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In this article, we study the non-linear dynamics of a laser subjected to frequency shifted optical reinjection coming
back from a vibrating target. More specifically, we study the non-linear dynamical coupling between the carrier
and the vibration signal. The present work shows how the non-linear amplification of the vibration spectrum is
related to the strength of the carrier and how it must be compensated to obtain accurate (i.e. without bias)
vibration measurements. The theoretical predictions, confirmed by numerical simulations, are in good agreement
with the experimental data. The main motivation of this study is the understanding of the non-linear response of a
LOFI (Laser Optical Feedback Imaging) sensor for quantitative phase measurements of small vibrations, in the case
of strong optical feedback. © 2016 Optical Society of America

OCIS codes: (120.0120) Instrumentation, measurement, and metrology; (120.7280) Vibration analysis; (140.0140) Lasers and laser optics;

(140.3430) Laser theory.
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1. INTRODUCTION

Laser properties (power, polarization, coherence, dynamical behavior
...) can be significantly affected and modified by optical feedback [1,2]
which allows for the realization of non-conventional sensors. One
potential application is Laser Feedback Interferometry (LFI), where
the steady-state intensity of a laser is modified by coherent optical
feedback from an external surface. With this phase sensitive technique
the signal depends on the reflectivity, distance and motion of the target
[3]. However, when the amount of re-injected light is very small, the
interference contrast occurring inside the laser cavity is drastically
reduced. To overcome this problem, one solution is to use the
dynamical properties of the laser which can be several orders of
magnitude more sensitive to optical feedback than the laser steady-
state properties. Since the pioneering work of K. Otsuka on self-mixing
modulation effect in a class-B laser [4], the dynamical sensitivity of
lasers to frequency shifted optical feedback has been used in metrology
[5], for example in self mixing Laser Doppler Velocimetry (LDV) [6-8]
and in Laser Optical Feedback Imaging (LOFI) [9-11]. Compared to
conventional optical heterodyne detection, frequency shifted optical
feedback allows for higher (several order of magnitude) intensity
modulation contrast [12-14].

For weak optical feedback, the laser dynamics is linear and the
maximum of the modulation is reached when the shift frequency is
resonant with the laser relaxation oscillation frequency. In this
condition, an optical feedback level as low as -170 dB (i.e. 1017 times
weaker than the laser intra-cavity power) has been detected [6].

On the opposite, phase measurements (such as profilometry or
vibrometry) with low noise necessitate to increase the amount of
optical feedback reinjected inside the laser cavity [15-17]. For strong
optical feedbacks, the laser dynamics becomes non-linear, making it
difficult to obtain quantitative measurements.

The main objective is to demonstrate the possibility to accurately
measure very small vibration amplitudes (i.e. sub-wavelength), from
the non-linear dynamics of a laser submitted to a strong frequency-
shifted optical feedback. Experimentally, the use of a LOFI set up is
motivated by the following reasons: i) the LOFI interferometer is
always self-aligned because the laser simultaneously fulfils the
functions of the source (i.e. photons-emitter) and of the photo-detector
(i.e. photons-receptor); ii) the LOFI detection is shot noise limited
(even with a low power laser) in a frequency range located near the
relaxation oscillation frequency of the laser [12-14].

This article is organized as follows. In section 2, we firstly recall the
equations governing the dynamics of a laser with a frequency-shifted
optical reinjection back-scattered from a vibrating target. Then the
signal processing to extract vibration measurements from the laser



dynamics is explained. The end of this section is devoted to numerical
simulations where we show typical examples of numerical vibration
signals (harmonic and transient) extracted from the laser dynamic in
both the linear and nonlinear regimes. These numerical simulations
show that the gain of the laser dynamics needs to be compensated
(and therefore to be known) to extract accurate (i.e. without bias)
vibration amplitude. In section 3, a bifurcation analysis is made to
obtain an asymptotic solution for the gain of the laser dynamics. Our
calculations show that the carrier and the vibration signal are coupled
through the non-linear laser dynamics and we demonstrate that the
nonlinear amplification of the vibration spectrum is related to the
amplitude of the carrier signal. Therefore, our calculation confirms that
to obtain quantitative vibration measurements, the non-linear gain
must be taken into account in the signal processing. Section 4 is
devoted to the measurement of experimental vibrations with a LOFI
(Laser Optical Feedback Imaging) setup. The theoretical predictions,
confirmed by numerical simulations, are in good agreement with the
experimental data. The final section is devoted to the general
discussion of these results and to their prospective applications.

2. LASER WITH
FEEDBACK

FREQUENCY-SHIFTED OPTICAL

A. Basic equations for vibrometry

For weak optical feedback (R, <<1) and a short round trip time
delay (7, << 1/ F, ), the dynamical behavior of a laser with a
frequency shifted (F,) optical feedback can be described by the
following set of differential equations [12]:

% =BIN—y.1+7,2{JR Icos[ Q1 +® (1) ]+F, (1)
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where I and N are respectively the laser intensity (photon unit) and
the population inversion (atom unit). 7; is the decay rate of the
population inversion, 7, is the laser cavity decay rate, N, is the

pumping rateand B is related to the Einstein coefficient (i.e. the laser
transition cross section). Regarding the noise, the laser quantum
fluctuations are described by the Langevin noise function F, (t) , with

azero mean value and a white noise type correlation function [18,19].

