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ABSTRACT

This paper investigates several approaches to address the acoustic
scene classification (ASC) task. We start from low-level feature
representation for segmented audio frames and investigate differ-
ent time granularity for feature aggregation. We study the use of
support vector machine (SVM), as a well-known classifier, together
with two popular neural network (NN) architectures, namely mul-
tilayer perceptron (MLP) and convolutional neural network (CNN).
We evaluate the performance of these approaches on benchmark
datasets provided from the 2013 and 2016 Detection and Clas-
sification of Acoustic Scenes and Events (DCASE) challenges.
We observe that a simple approach exploiting averaged Mel-log-
spectrograms and SVM can obtain even better results than NN-
based approaches and comparable performance with the best sys-
tems in the DCASE 2013 challenge.

Index Terms— Acoustic scene classification, Audio features,
Multilayer Perceptron, Convolutional Neural Network, Support
Vector Machine.

1. INTRODUCTION

Acoustic scene classification (ASC), a particular form of audio clas-
sification, consists in using acoustic information (audio signals) to
infer the context of the recorded environment [1]. Examples of such
environments are bus, office, street, etc... It offers a wide range
of applications in connected home, e.g. expensive video cameras
can be replaced by cheap microphones for monitoring daily activ-
ity, and for smartphones, e.g. they could automatically switch to
silence mode during a meeting or automatically increase the sound
volume in a noisy environment. However, real-life ASC is not a
trivial task as recognising a greater variety of sounds in both indoor
and outdoor environments would require a new set of strategies and
adjustments of existing machine learning techniques to make the
most out of the available data.

While speaker identification [2], speech recognition [3], and
some audio classification tasks in music information retrieval such
as music genre recognition [4, 5] or music instrument recognition
[5] have been studied for a long time, the real-life ASC task has
become active quite recently in the research community. While the
classification task itself has been studied since at least 2002 [6],
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it was only recently that efforts were made to provide a bench-
mark for the task, with the new initiative of the DCASE chal-
lenges in 2013 and 2016. Various techniques have been proposed
to tackle the problem with the use of different acoustic features
(e.g. cochleogram representation, wavelets, auditory-motivated rep-
resentation, features learned by neural networks) and different clas-
sifiers (e.g. Support Vector Machine (SVM), Gaussian Mixture
Model (GMM), Hidden Markov Model (HMM)) [7]. One of the
most popular approaches, known as bag-of-frames (BOF) approach
[8, 9] is used as a baseline in the DCASE challenge, and exploits
the long-term statistical distribution (by GMM) of the short-term
MFCCs.

Besides the DCASE challenge, nonnegative matrix factoriza-
tion (NMF) was recently exploited for sound event detection in real
life recordings [10]; recurrent neural networks (RNN) were inves-
tigated for polyphonic sound event detection in real life recordings
[11]; and deep neural networks (DNN) have been developed for
sensing acoustic environment [12]. It would be interesting to note
that while DNNs [13, 14] were recently applied with great success
to many different audio, visual and multimedia tasks, it was less
investigated within the DCASE 2013 challenge and one of the rea-
sons would be the lack of a substantial amount of labeled data for
training.

This paper aims to study the use of well-established low-
level acoustic feature representations and different machine learning
techniques, including DNN-based methods and SVM, for the ASC
task. While most existing approaches extract an acoustic feature
vector for each short-term audio frame, then perform a frame-based
classification based either on BOF over GMMs [8, 9] or simple ma-
jority voting [15, 16, 7], we investigate the use of an another feature
representation, i.e. a single vector for a whole audio scene, aim-
ing an extremely compact representation that greatly reduces the
computational cost for the whole ASC system, since the number
of examples to be used to train the classifier is drastically reduced.
We evaluate the use of this compact feature with SVM and MLP on
both DCASE 2013 and DCASE 2016 datasets and the performance
are more or less equivalent to a frame-based approach with major-
ity voting strategy. Furthermore, it results in classification accuracy
comparable to the best systems participating in the DCASE 2013
challenge.

