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Nonlinear laser dynamics induced by frequency shifted optical feedback: application to vibration measurements

INTRODUCTION

Laser properties (power, polarization, coherence, dynamical behavior …) can be significantly affected and modified by optical feedback [START_REF] Lang | External optical feedback effects on semiconductor injection laser properties[END_REF][START_REF] Erneux | Non-linear dynamics of an injected quantum cascade laser[END_REF] which allows for the realization of non-conventional sensors. One potential application is Laser Feedback Interferometry (LFI), where the steady-state intensity of a laser is modified by coherent optical feedback from an external surface. With this phase sensitive technique the signal depends on the reflectivity, distance and motion of the target [START_REF] Taimre | Laser feedback interferometry: a tutorial on the self-mixing effect for coherent sensing[END_REF]. However, when the amount of re-injected light is very small, the interference contrast occurring inside the laser cavity is drastically reduced. To overcome this problem, one solution is to use the dynamical properties of the laser which can be several orders of magnitude more sensitive to optical feedback than the laser steadystate properties. Since the pioneering work of K. Otsuka on self-mixing modulation effect in a class-B laser [START_REF] Otsuka | Effects of external perturbations on LiNdP 4 0 12 Lasers[END_REF], the dynamical sensitivity of lasers to frequency shifted optical feedback has been used in metrology [START_REF] Otsuka | Self-Mixing Thin-Slice Solids-State Laser Metrology[END_REF], for example in self mixing Laser Doppler Velocimetry (LDV) [START_REF] Okamoto | Ultrahighly sensitive laser-Doppler velocity meter with a diode-pumped Nd:YVO4 microchip laser[END_REF][START_REF] Kawai | Ultrahigh-Sensitivity Self-Mixing Laser Doppler Velocimetry with Laser-Diode-Pumped Microchip LiNdP 4 O 12 Lasers[END_REF][START_REF] Suddo | Determination of velocity of self-mobile phytoplankton using a self thin-slice solidstate laser[END_REF] and in Laser Optical Feedback Imaging (LOFI) [START_REF] Lacot | Laser optical feedback tomography[END_REF][START_REF] Hugon | Coherent microscopy by laser optical feedback imaging (LOFI) technique[END_REF][START_REF] Glastre | Demonstration of a plenoptic microscope based on laser optical feedback imaging[END_REF]. Compared to conventional optical heterodyne detection, frequency shifted optical feedback allows for higher (several order of magnitude) intensity modulation contrast [START_REF] Lacot | Coherent laser detection by frequency-shifted optical feedback[END_REF][START_REF] Lacot | Comparative study of autodyne and heterodyne laser interferometry for imaging[END_REF][START_REF] Jacquin | Experimental comparison of autodyne and heterodyne laser interferometry using an Nd:YVO4 microchip laser[END_REF].

