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ON THE LETAC-MASSAM CONJECTURE ON CONES QAn

By Piotr Graczyk,∗1) Hideyuki Ishi,∗2) Salha Mamane,∗3) and Hiroyuki Ochiai∗4)

Abstract: We prove, for graphical models for nearest neighbour interactions, a conjec-

ture stated by Letac and Massam in 2007. Our result is important in the analysis of Wishart

distributions on cones related to graphical models and in its statistical applications.

Key words: Laplace transform; power function; analysis on cones; Wishart distribution;

graphical model.

1. Preliminaries

1.1. Introduction In this note, we solve on

an important class of cones, the conjecture stated by

Letac and Massam in [7] p.1314, and called ”Letac-

Massam Conjecture” in [1]. This conjecture is of fun-

damental importance in harmonic analysis of Riesz

and Wishart measures on convex cones connected to

graphs and in its applications to modern multivariate

statistics. More generally, the Conjecture of Letac-

Massam is closely related to an important problem

in a wide range of analysis on cones:

(P) Is the Laplace transform of a product of powers

of given polynomials equal to a product of powers of

some polynomials?

Let n ≥ 2. We denote by Sym(n,R) the vec-

tor space of real symmetric n × n matrices and by

Sym+(n,R) the cone of symmetric positive definite

matrices. Let G be a graph with vertices 1, 2, . . . , n

and edges E. Let ZG be the subspace of Sym(n,R)
containing matrices z with zij = 0 if {i, j} ̸∈ E.

Cones PG = Sym+(n,R) ∩ ZG and their dual cones

QG are basic objects of graphical model theory ([5],

[7]), one of the most important parts of contempo-

rary statistics, including big data statistics. We refer

to [5] and [7] for all the notions and notations not ex-
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plained in detail in this paper.

We show that the Letac-Massam conjecture is

true on the cones QG where

G = An = 1− 2− · · · − n.

This is a fundamental class of non-homogeneous

cones appearing in the statistical theory of graphi-

cal models [5], corresponding to the practical model

of nearest neighbour interactions. In the Gaussian

character (X1, X2, . . . , Xn), non-neighbours Xi, Xj ,

|i−j| > 1 are conditionally independent with respect

to other variables.

According to [7, Corollary 3.1], the Letac-

Massam Conjecture is true on the cones QA4 and

PA4 , but these results are “obtained by a nontrivial

and long computation” and the proofs are omitted.

[7] states that for n = 5 “calculations are terrify-

ing.” Our method of proof is simple and based on

methods of [4]: triangular changes of variables on

QAn and using natural “future” and “past” power

functions δ
(M)
s and ∆

(M)
s on QAn and on PAn . Our

method also applies to the cone PA4 .

1.2. Letac-Massam Conjecture

The Letac-Massam Conjecture is a conjecture on the

Laplace transform of functions η 7→ H(α, β, η), η ∈
QAn , α = (α1, . . . , αn−1), β = (β2, . . . , βn−1), intro-

duced in [7], cf. (2) below. If needed, we will use

a more precise notation Hn for the function H on

QAn . Let π denote the projection from Sym+(n,R)
onto the cone QAn and let µAn(dη) be the reference

measure on the cone QAn , defined by (3) below. The

Letac-Massam conjecture on the cone QAn says that

there exists Cα,β > 0 such that∫
QAn

e− tr(yη)H(α, β, η)dµAn
(η)(1)

= Cα,βH(α, β, π(y−1)) (y ∈ PAn)
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if and only if (α, β) ∈ A, where A =
n−1
∪

M=2
AM and

the sets AM are defined by the following conditions

(C) and (I):

(C) αj = βj+1 if 1 ≤ j ≤ M − 2, and αj = βj if

M + 1 ≤ j ≤ n− 1,

(I) αj > 1
2 for all j = 1, . . . , n − 1, and αM−1 +

αM − βM > 0.

The sufficiency of the condition (α, β) ∈ A was

showed in [7] and the necessity conjectured and an-

nounced true for n = 4. For n = 2 and n = 3 the

equivalence of (1) with (α, β) ∈ A is well known.

The necessity of (I) is evident (consider diagonal y ∈
PAn , cf. Lemma 2.1 below), so the necessity of (C)

is to be proved for n ≥ 4.