In Egs. (1), the cosine function expresses the coherent interaction (i.e.
the beating at the angular frequency: €2, = 27 F ) between the lasing
and the feedback electric field. The optical reinjection back-scattered
from a vibrating target is characterized by the effective power
reflectivity R, and the time dependent optical phase shift

D, (t) = 22—7[2516 (t) induced by the distance d, (t) between the

laser and the vibrating target. A, is the laser wavelength.

In the absence of optical feedback (R, = 0), the laser steady-state is

given by the mean values of the population inversion and of the laser
intensity:

Ns=7f/B, (2a)

Iy=1, [77_1] (2b)

where 77=N, / N is the normalized pumping parameter and
I, =7/B is related to the saturation intensity of the laser
transition. Also for R, = 0, the intrinsic dynamics of a class-B laser (

Y. >> ¥, ) is characterized by damped relaxation oscillations of the
laser output power with a relaxation angular frequency

QRZJ}/I}/C(?]—I) and a damping rate FR=7/17]/2.

Experimentally, this transient dynamics is constantly excited by the
laser quantum noise described by the Langevin force F, (t) .

In the presence of optical feedback (R, # 0), the laser intrinsic

dynamics can be modified and the extent of changes in the laser
dynamical properties depends on the feedback conditions ( R,,€2,).In

this article, we call “strong feedback”, the situation where the
modulation frequency is nearly resonant (€2, = €2, ) and where the

amount of optical feedback is high enough to induce non-linear
dynamical behaviors in the laser output power modulation. The strong
feedback situation is also characterized by a strong modification of the
RF signal power spectrum of the laser [20, 21]. In particular, the
relaxation oscillations frequency can decrease, jointly with a
modification of the shape of the RF noise power spectrum of the laser
[22]. In contrast, the “weak feedback” regime corresponds to the
situation where the modulation frequency is far away from the

resonance (|Qe —QR| >>(0) and where the amount of optical

feedback (R,) is small enough to induce only linear dynamical

behavior in the laser output power modulation. In this situation, the RF
noise power spectrum of the laser, with and without optical feedback,
is unchanged. Here, let us mentioned that the RF noise power
spectrum is an image of the gain (ie. of the modulation transfer
function) of the laser dynamics [22]. As explained in the following
section, the knowledge of this gain is of paramount importance to
extract accurate (i.e. without bias) vibration measurements from the
laser dynamics of a reinjected laser.

B. Signal processing for vibrometry

The aim of the present paper is to explain how it is possible to extract
the time dependence of the phase shift of the optical feedback, namely
D, (t) (and consequently d, (t)) from the laser dynamics, in both

the weak and the strong feedback regimes.

For a laser with frequency shifted optical feedback, the output power
modulation of the laser is given by the convolution product (symbol ®
) between the input modulation (i.e. the coherent beating at the carrier
frequency) and the impulse response of the laser dynamics which is
the is inverse of the Fourier transform (FT-1) of the gain of the laser

dynamics G (Q, R,Q, ) (i.e. of the modulation transfer function):

AI(t)=1(t)~1, =R, x

[FT[G(Q.R..Q,)|®@exp[i(Q+, (1)) ]+ec] Y



In Eq. (3), one can notice that the gain of the laser dynamics
G(Q,Rg,Qg) depend on the feedback condition (R,,LQ,).

Principally in the strong feedback regime.
To extract the temporal evolution of the phase induced by the

vibration (@, (t) ), the different steps of the signal processing are
given by the set of Egs. (4a-f):
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Fisrtly [Eq. (4a)], the Fourier Transform of the time evolution of the
laser output power is calculated. Then [Eq. (4b)], the Fourier spectrum
is filtered using a bandpass filter with a central frequency €2, and a

bandwidth AQ, . The bandwidth is adapted to the frequency range of

the vibration spectrum. Thirdly [Eq. (4c)], the distortion of the
vibration spectrum induced by the laser dynamics (ie. the
amplification gain) is compensated. Then, coming back to the temporal
space [Eq. (4d)], the signal is demodulated [Eq. (4€)] and finally [Eq.
(4f)], the temporal evolution of the phase is extracted from the
complex signal.

In this signal processing, it can be noticed that the multiplication, by
any real constant number, of the input signal (ie. the laser output
power modulation) , has no impact on the extraction of output signal,
which is a phase signal. So, the gain can be multiplied by any real
constant. Therefore, for the experimental measurement of vibrations,

the absolute knowledge of the amplitude of the gain is not necessary
(i.e. only the complex frequency shape is important). This is due to the
fact that, for vibration measurements, only the relative ratio between
the amplitudes of the spectral components is important.

C. Compensation of the gain of the laser dynamics

To demonstrate how different kinds of vibrations can be extracted
from the laser dynamics, we have numerically solved the set of
differential equations given by (1).

1. Numerical harmonics vibrations
Fig. 1 shows examples of the calculations of a harmonic vibration:

@, (1) =P, sin(Q,¢) (5)

with an acoustic angular frequency Q, =Q, /3.5 and with a small
vibration amplitude ®, = 27/50 . The calculations are made for a
given frequency shift (€2, =1.1Q, ) and for two optical feedback
reflectivities (R, =10~ and R, =107 ).

Figs 1a-b show the signal is principally composed of one peak at the
carrier frequency (€2,) and two peaks for the vibration sidebands (

Q, Q). When the feedback is weak (R, = 107), one can see in

Fig. 1a, that the complex gain adjusted on the noise power spectrum
exhibits only one resonance (i.e. is linear). On the other hand, when the

feedback is strong (R, = 107"), the gain, which becomes non-linear,

exhibits two resonances symmetrically located on both sides of the
carrier frequency (Fig. 1b) [22]. As already mentioned the RF noise
power spectrum is an image of the gain (i.e. of the modulation transfer
function) of the laser dynamics [22] and therefore helps to obtain it as
itis explained in the theoretical section (i.e. section III).