For weak optical feedback, the laser dynamics is linear and the maximum of the modulation is reached when the shift frequency is resonant with the laser relaxation oscillation frequency. In this condition, an optical feedback level as low as -170 dB (i.e. 10 17 times weaker than the laser intra-cavity power) has been detected [START_REF] Okamoto | Ultrahighly sensitive laser-Doppler velocity meter with a diode-pumped Nd:YVO4 microchip laser[END_REF]. On the opposite, phase measurements (such as profilometry or vibrometry) with low noise necessitate to increase the amount of optical feedback reinjected inside the laser cavity [START_REF] Otsuka | Real-time nanometer vibration measurement with self-mixing microchip solid-state laser[END_REF][START_REF] Lacot | Phase-sensitive laser detection by frequencyshifted optical feedback[END_REF][START_REF] Muzet | Experimental comparison of shearography and laser optical feedback imaging for crack detection in concrete structures[END_REF]. For strong optical feedbacks, the laser dynamics becomes non-linear, making it difficult to obtain quantitative measurements. The main objective is to demonstrate the possibility to accurately measure very small vibration amplitudes (i.e. sub-wavelength), from the non-linear dynamics of a laser submitted to a strong frequencyshifted optical feedback. Experimentally, the use of a LOFI set up is motivated by the following reasons: i) the LOFI interferometer is always self-aligned because the laser simultaneously fulfils the functions of the source (i.e. photons-emitter) and of the photo-detector (i.e. photons-receptor); ii) the LOFI detection is shot noise limited (even with a low power laser) in a frequency range located near the relaxation oscillation frequency of the laser [START_REF] Lacot | Coherent laser detection by frequency-shifted optical feedback[END_REF][START_REF] Lacot | Comparative study of autodyne and heterodyne laser interferometry for imaging[END_REF][START_REF] Jacquin | Experimental comparison of autodyne and heterodyne laser interferometry using an Nd:YVO4 microchip laser[END_REF]. This article is organized as follows. In section 2, we firstly recall the equations governing the dynamics of a laser with a frequency-shifted optical reinjection back-scattered from a vibrating target. Then the signal processing to extract vibration measurements from the laser dynamics is explained. The end of this section is devoted to numerical simulations where we show typical examples of numerical vibration signals (harmonic and transient) extracted from the laser dynamic in both the linear and nonlinear regimes. These numerical simulations show that the gain of the laser dynamics needs to be compensated (and therefore to be known) to extract accurate (i.e. without bias) vibration amplitude. In section 3, a bifurcation analysis is made to obtain an asymptotic solution for the gain of the laser dynamics. Our calculations show that the carrier and the vibration signal are coupled through the non-linear laser dynamics and we demonstrate that the nonlinear amplification of the vibration spectrum is related to the amplitude of the carrier signal. Therefore, our calculation confirms that to obtain quantitative vibration measurements, the non-linear gain must be taken into account in the signal processing. Section 4 is devoted to the measurement of experimental vibrations with a LOFI (Laser Optical Feedback Imaging) setup. The theoretical predictions, confirmed by numerical simulations, are in good agreement with the experimental data. The final section is devoted to the general discussion of these results and to their prospective applications. ), the dynamical behavior of a laser with a frequency shifted ( e F ) optical feedback can be described by the following set of differential equations [START_REF] Lacot | Coherent laser detection by frequency-shifted optical feedback[END_REF]:

LASER WITH FREQUENCY-SHIFTED OPTICAL FEEDBACK A. Basic equations for vibrometry

( ) ( ) 2 cos c c e e e I dI BIN I R I t t F t dt γ γ   = - + Ω +Φ +   , (1a) 
[ ]

1 0 dN N N BNI dt γ = -- , ( 1 b ) 
( ) 0

I F t = , ( 1 c ) 
( ) ( ) ( )

2 I I c F t F t I τ γ δ τ - = , ( 1d 
)
where I and N are respectively the laser intensity (photon unit) and the population inversion (atom unit). 1 γ is the decay rate of the population inversion, c γ is the laser cavity decay rate, 1 0 N γ is the pumping rate and B is related to the Einstein coefficient (i.e. the laser transition cross section). Regarding the noise, the laser quantum fluctuations are described by the Langevin noise function ( ) I F t , with a zero mean value and a white noise type correlation function [START_REF] Peterman | Laser diode modulation and noise[END_REF][START_REF] Kolobov | Role of pumping statistics and dynamics of atomic polarization in quantum fluctuations of laser sources[END_REF].

In Eqs. (1), the cosine function expresses the coherent interaction (i.e. the beating at the angular frequency: In the absence of optical feedback (

0 e R = )
, the laser steady-state is given by the mean values of the population inversion and of the laser intensity:

S c N B γ = , ( 2 a ) 
[ ]

1 S s a t I I η = -, ( 2 b ) 
where

0 S N N η =
is the normalized pumping parameter and ( )

1 1 R c γ γ η Ω = -
and a damping rate

1 2 R γ η Γ = .
Experimentally, this transient dynamics is constantly excited by the laser quantum noise described by the Langevin force ( )

I F t .
In the presence of optical feedback (

0 e R ≠ )
, the laser intrinsic dynamics can be modified and the extent of changes in the laser dynamical properties depends on the feedback conditions ( , e e R Ω ). In this article, we call "strong feedback", the situation where the modulation frequency is nearly resonant ( e R Ω ≈ Ω ) and where the amount of optical feedback is high enough to induce non-linear dynamical behaviors in the laser output power modulation. The strong feedback situation is also characterized by a strong modification of the RF signal power spectrum of the laser [START_REF] Tan | Power spectral characteristic of a microchip Nd:YAG laser subjected to frequency-shifted optical feedback[END_REF][START_REF] Tan | Response of microchip solid state laser to external frequency-shifted feedback and its applications[END_REF]. In particular, the relaxation oscillations frequency can decrease, jointly with a modification of the shape of the RF noise power spectrum of the laser [START_REF] Lacot | Non linear modification of the laser noise power spectrum induced by frequency-shifted optical feedback[END_REF]. In contrast, the "weak feedback" regime corresponds to the situation where the modulation frequency is far away from the resonance (