The rest of the paper is organized as follows. In Section 2 we
present the general framework which involves different approaches
for feature extraction and classification. Experiment results on
DCASE dataset obtained by our approaches and some state-of-the-
art methods are discussed in Section 3. We finally conclude in Sec-
tion 4.
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Figure 1: General workflow of the acoustic scene classification
framework.

2. ACOUSTIC SCENE CLASSIFICATION FRAMEWORK

The general workflow of an ASC system is usually divided into
two major steps as shown in Fig. 1. In the first, the feature ex-
traction step, various types of hand-crafted representations have
been considered in the literature such as chroma, pitch, spectro-
grams, zero-crossing rate, and linear predictive coding coefficients
[1]. Among them, features based on Mel-frequency Cepstrum Co-
efficients (MFCCs) computed for each short-time frame are ar-
guably the most common one, as it can be seen by the DCASE
2013 Challenge, where out of 12 systems submitted, at least 7 in-
volved MFCCs [1]. More recent DNN-based approaches usually
attempt to learn higher level features from these low-level signal
representations [12, 17]. In the classification step, popular classi-
fiers include SVM and GMM [7]. In the following, we will first
describe the standard Mel-log-spectrogram, as the low-level feature
used in this work, and the proposed compact representation from it
in Section 2.1. We then briefly present some exploited classification
approaches in Section 2.2. The choice of hyperparameters for both
feature extraction and classifiers is discussed in Section 2.3.

2.1. Feature extraction

The time domain audio signal x(n) is first transformed into the
frequency domain by means of the short-term Fourier transform
(STFT) as

STFT{x}(m,ω) =

+∞∑
n=−∞

x(n)w(n−mL)e−jωn (1)

where w(n) is a window function (which is Hanning window in our
implementation), m denotes frame index and L the frame shift. The
spectrogram is then defined as

S(m,ω) = | STFT{x}(m,ω)|2 (2)

In our DNN-based system, we use spectrogram with a logarith-
mic amplitude scale (named log-spectrogram) as the frame input
feature which is computed as

FLog-spec(m,ω) = log(S(m,ω)). (3)

In our other systems, we first map the spectrogram S(m,ω) into the
auditory-motivated Mel frequency scale - denoted by MS(m,ω),
then transform it into logarithmic scale as

FMel-log-spec(m,ω) = log(MS(m,ω)). (4)

Note that with the CNN-based system, we use the raw log-
spectrogram as the input feature in order to give flexibility for the
CNN to learn a higher level feature representation optimized for the
ASC task. For SVM-based systems we have tested four different
features: spectrogram, log-spectrogram, Mel-log-spectrogram, and
MFCC, and found that the two last ones result in a very similar

ASC performance that outperforms the two first ones. As the Mel-
log-spectrogram is simpler to compute than the MFCC, we use it as
the main acoustic feature in this paper. Finally, we propose to aver-
age the feature vectors for all frames so as to present a whole audio
example by an extremely compact feature vector whose entries are
computed as

fAvg−mel−log−spec(ω) =
1

M

M∑
m=1

FMel-log-spec(m,ω). (5)

This type of averaging of features is very straight-forward and
has already been used in past works [18][19] in ASC. However, no
submitted systems in the DCASE 2013 Challenge made use of it,
misleadingly pointing to a lack of efficiency of this method.

2.2. Classification approaches

2.2.1. Support vector machine

SVM has been known as one of the most popular classifiers for
many different tasks. It was also widely used in the DCASE 2013
challenge [7]. In our work, we used SVM as a benchmark classi-
fier to evaluate the effectiveness of different features, as mentioned
in Section 2.1, as well as to obtain the optimal choice of hyperpa-
rameters (e.g. the window size and the number of Mel-frequency
coefficients) for the considered task.

In our implementation, we train SVMs using a coordinate de-
scent algorithm [20] and following a one-vs-the-rest scheme to per-
form classification of multiple classes [21]. We have tested SVM
with linear kernel and Gaussian radial basis function (RBF) kernel
and found that the linear kernel works slightly better than RBF ker-
nel for the DCASE 2013 dataset.

