S samples random 2™, ..., 2 and sends these values to P;{, then receives

back tg) and w() and runs the consistency check. If the check fails then send Abort to the
functionality and halt.
- If the check passes, then for each row c; of C'; § decodes a message w; € F’;C (as described in
Proposition 2).
Then the simulator answers the random oracle queries:
- If the query is H(4,q; + C(w;) ® b), send (SenderOutput, w;, i) to Fn_roT+ and receive back
Vu,,i- Return vy, ;.
- Otherwise, return a random value from F5, consistent with previous queries.

Note that the simulation of the random oracle queries is optimistic, as it does not abort when
queried on two conflicting inputs (e.g. corresponding to two different choices w; and w}). This is
needed to ensure the security bound does not depend on N, and we shall return to this later.

Now we describe how S defines the corrupt P;’s inputs which are sent to Fny_roTs, and prove
indistinguishability. The Init step is perfectly simulated.

Let PassCheck denote the event that the consistency check passes for a cheating PE. Since
the simulator performs the consistency check in exactly the same way as an honest Pg, clearly
Pr[PassCheck] is the same in both worlds. If P; behaved honestly during the check then they
should send the values

0 = 3"t + b

i€[m]
Z Wi - + Wm+te,
i€[m]
for some w; values defining their inputs. Denote the values actually sent by PE by tg) and wg).

and the differences

Now, define ch) = Zie[m] ci- () 4 e 0

0 — ¢ 4 t(Z)

(4)

0

The first value corresponds to the deviation in the value ti that PE sent in the check, compared
with what they should have sent, whilst the second corresponds to the deviation in the codeword

defined by the w,(f) value that was sent, compared with the c; values defined by the previous part

of the protocol.

Now for the consistency check, S computes C (w,(f)) and q¥, and checks that

q? +t = cw!yob, veels). (5)

Recall that c; are the actual rows of the matrix C' used by PE and that

Zqz 9 4 Qe = (Zc +Cm+g)@b+(2t :U)—l—th)

1€ [m] i€ [m]

11

Using this and the errors defined in (4), we can rewrite (5) as follows:
(@—i—t(e (ZcZ +cm+g)®b+<2t a:()—i-t)—i—tg)
i€[m] i€[m]
= ob+i0,

and combining this with (5) shows that passing the check is equivalent to PE choosing deviations
() —(0))
t "/, ¢ such that:

tY =e® o b. (6)
Now, note that if €¥)[j] = 0 for some j € [n¢] then PassCheck implies that t¢)[] = 0 also. On
the other hand, if €¥[j] = 1 then the check passes if and only if ¢)[/| = b[j]. This means that to
pass the check, PE must guess one bit of b for each deviation in €
Define the set of these deviation indices by E¢) = {j € [n¢] : € [] =1}, and let E = Ue

Also, let Sy, be the set of all possible values of b € F5¢ for which the messages sent by P durlng

the protocol will cause the check to pass. From the above, we have that for each j € F, there is

only one possibility for b[j], if b € Sp. For j ¢ E, passing the check is independent of b[j] so the

check will pass for all b[j] € {0,1}. This is summarized in the following proposition.

Proposition 1. Let E and Sy, be as above. Then if the check passes, it holds that

- For all j € E and every pair by, ba € Sp, bi[j] = ba[j].
In particular this means that, taking the probability over the sender’s random choice of b € F5¢,
Pr[PassCheck] = |S},|/2"¢ = 271, (7)

The following proposition shows how to define the inputs of P*R, which are sent to Fy_roTs-

Proposition 2. If the check passes then with probability at least 1 — 275 — 2% S can extract

values w; €]Fgf,ei e F5¢, fori € [m], such that

1. ¢; = C(w;) + €

2. e;[j] =0 forallj ¢ E.

Proof. We will use the following result on random linear combinations of codewords.

Lemma 1. Let C be a linear code of length ne, m’ = m+s be an integer and ¢; € F5¢, fori € [m/],

such that there exists at least one j € [m] with c; ¢ C. Then, if my) & Fy, we have that:

<V€ € Z C; —|— Cm+te € C) < 275,

1€[m]

Proof. Fix £ € [s]. For t < m, let E; be the event that Zz’e[t] c;- xgg) + Cmae € C. Now if c44q € C
then Fy1; occurs if and only if E} does, since C is linear. In this case, we have Pr[E; | = Pr[E}].
On the other hand, if c;11 ¢ C then there are two possible ways that E;y; may happen: firstly, if E;
occurs and xy1 = 0; secondly, if E; does not occur and x441 = 1 then Ej;1 may occur (depending
on the ¢;). So in this case, we have Pr[Eyy1] < Pr[E;] - § + (1 — Pr[E]) - 3 = 1. By the assumption
that c; ¢ C for some j, the second case must occur at least once, giving Pr[E,,] < % Since each of
the s tests are independent, the overall probability is < 27%. O

12

For extraction of PR’s inputs, note that it follows from (7) that if the check passes then |E| < d,
except with probability 27%. Assume that this holds. For a vector ¢ € F5¢, define c_g to be the
vector obtained by removing the positions j € E. Let C_g be the punctured code consisting of the
codewords {c_g : c € C}.

(fg

By definition of E, we must have ¢ (0 ()

= 0, and because c;’ = ¢ + ¢c(w;”’), we also have

(ch)), g € C-p, for every ¢ € [s]. Therefore, by applying Lemma 1 with the code C_g and vectors
(c1)—g, ..., (Ccm)—p, it holds that for every i € [m], (¢;)—g € C_E, except with probability < 27%.
Since |F| < d¢, where d¢ is the minimum distance of ¢, C_p has minimum distance at least 1,
so for each i € [m] we can decode a value w; € F5¢ such that (¢;)_p = C_g(w;). This implicitly
defines errors e; € F,,¢, which satisfy both parts of the proposition.