0 e R
Ω -Ω >> ) and where the amount of optical feedback ( e R ) is small enough to induce only linear dynamical behavior in the laser output power modulation. In this situation, the RF noise power spectrum of the laser, with and without optical feedback, is unchanged. Here, let us mentioned that the RF noise power spectrum is an image of the gain (i.e. of the modulation transfer function) of the laser dynamics [START_REF] Lacot | Non linear modification of the laser noise power spectrum induced by frequency-shifted optical feedback[END_REF]. As explained in the following section, the knowledge of this gain is of paramount importance to extract accurate (i.e. without bias) vibration measurements from the laser dynamics of a reinjected laser.

B. Signal processing for vibrometry

The aim of the present paper is to explain how it is possible to extract the time dependence of the phase shift of the optical feedback, namely

( ) e t Φ (and consequently ( ) e d t ) from the laser dynamics, in both the weak and the strong feedback regimes. For a laser with frequency shifted optical feedback, the output power modulation of the laser is given by the convolution product (symbol ⊗ ) between the input modulation (i.e. the coherent beating at the carrier frequency) and the impulse response of the laser dynamics which is the is inverse of the Fourier transform (FT -1 ) of the gain of the laser dynamics ( ) 

Δ = -∝ ×     Ω Ω ⊗ Ω +Φ +         . (3) 
In Eq. ( 3), one can notice that the gain of the laser dynamics ( )

, , Principally in the strong feedback regime.

To extract the temporal evolution of the phase induced by the vibration (

( )

e t Φ
), the different steps of the signal processing are given by the set of Eqs. (4a-f):

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( 
) 
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Fisrtly [Eq. (4a)], the Fourier Transform of the time evolution of the laser output power is calculated. Then [Eq. (4b)], the Fourier spectrum is filtered using a bandpass filter with a central frequency e Ω and a bandwidth e ΔΩ . The bandwidth is adapted to the frequency range of the vibration spectrum. Thirdly [Eq. (4c)], the distortion of the vibration spectrum induced by the laser dynamics (i.e. the amplification gain) is compensated. Then, coming back to the temporal space [Eq. (4d)], the signal is demodulated [Eq. (4e)] and finally [Eq. (4f)], the temporal evolution of the phase is extracted from the complex signal. In this signal processing, it can be noticed that the multiplication, by any real constant number, of the input signal (i.e. the laser output power modulation) , has no impact on the extraction of output signal, which is a phase signal. So, the gain can be multiplied by any real constant. Therefore, for the experimental measurement of vibrations, the absolute knowledge of the amplitude of the gain is not necessary (i.e. only the complex frequency shape is important). This is due to the fact that, for vibration measurements, only the relative ratio between the amplitudes of the spectral components is important.

C. Compensation of the gain of the laser dynamics

To demonstrate how different kinds of vibrations can be extracted from the laser dynamics, we have numerically solved the set of differential equations given by (1).

Numerical harmonics vibrations

Fig. 1 shows examples of the calculations of a harmonic vibration:

( ) ( ) sin e a a t t Φ =Φ Ω , ( 5 ) 
with an acoustic angular frequency Ω ± Ω ). When the feedback is weak (

9 10 e R - =
), one can see in Fig. 1a, that the complex gain adjusted on the noise power spectrum exhibits only one resonance (i.e. is linear). On the other hand, when the feedback is strong (

7 10 e R - =
), the gain, which becomes non-linear, exhibits two resonances symmetrically located on both sides of the carrier frequency (Fig. 1b) [START_REF] Lacot | Non linear modification of the laser noise power spectrum induced by frequency-shifted optical feedback[END_REF]. As already mentioned the RF noise power spectrum is an image of the gain (i.e. of the modulation transfer function) of the laser dynamics [START_REF] Lacot | Non linear modification of the laser noise power spectrum induced by frequency-shifted optical feedback[END_REF] and therefore helps to obtain it as it is explained in the theoretical section (i.e. section III).

