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ON THE LETAC-MASSAM CONJECTURE ON CONES Q An
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We prove, for graphical models for nearest neighbour interactions, a conjecture stated by Letac and Massam in 2007. Our result is important in the analysis of Wishart distributions on cones related to graphical models and in its statistical applications.

plained in detail in this paper.

We show that the Letac-Massam conjecture is true on the cones Q G where

G = A n = 1 -2 -• • • -n.
This is a fundamental class of non-homogeneous cones appearing in the statistical theory of graphical models [5], corresponding to the practical model of nearest neighbour interactions. In the Gaussian character (X 1 , X 2 , . . . , X n ), non-neighbours X i , X j , |i-j| > 1 are conditionally independent with respect to other variables.

According to [7, Corollary 3.1], the Letac-Massam Conjecture is true on the cones Q A4 and P A4 , but these results are "obtained by a nontrivial and long computation" and the proofs are omitted. [7] states that for n = 5 "calculations are terrifying." Our method of proof is simple and based on methods of [4]: triangular changes of variables on Q An and using natural "future" and "past" power functions δ (M ) s and ∆ (M ) s on Q An and on P An . Our method also applies to the cone P A4 .

Letac-Massam Conjecture

The Letac-Massam Conjecture is a conjecture on the Laplace transform of functions η → H(α, β, η), η ∈ Q An , α = (α 1 , . . . , α n-1 ), β = (β 2 , . . . , β n-1 ), introduced in [7], cf. (2) below. If needed, we will use a more precise notation H n for the function H on Q An . Let π denote the projection from Sym + (n, R) onto the cone Q An and let µ An (dη) be the reference measure on the cone Q An , defined by (3) below. The Letac-Massam conjecture on the cone Q An says that there exists C α,β > 0 such that ∫

QA n e -tr(yη) H(α, β, η)dµ An (η) (1) = C α,β H(α, β, π(y -1 )) (y ∈ P An )

if and only if (α, β) ∈ A, where

A = n-1 ∪ M =2
A M and the sets A M are defined by the following conditions (C) and (I):

(C) α j = β j+1 if 1 ≤ j ≤ M -2, and α j = β j if M + 1 ≤ j ≤ n -1, (I) α j > 1
2 for all j = 1, . . . , n -1, and

α M -1 + α M -β M > 0.
The sufficiency of the condition (α, β) ∈ A was showed in [7] and the necessity conjectured and announced true for n = 4. For n = 2 and n = 3 the equivalence of ( 1) with (α, β) ∈ A is well known. The necessity of (I) is evident (consider diagonal y ∈ P An , cf. Lemma 2.1 below), so the necessity of (C) is to be proved for n ≥ 4.

In the sequel, the equality (1) will be referred to as the Letac-Massam formula on Q An and the conditions (C) as Letac-Massam conditions. In this note we prove Theorem 1.1. Let n ≥ 4. The formula (1) implies conditions (C). 

(M ) s on Q An and ∆ (M ) s on P An . For all 2 ≤ M ≤ n -1, δ (M ) s (η)= ∏ M -1 i=1 |η {i:i+1} | si ∏ n i=M +1 |η {i-1:i} | si ∏ M -1 i=2 η si-1 ii η sM-1-sM +sM+1 M M ∏ n-1 i=M +1 η si+1 ii ∆ (M ) s (y)= ∏ i<M |y {1:i} | si-si+1 |y| sM ∏ i>M |y {i:n} | si-si-1 ,
where, for I ⊂ {1, . . . , n}, the matrix A I is the submatrix of A indexed by I, and the symbol {a : b} with 1 ≤ a ≤ b ≤ r denotes the set of i for which

a ≤ i ≤ b. The relation δ (M ) s (π(y -1 )) = ∆ (M ) -s (y) is proved in [4]. Define r i = α i+1 -β i and p i = α i -β i for all 2 ≤ i ≤ n -1. We have, as defined in [7], H(α, β, η) = ∏ n-1 i=1 |η {i:i+1} | αi ∏ n-1 i=2 η βi ii (2) so that H(α, β, η) = δ (M ) s (η) ∏ M -1 i=2 η ri ii ∏ n-1 i=M +1 η pi ii , where s i = α i , for all 1 ≤ i ≤ M -1; s i = α i-1 , for all M + 1 ≤ i ≤ n and s M = α M -1 + α M -β M . This implies r M = s M -s M +1 and p M = s M -s M -1
. We notice that s = (s i ) depends on M , whereas neither r = (r i ) nor p = (p i ) does.