In the sequel, the equality (1) will be referred

to as the Letac-Massam formula on QAn and the

conditions (C) as Letac-Massam conditions. In this

note we prove

Theorem 1.1. Let n ≥ 4. The formula (1)

implies conditions (C).

1.3. Letac-Massam Conjecture for power

functions δ(M)
s and ∆(M)

s Now we introduce the

power functions δ
(M)
s on QAn and ∆

(M)
s on PAn . For

all 2 ≤ M ≤ n− 1,

δ(M)
s (η)=

∏M−1
i=1 |η{i:i+1}|si

∏n
i=M+1 |η{i−1:i}|si∏M−1

i=2 η
si−1

ii η
sM−1−sM+sM+1

MM

∏n−1
i=M+1 η

si+1

ii

∆(M)
s (y)=

∏
i<M

|y{1:i}|si−si+1 |y|sM
∏
i>M

|y{i:n}|si−si−1 ,

where, for I ⊂ {1, . . . , n}, the matrix AI is the sub-

matrix of A indexed by I, and the symbol {a : b}
with 1 ≤ a ≤ b ≤ r denotes the set of i for which

a ≤ i ≤ b. The relation δ
(M)
s (π(y−1)) = ∆

(M)
−s (y) is

proved in [4]. Define ri = αi+1 − βi and pi = αi−βi

for all 2 ≤ i ≤ n− 1. We have, as defined in [7],

H(α, β, η) =

∏n−1
i=1 |η{i:i+1}|αi∏n−1

i=2 ηβi

ii

(2)

so that H(α, β, η) = δ
(M)
s (η)

∏M−1
i=2 ηriii

∏n−1
i=M+1 η

pi

ii ,

where si = αi, for all 1 ≤ i ≤ M − 1; si = αi−1, for

all M+1 ≤ i ≤ n and sM = αM−1+αM −βM . This

implies rM = sM − sM+1 and pM = sM − sM−1. We

notice that s = (si) depends on M , whereas neither

r = (ri) nor p = (pi) does.

Let φ(y) = π(y−1) and

(3) µAn(dη) =
n−1∏
i=1

|η{i,i+1}|−3/2
∏

i ̸=1,n

ηiidη

be the reference measure used in [7], where dη is the

Lebesgue measure.

The Letac-Massam formula (1) is equivalent, for

each 2 ≤ M ≤ n− 1, to∫
QAn

e− tr(yη)δ(M)
s (η)

M−1∏
i=2

ηriii

n−1∏
i=M+1

ηpi

ii dµAn(η)

= Cα,β∆
(M)
−s (y)

M−1∏
i=2

φ(y)riii

n−1∏
i=M+1

φ(y)pi

ii .(4)

The Letac-Massam conditions (C) are equivalent to

the following n− 2 alternative conditions:

(5) r2 = · · · = rM−1 = pM+1 = · · · = pn−1 = 0

for an M ∈ {2, . . . , n− 1}, or, in other words, to the

equality H(α, β, ·) = δ
(M)
s for an M ∈ {2, . . . , n−1}.

A positive answer to the Letac-Massam Con-

jecture implies that the natural generalized power

functions on QAn are the families δ
(M)
s (η), moti-

vated by analysis on symmetric and homogeneous

cones, with n-dimensional parameter s. Power func-

tions H(α, β, η), η ∈ QAn are motivated by advanced

graph theory, more exactly by cliques and separators

formalism. The parameters α, β have dimension 2n−
3. Even if we start with a larger family H(α, β, η),

in order to have the property (P) satisfied, we boil

down to the families δ
(M)
s (η), with M = 2, . . . , n−1.

Moreover, the families δ
(1)
s (η) and δ

(n)
s (η) are ”for-

gotten” in the graph theory approach of [7].

2. Proof We are going to prove the Letac-

Massam conjecture by induction on n. The proof

of the initiation part (n = 4) and the heredity part

(n ≥ 5) are the same, so they are given together. We

use extensively the bijections Ψn and Ψ̃n between

R+×R×QAn−1
and QAn

and the bijections Φn and

Φ̃n between R+ ×R×PAn−1 and PAn , studied in [4]

(see Appendix for more information).