In both cases, the middle row (Figs. 1c and1d) show a comparison between the exact vibration motion and the vibration obtained after the signal processing, but without the gain compensation (i.e. without the signal processing step given by Eq. (4c)). One can see that neither the amplitude nor the phase of the detected vibration is good. In the weak feedback case, the carrier signal, which is near the resonance, is amplified much more than the vibration sidebands and thus the vibration amplitude is lower than the real one. In the strong feedback case the opposite situation occurs. The vibration sidebands which are near the resonances are much more amplified than the carrier signal, and therefore the detected vibration amplitude is larger than the real one. In both cases, one can also notice a π phase-shift induced by the resonance.

Finally, the lower traces (Figs 1e and1f) show that the accurate vibration is recovered in both cases (weak or strong feedback) if the complex gain compensation (i.e. if the division by ( )

, , e e G R Ω Ω ) is
made in the signal processing. So, Fig. 1 clearly shows that the gain compensation (linear or non-linear) is necessary to obtain accurate (i.e. without bias) quantitative vibration measurements (amplitude and phase) from the reinjected laser dynamics.

The comparison of Figs. 1e and 1f also shows that the vibration amplitude is better recovered when the amount of optical feedback increases. This effect is principally due to the increase of all the vibration components relatively to the noise baseline. So, even if for a strong optical feedback, the laser dynamics becomes non-linear (i.e. much more complicated), the compensation of the non-linear amplification allows to restore vibration measurement with an improved accuracy. Indeed, the standard deviation of the difference between the exact vibration and the extracted vibration is equal to 0.02 rad ( ) ).

2
The left column (a, c, e) corresponds to a weak optical feedback ( 

1.2 η = , 5 1 1 10 c γ γ - = × , 4 2.251 10 R c F γ - = × .

Numerical transient vibrations

To verify that our signal processing can be applied to any kinds of vibrations, we have numerically simulated transient vibrations:

( )

2 1 a e a t t τ τ Φ Φ =   - +     , (6) 
with a half time width Firstly, one can notice on the left column, that the non-linear gain used for the gain compensation in the signal processing, is always the same and is also identical to the one used in Fig. 1 (right column) for the calculation of harmonic vibration. This is due to the fact that the feedback conditions are the same and consequently the gain of the laser dynamics

( )

, ,

e e G R Ω
Ω is the same for all these vibration calculations. Secondly, the right column shows that impulse vibration with an accurate amplitude and an accurate time delay can be extracted from the non-linear laser dynamics (Figs. 2b , 2d, and2f). Thirdly, the impulse shape is recovered regardless of the vibration amplitude, even when the vibration amplitude is large (see Figs. 2a andb) and when the RF power spectrum is strongly perturbed by nonlinear dynamical effects of higher order. Finally, on Fig. 2f, an amplitude of

1 0.2 1000 a d n m λ = ± ≈
is detected, showing the high potential of this measurement method for the detection of small vibration amplitudes at relatively high frequencies. It must be noted that the SNR of the order of 5 has been obtained with a filtering process (see Eq. 4b) adapted to the width of the vibration spectrum (

1.5 e R a ΔΩ = Ω ≈ ΔΩ ).
For a narrower bandwidth ( e a ΔΩ < ΔΩ ) the noise (i.e. the fluctuation at the base of the impulse vibration) is lower, but the vibration spectrum is truncated. Consequently, the shape (amplitude and width) of the reconstructed vibration pulse is not the good one.

Conversely if the bandwidth is wider ( e a ΔΩ > ΔΩ ), the noise increases, without any significant improvement of the reconstructed pulse shape. Therefore, with the non-linear gain compensation, the detection of very small vibration amplitudes (

2 500 a π Φ =
) seems to be possible with a reinjected laser. In Fig. 3, the transient vibration is again a short impulse vibration with a wide spectral bandwidth (

1.8 a R ΔΩ = Ω
) and with a small vibration amplitude (

2 50 a π Φ =
), but now the calculations have been made for a strong feedback reflectivity ( 

Ω Ω =

).

The left column shows how the non-linear gain (adjusted on the noise power spectrum) is modified when the carrier frequency approaches the intrinsic laser relaxation frequency (i.e. when

1 e R
Ω Ω → ). As already mentioned, the modification of the non-linear gain is induced by the modification of the carrier amplitude [START_REF] Lacot | Non linear modification of the laser noise power spectrum induced by frequency-shifted optical feedback[END_REF].