O

Next, we consider the random oracle queries made by the environment, Z. Whenever Z sends
a query of the form (i,q; + C(w;) ® b), S responds with the correct output from Fy_rots. Note
that since q; = t; + ¢; ©® b, we have

qi + C(w;)) ©b =t;+ (¢; + C(w;)) ©b
=t;+e Ob.

Since we have already shown that the value of e; ©® b must be known to P; for the check to have
passed, Z cannot learn any additional information from making such a query.
On the other hand, if Z sends a query of the form

(i,q; + c(w') ®b,) for some i € [m], W # w;

then Z may be able to distinguish by comparing the response with the honest sender’s output;
but this only works if the corresponding choice w’ was requested by Pg. Let BadQuery be the
event that this happens. Note that if BadQuery does not occur, then Proposition 2 implies that the
real and simulated executions are identically distributed in the view of Z, except with probability
275 4274 (if S fails to decode the inputs). We now show that there is only a negligible probability
of BadQuery happening.

Again using Proposition 2, we can rewrite such a critical query as

(i,t; + (C(W) + Cc(w;) + €;) ©®b),

where w' # w; and e;[j] = 0 for all j ¢ E. Since t; and (b[j])jc are already known to Py (by
Proposition 1), coming up with such a query is at least as hard as computing

((cw) + c(wi)) ©b)_, (8)

for some w' # w;. For each such w', we have wty((C(w') + C(w;))—g) > d¢c — |E|, so for fixed
values of W/, w;, the probability of guessing (8) is < 2/F|=dc. Taking a union bound over all |S;|
possible values of w’ corresponding to an output of Pg gives probability at most (|S;| — 1) - 2!FI—dc
per query. > If PE makes ¢ queries to the random oracle and we define N/ = max;|S;| to be the
maximum number of outputs the sender learns in any OT, then in total we get

3We do not need to also take the union bound over w;, because i is contained in each query and therefore fixed.

13

Pr[BadQuery] < ¢- (N’ — 1) - 2/Pl=de,

Combining this with (7) and the failure event (which we denote DecodeFail) from Proposition 2,
we see that the overall distinguishing advantage of the environment is no more than

Pr[PassCheck A (DecodeFail V BadQuery)] < 27171 . (275 4 27dc 4 ¢ (N' — 1) . 2lFI=dc)
=q-(N'—1)-27% 4 25~ IEl 4 g—de—IE]

which is negligible in s and & if d; > k.

Instantiating the Code. It remains to instantiate the binary linear code, C, to obtain a l-out-
of-N random OT protocol for a desired power of two choice of V. As well as the repetition code
(for 1-out-of-2 OT), we suggest a more efficient form of the Walsh-Hadamard code for N < 512;
a binary Golay code for N = 2048; and BCH codes for values of NV that are exponential in the
security parameter. The parameters of these codes are presented in Table 1; note that the code
length determines exactly the amount of communication required per extended OT. We obtained
the generator matrices for all of these codes using Sage .

Recall that C is an [n¢, k¢, dc] binary linear code, and the protocol requires kr = logy N and
d¢ > K to achieve computational security parameter x.

Repetition Code. If N = 2 then the repetition code Gep = {07, 1%} gives a 1-out-of-2 OT exten-
sion protocol that is very similar to the previous, most efficient protocol [KOS15] (our consistency
check is slightly more expensive, but still has negligible cost for many OTSs).

Walsh-Hadamard Codes. The Walsh-Hadamard code of dimension k. = logy N is defined by
taking the inner product (over Fg) of the message with all NV length-k. vectors:

Cwh(z) = (<$,y>)ye{o,1}kc
This has length N and minimum distance d- = N/2, so is an [N, logy N, N/2| code.

A more efficient choice is the punctured Walsh-Hadamard code, which restricts y to be one in
the first position:

Gwn () = (%, 9))ye (1) x {0,131

This has length N/2 and can be shown to have minimum distance N/4, so is an [N/2,1logy N, N/4]
code. These are slightly better parameters than the standard W-H code.

To use Gy for 1-out-of-N OT we simply need to ensure that d- = N/4 > k. So, fixing N = 512
gives us a [256,9,128] code, allowing 1l-out-of-512 OTs at a cost of sending just 256 bits, with
128-bit security. °

‘http://www.sagemath.org

5The punctured W-H code provides no benefit for N > 512, since this would cost at least 512 bits of communi-
cation, and building 1-out-of-N OT from smaller 1-out-of-N’ OTs (similar to [NP99]) would be more efficient.

14

Code N Length Distance/Security

Repetition [IKNPO03] 2 128 128
Walsh-Hadamard [KK13] < 256 256 128
Punctured Walsh-Hadamard < 512 256 128
Binary Golay 2048 384 128
BCH-511 276 511 171
BCH-1023 9443 1023 128

Table 1: Parameters for various choices of code

Smaller values of N. If N < 4k then we can repeat the [N/2,log, N, N/4] punctured W-H code
4k/N times to obtain a code of length 2k and distance N/4 - 4k/N = k, as required for security.
So, with x = 128 this has the same cost as 1-out-of-512 OT, for any power of two N < 512.

BCH codes. For larger values of N, BCH codes can be used to give much better parameters than
Walsh-Hadamard codes.