Let φ(y) = π(y -1 ) and

(3)

µ An (dη) = n-1 ∏ i=1 |η {i,i+1} | -3/2 ∏ i̸ =1,n
η ii dη be the reference measure used in [7], where dη is the Lebesgue measure. The Letac-Massam formula (1) is equivalent, for each 2

≤ M ≤ n -1, to ∫ QA n e -tr(yη) δ (M ) s (η) M -1 ∏ i=2 η ri ii n-1 ∏ i=M +1 η pi ii dµ An (η) = C α,β ∆ (M ) -s (y) M -1 ∏ i=2 φ(y) ri ii n-1 ∏ i=M +1 φ(y) pi ii . (4)
The Letac-Massam conditions (C) are equivalent to the following n -2 alternative conditions:

(5) r 2 = • • • = r M -1 = p M +1 = • • • = p n-1 = 0 for an M ∈ {2, . . . , n -1}, or, in other words, to the equality H(α, β, •) = δ (M ) s
for an M ∈ {2, . . . , n -1}. A positive answer to the Letac-Massam Conjecture implies that the natural generalized power functions on Q An are the families δ (M ) s (η), motivated by analysis on symmetric and homogeneous cones, with n-dimensional parameter s. Power functions H(α, β, η), η ∈ Q An are motivated by advanced graph theory, more exactly by cliques and separators formalism. The parameters α, β have dimension 2n-3. Even if we start with a larger family H (α, β, η), in order to have the property (P) satisfied, we boil down to the families δ (M ) s (η), with M = 2, . . . , n -1. Moreover, the families δ (1) s (η) and δ (n) s (η) are "forgotten" in the graph theory approach of [7].

Proof

We are going to prove the Letac-Massam conjecture by induction on n. The proof of the initiation part (n = 4) and the heredity part (n ≥ 5) are the same, so they are given together. We use extensively the bijections Ψ n and Ψn between R + × R × Q An-1 and Q An and the bijections Φ n and Φn between R + × R × P An-1 and P An , studied in [4] (see Appendix for more information).

First, in the following lemma, we express, for each M , the constant C α,β as a function of M, s = (s i ), r = (r i ) and p = (p i ). This is convenient and needed in further study of the formula (4).

Lemma 2.1. If the formula (4) holds for all y ∈ P An then we have

C α,β = π (n-1)/2 Γ(s M ) { ∏ i̸ =M Γ(s i - 1 2 ) } (6) × M -1 ∏ i=2 Γ(s i + r i ) Γ(s i ) n-1 ∏ i=M +1 Γ(s i + p i ) Γ(s i ) .
If y is diagonal, then (4) holds if and only if

s i > 1 2 for i ̸ = M , s M > 0, s i + r i > 0 for 2 ≤ i < M and s i + p i > 0 for M < i ≤ n -1.
Proof. We take y diagonal. The proof is a byproduct of the Step 1 of the main proof.

Step 1 (descent in Letac-Massam formula, from

Q An to Q An-1 ). Let n ≥ 4, α = (α 1 , . . . , α n-1 ) and β = (β 2 , . . . , β n-1 ). Suppose that the Letac-Massam formula (1) holds for H n (α, β, •) on Q An . Then the Letac-Massam for- mula holds on Q An-1 for: (i) H n-1 ((α 1 , . . . , α n-2 ), (β 2 , . . . , β n-2 ), •) and the graph 1 -• • • -(n -1) (ii) H n-1 ((α 2 , . . . , α n-1 ), (β 3 , . . . , β n-1 ), •) and the graph 2 -• • • -n. Proof. Let us prove (i). We choose 2 ≤ M ≤ n- 2. For all y ∈ P An , let, successively, y = Φn (a ′ , b ′ , z) and z = Φ n-1 (a ′′ , b ′′ , Z). We easily check that for 2 ≤ i ≤ n -1, φ(y) ii = φ(z) ii = φ(Z) ii , see Lemma 4.2 (by our convention, z is indexed by 1, . . . , n -1 and Z is indexed by 2, . . . , n -1). Integration on Q An with two successive changes of variables η = Ψn (µ ′ , ν ′ , ξ) and then ξ = Ψ n-1 (µ ′′ , ν ′′ , Ξ) gives ∫ QA n-2 e -tr(ZΞ) δ (M ) (s2,...,sn-1) (Ξ) M -1 ∏ i=2 Ξ ri ii (7) × n-1 ∏ i=M +1 Ξ pi ii dµ An-2 (Ξ) = C (n-2) α,β ∆ (M ) -(s2,...,s n-1) (Z) M -1 ∏ i=2 φ(Z) ri ii n-1 ∏ i=M +1 φ(Z) pi ii ,
where