One can observe on the left column that the frequency distance between the two maxima (located symmetrically on both sides of the carrier frequency) decreases. Secondly, one can also observe that the amplitude of the maximum located on the right side of the carrier frequency increases in agreement with [START_REF] Lacot | Non linear modification of the laser noise power spectrum induced by frequency-shifted optical feedback[END_REF].

The right column of Fig. 3 shows that regardless of the shape of the non-linear gain (i.e. of the frequency shift e Ω ) the impulse vibration is recovered with an accurate amplitude and an accurate time delay. Nevertheless, one can notice a small degradation of the signal to noise ratio (roughly by a factor 2) when

1.01

e R Ω = Ω . In Fig. 3f, the higher noise, which is visible at the base of the feet of the impulse vibration, can be attributed to the fact that the adjustment of the noise power spectrum by the non-linear gain is not always perfect and that the amount of noise initially present (i.e. before the gain compensation) inside the bandwidth filter increases when

1 e R
Ω Ω → (see Fig. 3e).

GAIN OF THE NONLINEAR LASER DYNAMICS

As explained in the previous section, accurate (i.e. without bias) vibration measurements are possible with frequency shifted optical feedback in laser, if the gain compensation is applied in the signal processing. So the gain of the laser dynamics needs to be known. The aim of the present section is to obtain an analytic expression of the complex gain ( )

, , e e G R Ω Ω , whatever the feedback condition (weak or strong) is and therefore whatever the laser dynamics (linear or nonlinear) is.

A. Asymptotic solution for the nonlinear gain

To analytically study the dynamical response of a laser subjected to frequency-shifted optical feedback ( 0 e R ≠ ), we have used the asymptotic equation given in [START_REF] Lacot | Non linear modification of the laser noise power spectrum induced by frequency-shifted optical feedback[END_REF][START_REF] Schwartz | Subharmonic hysteresis and period doubling bifurcations for periodically driven laser[END_REF][START_REF] Witomski | Parametric amplification of frequency-shifted optical feedback[END_REF]:

[ ] ( ) 2 * 1 e x p 6 2 4 e e e dA A A i A i A i i ds δ ηε σ = - - - - + Φ , ( 7 
)
where A is the complex amplitude of the small periodic oscillation and where For our microchip laser,

3 1 10 R ε γ - = Ω ≈
is a small quantity, which allows the use of the asymptotic analysis detailed in [START_REF] Lacot | Non linear modification of the laser noise power spectrum induced by frequency-shifted optical feedback[END_REF][START_REF] Schwartz | Subharmonic hysteresis and period doubling bifurcations for periodically driven laser[END_REF][START_REF] Witomski | Parametric amplification of frequency-shifted optical feedback[END_REF]. In Eq. ( 7), the optical feedback is described by To obtain the gain (i.e. the modulation transfer function) of the laser dynamic, we now investigate the solutions of Eq. ( 7), in the particular situation of a vibrating target with a harmonic oscillation:

( ) Φ an additional phase shift corresponding to the mean distance between the laser and the vibrating target. Without loss of generality, we assume:

( ) 0 sin e a a a s s σ φ Φ =Φ +Φ + , (8) 
0 2 m π Φ =
, where m is an integer.

In the case of sub-wavelength vibration amplitudes (i.e.

2 a π Φ << ),
Eq. ( 7) can be rewritten:

[ ] ( ) ( ) ( ) ( ) ( ) 2 * 0 1 1 1 2 6 exp 4 exp e a e a a a a a a dA A A i A A i ds J i J i s J i s ηε σ δ σ φ σ φ - = - - - -   Φ     + + Φ +       + Φ - -         , (9) 
where ( )

n a
J Φ is the Bessel function of the first kind and of order n with: ( )

0 1 a J Φ ≈ , ( ) 1 2 a a J Φ ≈ Φ and ( ) ( ) 1 1 a a J J -Φ = -Φ .
In the present study, the key term is the cubic one ( ) The solution of Eq. ( 9) can be written as:

( ) ( ) ( ) ( ) exp exp e R a a a a a a A s C T s R i s L i s σ φ σ φ = + + + + - +         , (10) 
where e C is the stationary modulation amplitude at the carrier frequency, ( ) R T s is the transient dynamics of random excitations (due to quantum noise) around the stationary solution, while a R and a L are respectively the amplitudes of the right and left sidebands of the acoustic vibration. One can notice that in Eq. ( 10), the carrier signal ( e C ) has already be studied in [23] and more particularly the hysteresis phenomenon induced by the periodic modulation, while the noise power spectrum ( ) R T and more particularly the shift of the laser relaxation frequency has already been studied in [START_REF] Lacot | Non linear modification of the laser noise power spectrum induced by frequency-shifted optical feedback[END_REF]. The aim of the present paper is focused on the study the complex vibration sidebands ( a R and a L ) and how they are amplified by the laser dynamics, in order to be able to restore accurate vibration measurements.