First, in the following lemma, we express, for

each M , the constant Cα,β as a function of M, s =

(si), r = (ri) and p = (pi). This is convenient and

needed in further study of the formula (4).

Lemma 2.1. If the formula (4) holds for all

y ∈ PAn then we have

Cα,β = π(n−1)/2Γ(sM )
{∏
i ̸=M

Γ(si −
1

2
)
}

(6)

×
M−1∏
i=2

Γ(si + ri)

Γ(si)

n−1∏
i=M+1

Γ(si + pi)

Γ(si)
.
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If y is diagonal, then (4) holds if and only if si >
1
2

for i ̸= M , sM > 0, si + ri > 0 for 2 ≤ i < M and

si + pi > 0 for M < i ≤ n− 1.

Proof. We take y diagonal. The proof is a by-

product of the Step 1 of the main proof.

Step 1 (descent in Letac-Massam for-

mula, from QAn to QAn−1). Let n ≥ 4, α =

(α1, . . . , αn−1) and β = (β2, . . . , βn−1).

Suppose that the Letac-Massam formula (1) holds for

Hn(α, β, ·) on QAn . Then the Letac-Massam for-

mula holds on QAn−1 for:

(i) Hn−1((α1, . . . , αn−2), (β2, . . . , βn−2), ·) and the

graph 1− · · · − (n− 1)

(ii) Hn−1((α2, . . . , αn−1), (β3, . . . , βn−1), ·) and the

graph 2− · · · − n.

Proof. Let us prove (i). We choose 2 ≤ M ≤ n−
2. For all y ∈ PAn , let, successively, y = Φ̃n(a

′, b′, z)

and z = Φn−1(a
′′, b′′, Z). We easily check that for

2 ≤ i ≤ n− 1, φ(y)ii = φ(z)ii = φ(Z)ii, see Lemma

4.2 (by our convention, z is indexed by 1, . . . , n − 1

and Z is indexed by 2, . . . , n − 1). Integration on

QAn with two successive changes of variables η =

Ψ̃n(µ
′, ν′, ξ) and then ξ = Ψn−1(µ

′′, ν′′,Ξ) gives∫
QAn−2

e− tr(ZΞ)δ
(M)
(s2,...,sn−1)

(Ξ)
M−1∏
i=2

Ξri
ii(7)

×
n−1∏

i=M+1

Ξpi

ii dµAn−2(Ξ)

= C
(n−2)
α,β ∆

(M)
−(s2,...,sn−1)

(Z)
M−1∏
i=2

φ(Z)riii

n−1∏
i=M+1

φ(Z)pi

ii ,

where C
(n−2)
α,β =

Cα,β

πΓ(s1−
1
2 )Γ(sn−

1
2 )

and the rows

and columns of Ξ and Z are numbered 2, . . . , n −
1. Now, we apply one more change of variable

Ξ = Ψ̃n−2(µ, ν,Θ) in formula (7) and we set Z =

Φ̃n−2(a, 0, T ). The lines and columns of Θ and T

are numbered 2, . . . , n− 2. Let F (µ, ν,Θ) be the in-

tegrand. We first compute J =
∫∞
−∞

∫∞
0

Fdµdν =

2
∫∞
0

∫∞
0

Fdµdν. Using the change of variables u =

aµ, t = aΘn−2,n−2ν
2 we get

J = 2a−pn−1

∫ ∞

0

∫ ∞

0

e−(aµ+aΘn−2,n−2ν
2)

× µsn−1−3/2(aµ+ aΘn−2,n−2ν
2)pn−1dµdν

= a−(sn−1+pn−1)Θ
−1/2
n−2,n−2

×
∫ ∞

0

∫ ∞

0

e−(u+t)usn−1− 3
2 t−

1
2 (u+ t)pn−1dudt.

