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Eigenrange: A Robust Spectral Method for
Dimensionality Reduction

Malika Kharouf, Tabea Rebafka, Nataliya Sokolovska

Abstract—This paper addresses the problem of dimension re-
duction of noisy data, more precisely the challenge of determining
the dimension of the subspace where the signal lives in. Based on
results from random matrix theory, a novel estimator of the signal
dimension is developed. Consistency of the estimator is proved in
the modern asymptotic regime, where the number of parameters
grows proportionally with the sample size. Experimental results
show that the novel estimator is robust to noise and, moreover, it
gives highly accurate results in settings where standard methods
fail. The application of the new dimension estimator on several
biomedical data sets in the context of classification illustrates the
improvements achieved by the new method compared to the state
of the art.

Index Terms—Dimensionality reduction, sample eigenvalues,
random matrix theory, spiked population model.

I. INTRODUCTION

D IMENSIONALITY reduction aims at separating signal
from noise in order to preserve significant properties

of data in a low-dimensional space before analyzing them
by further statistical methods. Data representation in a lower
dimension is needed in many applications, where the number
of observed features or parameters has considerably increased
mainly due to technical advances. Nevertheless, increasing
the number of features does not automatically increase the
dimension of the subspace where the signal lives in. Indeed,
in many applications as in speech recognition [1], wireless
communications [2], hyperspectral imaging [3], chemometrics
[4], medical imaging [5], genomics [6] or mathematical finance
[7] the signal space dimension is much lower than the number
of observed parameters. Thus, a challenge is to determine the
low-dimensional signal space, in order to project the data onto
it, for instance by principal component analysis (PCA) [8]. In
this context, a fundamental question is how to determine an
optimal minimal dimension of a high-dimensional problem.
A major difficulty in real data sets is the presence of noise,
making the estimation of the signal space rather involved.

A number of methods to determine an optimal dimension
have been proposed, an overview is provided in [9]. The most
prominent method uses the number of principal components
that are necessary to explain a given part of the total variance.
Also widely used in practice the scree test or kink method
which relies on the detection of an elbow in the scree graph,
that is the plot of ordered sample eigenvalues. Both methods
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are rather heuristical. Further methods are the SURE method
[10], [11], model-order selection in a Bayesian framework [5],
[12] or maximum-likelihood based approaches [13]. Although
reporting reasonable performance, most of them lack theoretical
explanations.

Another recent approach is based on eigengaps, that is the
distance between consecutive sample eigenvalues (for both
white [14] and colored [15] noise). The novelty of this method
is that a sound mathematical foundation is provided stemming
from results in random matrix theory. Notably consistency
in the modern asymptotic regime is proved, when both the
sample size and the number of parameters tend to infinity.
This is most relevant for applications where the number of
parameters is comparable with or even larger than the number
of observations.

Despite theoretical guarantees, the eigengap method suffers
from the fact that it relies on local features of the scree graph.
If a single sample eigenvalue is badly estimated, the dimension
estimate may be very erroneous. Indeed, in practice high
accuracy is only obtained when the signal eigenvalues are
well separated.

The purpose of this paper is to propose a method that
is robust to the presence of similar or even identical signal
eigenvalues, while preserving the strong theoretical properties
of the eigengap method. This is achieved by a more global look
on the sample eigenvalues. It is noteworthy that the consistency
of the proposed eigenrange method does not depend on strong
distributional assumptions like normality as it is the case of the
maximum-likelihood approaches and others. The eignerange
method performs very competitively on real data.

We mention that another important part of dimensionality
reduction approaches based on random matrix theory is
developed for time-series, what is out of the scope of the
current paper [7], [16], [17].

The paper is organised as follows. Section II introduces our
approach and provides the theoretical foundations. A numerical
comparison of the new method to the state of the art is reported
in Section III. Section IV discusses the performance of the
eigenrange method in the context of classification on real
biomedical challenges. Concluding remarks and perspectives
close the paper.

II. EIGENRANGE METHOD

In this section we introduce the mathematical framework of
the new eigenrange method and we show its consistency when
the noise level is known. Then the eigenrange method is adapted
to unknown noise, which is most relevant for applications.
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A. Spiked population model

We consider the additive noise model, where the signal
vector s is corrupted by some additive white noise noise e.
That is, the observed random vector y ∈ Rp is defined as

y = s + e. (1)

The random vectors s and e are supposed to be independent
and the noise e has zero mean and covariance σ2Ip, σ2 > 0.
Denoting the signal’s covariance matrix by Rs, the covariance
of the observation vector y verifies Ry = Rs + σ2Ip.