In both cases, the middle row (Figs. 1c and 1d) show a comparison
between the exact vibration motion and the vibration obtained after
the signal processing, but without the gain compensation (i.e. without
the signal processing step given by Eq. (4c)). One can see that neither
the amplitude nor the phase of the detected vibration is good. In the
weak feedback case, the carrier signal, which is near the resonance, is
amplified much more than the vibration sidebands and thus the
vibration amplitude is lower than the real one. In the strong feedback
case the opposite situation occurs. The vibration sidebands which are
near the resonances are much more amplified than the carrier signal,
and therefore the detected vibration amplitude is larger than the real
one. In both cases, one can also notice a  phase-shift induced by the
resonance.

Finally, the lower traces (Figs le and 1f) show that the accurate
vibration is recovered in both cases (weak or strong feedback) if the

complex gain compensation (ie. if the division by G(Q, Re,Qe) )is

made in the signal processing. So, Fig. 1 clearly shows that the gain
compensation (linear or non-linear) is necessary to obtain accurate (i.e.
without bias) quantitative vibration measurements (amplitude and
phase) from the reinjected laser dynamics.

The comparison of Figs. 1e and 1f also shows that the vibration
amplitude is better recovered when the amount of optical feedback
increases. This effect is principally due to the increase of all the
vibration components relatively to the noise baseline. So, even if for a
strong optical feedback, the laser dynamics becomes non-linear (i.e.
much more complicated), the compensation of the non-linear
amplification allows to restore vibration measurement with an



improved accuracy. Indeed, the standard deviation of the difference
between the exact vibration and the extracted vibration is equal to

0.02 rad ('~' 27/ 300) for R, =10"" (left column) and equals to
0.01rad (=2z/600) for R, =107 (right column).

1 1 1 T
= v P p) |
1 1 I 1
-20 | | -20 1 1
1 1 1
|
-60 I 60

0.6 1 1.4 0.6 1 1.4
Normalized frequency: F/F

Reconstructed phase(rad) without gain compensation

0.4 0.4
c)

0.2/ 0.2

N ’\ N A 4

DN AW‘% \

of \ b FREA

é\q#v ~ EAT \\ 4‘?

\/ v |

0.2 '0'2‘1_5 '
-0.4 -0.4

0 5 10 0 5 10

Normalized time: txF,

Reconstructed phase(rad) with gain compensation

0.4 ) 0.4
e
0.2 —— ! 0.2:
* A A AR ANRAASA P\ AAA A
SAMARAAAAR AARAAAAAAAL
VVYYYVYVYY Uf‘debVV"
-0:2 ‘ -0.2
04 5 10 %% 5 10

Normalized time: txF,

Fig. 1: Numerical simulation. Calculations of a harmonic vibration (
Q, =Q,/3.5) with a small amplitude of vibration (®, = 27/50).
The left column (a, ¢, €) corresponds to a weak optical feedback (
R = 10~ ) while the right one (b, d, f) corresponds to a strong optical

feedback (R, = 1077). The top row (a, b) shows the laser power

spectrum where the resonance gain (bold line) is adjusted on the noise
spectrum. The calculations are made with €, =1.1Q,and a

bandpass filter AQ, =Q, /1.5 (see dashed vertical lines). The
middle row (c, d) shows a comparison between the exact vibration
motion (solid line) and the vibration obtained after the signal
processing (line of circles), but without the gain compensation. The
bottom row (e, f) shows the same comparison when the gain
compensation has been applied. Laser parameters: 77=1.2,

/7, =1x10% , E, |y, =2251x10™ |

examples of the extraction of an impulse vibrations for 3 different
values of the amplitudes (@, =27/5,®, =27/50 and

@, =27/500). The numerical simulations have been made for a

given frequency shift (Q, =1.1Q2,) and for strong feedback
reflectivity (R, =107).

Power spectrum (dB)

Transient vibration(nm)

,b)

9 O,

20 40 60 80

Normalized frequency: F/Fy Normalized time: t/,

Fig. 2: Numerical simulation. Calculations of a transient vibration with
a half time width (7, =1.8/F}, ) and a time delay (7 =16.37,, ). Top
row (a,b): large amplitude of vibration (®, = 27/5 ). Middle row (c,
d): small amplitude of vibration (®, =27/50). Bottom row (e):
very small amplitude of vibration (®, =27/500 ). The left column

(a, ¢, €) shows the RF power spectra, where the bold lines show the
shape of the non-linear gain used for the signal processing. The right
column (b, d, f) shows a comparison between the exact vibration
motion (solid line) and the vibration obtained after the signal
processing (circles). All the calculations are made with the same

feedback conditions (€, =1.1Q, and R, =1x107") and the same
bandpass filter AQ, =, /1.5 (corresponding to the dashed vertical

lines). Laser parameters: see Fig. 1.