In the forthcoming study, we assume that the carrier signal is much stronger than the laser quantum noise and the vibration sidebands (i.e.

( ) , ,

e R a a

C T s R L >>

). Keeping only the first order non-linear terms, Eq. [START_REF] Hugon | Coherent microscopy by laser optical feedback imaging (LOFI) technique[END_REF] 

A A C C C C C T C C T C C R C C L i s C C L C C R i s σ φ σ φ ≈ + +   + + + +         + + - +       . ( 11 
)
Inserting Eqs.( 10) and ( 11) into Eq. ( 9) gives the following equalities: 

( ) ( ) 2 
  = - + -+ -     , (12b) ( ) ( ) * 
C C C C R i i i L i i J ηε σ σ δ     + + -+ +         = Φ , (12c) ( ) ( ) * 
C R i L i i i i J ηε σ σ δ -     + - + -+         = Φ . ( 12d 
)
Eqs. (12a-b) have been already studied in [START_REF] Lacot | Non linear modification of the laser noise power spectrum induced by frequency-shifted optical feedback[END_REF][START_REF] Schwartz | Subharmonic hysteresis and period doubling bifurcations for periodically driven laser[END_REF]. Let us recall that the analytical resolution of Eq. (12a) shows that the power spectrum of the output power modulation at the carrier frequency (

C δ σ versus e σ ) exhibits hysteresis in the strong feedback situation and that the extent of the hysteresis zone increases with the amount of optical feedback e δ [22, 23, 25, 26]. Jointly, the study of the transient dynamics [Eq. (12b)] allows to determine the noise power spectrum of the laser submitted to frequency shifted optical feedback. Let us recall that the noise power spectrum is composed of two resonant curves with a resonant width ηε and with resonance frequencies symmetrically located on both sides of the carrier frequency [START_REF] Lacot | Non linear modification of the laser noise power spectrum induced by frequency-shifted optical feedback[END_REF]:

( ) ( ) , , R e e e R e e σ δ σ σ δ δ σ ± = ± , (13a) 
with the detuning: 

( ) ( ) ( ) 2 2 2 2 , , , 1 3 6 
=         -+ -         . ( 13b 
)
Eq. ( 13) shows that the modification of the noise power spectrum is linked to the strength of the optical feedback ( e δ , e σ ) principally through its dependence on the non-linear modulation amplitude 

C i J i i i i J i C C C i i i i i i σ δ σ δ σ δ σ δ δ ηε σ σ δ σ δ σ δ σ ηε ηε σ σ σ σ - =         Φ - + -+ - Φ                       + + -+ - + -+ -           , (14a) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) * 2 2 *
i i i i J i C C C i i i i i i σ δ σ δ σ δ σ δ δ ηε σ σ δ σ δ σ δ σ ηε ηε σ σ σ σ - =         Φ + + -+ - Φ                       - + -+ + + -+ -           . ( 14b 
)
The aim of the following section is to explain why it is possible to extract an accurate (i.e. without a bias) value of a Φ (and, finally, of the vibration amplitude a d ) from the measurement of the two vibration sidebands ( a R and a L ) conjointly with the carrier modulation ( e C ).