Often the signal s is a linear combination of a relatively
small number of predictors, i.e. s = Bx with some (p × r)
matrix B and r < p. In other words, the signal lives in a proper
subspace of Rp of dimension r. To separate signal from noise,
data may be compressed to this smaller subspace. The signal
space dimension r is also given by the rank of the signal’s
covariance matrix Rs such that r = rank(Rs).

Denote the non zero eigenvalues of Rs by α1 > · · · > αr >
0 and the eigenvalues of Ry by λ1 ≥ · · · ≥ λp > 0. In this
model, which is also referred to as the spiked population model,
the eigenvalues verify

λl =

{
αl + σ2, l = 1, . . . , r
σ2, l > r

The first r eigenvalues λ1, . . . , λr are called spikes and they
are larger than the nonspiked ones. As a consequence, the
eigenvalues of Ry yield important information on the signal
dimension r.

Now let the observations y1, . . . yn be n i.i.d. realizations of
y. Then the sample covariance matrix is R̂y = 1

n

∑n
i=1(yi −

ȳ)(yi − ȳ)t where ȳ = 1
n

∑n
i=1 yi. The associated sample

eigenvalues are denoted by λ̂1 ≥ · · · ≥ λ̂p ≥ 0 and we use
them to construct a new consistent estimator of the signal
dimension r.

B. Eigenrange method when σ2 is known

When many features are observed (i.e. p of the order of n),
traditional asymptotic results, where the sample size n grows,
while the number of features p is fixed, may be bad descriptions
of what happens on finite samples. Generally, results in the
modern regime, where both n and p tend to infinity, provide
much better approximations of the finite sample situation.

Concerning the estimation of the eigenvalues λ1 by the
sample eigenvalues λ̂1, notable works including [18] state
consistency in the traditional regime, where only n tends to
infinity. However, consistency no longer holds when both n
and p grow. Recent advances in random matrix theory provide
convergence results in the modern asymptotic regime.

In the pure noise case, where y = e and Ry = σ2Ip, the
seminal work of Marchenko and Pastur [19] shows that, when
p/n→ c, all limiting values φl of the sample eigenvalues λ̂l
lie within the interval [a, b] := [σ2(1 −

√
c)2, σ2(1 +

√
c)2],

which is the support of the so-called Marcenko-Pastur law.
In the additive noise model, the nonspiked sample eigen-

values still tend to lie in the Marchenko-Pastur interval [a, b],
while the limits of the spikes are outside [20]. This result
holds under the assumption that spikes are sufficiently different
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Fig. 1. Illustration of spikes and pure noise eigenvalues, and of the bias of
the sample eigenvalues: eigenvalues λl (black dots), sample eigenvalues λ̂l
(blue stars), theoretical limits of the sample eigenvalues (red diamonds) as
p/n→ c.

from pure noise eigenvalues. More formally, if αl > σ2
√
c for

l = 1, . . . , r and p/n→ c, then for l = 1, . . . , r

λ̂l −→ φl = αl + σ2

(
1 + c+

cσ2

αl

)
a.s. (2)

Moreover, the first and last pure noise eigenvalues satisfy

λ̂r+1 −→ b = σ2(1 +
√
c)2, λ̂m −→ a = σ2(1−

√
c)2 a.s.

where m = min(n, p). It is clear that any procedure relying
on sample eigenvalues must take into consideration their bias,
that is the difference between the limiting values of the sample
eigenvalues λ̂l and the model eigenvalues λl. This bias is
illustrated in Figure 1.