For example, the [511,76,171] BCH code would allow N = 27° with 171-bit security. Since
in practice n will be much smaller than this, the code can be shortened to get parameters [511 —
¢, 76 — ¢, > 171], and hence N = 279=¢_ for any desired choice of c.

Binary Golay code. The binary Golay code is a [24,12,8] binary linear code, often used in
communications. Extending this code (with repetition) 16 times gives a [384,12, 128] code, which
can be used for 1-out-of-2048 OT, at the cost of sending 384 bits, with 128 bits of security. This
improves upon both the Walsh-Hadamard and BCH instantiations for the same size of V.

Non Two-Power Values of n. If n is not a power of two, then we run into the problem that
no binary code C can contain exactly n codewords. If C is chosen to have more than N, then the
receiver may choose a value w; ¢ {0, ...,n—1}, which still defines a valid codeword. The consistency
check will still go through, but at the end of the protocol the receiver will not obtain a valid output.
However, in many applications this may not pose a problem, and the OT functionality can easily
be modified to model this possibility.

4 Security in the Standard Model

In this section we consider the case of non-random 1-out-of-N OT. In this protocol (Fig. 3), we
remove the random oracle assumption and prove security in the standard model. Similarly to
[ALSZ15], we need a stronger version of correlation robustness than that given in [IKNPO03], and
require that the secret correlation b comes from a distribution of min-entropy & and in addition is
multiplied by a codeword in the binary linear code C.

For self-containment we recall the definitions of correlation robustness and strong correlation
robustness in Appendix A.

Definition 1 (k-min-entropy code correlation robustness). Let x be a distribution on Fy¢
with min-entropy k and C be an [n¢, ke, de] binary linear code. An efficiently computable function
H: F5¢ — F5 is said to be k-min-entropy C-correlation robust if it holds that:

{ti, H(ti +cO b)}ie[m},cec < Z/{m-nch(mHC|)./{7

15

Protocol N-OT®™ (Standard Model)

INPUT OF Pg: m tuples (vo,,...,VN—1,) of k-bit strings, 1 < i < m.
INPUT OF Pgr: m selection integers (w1, ..., wm), such that 0 < w; < N —1 Vi € [m], and encoded as bit strings
Wi,...,Wn € F5.

CoMMON INPUT: k and s are the computational and the statistical security parameter; an [n¢, k¢, d¢] binary
code C such that nc > Kk, kc >log N, dr = k. ,
REQUIRE: H : F5¢ — F5 a k-min-entropy strongly C-correlation-robust and PRG: {0,1}" — {0,1}™ .

Init: As in Protocol N-ROT™™.

Extend: As in Protocol N-ROT™™.

Output: Pg sends, Vi € [m] and 0 < w < N — 1: yu,i = Vuw, + H(q: + C(w) ® b). Pr recovers, Vi € [m]:
Vw;i = Yw;,i + H(tz)

Fig. 3: An implementation of Fy'g1 extending F5 (¢ in the Standard Model.

where b &- x and ty, ..., t,, € F5¢ are independent and uniformly distributed.
Similarly, H() is said to be k-min-entropy strongly C-correlation robust if it holds that:

c

{Ht; +c© b)}ie[m],cec = u(m+|c|)-n,

where b ﬁ X, for any distribution of the {ti}ie[m]'

Notice that in the values used to mask Pg’s inputs, it is the receiver that effectively chooses
the t;’s, and they can not only choose these values non-uniformly, but even maliciously. This is the
reason why we need a strong code-correlation robust hash function.

We claim that if H is a k-min-entropy strongly correlation robust function for all no—s < k < n,
then the protocol is secure in the standard model. For further discussion on parameter choices
regarding this assumption, see Section 4.1.

Theorem 2. Assuming that H is k-min-entropy strongly code-correlation robust for all k € {n, —
S,...,nc}, and PRG is a pseudo-random generator, the protocol N-OT®™ in Fig. 3 securely imple-
ments f]'?fng in the Fo.o1-hybrid model against a static malicious adversary.

The high level idea of the proof is the following. Assuming that there exists Z that can distin-
guish between the ideal and real execution of the protocol with significant advantage §, that such Z
can be used to distinguish between the two distributions in the strong code-correlation robustness
definition. More precisely, we prove the following porposition.

Proposition 3. Suppose there exists an adversary A and distinguisher Z such that Z breaks UC
security of the protocol with advantage Adv(Z) = §, running in time t. Then there exists k > ne—s
and a distinguisher D that runs in time t and breaks the k-min-entropy correlation robustness of H
with advantage 2<% . §.

In an asymptotic sense, this means that if we let s = ¢ k for some constant ¢ € (0,1), then any
adversary breaking security of the protocol with advantage ¢ in time ¢ = poly(x) can be transformed
into a distinguisher that breaks H for some k > (1 —¢) - k with advantage 2<% . §, running in time
O(t) = poly(k).

In concrete terms, if we fix k = d- = 128 and s = 40, then the protocol is secure if for all
88 < k < 128, there are no attacks on the min-entropy code-correlation robustness of H that
succeed with probability significantly larger than 27%.

16

Proof. The case of a corrupt sender is the same as in the proof of Theorem 1. To prove Theorem 2 for
the case of a corrupt receiver, PE, we will describe a simulator, S, and show that any environment Z
who can distinguish between the real and ideal executions of the protocol can be used to construct
a distinguisher which breaks the correlation robustness assumption on H.