Now, using the change of variables (u, v) = (u, u+t),

we get

J = a−(sn−1+pn−1)Θ
−1/2
n−2,n−2

×
∫ ∞

0

(∫ v

0

usn−1− 3
2 (v − u)−

1
2 du

)
e−vvpn−1dv

= a−(sn−1+pn−1)Θ
−1/2
n−2,n−2

×B(sn−1 −
1

2
,
1

2
)Γ(sn−1 + pn−1),(8)

where, in the integral with respect to du we made a

change of variable x = u/v. We get∫
QAn−3

e− tr(TΘ)δ
(M)
(s2,...,sn−2)

(Θ)

×
M−1∏
i=2

Θri
ii

n−2∏
i=M+1

Θpi

ii dµAn−3(Θ)

= C
(n−3)
α,β ∆

(M)
−(s2,...,sn−2)

(T )

×
M−1∏
i=2

φ(T )riii

n−2∏
i=M+1

φ(T )pi

ii ,(9)

where

C
(n−3)
α,β =

Cα,β

π
3
2Γ(s1 − 1

2 )Γ(sn − 1
2 )Γ(sn−1 − 1

2 )

× Γ(sn−1)

Γ(pn−1 + sn−1)
.(10)

Recall that throughout the paper Cα,β denotes

the constant from formulas (1) and (4). By

the same argument as to obtain formula (7), we

observe that the Letac-Massam formula for the

function Hn−1((α1, . . . , αn−2), (β2, . . . , βn−2), ·) on

QAn−1 and the graph 1−2−· · ·−(n−1) is equivalent

to formula (9). This finishes the proof of (i).

By a similar “mirror-like” argument with the

change of variables Ξ = Ψn−2(µ, ν,Θ) in (7), we get

the Letac-Massam formula for Hn−1((α2, . . . , αn−1),

(β3, . . . , βn−1), ·) and the graph 2 − · · · − n, and we

prove part (ii) of Step 1.

Proof of Lemma 2.1. For y diagonal, formula

(10) leads by induction to formula (6), observing that

the last equation we get is a−sM
∫∞
0

e−axxsM dx
x =

C
(1)
α,βa

−sM , so that C
(1)
α,β = Γ(sM ).

Step 2 (induction step). The Letac-Massam

conjecture on QAn−1 implies the Letac-Massam con-

jecture on QAn .

Proof. Let n ≥ 4. Suppose that the Letac-

Massam formula (1) holds for some α and β and

suppose that the Letac-Massam conjecture is true
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on QAn−1 .

For n ≥ 5, we use Step 1 and the induction

hypothesis. Thus one of the following n−3 conditions

has to be satisfied:

r2 = · · · = rM−1 = pM+1 = · · · = pn−2 = 0,

for an M ∈ {2, · · · , n− 2}, and, simultaneously, one

of the following n− 3 ”shifted” conditions has to be

satisfied:

r3 = · · · = rM = pM+2 = · · · = pn−1 = 0,

for an M ∈ {2, . . . , n − 2}. This implies that either

conditions (5) are satisfied or

(11) p3 = · · · = pn−2 = 0; r3 = · · · = rn−2 = 0.

Let us assume this single remaining case and show

that it also implies conditions (5).

The equality rM = 0 implies sM = sM+1 and

pM = 0 implies sM = sM−1. Also, from pj = rj
for all 3 ≤ j ≤ n − 2, we get s2 = · · · = sM−1 and

sM+1 = · · · = sn−1. Thus, s2 = · · · = sn−1 = s.

In the case (11), using the cofactor formula for Z−1,

equation (7) reduces to

∫
QAn−2

e− tr(ZΞ)δ
(M)
(s,...,s)(Ξ)Ξ

r2
22Ξ

pn−1

n−1, n−1dµAn−2(Ξ)

(12)

= C
(n−2)
α,β |Z|−s

( |Z{3:n−1}|
|Z|

)r2 ( |Z{2:n−2}|
|Z|

)pn−1

.

We apply the second derivative with respect to

Zn−2,n−1 on both sides of (12) and we take

Zn−2,n−1 = 0. Theorem 2.7.1 in [6] ensures that

the derivatives of all orders of the integral (12) can

be computed under the integral sign. We obtain∫
QAn−2

e− tr(ZΞ)δ
(M)
(s,...,s)(Ξ)Ξ

r2
22Ξ

pn−1

n−1, n−1

×Ξ2
n−2,n−1dµAn−2(Ξ)

∣∣
Zn−2,n−1=0

(13)

=
C

(n−2)
α,β

4

∂2

∂Z2
n−2,n−1

∣∣
Zn−2,n−1=0

g(Z),

where g(Z) = |Z|−s
(

|Z{3:n−1}|
|Z|

)r2 ( |Z{2:n−2}|
|Z|

)pn−1

.