C (n-2) α,β = C α,β πΓ(s1- 1 2 )Γ(sn- 1 2 )
and the rows and columns of Ξ and Z are numbered 2, . . . , n -1. Now, we apply one more change of variable Ξ = Ψn-2 (µ, ν, Θ) in formula ( 7) and we set Z = Φn-2 (a, 0, T ). The lines and columns of Θ and

T are numbered 2, . . . , n -2. Let F (µ, ν, Θ) be the in- tegrand. We first compute J = ∫ ∞ -∞ ∫ ∞ 0 F dµdν = 2 ∫ ∞ 0 ∫ ∞ 0 F dµdν. Using the change of variables u = aµ, t = aΘ n-2,n-2 ν 2 we get J = 2a -pn-1 ∫ ∞ 0 ∫ ∞ 0 e -(aµ+aΘn-2,n-2ν 2 ) × µ sn-1-3/2 (aµ + aΘ n-2,n-2 ν 2 ) pn-1 dµdν = a -(sn-1+pn-1) Θ -1/2 n-2,n-2 × ∫ ∞ 0 ∫ ∞ 0 e -(u+t) u sn-1-3 2 t -1 2 (u + t) pn-1 dudt.
Now, using the change of variables (u, v) = (u, u +t), we get

J = a -(sn-1+pn-1) Θ -1/2 n-2,n-2 × ∫ ∞ 0 (∫ v 0 u sn-1-3 2 (v -u) -1 2 du ) e -v v pn-1 dv = a -(sn-1+pn-1) Θ -1/2 n-2,n-2 × B(s n-1 - 1 2 , 1 2 )Γ(s n-1 + p n-1 ), (8)
where, in the integral with respect to du we made a change of variable x = u/v. We get

∫ Q A n-3 e -tr(T Θ) δ (M ) (s2,...,sn-2) (Θ) × M -1 ∏ i=2 Θ ri ii n-2 ∏ i=M +1 Θ pi ii dµ An-3 (Θ) = C (n-3) α,β ∆ (M ) -(s2,...,sn-2) (T ) × M -1 ∏ i=2 φ(T ) ri ii n-2 ∏ i=M +1 φ(T ) pi ii , (9) 
where

C (n-3) α,β = C α,β π 3 2 Γ(s 1 -1 2 )Γ(s n -1 2 )Γ(s n-1 -1 2 ) × Γ(s n-1 ) Γ(p n-1 + s n-1 ) . ( 10 
)
Recall that throughout the paper C α,β denotes the constant from formulas (1) and (4).

By the same argument as to obtain formula (7), we observe that the Letac-Massam formula for the function H n-1 ((α 1 , . . . , α n-2 ), (β 2 , . . . , β n-2 ), •) on Q An-1 and the graph 1-2-• • •-(n-1) is equivalent to formula (9). This finishes the proof of (i).

By a similar "mirror-like" argument with the change of variables Ξ = Ψ n-2 (µ, ν, Θ) in ( 7), we get the Letac-Massam formula for H n-1 ((α 2 , . . . , α n-1 ), (β 3 , . . . , β n-1 ), •) and the graph 2 -• • • -n, and we prove part (ii) of Step 1.

Proof of Lemma 2.1. For y diagonal, formula (10) leads by induction to formula (6), observing that the last equation we get is a

-sM ∫ ∞ 0 e -ax x sM dx x = C (1) α,β a -s M , so that C (1) α,β = Γ(s M ).
Step 2 (induction step). The Letac-Massam conjecture on Q An-1 implies the Letac-Massam conjecture on Q An .

Proof. Let n ≥ 4. Suppose that the Letac-Massam formula (1) holds for some α and β and suppose that the Letac-Massam conjecture is true on Q An-1 .

For n ≥ 5, we use Step 1 and the induction hypothesis. Thus one of the following n-3 conditions has to be satisfied:

r 2 = • • • = r M -1 = p M +1 = • • • = p n-2 = 0, for an M ∈ {2, • • • , n -2},
and, simultaneously, one of the following n -3 "shifted" conditions has to be satisfied:

r 3 = • • • = r M = p M +2 = • • • = p n-1 = 0,
for an M ∈ {2, . . . , n -2}. This implies that either conditions (5) are satisfied or

(11) p 3 = • • • = p n-2 = 0; r 3 = • • • = r n-2 = 0.
Let us assume this single remaining case and show that it also implies conditions (5).