Using the two vibration sidebands given by Eqs (14a-b), we define the nonlinear gain of the laser dynamics by the following equation: 

( ) ( ) ( ) ( ) ( )
R if J R G L if J R σ σ δ σ σ σ σ δ σ σ σ δ σ σ σ - ≥ Φ = - < Φ .( 15 
)
Like the noise power spectrum, this gain exhibits two resonance frequencies symmetrically located on both sides of the carrier frequency [Eqs (13a-b)]. This double resonance is due to the cross coupling between the vibration sidebands. The frequency distance and the amplitude ratio between the two maxima depend on the feedback conditions and are roughly given by [START_REF] Lacot | Non linear modification of the laser noise power spectrum induced by frequency-shifted optical feedback[END_REF]:

( ) ( ) 2 , 2 , 2 1 3 e e e R
e e e C δ σ δ δ σ σ C δ σ << , leading to the conventional LOFI linear gain, with only one resonance frequency ( R Ω ) [12-14]:

    ≈ -+     , ( 16a 
) ( ) ( ) ( ) ( ) 2 , , , 6 2 , 
( ) ( ) ( ) ( ) ( ) 2 2 0 2 2 2 1 4 , , 1 2 4 2 e e e v e e L v C v c L v v R R G G G δ σ δ σ σ ηε σ γ ηγ → ==   -+     Ω =   Ω -Ω +     ≈ . ( 17 
)
At this point, one can notice that the linear gain depends only on the intrinsic dynamical parameters of the laser ( 1 γ , c γ andη ), while the non-linear gain also depends on the feedback conditions ( e R and e Ω ).

In agreement with the results shown on Figs. 3a, 3c and 3e, Eqs. (16ab) allows explaining why the frequency distances between the two maxima decreases and why the amplitude of the maximum located on the right side of the carrier frequency increases, when

1 e e R σ = Ω Ω → .

C. Gain compensation for vibration measurement

Using Eqs. (12a), ( 14) and ( 15), one also obtains:

( ) ( ) ( ) 0 , , , e e e v e e e a e C G J R δ σ σ σ δ σ = = Φ . ( 18 
)
Eqs. ( 15) and ( 18) clearly show that an accurate measurement of the vibration can be extracted from the non-linear laser dynamics ( e C , a R

, and a L ), if the non-linear amplification (via G ) is compensated: Fig. 6 shows, that quantitative vibration measurements can be experimentally extracted from the non-linear laser dynamics. The left column shows how the gain is modified when the amount of optical feedback increases (i.e. when e δ ↑ ). As already mentioned the modification of the non-linear gain is induced by the modification of the carrier amplitude ( ( )

( ) ( ) ( ) ( ) ( ) ( ) 1 
C G σ δ σ σ σ δ σ δ σ σ σ σ δ σ Φ = = Φ = + , ( 19a 
) ( ) ( ) ( ) ( ) ( ) ( ) 1 0 , , , , , , , 
, e e e C δ σ ). Starting with a linear gain (Fig. 6a), the gain becomes more and more non-linear when e δ ↑ (Figs. 6b- c). In agreement with Eq. (16a), one can observe for the non-linear gain (Figs 6c and6e) that the frequency distance between the two maxima (located symmetrically on both sides of the carrier frequency) increases. Secondly, in agreement with Eq. (16b), one can also observe that the amplitude of the maximum located on the right side of the carrier frequency increases. The left column allows to show that the modulation amplitude at the carrier frequency can saturate when the optical feedback becomes too strong. Indeed, Figs. 6c and 6e show a roughly constant amplitude of the carrier, although the amount of optical feedback is increased (

7.1 × ).
Despite this saturation, the right column of Fig. 6 shows that regardless of the shape of the gain (i.e. linear or non-linear) the transientharmonic vibration is recovered with an accurate time delay, characterized by the trigger trace superimposed. It should be noted that the presented time traces are an average on ten acquisitions. By looking more precisely near the rising and falling edges, one can also observe the transient time response of the PZT.

When the amount of optical feedback increases, one can observe a small increase of the mean value of the stationary vibration amplitude ( 21nm , 25 nm and 28 nm ) , while one can observe a small decrease of the vibration noise ( 6 nm , 3 nm and 1 nm ). The amplitude of the vibration noise has been determined during the starting time delay (i.e. before the starting of the harmonic vibrations). For a given detection bandwidth, this reduction of the vibration noise could be qualitatively explained by the increase of the carrier signal, coupled simultaneously with a modification of the laser noise power spectrum induced by the optical feedback, in the vibration frequency range.

For comparison, the vibration amplitude value measured at low frequency (150 Hz) with a lock-in amplifier gives 28 nm . So, taking into account the noise, the obtained results are in relative good agreement and one can notice the value is obtained for the strongest feedback ( 28 1 nm ±

) where the non-linear gain compensation is necessary.