S begins by simulating the protocol as before in the proof of Theorem 1. If the check passes,
S decodes the receiver’s inputs w; € F5 and the errors e;, Vi € [m], as in the proof of Theorem 1,
and computes the messages:

Yw,i = Vw,,i + H(t; + € ©®b)
3
Yw,i < Fy¢, Yw # wy,
where vy, ; is the i-th receiver’s output obtained from f]'f,’%T.
Note that the simulated yw,; values are computed exactly as in the real world. Conversely, all

other yw ; values (for w # w;) in the ideal execution are uniformly random, whilst in the real world
the sender computes these values as:

Yw,i = Vw,; + H(q; + C(w) ©® b)

= Vw,i +H(t; + (C(w;) + C(w) +€;) ©b))

for every w # w; and i € [m].
We now show that no environment Z can distinguish between the real and ideal process. Using
the standard UC notation, for an adversary A and an environment Z, we let

REAL7 4,z(1%, 1%, (Vois - - - s VN-1,i)icfm]s (Wi)icm])

denote the random variable describing the output of Z in a real execution of II with adversary A
and input ((VO,iu ce 7VN—1,i>iE[m]7 (wz)ze[m]) Similarly, let

IDEAL}—,S7Z(1H7 187 (VO,iv <. 7VN—1,i)i€[m]7 (wl)le[m})

denote the random variable describing the output of Z after interacting with the ideal execution
with adversary S, the functionality F and input ((voi,-..,VN-1,i)ie[m]» (Wi)icjm]). For sake of
simplicity, we omit the inputs and refer to these as REAL 4 z and IDEALf s z, respectively. We
assume the output of Z to be a single bit, considered as a guess at one of the two executions REAL
or IDEAL. The advantage of Z is then given by:

Adv(Z2) := |Pr[REAL;; 4z = 1] — Pr[IDEALfr s z = 1]|.

Similarly, for an event X that may occur in both executions, we define the conditional advantage
as:

Adv(Z|X) := |Pr[REALy 4z = 1|X] — Pr[IDEALf 5 = = 1| X]).

Now, suppose there exists a set of inputs for which Z distinguishes between the two worlds with
noticeable advantage, §. Note that the probability of the consistency check failing (i.e. b ¢ Sy) is
the same in both worlds, and if this happens then the simulation is perfect, so we have

Adv(Z|b ¢ Sp) = 0. (10)

17

On the other hand, if the consistency check passes then using (7) and the rules of conditional
probability, we have:

§ = |Pr[REAL 4 z = 1] — Pr[IDEALz s z = 1]
— |Pr[REAL;; 4z = 1|b € S - 27/El — Pr[IDEALF sz = 1b € Sp] - 27E]]
— 27 IBl . |Pr[REAL; 4z = 1|b € Sp] — Pr[IDEAL£ sz = 1]b € Sp)|
=271F. Adv(Z|b € Sp). (11)

Now we show that such a Z can be used to distinguish between the two distributions in the
strong code-correlation robustness definition. More precisely:

Lemma 2. Suppose there exists an adversary A and a distinguisher Z such that Z breaks UC
security of the protocol with advantage Adv(Z) = 6. Then there exists k > ne—s and a distinguisher
D, which breaks the k-min-entropy correlation robustness of H with advantage 2"c=% . 5.

Proof. In a nutshell, D sets up a copy of Z, then goes through the protocol with Z and uses its
outputs to guess the distribution of a strongly C-correlation robust challenge. We show that if Z
guesses correctly between the real and ideal world execution then D guesses whether the challenge
is uniformly distributed, or distributed as H(t; + ¢(w) ® b), for some values t; provided to the
challenger.

D starts the execution of the protocol in the same way the simulator would do, with some
exceptions, as explained in the following. Fix the random coins of the adversary A, and the values
29 (provided by D), to maximize the success probability of Z. This uniquely determines the

(2

adversary’s messages {r%,r{,uj }iene) and {wg),tg)}ge[s], such that Adv(Z) > ¢ (ensuring that
b € Sp). Recall that {wg),t,(f)}ge[s] denote the values actually sent by P*R. As in the proof of

Theorem 1, this transcript also uniquely defines an error set E and vectors c;,e; € F5¢, w; € F’;"
such that ¢; = C(w;) + e; and |E| < s (except with negligible probability).

Let k = ne — |E|. The distinguisher D defines x to be the distribution on F5¢ where each
position j € E is fixed to be consistent with the adversary’s transcript, and all k positions j ¢ F
are chosen uniformly at random. This is precisely the uniform distribution on the set, Sy, of all
secrets b for which the adversary could pass the consistency check, and we have Hoo(x) = ne — | E|.
Next, D defines t; = t; + e; © b (recall that e; ©® b is fixed for all b € Sy, at this point, so this is
well-defined) and sends X, {t; };ic[m to the correlation robustness challenger. D receives back a set
of challenge samples {Xw’i}ie[m] weFke and must guess whether these are uniform or distributed as

Xw,i = H(t; + C(w) © b),

for some b & X- Note that if the latter is true then we have xy; = H(q; + (C(w;) + C(w)) ® b),
where q; is defined as in the protocol. To match this up with the masks used in the final stage of
the protocol (9), D permutes the i-th set of samples with the mapping w — w + w;, defining the
final set of protocol messages sent to Z as:

Ywii = Vwg,i + H(t;)

Yw,i = Vw,i T Xwtw,,i, for all w # w;.

18

Both in the simulation and real world execution, the view Z sees consists of the view of the
corrupt party PE, and until the last step (when P;{ receives the values yy ;), it essentially consists
of its random tape. The view generated by D, before the last step, is statistically indistinguishable
from the view generated by S and the one produced in the real protocol. We can then distinguish
two cases:

1. If xw; are uniformly distributed then the view produced by D is statistically indistinguishable
from the view generated by S. We denote by DipgaL the random variable describing the output
of D in this case.