The equality r M = 0 implies s M = s M +1 and

p M = 0 implies s M = s M -1 . Also, from p j = r j for all 3 ≤ j ≤ n -2, we get s 2 = • • • = s M -1 and s M +1 = • • • = s n-1 . Thus, s 2 = • • • = s n-1 = s.
In the case (11), using the cofactor formula for Z -1 , equation ( 7) reduces to

∫ Q A n-2 e -tr(ZΞ) δ (M ) (s,...,s) (Ξ)Ξ r2 22 Ξ pn-1 n-1, n-1 dµ An-2 (Ξ) (12) = C (n-2) α,β |Z| -s ( |Z {3:n-1} | |Z| ) r2 ( |Z {2:n-2} | |Z| ) pn-1 .
We apply the second derivative with respect to Z n-2,n-1 on both sides of (12) and we take Z n-2,n-1 = 0. Theorem 2.7.1 in [6] ensures that the derivatives of all orders of the integral (12) can be computed under the integral sign. We obtain

∫ QA n-2 e -tr(ZΞ) δ (M ) (s,...,s) (Ξ)Ξ r2 22 Ξ pn-1 n-1, n-1 ×Ξ 2 n-2,n-1 dµ An-2 (Ξ) Zn-2,n-1=0 (13) = C (n-2) α,β 4 ∂ 2 ∂Z 2 n-2,n-1 Zn-2,n-1=0 g(Z), where g(Z) = |Z| -s ( |Z {3:n-1} | |Z| ) r2 ( |Z {2:n-2} | |Z|
) pn-1 .

Let us change the variables Ξ = Ψn-2 (μ, ν, Θ) and set Z = Φn-2 (a, 0, T ), i.e. Z n-2,n-1 = 0. Similarly as in the proof of (9) in Step 1, we find that the left hand side of ( 13) is

a -(s+pn-1+1) Γ(s + p n-1 + 1)B ( s -1 2 , 3 2 ) × (14) ∫ QA n-3 e -tr(T Θ) δ (M ) (s,...,s) (Θ)Θ r2 22 Θ n-2,n-2 dµ An-3 (Θ).
We write 1 4 C

(n-2) α,β D the right hand side of ( 13) and we compute D. Denoting S = -(s + r 2 + p n-1 ) and

h(Z) = |Z| S |Z {3:n-1} | r2 we have D = |Z {2:n-2} | pn-1 ∂ 2 ∂Z 2 n-2,n-1 Zn-2,n-1=0 h(Z).
We apply formulas

|Z| = Z n-1,n-1 |Z {2:n-2} | -Z 2 n-2,n-1 |Z {2:n-3} |, |Z| S = (Z n-1,n-1 |Z {2:n-2} |) S × (1 -S Z 2 n-2,n-1 |Z {2:n-3} | Z n-1,n-1 |Z {2:n-2} | + o(Z 2 n-2,n-1 )).
Thus, for Z n-2,n-1 = 0, we get ∂|Z| S ∂Zn-2,n-1 = 0 and

∂ 2 |Z| S ∂Z 2 n-2,n-1 = -2S(Z n-1,n-1 |Z {2:n-2} |) S-1 |Z {2:n-3} |. Similarly, |Z {3:n-1} | = = Z n-1,n-1 |Z {3:n-2} | -Z 2 n-2,n-1 |Z {3:n-3} | (for n = 5 we set |Z {3:n-3} | = 1) and ∂ 2 |Z {3:n-1} | r2 ∂Z 2 n-2,n-1 Zn-2,n-1=0 = -2r 2 (Z n-1,n-1 |Z {3:n-2} |) r2-1 |Z {3:n-3} |.
Using Z = Φn-2 (a, 0, T ), where the matrix T is indexed by 2, . . . , n -2, we obtain

Z n-1,n-1 = a, Z {2:n-2} = T , Z {3:n-2} = T {3:n-2} , |Z {3:n-1} | = a|T {3:n-2} | and |Z| = a|T |. By Leibniz formula, D = -2a r2+S-1 |T | pn-1+S-1 |T {3:n-2} | r2-1 × ( S|T {3:n-2} ||T {2:n-3} | + r 2 |T {3:n-3} ||T | ) ,
where for n = 5 we set |T {3:n-3} | = 1. Hence, for Z n-2,n-1 = 0, the right hand side of ( 13) is