2. Numerical transient vibrations
To verify that our signal processing can be applied to any kinds of
vibrations, we have numerically simulated transient vibrations:

®, (1) = —

N
5

L (6)
with a half time width 7, =1.8/F, (ie. a broad spectral bandwidth

AQ,=~Q,/1.8) and a time delay 7=16.47,. Fig 2 shows

Firstly, one can notice on the left column, that the non-linear gain used
for the gain compensation in the signal processing, is always the same
and is also identical to the one used in Fig. 1 (right column) for the
calculation of harmonic vibration. This is due to the fact that the
feedback conditions are the same and consequently the gain of the

laser dynamics G(Q,Rg,Qe) is the same for all these vibration

calculations. Secondly, the right column shows that impulse vibration
with an accurate amplitude and an accurate time delay can be
extracted from the non-linear laser dynamics (Figs. 2b , 2d, and 2f).
Thirdly, the impulse shape is recovered regardless of the vibration
amplitude, even when the vibration amplitude is large (see Figs. 2a and
b) and when the RF power spectrum is strongly perturbed by non-
linear dynamical effects of higher order. Finally, on Fig. 2f, an amplitude



of d, =1£0.2 nm = 4/1000 is detected, showing the high potential
of this measurement method for the detection of small vibration
amplitudes at relatively high frequencies. It must be noted that the SNR
of the order of 5 has been obtained with a filtering process (see Eq. 4b)
adapted to the width of the vibration spectrum (
AQ,=Q,/1.5=AQ)).

For a narrower bandwidth (AQ, <AQ_ ) the noise (ie. the
fluctuation at the base of the impulse vibration) is lower, but the
vibration spectrum is truncated. Consequently, the shape (amplitude
and width) of the reconstructed vibration pulse is not the good one.
Conversely if the bandwidth is wider (AQ, > AQ ), the noise
increases, without any significant improvement of the reconstructed
pulse shape. Therefore, with the non-linear gain compensation, the
detection of very small vibration amplitudes (@, = 277/500 ) seems

to be possible with a reinjected laser.

Transient vibration (nm)

Power spectrum (dB)

15

10 b)

0.5 1.0 15 20 0 20 40 60 80

Normalized frequency: F/F; Normalized time: t/1,

Fig. 3: Numerical simulation. Calculations of a transient vibration with
a full time width 7, zl.S/FR , a time delay 7=16.37, and a

vibration amplitude ®, = 277/50 . The measurements are made with
the same feedback reflectivity R, =1x1 07" but for different values of
the carrier frequency ( F,) Top row (a, b): F,/F, =1.3; Middle row
(c, d): F;/FR =1.1; Bottom row (e, f): F,/F, =1.01. The left

column (3, ¢, €) shows the RF power spectra, where the bold lines show
the shape of the non-linear gain used for the signal processing. The
right column (b, d, f): shows a comparison between the exact vibration
motion (solid line) and the vibration obtained after the signal
processing (circles). All the calculations are made with the same

bandpass filter AQ, =Q, / 1.5 (corresponding to the dashed vertical

lines). Laser parameters: see Fig. 1.

In Fig. 3, the transient vibration is again a short impulse vibration with
a wide spectral bandwidth (AQ,6 =€Q,/1.8) and with a small

vibration amplitude (®, = 27/50 ), but now the calculations have

been made for a strong feedback reflectivity (R, = 1077 ) and for 3
different values of the carrier frequency (Q,/Q, =13,
Q,/Q,=1.1,and Q,/Q, =1.01).

The left column shows how the non-linear gain (adjusted on the noise
power spectrum) is modified when the carrier frequency approaches
the intrinsic laser relaxation frequency (ie. when Q_ /Q, —1). As

already mentioned, the modification of the non-linear gain is induced
by the modification of the carrier amplitude [22].

One can observe on the left column that the frequency distance
between the two maxima (located symmetrically on both sides of the
carrier frequency) decreases. Secondly, one can also observe that the
amplitude of the maximum located on the right side of the carrier
frequency increases in agreement with [22].

The right column of Fig. 3 shows that regardless of the shape of the
non-linear gain (ie. of the frequency shift Q ) the impulse vibration is
recovered with an accurate amplitude and an accurate time delay.
Nevertheless, one can notice a small degradation of the signal to noise
ratio (roughly by a factor 2) when Q, =1.01€2,, . In Fig, 3f, the higher
noise, which is visible at the base of the feet of the impulse vibration,
can be attributed to the fact that the adjustment of the noise power
spectrum by the non-linear gain is not always perfect and that the
amount of noise initially present (i.e. before the gain compensation)
inside the bandwidth filter increases when Q, /Q, — 1 (see Fig. 3e).

3. GAIN OF THE NONLINEAR LASER DYNAMICS

As explained in the previous section, accurate (ie. without bias)
vibration measurements are possible with frequency shifted optical
feedback in laser, if the gain compensation is applied in the signal
processing. So the gain of the laser dynamics needs to be known. The
aim of the present section is to obtain an analytic expression of the

complex gain G ( QR ,Q, ) , whatever the feedback condition (weak

or strong) is and therefore whatever the laser dynamics (linear or
nonlinear) is.