2. Otherwise, if the values xy ; are distributed as H(t, + C(w) ® b), then we have yw,; = v +
H(qi; + C(w) ® b), so the outputs seen by Z are identical to those in a real run of the protocol
and we denote by DgreaL the random variable describing the output of D.

The distinguishing advantage of D is therefore identical to that of Z, conditioned on b € Sy
(and ignoring the failure events from Proposition 2, which occur with negligible probability). So
using (11), with overwhelming probability we have:

AdV(D) = AdV(Z|b c Sb) _ 2\E| .5 = one—k . s,

This also concludes the proof of Theorem 2. a

4.1 Parameter choices for code-correlation robustness

To conclude this section, we remark that our requirement of assuming code-correlation robustness
for a range of parameters k € {ng — s,...,nc} is slightly unusual. We could instead have proven
security by assuming code-correlation robustness for a single choice of k (similarly to [ALSZ15]),
but this would require setting n. to at least k + s, potentially increasing the communication and
number of base OTs in the protocol. We believe that our assumption provides optimal efficiency
in terms of the number of base OTs while still providing meaningful security, in both a theoretical
sense and in giving concrete security guarantees for the protocol.

In an asymptotic sense, our theorem means that if we let the statistical security parameter
s = ¢ k for some constant ¢ € (0, 1), then any adversary breaking security of the protocol with
advantage 0 can be transformed into a distinguisher that breaks H for some k& > (1 — ¢) - k with
advantage 2"¢~% . §, running in roughly the same time.

In concrete terms, consider the 1-out-of-2 case with repetition coding, and parameters kK =
ne = de = 128 and s = 40. The protocol is secure if for all 88 < k£ < 128, there are no attacks on
the min-entropy code-correlation robustness of H that succeed with probability significantly larger
than 27%. Importantly, this does not mean that the protocol offers only “88 bits of security”, as
our reduction actually amplifies (depending on k) the success probability of any adversary. For
example, any attack on the protocol with k£ = 88 results in an attack against the correlation robust
function that is 240 times more successful than the attack on the protocol. Intuitively, therefore,
these parameters are suitable for 128 bits of computational security.

19

5 Application to Private Set Intersection

We now show how to apply the 1-out-of-N random OT extension protocol to increase the efficiency
and obtain stronger security guarantees in existing private set intersection (PSI) protocols. We
describe a simpler and more efficient private set inclusion protocol with active security, which is
used as a key component of the most efficient passively secure PSI protocols.

5.1 Private Set Inclusion

A core building block of OT-based PSI protocols is a private set inclusion protocol, where party Pa
has input a € {0,1}*, party Pp has input a set B C {0,1}* and the parties wish to learn whether
a € B. Note that the special case of |B| =1 is a private equality test.

The previous most efficient protocol [PSSZ15, Sec. 6.1] requires ¢t = k/8 executions of 1-out-
of-256 random OT, and uses the KK protocol with length 256 Walsh-Hadamard codes. However,
with the observation that our random OT protocol can be used for exponentially large values of
N, we can in fact choose N = 2¥ and perform a private set inclusion with just a single 1-out-of-N
random OT. This is possible because the OT sender is only required to learn one of the random
OT outputs in order to run the set inclusion protocol.

The protocol, shown in Fig. 5, is very simple: P4 inputs their value a as the receiver’s choice
in a l-out-of-N random OT, and Pp inputs each of their values b € B to obtain |B| of the
sender’s random outputs. Thus, P4 learns a random value r, and Ppg learns a set of random values
R = {rp}pep. Pp randomly permutes R and sends this to P4, who checks whether r, € R to
determine the result (and can send this to Pp if desired).

Since P4 only learns one of the random OT outputs initially, all other possible elements of
the set R are uniformly random so do not leak any information on Pp’s input. Note that because
our l-out-of-N OT protocol is actively secure, we actually obtain an actively secure private set
inclusion protocol (although this does not seem to suffice to make the PSI protocol of [PSSZ15]
actively secure).

Functionality F&,..

Inputs: Pa inputs a € {0,1}* and Pp inputs B C {0, 1}*.
Output: If a € B then output (1, |B|) to Pa. Otherwise, output (0,|B|) to Pa. Pp receives no output.

Fig. 4: One-sided private set inclusion functionality

The ideal functionality we implement is given in Fig. 4; note that this also needs to output the
size of Pg’s set to Py.

Theorem 3. Protocol Ilseync securely realizes the functionality]:éetlnc with statistical security pa-
rameter s.

Proof. Suppose P4 is corrupt. The simulator receives a € {0, 1}k as P4’s input to Fy.roT+, sends
this to the }"éetlnc functionality and receives a bit y and the set size |B|. S samples a random
rq € {0,1}* and sends this to P4 (acting as the Fy_roT+ output). Next, if y = 0 then S sends a
random subset R C {0, 1}* of size | B| to P4. Otherwise, S constructs R to contain r, in a random

20

Protocol Isetinc
Inputs: P4 has input a € {0,1}* and Pg has input B C {0, 1}*.

The parties run .7-"15\,’_1ROTJr with N = 2*, where P4 plays receiver with input a.
P4 receives v, € {0,1}°

For each b € B, Pp calls Fn-rot+ with (SenderOutput, 0, b) to obtain 7.

Pp randomly permutes and sends R = {ry}yecp to Pa.

P4 outputs 1 if r, € R and 0 otherwise.