C (n-2) α,β 2 a -(s+pn-1+1) |T | -(s+r2+1) |T {3:n-2} | r2-1 f (T ), ( 15 
)
where

f (T ) = (s + r 2 + p n-1 )|T {3:n-2} ||T {2:n-3} | -r 2 |T {3:n-3} ||T | .
Equating ( 15) and ( 14), we obtain, using (10), ∫

QA n-3 e -tr(T Θ) δ (M ) (s,...,s) Θ r2 22 Θ n-2,n-2 dµ An-3 (Θ) = sd(s, r 2 , T ) s + p n-1 f (T ), (16) where d(s, r 2 , T ) = C (n-3) α,β |T | -(s+r2+1) |T {3:n-2} | r2-1 .
Formula ( 16) is supposed to be true for our p n-1 = α n-1 -β n-1 . It is surely true for p n-1 = 0, because the Letac-Massam conditions (5) are then satisfied. Equating ( 16) for these two values of p n-1 , and noting that by ( 6) the constant C

(n-3) α,β
does not depend on p n-1 , we get

(s + r 2 + p n-1 )|T {3:n-2} ||T {2:n-3} | -r 2 |T {3:n-3} ||T | s + p n-1 = (s + r 2 )|T {3:n-2} ||T {2:n-3} | -r 2 |T {3:n-3} ||T | s , which is equivalent to (17) r 2 p n-1 ( |T {3:n-2} ||T {2:n-3} | -|T {3:n-3} ||T | ) = 0,
where for n = 5 we set

|T {3:n-3} | = 1. We observe that |T {3:n-2} ||T {2:n-3} | -|T {3:n-3} ||T | ̸ = 0, for ex- ample for T such that T ii = 2 for all 2 ≤ i ≤ n -2, T i,i+1 = T i+1,i = 1 for 2 ≤ i ≤ n -3 and T ij = 0
for all other i, j (in this case, this expression equals 1). Thus, for n ≥ 5, in the remaining case (11), we also have r 2 = 0 or p n-1 = 0. In both cases we fall in the Letac-Massam conditions (5) and the proof of the induction step is finished.

For n = 4, we get formula (7) for M = 2, the computations are simpler (no use of Leibniz formula is needed), and no condition s 2 = s 3 = s appears. The analogue of formula ( 16) is

Γ(s 3 + p 3 + 1)B(s 3 - 1 2 , 3 2 ) ∫ ∞ 0 e -tu u s2 u 1 u du = C (2) α,β 2 (s 2 + p 3 )t -(s2+1) , t > 0. ( 18 
)
After substitution of the constant

C (2) α,β = π 1 2 Γ(s 2 )Γ(s 3 - 1 2 ) Γ(s 3 + p 3 ) Γ(s 3
) , one gets (s 3 +p 3 )s 2 = s 3 (s 2 +p 3 ) equivalent to r 2 p 3 = 0, so r 2 = 0 or p 3 = 0. We get the Letac-Massam conditions for Q A4 . Remark 2.2. The expression on the RHS of (17 ([2,Thm 3.12]), called also Lewis Caroll (or Dodgson's) identity ([3]) and is equal to ( ∏ n-3 i=2 T i,i+1 ) 2 , the square of the monomial of the off-diagonal entries.

), i.e. |T {3:n-2} ||T {2:n-3} | -|T {3:n-3} ||T |, where T = T {2:n-2} is known in matrix theory. It is treated in Desnanot-Jacobi identity
Remark 2.3. The same method applies in order to prove the Letac-Massam Conjecture on P A4 . We take M = 2 and apply two changes of variables Φ 4 and Φ3 on P A4 and P A3 , see Lemma 4.1. We obtain an integral on P A2 = Sym + (2, R), which is the same as the integral on Q A2 = Sym + (2, R) in the proof above. The work on the Letac-Massam Conjecture on P An for n ≥ 5 is in progress. The analysis on these cones is more difficult.

Remark 2.4. Our method of differentiating the Letac-Massam formula with respect to Z 12 gives a simple proof of the "Mellin transform" Lemma 3.1 in [7, p. 1302], announced without proof. However, instead of the second derivative in Z 12 , the complete Taylor expansion in Z 12 is needed.