A. Asymptotic solution for the nonlinear gain
To analytically study the dynamical response of a laser subjected to
frequency-shifted optical feedback (R, #0), we have used the
asymptotic equation given in [22-24]:
2
d—Az—i[O'e -1]4-i A4 —EAﬂ‘iexp(i(De)
ds 6 2 4

» (7)

where A is the complex amplitude of the small periodic oscillation
and where o0,=Q_ /Q,and s=Q,r are respectively the
frequency-shift and the time normalized by the relaxation frequency.
For our microchip laser, £ = 7, /Q, =10 is a small quantity, which
allows the use of the asymptotic analysis detailed in [22-24]. In Eq. (7),
the optical feedback is described by &, = 2\/179 7. / Q, and by the

optical phase-shift @, .
To obtain the gain (i.e. the modulation transfer function) of the laser

dynamic, we now investigate the solutions of Eq. (7), in the particular
situation of a vibrating target with a harmonic oscillation:



D, (s)=0,+P,sin(0,s+9,), (8)

Q(I
Q

where o, = is the normalized acoustic vibration angular

R
frequency, ®, = 27”2@ is the phase-shift linked to the vibration

amplitude d,, ¢, the modulation phase shift and @, an additional

phase shift corresponding to the mean distance between the laser and
the vibrating target. Without loss of generality, we assume:
@, = m2m ,wheremisan integer.

In the case of sub-wavelength vibration amplitudes (ie. ® << 27 ),
Eqg. (7) can be rewritten:
dA AA

2 —lA—— _
ds [ ] 2 !

Jo(@,)
+’% +1,(@, )exp[i(0,5+4,)]
+J_, (@, )exp [i(—G,,S -9, )]

,» (9)

where J, (d)a
with: J, (@, ) =1, J, (@, ) =

) is the Bessel function of the first kind and of order n
(Da/z and Jfl ((Da) = _Jl ((Da ) :

In the present study, the key term is the cubic one (— iA* A / 6) which

couples the amplitude of the modulation at the carrier frequency (€2, )
with the vibration amplitudes at the acoustic sideband frequencies (
Q +Q )

The solution of Eq. (9) can be written as:

A(s)=C, 4T, (5)

+R, expli( (10)

o,5+9, )]+La exp[—i(aﬁs+¢u )]
where C, is the stationary modulation amplitude at the carrier
frequency, T (s) is the transient dynamics of random excitations
(due to quantum noise) around the stationary solution, while R, and

L, are respectively the amplitudes of the right and left sidebands of
the acoustic vibration. One can notice that in Eq. (10), the carrier signal
(C,) has already be studied in [23] and more particularly the
hysteresis phenomenon induced by the periodic modulation, while the
noise power spectrum (T R ) and more particularly the shift of the laser
relaxation frequency has already been studied in [22]. The aim of the
present paper is focused on the study the complex vibration sidebands
(R,and L, ) and how they are amplified by the laser dynamics, in
order to be able to restore accurate vibration measurements.

In the forthcoming study, we assume that the carrier signal is much
stronger than the laser quantum noise and the vibration sidebands (i.e.

terms, Eq. (10) gives:

44 =cCcc
+2C.C.T, +C.C.T,
. . , . (1)
+[2C.CIR, +C.C,L, exp[ +i(0,5+4,) ]

+[2C,CIL, +C,C.R; Jexp[-i(0,s+,) ]

Inserting Egs.(10) and (11) into Eq. (9) gives the following equalities:

i(o.-1)C +iSC T Zi% g (), (12a)
* 2
Ao o |78 (6 —1)+iSEe |, i S, (12b)
ds 2 6
Ru|:77—+10' +i(o,-1)+ CC‘}+L’:[1'C“C‘1
0,
=l?‘ll(q)a)
R:[i—c"c"}+L{E—i0'a+i(0'e—1)+icece}
6 2 300 (12d)

_,‘%J (@,)

Egs. (12a-b) have been already studied in [22,23]. Let us recall that the
analytical resolution of Eq. (12a) shows that the power spectrum of the

C.(6.0,)

versus o, ) exhibits hysteresis in the strong feedback situation and

that the extent of the hysteresis zone increases with the amount of
optical feedback &, [22, 23, 25, 26]. Jointly, the study of the transient
dynamics [Eq. (12b)] allows to determine the noise power spectrum of
the laser submitted to frequency shifted optical feedback. Let us recall
that the noise power spectrum is composed of two resonant curves
with a resonant width 7& and with resonance frequencies

symmetrically located on both sides of the carrier frequency [22]:

O-Ri(aeﬂo-e):o-eiaR(aeﬂo-e)’ (13a)
with the detuning:
5R (56"0-6) =
2 2
c.(8.0.) ACRARE (13b)
o, -1+ 3 - 5

Eq. (13) shows that the modification of the noise power spectrum is
linked to the strength of the optical feedback (J,,0,) principally

through its dependence on the non-linear modulation amplitude
C.(6,.0,).

For the vibration, Eqs (12c-d) clearly show that R, and L, are
coupled through the non-linear modulation amplitude C,.

Nevertheless, the resolution of Eqs (12c-d) is straightforward and gives
the following solutions for the modulation amplitude of the two
sidebands:
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The aim of the following section is to explain why it is possible to 4R

extract an accurate (i.e. without a bias) value of @, (and, finally, of the
vibration amplitude d, ) from the measurement of the two vibration

sidebands (R, and L, ) conjointly with the carrier modulation (C, ).

Using the two vibration sidebands given by Eqgs (14a-b), we define the
nonlinear gain of the laser dynamics by the following equation:

Ru(o-v_()-e’&e’o-e) Up o ZO-
Jl (q)a)\/R_P .(15)

La (o-e _O-v’de’o-e)
Jl (q)a)\/R_é

Like the noise power spectrum, this gain exhibits two resonance
frequencies symmetrically located on both sides of the carrier
frequency [Egs (13a-b)]. This double resonance is due to the cross
coupling between the vibration sidebands.