Gr W=

Fig. 5: Private set inclusion protocol

position and |B| — 1 random values elsewhere, and sends R. It is easy to see that the view of Py is
identically distributed to the view in a real execution. As for the output of P4, notice that if a € B
then both executions always output 1. If a ¢ B then the ideal execution always outputs y = 0,
whilst the real execution outputs 1 with probability < |B|-27%, in case r, € R by chance, so the
two worlds are statistically indistinguishable.

Now consider a corrupted Pg. Whenever Pg queries Fy.roT+ on input b’ to obtain a new string,
S returns a fresh random string r. Let R’ be the set sent by Pg in step 4. S defines B to be the
set containing all values b’ previously queried by Pg such that r, € R’, and sends this to Fsetinc.

In the ideal execution, P4 outputs 1 if and only if @ € B. In the real execution, P4 outputs 1 if
rq € R; as in the case of a corrupt P4, this always holds if a € B, and only occurs with probability
< |B|-27° otherwise. O

Efficiency. The cost of the above protocol is precisely the cost of 1-out-of-N random OT, plus
sending s-| B| bits. If the protocol is run in a large batch using]:]";”,’_TEOT -, for large m (which is possible
for the application to private set intersection) then this gives an amortized cost of ne + s - | B| bits
per execution, where n, is the length of the code. The costs for this when instantiated with BCH
codes (as described previously) are illustrated for various choices of k in Table 2, and compared
with the Walsh-Hadamard code used in [PSSZ15]. In practice, the set size used in the set inclusion
subprotocol for PSI in [PSSZ15] is around |B| = 20. For a large item length of £k = 128 bits,
and s = 40-bit statistical security, this gives a 3.3x reduction in communication for the dominant
component of PSI.

k Cost with BCH (bit) Cost with W-H (bit)
32 467+ s - |B| 1024 + s - |B|
64 499 + s - |B| 2048 4 5 - | B|
128 708 + s - |B| 4096 + s - | B|

Table 2: Comparing the communication cost of private set inclusion subprotocols on k-bit strings
and size | B| sets with statistical security s.

6 Implementation

We now evaluate the complexity of our random OT protocol, and compare its performance to a
passively secure variant by analysing implementation results.

21

Complexity Analysis. The main overhead introduced by our protocol to produce m OTs, compared
with the passively secure KK protocol, is the computation of m - s XORs (on ne-bit strings) by
each party, and the communication of s - m random bits from the sender to receiver, followed by
s+ (ne + k¢) bits in the other direction, in the consistency check. However, the s - m bits can be
reduced to x by having Pg send only a single random seed for these values, and expanding the seed
using a PRG.

Outside of the consistency check, the main protocol costs are the encodings, hash function
evaluations and the n, bits that are sent by Pr for each extended OT. Of course, the sender’s
computational cost also highly depends on the number of random OT outputs that are desired.

Implementation. We evaluated our protocol on two machines running over a 1Gbps local network,
and also simulated a WAN environment with 50Mbps bandwidth and 100ms round-trip latency
to model a real-life scenario over the Internet. All benchmarks have been run on modern Core i7
machines at 2-3 GHz.

Our implementation is in plain C, and uses the SimpleOT [CO15] oblivious transfer software
to run the base OTs, and BLAKE2 [ANWOW13] for hashing, as this provides fast hashing on short
inputs. Otherwise, it does not rely on any other software and is available in the public domain. The
executable occupies 280K.

The core protocol covers roughly 200 lines of C code. It mostly runs on single thread, except
we use OpenMP to parallelize the encodings and hash function evaluations, which are the com-
putational bottlenecks of the protocol. We fix the computational security parameter x = 128 and
statistical security parameter s = 40. We used Intel AVX instructions to efficiently implement vec-
tor addition, componentwise product, and matrix transposition. Encoding of the binary linear code
is implemented with multiplication by the generator matrix.

Our results for 1-out-of-N random OT for the small sized codes (repetition, Walsh-Hadamard,
punctured Walsh-Hadamard and binary Golay) in the LAN setting can be seen in Fig. 6, for varying
numbers of OTs. Table 3 compares the performance of the active and passively secure variants in
both LAN and WAN settings, including the BCH-511 code, which could be used for the private
set intersection application. We see that the overhead of active security is around 20-30% of the
passive protocol over a LAN, and less than 5% in the WAN setting. This fits with the fact that the
main cost of the check is computation, which is less significant in a WAN. The table also gives the
amount of communication required for each choice of IV, which shows that this reflects the main
total cost of the protocol. Encoding of larger BCH codes (for N = 27%) does have a noticeable
effect in a LAN, though: here, BCH runtimes are 3 times higher than Walsh-Hadamard, but only
have twice the communication cost. We expect that this could be improved by a more sophisticated
encoding algorithm, rather than naive multiplication by the generator matrix.

6

Shttp://users-cs.au.dk/orlandi/simple0T/

22

http://users-cs.au.dk/orlandi/simpleOT/

14

12

10 |

Time (s)

--- 1l-out-of-2 Passive
—e— l-out-of-2 Active

- - - l-out-of-256 Passive
—o— 1l-out-of-256 Active
- -~ l-out-of-512 Passive
—o— l-out-of-512 Active
- - - l-out-of-2048 Passive
—o— l-out-of-2048 Active

o
@

Py & Py Py
@ @ @ A 4

29

210

211 212 213 214

215

916 917
l-out-of-N OTs

218 219

220 221 222 223 224

Fig.6: Benchmarking different 1-out-of-N random OTs in LAN environment; average time for 20

runs.