2.2.2. Multilayer Perceptron

Multilayer Perceptron (MLP) is a fully connected feedforward arti-
ficial neural network architecture that maps sets of input data onto
a set of appropriate outputs. It can be seen as a logistic regres-
sion classifier where the input is first transformed using a non-linear
transformation [22, 23]. A typical set of equations for an MLP is the
following. Layer k computes an output vector hk using the output
hk−1 of the previous layer, starting with the input x = h0,

hk = f(Wkhk−1 + bk) (6)

where bk denotes a vector of offsets (or biases) and Wk a matrix
of weights. The function f is called the activation function and it is
applied element-wise. Common options for it are sigmoid function,
hyperbolic tangent, and rectified linear unit (ReLU). The latter, i.e.
f(x) = max(0, x), was used to obtain the results reported in this
document.

The top layer output is used for making a prediction and is com-
bined with the groundtruth label into a loss function. We use soft-
max as the classification layer and the log-likelihood loss function
regularized with `1 and `2 penalties. This cost function is then opti-
mized using mini-batch stochastic gradient descent (SGD) with an
adaptive learning rate [24] and dropout is performed between the
hidden layers [25].
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2.2.3. Convolutional Neural Network

Convolutional Neural Network (CNN) is a type of neural network
designed to exploit the redundancy and correlation between neigh-
bour units. It has gained great success in different fields such as
image and video recognition, natural language processing, speech
recognition, etc., [14]. This motivates us to investigate the use of
CNN for the ASC task in this work.

We trained CNNs over the log-spectrogram of the signals with a
structure of vertical filters, i.e. the frequency bins can also be inter-
preted as a CNN channel (as in RGB channels for images) instead
of a dimension and the convolution is ran over the time axis. This
type of structure was proposed for music recommendation in Spo-
tify1 and is justifiable by the fact that an audio “pattern” detected in
a high-frequency region is usually different from that same pattern
in a low-frequency region. Thus it is desirable to model the vertical
filters to extract more meaningful information from the spectral rep-
resentation. More details about the implemented CNN architecture
can be found in Section 3.1.

2.3. Hyperparameter optimization

The choice of hyperparameters in each step of the ASC system or
in any machine learning task can significantly affect the final clas-
sification result. Such hyperparameters are e.g. the window length
and hop length in the STFT computation for feature extraction, the
regularization parameter for SVM, the number of hidden units in an
MLP, and the step size for the SGD algorithm in DNN based meth-
ods. The conventional strategy of tuning these parameters manually
would not be feasible as it requires a great number of trials so that
all parameters can be optimized together. Thus, in this work we in-
corporate a Bayesian optimization [27] method to find these param-
eters altogether. The algorithm models the generalization accuracy
of a classifier as a function of the corresponding parameters, and
finds the optimal parameters that maximize the expected accuracy
given the observed dataset.

In our implementation, we use Hyperopt [28], a Python library
for optimizing hyperparameters in machine learning algorithms,
with the Tree of Parzen Estimators (TPE) [29], an algorithm that
falls into the class of sequential model-based optimization (SMBO)
[30] algorithms. The TPE algorithm performs cross-validation with
the development datasets of DCASE 2013 and DCASE 2016 and
finds an optimal set of hyperparameter values. It is interesting to
note that the optimal window size for STFT computation found by
the TPE algorithm is quite long, i.e. about half of a second. This
can be explained by the fact that the acoustic events are more spread
in time compared to e.g. speech which is very localized so as the
window length used for STFT is usually much smaller.

3. EXPERIMENTS

We evaluate the ASC performance of our four implementing sys-
tems with the benchmark DCASE 2013 dataset, which allows
to compare with the state-of-the-art approaches participating in
the challenge, in Section 3.1. We then present the result with
DCASE 2016 dataset in Section 3.2. Our first system (named Pro-
posed SVM-A) uses an extremely compact feature as the Mel-log-
spectrogram coefficients averaged for all frames, and SVM with
a linear kernel as classifier. The second system (named Proposed
SVM-V) performs frame classification by SVM with a linear kernel,

1http://benanne.github.io/2014/08/05/spotify-cnns.html

then majority voting in the end. The third system (named Proposed
MLP) takes the compact averaged Mel-log-spectrogram as input,
learns an intermediate feature representation by MLP, then classi-
fies by softmax as the last layer of the MLP. The fourth system
(named Proposed CNN) takes log-spectrogram as low-level input
feature, learns higher feature representations by CNN layers, then
classifies by softmax.