The frequency distance and the amplitude ratio between the two
maxima depend on the feedback conditions and are roughly given by
[22]:

G(Gv’é‘e’o-é’)z

if o,<o0,

2

(5,
25,(8.,0,) =2 a€-1+% , (16a)
2
|G(O-e+5R’5e’o-e) Ce(é;’o-e) /6 (16b)
G(0.-6,.8.0,)  26,(6..0,)

In agreement with the results shown on Figs. 1a-b, Eq. (16b) explains
that the amplitudes of the two maxima (located symmetrically on both
sides of the carrier frequency) are of the same order of magnitude for

strong optical feedback (i.e when |Ce (é‘L .0, )|2 =~1) and that, the
feedback
|Ce (8,,0, )|2 << 1, leading to the conventional LOFI linear gain, with

right maximum disappears for weak optical

only one resonance frequency (€2, ) [12-14]:

|G(0'v,5ﬁ,o;)| ~ |GL(0')

c.f o \/(Uv‘l)z +(7728)2 .(17)

Joa ()

At this point, one can notice that the linear gain depends only on the
intrinsic dynamical parameters of the laser ( y,, 7, and7 ), while the

G.(2)

non-linear gain also depends on the feedback conditions ( R, and Q).

In agreement with the results shown on Figs. 33, 3c and 3e, Egs. (16a-
b) allows explaining why the frequency distances between the two
maxima decreases and why the amplitude of the maximum located on
the right side of the carrier frequency increases, when
0,=Q,/Q, >1.

C. Gain compensation for vibration measurement
Using Egs. (12a), (14) and (15), one also obtains:

CL’(5E’O-B)=G(O-V=O—e’5e’o-e)']0(q)a)\/R7e' (18)

Egs. (15) and (18) clearly show that an accurate measurement of the
vibration can be extracted from the non-linear laser dynamics (C, , R,

,and L, ),ifthe non-linear amplification (via G ) is compensated:

Jl ((I)a) — Ra (Ga’5e’o-ﬁ) G(o.v zo-e’é:"o-e) (19a)
JO (q)a) Ce(é\e’o-e) G(o-v =o.e+o-a’5e’o-e),
J—l (q)a):l‘a (O-a’de’o.e) G(o.vzo-e’é‘e’o-e) . (19b)
JO (q)a) CF (66’0-6) G(O-v :o-e_o-a’é‘e’o-e)

At this point knowing the accurate ratio between the Bessel functions,
one could determine @, .



For example, let us recall that for a very small vibration amplitude (i.e.
@, << 27 ) these ratios are equal to: J; ((I)a )/J0 (q)a) ~® /2

and J_, (®,)/J,(®,)=-D,/2.

Also, as already mentioned in section II, Eqs (19a-b) show that the
multiplication of G(0,,d,,0,) by any constant has no influence on
the relative ratio between the Bessel functions (i.e. between the
amplitude of the spectral components of the vibration spectrum).

Therefore to restore accurate vibration measurement the frequency
shape of the complex gain is important, but not its exact value.
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Fig. 4: Numerical simulation. Comparison between the complex
amplitude of the vibration sidebands (circle) obtained from a
numerical simulation and the non-linear gain (solid, dashed and dash-
dotted lines) obtained analytically [Eq. (15)]. a) RF power spectrum of
the laser output power modulation for a strong optical feedback (

R =1x10"and Q,=1.1Q,) and a harmonic vibration (
Q, =Q,/10) with a small amplitude of vibration ®, =27/50.

Amplitude (b) and phase (c) of the vibration sidebands, for 7 acoustic
frequencies (€2, ). Laser parameters: see Fig.1.

Fig. 4 shows a comparison between the non-linear gain
G(O‘v, g, 0'6) given by Eq. (15) and the amplitude of the vibration
sidebands (C,,R and L, ) obtained from a numerical simulation.
Fig. 4a shows the RF power spectrum of the laser output power

modulation for a strong optical feedback (R, = 1x107" and
Q, =1.1Q, ) and a harmonic vibration (Q, = Q, /7 ) with a small
amplitude of vibration @, =27/50. One can see that the signal is

composed of one peak at the carrier frequency ( o, ) and two peaks for

the vibration sidebands (O, to . )- The noise power spectrum

exhibits a double resonance with resonance frequencies symmetrically
located on both sides of the carrier frequency [ &, £ &, ].

Also, Fig. 4a allows to show the link among the noise power spectrum,
the gain of the laser dynamics and the relative amplitudes of the
spectral components of the vibration spectrum. To check the validity of
Egs. (19a-b), the shape (i.e. not the absolute value) of the complex gain
is simply determined by adjusting the shape of the analytical

expression of G(O‘V,é;,o;) on the noise power spectrum (lower

gain curve). In practice, principally the distance and the relative height
between the two resonance peaks are carefully adjusted. Then, if the
shape of the adjusted gain is renormalized (i.e. multiplied by a
constant) to fit the modulation amplitude at the carrier frequency
(upper gain curve), the division of the renormalized gain by

Jy (CI)a ) / J, (CI)a ) , allows to obtain a very good agreement between

the value of the gain and the amplitude of the vibration sidebands
(middle gain curve).

This verification demonstrates, that the frequency shapes of the
complex gain, which must be known [Eq. (4c) or Egs. (19a-b)] to
restore accurate vibration measurement, can be simply determined

experimentally by adjusting the shape of G ( c,,0,,0, ) on the shape

of the noise power spectrum and whatever the feedback condition
(weak or strong) and therefore whatever the laser dynamics (linear or
nonlinear).