Setting N=2 256 512 2048 276
Comms. (bit) 128 256 256 384 512
LAN, passive 4.1812 8.0260 8.1193 11.6642 23.4738
LAN, active 5.6191 9.5693 10.4379 13.8065 25.4001
WAN, passive 27.3982 54.2414 54.274 81.0548 108.89
WAN, active 27.882 54.7445 54.8189 81.6644 109.44

Table 3: Data transmitted per OT and runtimes in seconds for 223 OTs (LAN) or 22° OTs (WAN),
for several choices of N

23

Acknowledgements We thank Ranjit Kumaresan for providing us with an extended version

of [KK13].

The work in this paper has been partially supported by the ERC via Advanced Grant ERC-2010-
AdG-267188-CRIPTO and the Defense Advanced Research Projects Agency (DARPA) and Space
and Naval Warfare Systems Center, Pacific (SSC Pacific) under contract No. N66001-15-C-4070.

References

ALSZ13.

ALSZ15.

ALSZ16.

ANWOW13.

Bea96.

CDD™16.

CO15.
EGLS5.

FJINT16.

IKNPO3.

IR89.

KK13.

KKRT16.

KOS15.

KOS16.

Lam16.
LOS14.

NNOBI12.

Gilad Asharov, Yehuda Lindell, Thomas Schneider, and Michael Zohner. More efficient oblivious trans-
fer and extensions for faster secure computation. In ACM Conference on Computer and Communica-
tions Security, CCS’13, pages 535-548, 2013.

Gilad Asharov, Yehuda Lindell, Thomas Schneider, and Michael Zohner. More efficient oblivious trans-
fer extensions with security for malicious adversaries. In Advances in Cryptology - EUROCRYPT 2015,
Sofia, Bulgaria, April 26-30, Proceedings, Part I, pages 673-701, 2015.

Gilad Asharov, Yehuda Lindell, Thomas Schneider, and Michael Zohner. More efficient oblivious trans-
fer extensions. Journal of Cryptology, pages 1-54, 2016.

Jean-Philippe Aumasson, Samuel Neves, Zooko Wilcox-OHearn, and Christian Winnerlein. Blake2:
simpler, smaller, fast as md5. In Applied Cryptography and Network Security, pages 119-135. Springer,
2013.

Donald Beaver. Correlated pseudorandomness and the complexity of private computations. In Pro-
ceedings of the twenty-eighth annual ACM symposium on Theory of computing, pages 479-488. ACM,
1996.

Ignacio Cascudo, Ivan Damgard, Bernardo David, Nico Déttling, and Jesper Buus Nielsen. Rate-1,
linear time and additively homomorphic UC commitments. In Advances in Cryptology - CRYPTO
2016, Santa Barbara, CA, USA, August 14-18, Proceedings, Part III, pages 179-207, 2016.

Tung Chou and Claudio Orlandi. The simplest protocol for oblivious transfer. In Progress in Cryptology
- LATINCRYPT 2015, Guadalajara, Mezico, August 23-26, pages 40-58, 2015.

Shimon Even, Oded Goldreich, and Abraham Lempel. A randomized protocol for signing contracts.
Communications of the ACM, 28(6):637-647, 1985.

Tore Kasper Frederiksen, Thomas P. Jakobsen, Jesper Buus Nielsen, and Roberto Trifiletti. On the
complexity of additively homomorphic UC commitments. In Theory of Cryptography - TCC 2016-A,
Tel Aviv, Israel, January 10-18, 2016, Proceedings, Part I, pages 542-565, 2016.

Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. Extending oblivious transfers efficiently. In
Advances in Cryptology-CRYPTO 2003, pages 145-161. Springer, 2003.

Russell Impagliazzo and Steven Rudich. Limits on the provable consequences of one-way permutations.
In Proceedings of the twenty-first annual ACM symposium on Theory of computing, pages 44—61. ACM,
1989.

Vladimir Kolesnikov and Ranjit Kumaresan. Improved ot extension for transferring short secrets. In
Advances in Cryptology—CRYPTO 2013, pages 54—70. Springer, 2013.

Vladimir Kolesnikov, Ranjit Kumaresan, Mike Rosulek, and Ni Trieu. Efficient batched oblivious PRF
with applications to private set intersection. In ACM Conference on Computer and Communications
Security, CCS, 2016.

Marcel Keller, Emmanuela Orsini, and Peter Scholl. Actively secure OT extension with optimal over-
head. In Advances in Cryptology - CRYPTO Santa Barbara, CA, USA, August 16-20, pages 724-741,
2015.

Marcel Keller, Emmanuela Orsini, and Peter Scholl. MASCOT: faster malicious arithmetic secure
computation with oblivious transfer. In ACM Conference on Computer and Communications Security,
Vienna, Austria, pages 830-842, 2016.

Mikkel Lambaek. Breaking and fixing private set intersection protocols. Cryptology ePrint Archive,
Report 2016/665, 2016. http://eprint.iacr.org/2016/665.

Enrique Larraia, Emmanuela Orsini, and Nigel P Smart. Dishonest majority multi-party computation
for binary circuits. In Advances in Cryptology—-CRYPTO 2014, pages 495-512. Springer, 2014.

Jesper Buus Nielsen, Peter Sebastian Nordholt, Claudio Orlandi, and Sai Sheshank Burra. A new
approach to practical active-secure two-party computation. In Advances in Cryptology—-CRYPTO 2012,
pages 681-700. Springer, 2012.

24

http://eprint.iacr.org/2016/665

NP99.

PSSZ15.

PSZ14.

PVWOS.

Rab81.
SSROS.

Yao82.

Moni Naor and Benny Pinkas. Oblivious transfer and polynomial evaluation. In Proceedings of the
Thirty-First Annual ACM Symposium on Theory of Computing, Atlanta, Georgia, USA, pages 245-254,
1999.