3.1. Results with the DCASE 2013 dataset

The DCASE 2013 dataset consists of 30-second audio segments be-
longing to 10 classes. Each class has 10 segments in the develop-
ment set and 10 other examples in the test set [31].

The ASC performance was evaluated in terms of the classifica-
tion accuracy, averaged over all classes, and shown in Table 2. Note
that as we did not have access to the groundtruth labels of the test
set at the time of these experiments, we evaluated our systems aver-
aging with the standard 5-fold cross-validation on the development
set only, while results for most other approaches in the table are
obtained with the test set [7]. Some hyperparameters for each sys-
tems were found by the Bayesian optimization method presented in
Section 2.3. More detailed settings for each system are as follows.
The window length for the STFT was set by 0.57 seconds and 0.41
seconds for the SVM-A and SVM-V system, respectively, the num-
ber of Mel-frequency coefficients is about 1900, the regularization
parameter C in SVM for SVM-A and SVM-V were 0.98 and 0.62,
respectively. MLP had one hidden layer with 677 units, dropout rate
and learning rate for parameter training was set by 0.08 and 0.011,
respectively. CNN had 3 convolutional layers, the number of filters
for each layer are 50, 29, and 19, respectively, and the max-pooling
ratios between layers are 3, 4, and 3.

As it can be seen, the two systems based on SVMs outperform
the ones based on NNs. This can be explained by the fact that the
dataset may be not large enough for training DNNs directly. Three
of our proposed systems (SVM-A, SVM-V, and MLP) achieve com-
parable performance with some of the best performing approaches
in the DCASE 2013 Challenge - as we suppose that there is not
much difference between development set and the test set. More-
over, we achieve higher accuracy than Li et al. [16] in the same
development set. Finally, we note that the proposed feature, which
is extremely compact so as to represent a whole 30-second audio
segment by just a single vector, can be sufficient for the classifi-
cation as the SVM-A and MLP obtained 75% and 72% accuracy,
respectively.

3.2. Results with the DCASE 2016 dataset

The DCASE 2016 dataset is structured in a similar way as the
DCASE 2013 dataset. However the number of acoustic classes is
extended to 15, and the number of examples for each class is sig-
nificantly enlarged to 78 for the development set and 26 for the test
set.

The results for development set obtained by our four systems
are shown in Table 2, where the best performance of 80% is
achieved by the SVM-A system with a window length of 0.42 sec-
onds and a hop size of 0.14 seconds for the STFT computation. This
result confirms again the benefit of using the proposed compact fea-
ture representation and the use of a long window for the spectral
transformation. The MLP, which obtains similar performance as
the baseline, had two hidden layers with 66 and 199 units, respec-
tively, SGD was used for parameter training with learning rate of
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Method Acoustic feature Classifier Accuracy
Baseline MFCC ”bag-of-frames” GMM 55%
Geiger et al. [15] Diverse features SVM + majority voting 69%
Roma et al. [26] MFCC with Recurrence Quantification Analysis SVM 76%
Proposed SVM-A Averaged Mel-log-spectrogram Linear SVM 75%
Proposed SVM-V Frame Mel-log-spectrogram Linear SVM + majority voting 78%
Proposed MLP Averaged Mel-log-spectrogram MLP with softmax as classification layer 72%
Proposed CNN Log-spectrogram CNN with softmax as classification layer 62%

Table 1: Acoustic scene classification results with DCASE 2013 test dataset (for state-of-the-art approaches) and development dataset (for
our proposed approaches). Note that other submitting systems resulting in less classification accuracy are not mentioned in the table.