CONCLUSIONS AND PERSPECTIVES

The main motivation of this study is the understanding of the nonlinear response of a LOFI sensor for quantitative phase measurements of small vibrations. The use of a LOFI set up is motivated by the following reasons: i) the LOFI interferometer is always self-aligned because the laser simultaneously fulfils the functions of the source (i.e. photons-emitter) and of the photo-detector (i.e. photons-receptor); ii) the LOFI detection is shot noise limited (even with a low power laser) in a frequency range located near the relaxation oscillation frequency of the laser. For small vibrations, the amplitude of the modulation at the carrier frequency is several order of magnitude higher than the amplitude of vibration sidebands at the acoustic frequency. Consequently, the optical feedback needs to be strong to be able to observe the small vibration sidebands and under these conditions the laser dynamics becomes non-linear. In this paper we have demonstrated (analytically, numerically and experimentally) how quantitative vibration measurements (harmonic or transient) can be extracted from the nonlinear dynamics of a laser submitted to frequency shifted optical feedback. By using a multiscale analysis, we have analytically studied the non-linear dynamics of a laser subjected to frequency shifted optical reinjection coming back from a vibrating target. More specifically, we have studied the non-linear dynamical coupling between the modulation at the carrier frequency and the modulation of the vibration sidebands at the acoustic frequency. We have shown how the non-linear amplification of the vibration spectrum by the laser dynamics is related to the strength of the optical feedback (and therefore of the amplitude of the carrier) and how it can be compensated to obtain accurate (i.e. without bias) vibration measurements in the nanometer range at relatively high frequency (of the order of several hundred of kHz). The theoretical predictions, confirmed by numerical simulations, are in good agreement with the experimental data for both transient and harmonic vibrations. Of course, the compensation effect is more important and therefore more necessary when the vibration spectrum is in the vicinity of the resonance frequency of the laser dynamics and therefore is strongly deformed. This nearly resonant situation corresponds to the conventional use of a LOFI setup to obtain a shot noise limited detection of the optical feedback.

Encouraged by these preliminary results, the sensitivity and performances of the non-linear LOFI device will be tested (in a near future) for the optical detection (with a shot-noise sensitivity) of acoustics waves induced by a photo-acoustic effect [START_REF] Li | Photoacoustic tomography and sensing in biomedicine[END_REF][START_REF] Carp | Optoacoustic imaging based on the interferometric measurement of surface displacement[END_REF].

For weak optical feedback ( 1 eR

 1 << ) and a short round trip time delay (

  lasing and the feedback electric field. The optical reinjection back-scattered from a vibrating target is characterized by the effective power reflectivity e R and the time dependent optical phase shift the laser and the vibrating target. c λ is the laser wavelength.

  by damped relaxation oscillations of the laser output power with a relaxation angular frequency

  Figs 1a-b show the signal is principally composed of one peak at the carrier frequency ( e Ω ) and two peaks for the vibration sidebands (

Fig. 1 :

 1 Fig. 1: Numerical simulation. Calculations of a harmonic vibration ( 3.5 a R Ω = Ω

  right one (b, d, f) corresponds to a strong optical feedback ( top row (a, b) shows the laser power spectrum where the resonance gain (bold line) is adjusted on the noise spectrum. The calculations are made with vertical lines). The middle row (c, d) shows a comparison between the exact vibration motion (solid line) and the vibration obtained after the signal processing (line of circles), but without the gain compensation. The bottom row (e, f) shows the same comparison when the gain compensation has been applied. Laser parameters:

.Fig. 2 :

 2 Fig. 2: Numerical simulation. Calculations of a transient vibration with a half time width ( 1.8 a R F

Fig. 3 :

 3 Fig. 3: Numerical simulation. Calculations of a transient vibration with a full time width 1.8 a R F

  and the time normalized by the relaxation frequency.

φ

  the modulation phase shift and 0

  of the modulation at the carrier frequency ( e Ω )with the vibration amplitudes at the acoustic sideband frequencies (

  resolution of Eqs (12c-d) is straightforward and gives the following solutions for the modulation amplitude of the two sidebands:

  In agreement with the results shown on Figs. 1a-b, Eq. (16b) explains that the amplitudes of the two maxima (located symmetrically on both sides of the carrier frequency) are of the same order of magnitude for strong optical feedback (i.e when
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) within a time gate of 3.3 ms duration (i.e. 600 cycles) starting after a time delay of 2.0 ms . The total recording time is 6.6 ms with a sampling rate of