Figs. 4b and 4c show the amplitude and the phase of the vibration
sidebands obtained for different normalized modulation frequencies (
0, ). One can see a very good agreement between the numerical

results and the non-linear complex gain G(O'v,é;,o;) previously

determined. This result confirms the possibility to extract quantitative
vibration measurements from the non-linear laser dynamics.

4. EXPERIMENTAL RESULTS

A. Experimental setup

To extract quantitative vibration measurements from the non-linear
laser dynamics of a laser submitted to frequency shifted optical
feedback, we have used a LOFI (Laser Optical Feedback Imaging)
setup.

A schematic diagram of this setup is shown in Fig. 5. The laser is a
diode pumped Nd:YAG microchip laser. The maximum available pump
power is 400 mW at 810 nm and the total output power of the
microchip laser is 80 mW with a central wavelength of 4 =1064nm .

The microchip laser has a plane-parallel cavity which is stabilized by
the thermal lens induced by the Gaussian pump beam. The two
dielectric mirrors are directly coated on the laser material (full cavity).
The input dichroic mirror transmits the pump power and totally
reflects the infrared laser wavelength. On the other side, the dichroic
output mirror allows to totally reflect the pump power (to increase the
pump power absorption and therefore the laser efficiency) and only
partially reflects (95%) the laser wavelength. The microchip cavity is



relatively short L, = 1mm which ensures a high damping rate of the

cavity and therefore a good sensitivity to optical feedback.

Part of the light diffracted and/or scattered by the vibrating target
returns inside the laser cavity after a second pass through the
frequency shifter. Therefore, the optical frequencies of the reinjected
light are shifted by F,. This frequency shift can be adjusted and is

typically of the order of the laser relaxation frequency F, , which is in

R’
the megahertz range for the microchip laser used here.
The optical feedback is characterized by the complex target reflectivity

(r, =4/R, exp(j(De ) , where the phase ®, = 27”2de describes the

optical phase shift induced by the round trip time delay z, (ie. the
distance d, = c7,, where ¢ is the velocity of light) between the laser

and the target. The effective power reflectivity (R, = |rL |2 ) takes into

account the target albedo, the numerical aperture of the collection
optics, the frequency shifter efficiency, the transmission of all optical
components and the overlap of the retro-diffused field with the
Gaussian cavity beam (confocal feature).

To generate vibrations (i.e. a time dependant phase ®, (t) ), the target

is mounted on a Piezo Electric Transducer (PZT) translation stage
which allows transient and harmonic displacements with minimum
amplitudes in the nanometer range and a maximum frequency of
roughly 200 kHz (ie. = F, /5 ).

Finally, the coherent interaction (beating) between the lasing electric
field and the frequency-shifted reinjected field leads to a modulation of
the laser output power. For detection purposes, a small part of the
laser output beam is sent to a photodiode. The delivered voltage is
analysed by a numerical oscilloscope, which allows Fast Fourier
Transform (FFT) calculations and processed by a PC to finally obtain
quantitative vibration measurements.

One can notice that even if LOFI images can be obtained pixel by pixel
by a full 2D galvanometric scanning, only punctual measurements
have been made in the present work. Also, one can notice that in
comparison with a conventional heterodyne interferometer, the LOFI
setup shown here does not require complex alignment. Indeed, the
LOFI interferometer is always self-aligned because the laser
simultaneously fulfils the functions of the source (i.e. photons-emitter)
and the photo-detector (i.e. photons-receptor).

L1 L2

BS Target
FS [1GS [ [~] PZT

pLaser }—~

Fr : Fe2 H [ Fa

Signal Processing

Fig. 5: Schematic diagram of the LOFI setup for vibrometry. pLaser:
microchip laser with a relaxation oscillations frequency Fr. L1, L2 and
Ls: Lenses, BS: Beam Splitter, GS: Galvanometric Scanner, FS Frequency

Shifter with a round trip frequency-shift F,, PZT: Piezo Electric

Transducer with a vibration frequency F,, , PD: Photodiode.

B. Measurements of transient harmonic vibrations

To demonstrate that our signal processing can be applied to any kinds
of vibrations, we have experimentally measured transient-harmonic
vibrations with the LOFI setup (Fig. 6).

Power spectrum (dB) Transientvibration (nm)

il bl

Frequency (MHz) Time (ms)

Fig. 6: Experimental results. Detection of a transient-harmonic
vibrations with an oscillation frequency of F, =180kHz (ie.

F, /6.5 ) and a vibration amplitude ¢, =28 nm . The measurements
are made for F, =1.24MHz (F,/F, =1.1) and an increasing

amount of optical feedback characterized by the laser power impacting
the vibrating PZT. Top row (a, b): low feedback (1.8 ¢ ); Middle row

(¢, d): intermediate feedback (5.6 #W ); Bottom row (e, f): strong
feedback(14.9 uW). The left column (a, ¢, €) shows the RF power

spectra, where the dashed white-lines show the shape of the non-
linear gain used for the signal processing. The signal processing is
made with a bandpass filter AF, =450 kHz (corresponding to the
dashed vertical black-lines). The right column (b, d, f): shows a
comparison between the vibration extracted from the signal
processing and the time gate when the PZT is triggered (solid white
lines).