Let us change the variables Ξ = Ψ̃n−2(µ̃, ν̃,Θ)

and set Z = Φ̃n−2(a, 0, T ), i.e. Zn−2,n−1 = 0. Sim-

ilarly as in the proof of (9) in Step 1, we find that

the left hand side of (13) is

a−(s+pn−1+1)Γ(s+ pn−1 + 1)B
(
s− 1

2 ,
3
2

)
×

(14)

∫
QAn−3

e− tr(TΘ)δ
(M)
(s,...,s)(Θ)Θr2

22Θn−2,n−2dµAn−3(Θ).

We write 1
4C

(n−2)
α,β D the right hand side of (13) and

we compute D. Denoting S = −(s+ r2 + pn−1) and

h(Z) = |Z|S |Z{3:n−1}|r2 we have

D = |Z{2:n−2}|pn−1
∂2

∂Z2
n−2,n−1

∣∣∣∣∣
Zn−2,n−1=0

h(Z).

We apply formulas

|Z| = Zn−1,n−1|Z{2:n−2}| − Z2
n−2,n−1|Z{2:n−3}|,

|Z|S = (Zn−1,n−1|Z{2:n−2}|)S×

(1− S
Z2
n−2,n−1|Z{2:n−3}|

Zn−1,n−1|Z{2:n−2}|
+ o(Z2

n−2,n−1)).

Thus, for Zn−2,n−1 = 0, we get ∂|Z|S
∂Zn−2,n−1

= 0 and

∂2|Z|S
∂Z2

n−2,n−1
= −2S(Zn−1,n−1|Z{2:n−2}|)S−1|Z{2:n−3}|.

Similarly, |Z{3:n−1}| =
= Zn−1,n−1|Z{3:n−2}| − Z2

n−2,n−1|Z{3:n−3}|

(for n = 5 we set |Z{3:n−3}| = 1) and

∂2|Z{3:n−1}|r2
∂Z2

n−2,n−1

∣∣∣∣∣
Zn−2,n−1=0

=

− 2r2(Zn−1,n−1|Z{3:n−2}|)r2−1|Z{3:n−3}|.

Using Z = Φ̃n−2(a, 0, T ), where the matrix T

is indexed by 2, . . . , n − 2, we obtain Zn−1,n−1 =

a, Z{2:n−2} = T , Z{3:n−2} = T{3:n−2}, |Z{3:n−1}| =
a|T{3:n−2}| and |Z| = a|T |. By Leibniz formula,

D = −2ar2+S−1|T |pn−1+S−1|T{3:n−2}|r2−1

×
(
S|T{3:n−2}||T{2:n−3}|+ r2|T{3:n−3}||T |

)
,

where for n = 5 we set |T{3:n−3}| = 1. Hence, for

Zn−2,n−1 = 0, the right hand side of (13) is

C
(n−2)
α,β

2
a−(s+pn−1+1)|T |−(s+r2+1)|T{3:n−2}|r2−1f(T ),

(15)

where

f(T ) = (s+ r2 + pn−1)|T{3:n−2}||T{2:n−3}|
− r2|T{3:n−3}||T | .

Equating (15) and (14), we obtain, using (10),∫
QAn−3

e− tr(TΘ)δ
(M)
(s,...,s)Θ

r2
22Θn−2,n−2dµAn−3(Θ)
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=
sd(s, r2, T )

s+ pn−1
f(T ),(16)

where

d(s, r2, T ) = C
(n−3)
α,β |T |−(s+r2+1)|T{3:n−2}|r2−1.