Method Acoustic feature Classifier Accuracy
Baseline MFCC ”bag-of-frames” GMM 75%
Proposed SVM-A Averaged Mel-log-spectrogram Linear SVM 80%
Proposed SVM-V Frame Mel-log-spectrogram Linear SVM + majority voting 78%
Proposed MLP Averaged Mel-log-spectrogram MLP with softmax as classification layer 75%
Proposed CNN Log-spectrogram CNN with softmax as classification layer 59%

Table 2: Acoustic scene classification results with DCASE 2016 development dataset.
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Figure 2: Confusion matrix of the SVM-A method in the develop-
ment set of the DCASE 2016 database after a 4-fold cross-validation
over 78 samples of each class.

0.003 and batch size of 100, weights for `1 and `2 penalties were
10−5 and 10−4, respectively. The CNN, with the same configura-
tion used for the DCASE 2013 dataset, still resulted in the lowest
performance. These four systems will also be tested with the test
set for participating in the DCASE 2016 challenge.

The confusion matrix for SVM-A is shown in Fig. 2, where
rows are groundtruth, columns are the inferred class label, and val-
ues are number of the classified acoustic scene. As it can be seen,
some environments containing a specific type of noise (such as car,
metro station, forest path) are quite easy to recognize, while some

others (such as home, residential area, park) are quite confusing.

4. CONCLUSION

In this article we present several approaches for the ASC task, tar-
geting on fast systems working with very compact feature repre-
sentations so that ASC can be implemented e.g. in smartphones.
We investigate the use of Bayesian optimization for hyperparameter
optimization and find its benefit in e.g. choosing the optimal win-
dow length for STFT or setting DNN parameters. By evaluating on
benchmark DCASE datasets, we find that (1) a long window size
for spectral transformation is more relevant for the environmental
acoustic scenes, (2) a very compact feature representation by long-
term temporal averaging of Mel-log-spectrogam coefficients would
be sufficient for the task compared to more complicated approaches,
and (3) similar accuracies are found for the two datasets, possibly
owing to the similarities between these datasets or to the robustness
of the proposed systems. Finally, it is worth noting that DNN ap-
proaches have not reached the same performance of the more classi-
cal SVM based systems so far. Thus future work would be devoted
to investigate transfer learning strategies for DNN based systems
where part of the DNN can be initially learned by a large amount of
external audio data.
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M. Wojnarski, and J. Swietlicka, “Report of the ISMIR 2011
contest: music information retrieval,” in Foundations of Intel-
ligent Systems. Springer Berlin Heidelberg, 2011, pp. 715–
724.

[6] V. Peltonen, J. Tuomi, A. Klapuri, J. Huopaniemi, and
T. Sorsa, “Computational auditory scene recognition,” in
Acoustics, Speech, and Signal Processing (ICASSP), 2002
IEEE International Conference on, vol. 2. IEEE, 2002, pp.
II–1941.

[7] D. Stowell, D. Giannoulis, E. Benetos, M. Lagrange, and
M. D. Plumbley, “Detection and classification of acous-
tic scenes and events,” Multimedia, IEEE Transactions on,
vol. 17, no. 10, pp. 1733–1746, 2015.

[8] J.-J. Aucouturier, B. Defreville, and F. Pachet, “The bag-of-
frames approach to audio pattern recognition: A sufficient
model for urban soundscapes but not for polyphonic music,”
The Journal of the Acoustical Society of America, vol. 122,
no. 2, pp. 881–891, 2007.

[9] M. Lagrange, G. Lafay, B. Defreville, and J.-J. Aucouturier,
“The bag-of-frames approach: a not so sufficient model for
urban soundscapes,” The Journal of the Acoustical Society of
America, vol. 138, no. 5, pp. EL487–EL492, 2015.

[10] A. Mesaros, T. Heittola, O. Dikmen, and T. Virtanen, “Sound
event detection in real life recordings using coupled ma-
trix factorization of spectral representations and class activ-
ity annotations,” in Acoustics, Speech and Signal Processing
(ICASSP), 2015 IEEE International Conference on. IEEE,
2015, pp. 151–155.