As a consequence, the range of the pure noise sample
eigenvalues, λ̂r+1 − λ̂m, is about b − a, while the distance
λ̂l − λ̂m for any l = 1, . . . , r is significantly larger. From this
viewpoint, a natural estimator of the signal dimension r is
derived as the number of sample eigenvalues that must be
discarded such that the remaining eigenvalues are contained in
an interval of approximate length b−a. Denote δl = λ̂l+1−λ̂m
and consider a threshold of the form b−a+dn. A new estimator
of the signal space dimension r, referred to as the eigenrange
method, is defined by

r̂range = min{l : δl < b− a+ dn}. (3)

C. Consistency
The eigenrange estimator r̂range is shown to be consistent for

an appropriate choice of sequence dn in (3). The proof relies



3

on the rates of convergence of the smallest and the largest pure
noise sample eigenvalues when p/n→ c. According to [21]
and [22], under some moment conditions,

n2/3(λ̂n,r+1 − b) = OP(1), n2/3(λ̂n,mn
− a) = OP(1), (4)

where the notation Xn = OP(1) means that Xn is a stochas-
tically bounded sequence. To ease the understanding of the
asymptotics, in this section subscript n is added to all quantities
depending on n.

Theorem 1. Let the sequence dn be such that dn → 0 and
n2/3dn →∞ as n→∞. Suppose that the signal eigenvalues
satisfy αk > σ2

√
c for k = 1, . . . , r. Then under some moment

conditions on s and e, the eigenrange estimator r̂range defined
in (3) is a consistent estimator of the dimension of the signal
space, that is, as p/n→ c,

r̂range
n −→ r almost surely.

Proof. Without loss of generality let σ2 = 1. Denote d̃n =
b− a+ dn. As δn,l > δn,l−1 for all l, we have

{r̂range
n = r} = {δn,r < d̃n} ∩ {δn,r−1 ≥ d̃n},

implying that

P(r̂range
n = r) = 1− P

(
{δn,r ≥ d̃n} ∪ {δn,r−1 < d̃n}

)
≥ 1− P(δn,r ≥ d̃n)− P(δn,r−1 < d̃n).

On the one hand, by (4) and as n2/3dn →∞,

P
(
δn,r ≥ d̃n

)
= P

(
n2/3(λ̂n,r+1 − b)− n2/3(λ̂n,mn

− a) ≥ n2/3dn
)
−→ 0.

On the other hand, it holds that

P(δn,r−1 < d̃n) = P
(
λ̂n,r − λ̂n,mn

< dn + b− a
)

= P
(

(λ̂n,r − φr)− (λ̂n,mn
− a)− dn < b− φr

)
−→ 0,

since b−φr = − (αr−
√
c)2

αr
< 0 and (λ̂n,r−φr)−(λ̂n,mn−a)−

dn
P−→ 0 by (2), (4) and as dn → 0. Combining all arguments

yields P(r̂range
n = r)→ 1. This completes the proof.

We conducted an extensive simulation study to calibrate the
sequence dn and concluded that the best choice is given by

dn = σ2βn−2/3 log(log(n)) (5)

with β = (1 +
√
c) (1 +

√
1/c)1/3. All experimental results

presented in this paper rely on this particular choice.

D. Eigenrange method when σ2 is unknown
In practice the noise level σ2 is generally unknown, though

required in (5) for the eigenrange estimator. Based on the fact
that the mean of the pure noise sample eigenvalues λ̂l is a
consistent estimator of σ2, we propose an iterative procedure
(similar to that in [14]) to estimate both r and σ2. More
precisely, we alternate the estimation of σ2 (using the current
value rcurr of r) and the estimation of r by the eigenrange
method (with σ2 replaced by its current estimate σ̂2

curr) until
convergence.

Algorithm 1 Eigenrange method with unknown σ2

1: Initialize rcurr = 0.
2: Estimate σ2 by σ̂2

curr = 1
p−rcurr

∑p
l=rcurr+1 λ̂l.

3: Compute r̂range where σ2 is replaced with σ̂2
curr in (5).

4: If rcurr < r̂range, update rcurr = r̂range and return to 2,
otherwise rcurr is the final estimate of r.

III. NUMERICAL EXPERIMENTS

We compared the accuracy of our approach to traditional
estimators of the signal dimension. A standard method based
on PCA uses the number of principal components to explain a
given part of the total variance in the data [9], [23]. The kink
method or scree test analyses the scree graph [9]. As the pure
noise eigenvalues λr+1, . . . , λm are constant, the scree graph
has a (more or less pronounced) kink or elbow at the (r+1)-th
sample eigenvalue, see Figure 1. Another approach relies on
so-called eigengaps, that is the distance between consecutive
eigenvalues. The eigengap method, as formalized in [14], is
intended to identify the beginning of the flat part of the scree
graph, made up of the pure noise eigenvalues. This method is
shown to be consistent when p/n→ c.