Formula (16) is supposed to be true for our

pn−1 = αn−1 − βn−1. It is surely true for pn−1 = 0,

because the Letac-Massam conditions (5) are then

satisfied. Equating (16) for these two values of pn−1,

and noting that by (6) the constant C
(n−3)
α,β does not

depend on pn−1, we get

(s+ r2 + pn−1)|T{3:n−2}||T{2:n−3}| − r2|T{3:n−3}||T |
s+ pn−1

=
(s+ r2)|T{3:n−2}||T{2:n−3}| − r2|T{3:n−3}||T |

s
,

which is equivalent to

(17)

r2pn−1

(
|T{3:n−2}||T{2:n−3}| − |T{3:n−3}||T |

)
= 0,

where for n = 5 we set |T{3:n−3}| = 1. We observe

that |T{3:n−2}||T{2:n−3}| − |T{3:n−3}||T | ̸= 0, for ex-

ample for T such that Tii = 2 for all 2 ≤ i ≤ n − 2,

Ti,i+1 = Ti+1,i = 1 for 2 ≤ i ≤ n − 3 and Tij = 0

for all other i, j (in this case, this expression equals

1). Thus, for n ≥ 5, in the remaining case (11), we

also have r2 = 0 or pn−1 = 0. In both cases we fall

in the Letac-Massam conditions (5) and the proof of

the induction step is finished.

For n = 4, we get formula (7) for M = 2, the

computations are simpler (no use of Leibniz formula

is needed), and no condition s2 = s3 = s appears.

The analogue of formula (16) is

Γ(s3 + p3 + 1)B(s3 −
1

2
,
3

2
)

∫ ∞

0

e−tuus2u
1

u
du

=
C

(2)
α,β

2
(s2 + p3)t

−(s2+1), t > 0.(18)

After substitution of the constant

C
(2)
α,β = π

1
2Γ(s2)Γ(s3 −

1

2
)
Γ(s3 + p3)

Γ(s3)
,

one gets (s3+p3)s2 = s3(s2+p3) equivalent to r2p3 =

0, so r2 = 0 or p3 = 0. We get the Letac-Massam

conditions for QA4 .

Remark 2.2. The expression on the RHS of

(17), i.e. |T{3:n−2}||T{2:n−3}| − |T{3:n−3}||T |, where
T = T{2:n−2} is known in matrix theory. It is treated

in Desnanot-Jacobi identity ([2, Thm 3.12]), called

also Lewis Caroll (or Dodgson’s) identity ([3]) and is

equal to (
∏n−3

i=2 Ti,i+1)
2, the square of the monomial

of the off-diagonal entries.

Remark 2.3. The same method applies in or-

der to prove the Letac-Massam Conjecture on PA4 .

We take M = 2 and apply two changes of variables

Φ4 and Φ̃3 on PA4 and PA3 , see Lemma 4.1. We

obtain an integral on PA2 = Sym+(2,R), which is

the same as the integral on QA2 = Sym+(2,R) in the

proof above. The work on the Letac-Massam Conjec-

ture on PAn for n ≥ 5 is in progress. The analysis

on these cones is more difficult.

Remark 2.4. Our method of differentiating

the Letac-Massam formula with respect to Z12 gives

a simple proof of the “Mellin transform” Lemma 3.1

in [7, p. 1302], announced without proof. However,

instead of the second derivative in Z12, the complete

Taylor expansion in Z12 is needed.

Remark 2.5. Sufficiency of Letac-Massam

conditions follows from Gamma-Siegel integrals, i.e.

formulas for the Laplace transform of δ
(M)
s and

∆
(M)
s , proved in [4], using the triangular changes of

variables from Lemma 4.1.

3. Generalized Letac-Massam Conjec-

ture In the first part of the proof of Theorem 1.1,

we showed that the Letac-Massam formula (1) on

QAn , with M = 2, . . . , n − 1, is equivalent to a

Laplace transform formula (4) on QAn−2 , for a func-

tion δ
(M)
(s2,...,sn−1)

. Next we proved that (4) implies

that the formula is rewritten for an M ′ ∈ {2, . . . , n−
1} with ri = 0 = pj , i = 2, . . . ,M ′ − 1, j = M ′ +

1, . . . , n − 1. Thus, in fact we showed a stronger re-

sult that we call Generalized Letac-Massam Conjec-

ture (GLMC):

Theorem 3.1. Let M ∈ {1, . . . , n}. There

exists a multi-index s ∈ Rn and a constant C >

0 such that for all y ∈ PAn∫
QAn

e− tr(yη)δ(M)
s (η)

M−1∏
i=1

ηriii

n∏
i=M+1

ηpi

ii dµAn(η)

= C∆
(M)
−s (y)

M−1∏
i=1

φ(y)riii

n∏
i=M+1

φ(y)pi

ii

if and only if the formula is rewritten with M ′ ∈
{1, . . . , n} such that ri = 0 = pj , i = 1, . . . ,M ′ −
1, j = M ′ + 1, . . . , n and si >

1
2 , i ̸= M ′, sM ′ > 0.