Remark 2.5. Sufficiency of Letac-Massam conditions follows from Gamma-Siegel integrals, i.e. formulas for the Laplace transform of δ 3. Generalized Letac-Massam Conjecture In the first part of the proof of Theorem 1.1, we showed that the Letac-Massam formula (1) on Q An , with M = 2, . . . , n -1, is equivalent to a Laplace transform formula (4) on Q An-2 , for a function δ (M ) (s2,...,sn-1) . Next we proved that (4) implies that the formula is rewritten for an M ′ ∈ {2, . . . , n -1} with r i = 0 = p j , i = 2, . . . , M ′ -1, j = M ′ + 1, . . . , n -1. Thus, in fact we showed a stronger result that we call Generalized Letac-Massam Conjecture (GLMC):

Theorem 3.1. Let M ∈ {1, . . . , n}. There exists a multi-index s ∈ R n and a constant C > 0 such that for all y ∈ P An ∫

Q An e -tr(yη) δ (M ) s (η) M -1 ∏ i=1 η ri ii n ∏ i=M +1 η pi ii dµ An (η) = C ∆ (M ) -s (y) M -1 ∏ i=1 φ(y) ri ii n ∏ i=M +1 φ(y) pi
ii if and only if the formula is rewritten with M ′ ∈ {1, . . . , n} such that r i = 0 = p j , i = 1, . . . , M ′ -1, j = M ′ + 1, . . . , n and

s i > 1 2 , i ̸ = M ′ , s M ′ > 0.
The GLMC gives a partial answer to the question which products of powers of well-defined minors on Q An have the property (P).

[ 1 ] Ben-David, E. and Rajaratnam, B. (2016) 

× R × P An-1 -→ P An , (a, b, z) -→ y with y = A(b)      a 0 • • • 0 0 . . . z 0      t A(b), A(b) =      1 b 1 . . . . . . 0 . . . 0 1      and let Ψ n : R + ×R×Q An-1 -→ Q An , (µ, ν, ξ) -→ η with η = π      t A(ν)      µ 0 • • • 0 0 . . . ξ 0      A(ν)      .
Then the maps Φ n and Ψ n are bijections.

(ii) Let Φn : R In general, let M, R, S be n × n matrices with R upper triangular and S lower triangular.

+ × R × P An-1 -→ P An , (a, b, z) -→ ỹ with ỹ = t B(b)      0 z . . . 0 0 • • • 0 a      B(b), B(b) =      1 0 1 . . . . . . 0 . . . b 1      ,
Then (RM S) {j:n} = R {j:n} M {j:n} S {j:n} . It follows that (y -1 ) {j:n} = (( t T ) -1 ) {j:n} (z -1 ) {j:n} (T -1 ) {j:n} = (z -1 ) {j:n} for j ≥ 2 since (T -1 ) {j:n} = Id {j:n} = (( t T ) -1 ) {j:n} . In particular (y -1 ) jj = (z -1 ) jj . The proof of (ii) is similar.

  [4], using the triangular changes of variables from Lemma 4.1.

  and let Ψn : R + ×R×Q An-1 -→ Q An , (µ, ν, ξ) Φn and Ψn are bijections.(iii) Let y = Φ n (a, b, z) and η = Ψ n (µ, ν, ξ). Then, for all M = 2, . . . , n, ...,sn) (ξ).Let y = Φn (a, b, z) and η = Ψn (µ, ν, ξ). Then, for all M = 1, . . . , n -1,∆ (M ) s (y) = a sn ∆ (M ) (s1,...,sn-1) (z) δ (M ) s (η) = µ sn δ (M ) (s1,...,sn-1) (ξ). (iv) If y = Φ n(a, b, z) and η = Ψ n (µ, ν, ξ), then tr(yη) = aµ + aξ 22 (b + ν) 2 + tr(zξ).

  If y = Φn (a, b, z) and η = Ψn (µ, ν, ξ), then tr(yη) = aµ + aξ n-1,n-1 (b + ν) 2 + tr(zξ).

  (v) The Jacobian of the change of variablesη = Ψ n (µ, ν, ξ) on Q An is J Ψn (µ, ν, ξ) = ξ 22 .The Jacobian of the change of variablesη = Ψn (µ, ν, ξ) on Q An is J Ψn (µ, ν, ξ) = ξ n-1,n-1 .The Jacobians of the changes of variables y = Φ n (a, b, z) or y = Φn (a, b, z) on P An are equal to a.Lemma 4.2. Consider y ∈ P An .(i) If y = Φ n (a, b, z), then φ(z) jj = φ(y) jj for j ≥ 2.(ii) If y = Φn (a, b, z), then φ(z) jj = φ(y) jj for j ≤ n -1.Proof. (i) Note that y = Φ n (a, b, z) is expressed in the form T