Experimentally, the laser is set to an output power of 40 mW with a
relaxation frequency of F, =1.17 MHz and the carrier frequency

(controlled by two AODs) is tuned to F, =124 MHz (ie
F,/F, =1.06). Experiments have been made for 3 different

amounts of optical feedback. The strength of the optical feedback is
controlled by adjusting the conversion efficiency of the two AODs. In
Fig. 6 the power of optical feedback is characterized by the laser power
impacting the target: 1.8 uW for the top row (Figs 6a-b), 5.6 ulW
for the middle row (Figs 6¢-d), and 14.9 uW for the bottom row (Figs

6e-f). These values correspond to a relative increase of the effective
feedback reflectivity (R, ) by a factor of x9.7 between the first two

values and by a factor X7.1 between the second and the third one.

The transient-harmonic vibration generated by the PZT translation
stage is composed of harmonic oscillations with a frequency of



F, =180kHz (ie. F,/6.5) within a time gate of 3.3 s duration
(ie. 600 cycles) starting after a time delay of 2.0 ms. The total

recording time is 6.6 ms with a sampling rate of 1x107 samples /s .

For the signal processing the frequency bandwidth is
AF, =450kHz around F,.

Fig. 6 shows, that quantitative vibration measurements can be
experimentally extracted from the non-linear laser dynamics. The left
column shows how the gain is modified when the amount of optical

feedback increases (ie. when o, T ). As already mentioned the
modification of the non-linear gain is induced by the modification of
the carrier amplitude (C, (56 ,O, ) ). Starting with a linear gain (Fig.

6a), the gain becomes more and more non-linear when &, T (Figs. 6b-

¢). In agreement with Eq. (16a), one can observe for the non-linear gain
(Figs 6¢ and 6e) that the frequency distance between the two maxima
(located symmetrically on both sides of the carrier frequency)
increases. Secondly, in agreement with Eq. (16b), one can also observe
that the amplitude of the maximum located on the right side of the
carrier frequency increases.

The left column allows to show that the modulation amplitude at the
carrier frequency can saturate when the optical feedback becomes too
strong. Indeed, Figs. 6¢ and 6e show a roughly constant amplitude of
the carrier, although the amount of optical feedback is increased (
x7.1).

Despite this saturation, the right column of Fig. 6 shows that regardless
of the shape of the gain (ie. linear or non-linear) the transient-
harmonic vibration is recovered with an accurate time delay,
characterized by the trigger trace superimposed. It should be noted
that the presented time traces are an average on ten acquisitions. By
looking more precisely near the rising and falling edges, one can also
observe the transient time response of the PZT.

When the amount of optical feedback increases, one can observe a
small increase of the mean value of the stationary vibration amplitude (
21nm, 25 nm and 28 nm), while one can observe a small decrease

of the vibration noise (6 nm,3 nm and 1 nm ). The amplitude of the

vibration noise has been determined during the starting time delay (i.e.
before the starting of the harmonic vibrations). For a given detection
bandwidth, this reduction of the vibration noise could be qualitatively
explained by the increase of the carrier signal, coupled simultaneously
with a modification of the laser noise power spectrum induced by the
optical feedback, in the vibration frequency range.

For comparison, the vibration amplitude value measured at low
frequency (150 Hz) with a lock-in amplifier gives 28 nm. So, taking
into account the noise, the obtained results are in relative good
agreement and one can notice that the better value is obtained for the
strongest feedback (28%1mm) where the non-linear gain

compensation is necessary.

5. CONCLUSIONS AND PERSPECTIVES

The main motivation of this study is the understanding of the non-
linear response of a LOFI sensor for quantitative phase measurements
of small vibrations. The use of a LOFI set up is motivated by the
following reasons: i) the LOFI interferometer is always self-aligned
because the laser simultaneously fulfils the functions of the source (i.e.
photons-emitter) and of the photo-detector (i.e. photons-receptor); ii)

the LOFI detection is shot noise limited (even with a low power laser)
in a frequency range located near the relaxation oscillation frequency
of the laser.

For small vibrations, the amplitude of the modulation at the carrier
frequency is several order of magnitude higher than the amplitude of
vibration sidebands at the acoustic frequency. Consequently, the
optical feedback needs to be strong to be able to observe the small
vibration sidebands and under these conditions the laser dynamics
becomes non-linear. In this paper we have demonstrated (analytically,
numerically and experimentally) how quantitative vibration
measurements (harmonic or transient) can be extracted from the non-
linear dynamics of a laser submitted to frequency shifted optical
feedback. By using a multiscale analysis, we have analytically studied
the non-linear dynamics of a laser subjected to frequency shifted
optical reinjection coming back from a vibrating target. More
specifically, we have studied the non-linear dynamical coupling
between the modulation at the carrier frequency and the modulation
of the vibration sidebands at the acoustic frequency. We have shown
how the non-linear amplification of the vibration spectrum by the laser
dynamics is related to the strength of the optical feedback (and
therefore of the amplitude of the carrier) and how it can be
compensated to obtain accurate (ie. without bias) vibration
measurements in the nanometer range at relatively high frequency (of
the order of several hundred of kHz). The theoretical predictions,
confirmed by numerical simulations, are in good agreement with the
experimental data for both transient and harmonic vibrations.

Of course, the compensation effect is more important and therefore
more necessary when the vibration spectrum is in the vicinity of the
resonance frequency of the laser dynamics and therefore is strongly
deformed. This nearly resonant situation corresponds to the
conventional use of a LOFI setup to obtain a shot noise limited
detection of the optical feedback.

Encouraged by these preliminary results, the sensitivity and
performances of the non-linear LOFI device will be tested (in a near
future) for the optical detection (with a shot-noise sensitivity) of
acoustics waves induced by a photo-acoustic effect [27, 28].
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