We conducted simulations in the settings of Figure 1. The
standard method completely fails to estimate r. In setting (a)
the other three methods give all excellent results and their
performances are very similar. Slight differences in accuracy
only occur on very small data sets. However, in setting (b) the
eigenrange method clearly outperforms the eigengap and the
kink method. Indeed, in this setting the methods that focus on
local features of the scree graph underestimate r, while the
global approach of the eigenrange method works correctly. In
this sense the eigenrange method is robust to the presence of
similar spiked eigenvalues, whereas standard methods fail. For
more details see the supplementary file.

IV. APPLICATION TO CLASSIFICATION

To illustrate the importance of the accurate estimation of the
signal space dimension, we show how the eigenrange method
improves results in the context of the classification task. It
is sometimes practical to first reduce the dimension of the
data prior to any further data analysis. For instance, PCA
can be used, where the number of principal components is
chosen by an appropriate selection method [24], [9]. Then a
supervised learning method, e.g. logistic regression or SVM,
can be applied to the reduced data to perform classification.

PCA is known to be problematic [25], mainly because sample
eigenvectors are not consistent when the number of parameters
p grows proportionally with the sample size n. Much effort
has been spent to remedy this problem and there are mainly
two ways to regain consistency. Several versions of PCA have
been proposed that rely on sparsity assumptions, namely the
structured sparse PCA [26] to which we refer as Jenatton10,
sparse PCA that we call Zou06 method [27], and the inverse
power method applied to sparse PCA called Hein10 [28]. A
different approach, here referred to as Mestre08, relies on new
consistent estimators of the eigenvectors when p/n→ c with
c < 1 [29]. The data used in our experiments are recent cohorts
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Fig. 2. Classification accuracy on real data sets.

from the UCI machine learning repository. We have considered
four life sciences data sets, namely a) mice protein expression
data set [30] which is dedicated to mice classification into
control or trisomic groups; b) chronic kidney disease data set1

1http://archive.ics.uci.edu/ml/datasets/Chronic Kidney Disease#

which classifies patients into ill and healthy; c) the Parkinson
data set [31] which has also 2 classes, healthy or ill; and d)
the diabetic retinopathy Debrecen cohort [32], where classes
indicate whether an image contains signs of diabetic retinopathy
or not. In our experiments, we compare the following: for
the estimation of the signal dimension we apply the kink,
the eigengap and the eigenrange method (K, EG, and ER
on Figure 2). We also show results for a bigger dimension
(the dimensions are provided on the plots) to illustrate the
optimal accuracy, but for the Debrecen data set d) the eigengap
method estimated the optimal rank to be very close to the full
dimension of the original problem. So, in this case, we decided
to also try a small dimension (which we fixed to 4). For the
projection of the data on a subspace of smaller dimension,
we compare the methods Mestre08, Jenatton10, Zou06 and
Hein10. We apply an SVM as a learning approach, and the
optimal hyper-parameters are chosen by cross-validation. Rank
and projections are learned from training data. From Figure 2
which shows the 10-fold cross validation test accuracy, we see
that the eigenrange method achieves the optimal performance
on all tested data sets.

V. CONCLUSION

Dimensionality reduction is a challenge, especially in appli-
cations where data are noisy. We proposed a highly accurate
estimator of the signal dimension, based on global statistics
involving sample eigenvalues, that outperforms state-of-the-art
methods as kink and eigengap that focus on local features of
the scree graph. Based on recent advances of random matrix
theory, we formulated our main theoretical result summarized
in Theorem 1. The simulated and real data experiments confirm
our theoretical findings and, moreover, show the robustness
in situations where the state-of-the-art methods fail, that is
when spiked eigenvalues are close to each other. The novel
eigenrange method is of great interest for applications where
assumptions on the spiked eigenvalues or on the distribution of
the observations are difficult to assert. A further advantage of
the proposed method is that it is straightforward to implement,
and it is not computationally expensive. We also underline
that we do not waste any effort on potentially expensive
optimisation.

Our method is not directly connected to classification, since
the proposed dimensionality reduction procedure is completely
unsupervised. However, we have tested the algorithm to reduce
data before applying a prediction method, and we observed a
clearly beneficial effect. It is promising to adapt the eigenrange
approach to other methods that rely on the eigenstructure of
a data matrix. In particular, we are currently investigating its
extension to the problem of spectral clustering.
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