[11] G. Parascandolo, H. Huttunen, and T. Virtanen, “Recurrent
neural networks for polyphonic sound event detection in real
life recordings,” in 2016 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP). IEEE,
2016, pp. 6440–6444.

[12] N. D. Lane, P. Georgiev, and L. Qendro, “Deepear: Robust
smartphone audio sensing in unconstrained acoustic environ-
ments using deep learning,” in Proceedings of the 2015 ACM
International Joint Conference on Pervasive and Ubiquitous
Computing, ser. UbiComp ’15. ACM, 2015, pp. 283–294.

[13] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A.-R. Mohamed,
N. Jaitly, A. Senior, V. Vanhoucke, P. Nguyen, T. N. Sainath,
et al., “Deep neural networks for acoustic modeling in speech
recognition: The shared views of four research groups,” Sig-
nal Processing Magazine, IEEE, vol. 29, no. 6, pp. 82–97,
2012.

[14] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature,
vol. 521, no. 7553, pp. 436–444, 2015.

[15] J. T. Geiger, B. Schuller, and G. Rigoll, “Recognising acous-
tic scenes with large-scale audio feature extraction and SVM,”
IEEE AASP Challenge: Detection and Classification of
Acoustic Scenes and Events, Tech. Rep, 2013.

[16] D. Li, J. Tam, and D. Toub, “Auditory scene classification us-
ing machine learning techniques,” IEEE AASP Challenge on
Detection and Classification of Acoustic Scenes and Events,
2013.

[17] Y. Bengio, A. Courville, and P. Vincent, “Representation
learning: A review and new perspectives,” Pattern Analy-
sis and Machine Intelligence, IEEE Transactions on, vol. 35,
no. 8, pp. 1798–1828, 2013.

[18] K. J. Piczak, “Esc: Dataset for environmental sound classifi-
cation,” in Proceedings of the 23rd ACM international confer-
ence on Multimedia. ACM, 2015, pp. 1015–1018.

[19] J. Salamon, C. Jacoby, and J. P. Bello, “A dataset and taxon-
omy for urban sound research,” in Proceedings of the 22nd
ACM international conference on Multimedia. ACM, 2014,
pp. 1041–1044.

[20] C.-J. Hsieh, K.-W. Chang, C.-J. Lin, S. S. Keerthi, and S. Sun-
dararajan, “A dual coordinate descent method for large-scale
linear SVM,” in Proceedings of the 25th international confer-
ence on Machine learning. ACM, 2008, pp. 408–415.

[21] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J.
Lin, “LIBLINEAR: A library for large linear classification,”
The Journal of Machine Learning Research, vol. 9, pp. 1871–
1874, 2008.

[22] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feed-
forward networks are universal approximators,” Neural net-
works, vol. 2, no. 5, pp. 359–366, 1989.

[23] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning
representations by back-propagating errors,” Cognitive mod-
eling, vol. 5, p. 3, 1988.

[24] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient
methods for online learning and stochastic optimization,” The
Journal of Machine Learning Research, vol. 12, pp. 2121–
2159, 2011.

[25] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and
R. R. Salakhutdinov, “Improving neural networks by pre-
venting co-adaptation of feature detectors,” arXiv preprint
arXiv:1207.0580, 2012.

[26] G. Roma, W. Nogueira, P. Herrera, and R. de Boronat, “Recur-
rence quantification analysis features for auditory scene clas-
sification,” IEEE AASP Challenge: Detection and Classifica-
tion of Acoustic Scenes and Events, Tech. Rep, 2013.

[27] J. Snoek, H. Larochelle, and R. P. Adams, “Practical bayesian
optimization of machine learning algorithms,” in Advances in
neural information processing systems, 2012, pp. 2951–2959.

[28] J. Bergstra, D. Yamins, and D. D. Cox, “Hyperopt: A python
library for optimizing the hyperparameters of machine learn-
ing algorithms,” in Proceedings of the 12th Python in Science
Conference. Citeseer, 2013, pp. 13–20.

[29] J. S. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl, “Al-
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