Benny Pinkas, Thomas Schneider, Gil Segev, and Michael Zohner. Phasing: Private set intersection
using permutation-based hashing. In 24th USENIX Security Symposium, Washington, D.C., USA,
August 12-14, 2015., pages 515-530, 2015.

Benny Pinkas, Thomas Schneider, and Michael Zohner. Faster private set intersection based on OT
extension. In 238rd USENIX Security Symposium, pages 797-812, San Diego, CA, August 2014.

Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. A framework for efficient and composable
oblivious transfer. In Advances in Cryptology - CRYPTO 2008, pages 554571, 2008.

Michael O Rabin. How to exchange secrets with oblivious transfer. 1981.

Bhavani Shankar, Kannan Srinathan, and C. Pandu Rangan. Alternative protocols for generalized
oblivious transfer. In Distributed Computing and Networking, 9th International Conference, ICDCN,
2008.

Andrew Chi-Chih Yao. Protocols for secure computations (extended abstract). In 28rd Annual Sym-
posium on Foundations of Computer Science, pages 160—-164, 1982.

25

Auxiliary Supporting Material

A Correlation Robust Function

We recall the standard definition of correlation robust [IKNPO03] and strong correlation robust
function [ALSZ15].

Let x be a discrete probability distribution, the min-entropy of x is defined as Hoo(x) =
—log(max, Pr[x = z]), and intuitively the min-entropy of a distribution is a measure of how
predictable the distribution is.

Let U4¢ be the uniform distribution over strings of length .

Definition 2 (Correlation Robustness).
1. An efficiently computable function H : F§ — Fg is correlation robust if
(t, H(t; +5)) = umrtmt,

where tj,s € F5 are uniformly and independently distributed.
2. H:F5 — Fg is strongly correlation robust if

(H(t; +8)) =u™",
where s € F5 is uniform.

Equivalently, by defining Fy(t) = H(t + s), H is a correlation robust function if and only if
F is a weak pseudorandom function, and H is strongly correlation robust if and only if F' is a
(non-adaptive) pseudorandom function.

B Instantiating the Binary Linear Code

Recall that ¢ is an [n¢, k¢, d¢| binary linear code, and the protocol requires k- = logy N and dr > &
to achieve computational security parameter k.

Repetition Code. If N = 2 then the repetition code Gep = {0%,1%} gives a 1-out-of-2 OT exten-
sion protocol that is very similar to the previous, most efficient protocol [KOS15] (our consistency
check is slightly more expensive, but still has negligible cost for many OTSs).

Walsh-Hadamard Codes. The Walsh-Hadamard code of dimension k. = logy N is defined by
taking the inner product (over Fs) of the message with all N length-k. vectors:

Cwn(z) = ((z, y>)ye{0,1}kc

This has length N and minimum distance d- = N/2, so is an [N, logy N, N/2| code.
A more efficient choice is the punctured Walsh-Hadamard code, which restricts y to be one in
the first position:

Gwn() = ((z, y))ye{l}x{(},l}kf_l

26

This has length N/2 and can be shown to have minimum distance N/4, so is an [N/2,1logy N, N/4]
code. These are slightly better parameters than the standard W-H code.

To use Gy for 1-out-of-N OT we simply need to ensure that d- = N/4 > k. So, fixing N = 512
gives us a [256,9,128] code, allowing l-out-of-512 OTs at a cost of sending just 256 bits, with
128-bit security. ”

Smaller values of N. If N < 4k then we can repeat the [N/2,logy N, N/4] punctured W-H code
4k/N times to obtain a code of length 2k and distance N/4 - 4k/N = k, as required for security.
So, with k = 128 this has the same cost as 1-out-of-512 OT, for any power of two N < 512.

BCH codes. For larger values of N, BCH codes can be used to give much better parameters than
Walsh-Hadamard codes.

For example, the [511,76,171] BCH code would allow N = 2%, with 171-bit security. Since
in practice n will be much smaller than this, the code can be shortened to get parameters [511 —
¢, 76 — ¢, > 171], and hence N = 279=¢_ for any desired choice of c.

Binary Golay code. The binary Golay code is a [24,12,8] binary linear code, often used in
communications. Extending this code (with repetition) 16 times gives a [384,12, 128] code, which
can be used for 1-out-of-2048 OT, at the cost of sending 384 bits, with 128 bits of security. This
improves upon both the Walsh-Hadamard and BCH instantiations for the same size of V.

Non Two-Power Values of n. If n is not a power of two, then we run into the problem that
no binary code C can contain exactly n codewords. If C is chosen to have more than N, then the
receiver may choose a value w; ¢ {0, ...,n—1}, which still defines a valid codeword. The consistency
check will still go through, but at the end of the protocol the receiver will not obtain a valid output.
However, in many applications this may not pose a problem, and the OT functionality can easily
be modified to model this possibility.

"The punctured W-H code provides no benefit for N > 512, since this would cost at least 512 bits of communi-
cation, and building 1-out-of-N OT from smaller 1-out-of-N’ OTs (similar to [NP99]) would be more efficient.

27

	Actively Secure 1-out-of-N OT Extension with Application to Private Set Intersection
	Introduction
	Contributions

	Preliminaries
	Passively Secure OT Extension: the KK Protocol

	Actively Secure Random 1-out-of-N OT Extension
	Security in the Standard Model
	Parameter choices for code-correlation robustness

	Application to Private Set Intersection
	Private Set Inclusion

	Implementation
	Correlation Robust Function
	Instantiating the Binary Linear Code