The GLMC gives a partial answer to the ques-

tion which products of powers of well-defined minors

on QAn have the property (P).
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4. Appendix

4.1. Changes of variables

Lemma 4.1. Let n ≥ 2.

(i) Let Φn : R+ × R × PAn−1 −→ PAn ,

(a, b, z) 7−→ y with

y = A(b)


a 0 · · · 0
0
... z

0

 tA(b), A(b) =


1

b 1
...

. . .

0 . . . 0 1


and let Ψn : R+×R×QAn−1 −→ QAn , (µ, ν, ξ) 7−→ η

with

η = π

tA(ν)


µ 0 · · · 0
0
... ξ

0

A(ν)

.

Then the maps Φn and Ψn are bijections.

(ii) Let Φ̃n : R+ × R × PAn−1 −→ PAn ,

(a, b, z) 7−→ ỹ with

ỹ = tB(b)


0

z
...

0

0 · · · 0 a

B(b), B(b) =


1

0 1
...

. . .

0 . . . b 1

 ,

and let Ψ̃n : R+×R×QAn−1 −→ QAn , (µ, ν, ξ) 7−→ η̃

with

η̃ = π

B(ν)


0

ξ
...

0

0 · · · 0 µ

 tB(ν)

.

Then the maps Φ̃n and Ψ̃n are bijections.

(iii) Let y = Φn(a, b, z) and η = Ψn(µ, ν, ξ).

Then, for all M = 2, . . . , n,

∆(M)
s (y) = as1∆

(M)
(s2,...,sn)

(z)

δ(M)
s (η) = µs1δ

(M)
(s2,...,sn)

(ξ).

Let y = Φ̃n(a, b, z) and η = Ψ̃n(µ, ν, ξ). Then, for

all M = 1, . . . , n− 1,

∆(M)
s (y) = asn∆

(M)
(s1,...,sn−1)

(z)

δ(M)
s (η) = µsnδ

(M)
(s1,...,sn−1)

(ξ).

(iv) If y = Φn(a, b, z) and η = Ψn(µ, ν, ξ), then

tr(yη) = aµ+ aξ22(b+ ν)2 + tr(zξ).

If y = Φ̃n(a, b, z) and η = Ψ̃n(µ, ν, ξ), then

tr(yη) = aµ+ aξn−1,n−1(b+ ν)2 + tr(zξ).

(v) The Jacobian of the change of variables

η = Ψn(µ, ν, ξ) on QAn is JΨn(µ, ν, ξ) = ξ22.

The Jacobian of the change of variables

η = Ψ̃n(µ, ν, ξ) on QAn is JΨ̃n
(µ, ν, ξ) = ξn−1,n−1.

The Jacobians of the changes of variables

y = Φn(a, b, z) or y = Φ̃n(a, b, z) on PAn are equal

to a.

Lemma 4.2. Consider y ∈ PAn .

(i) If y = Φn(a, b, z), then φ(z)jj = φ(y)jj for

j ≥ 2.

(ii) If y = Φ̃n(a, b, z), then φ(z)jj = φ(y)jj for

j ≤ n− 1.

Proof. (i) Note that y = Φn(a, b, z) is ex-

pressed in the form T

(
a

z

)
tT , where T =

A(b) in Lemma 4.1. In general, let M,R, S

be n × n matrices with R upper triangular

and S lower triangular. Then (RMS){j:n} =

R{j:n}M{j:n}S{j:n}. It follows that (y−1){j:n} =

((tT )−1){j:n}(z
−1){j:n}(T

−1){j:n} = (z−1){j:n} for

j ≥ 2 since (T−1){j:n} = Id{j:n} = ((tT )−1){j:n}.

In particular (y−1)jj = (z−1)jj . The proof of (ii) is

similar.


