Laurent Bétermin 
email: betermin@math.ku.dk.
  
Local variational study of 2d lattice energies and application to Lennard-Jones type interactions

Keywords: AMS Classification: Primary 82B20, Secondary 52C15, 35Q40 Lattice energy, Theta functions, Triangular lattice, Crystallization, Interaction potentials, Lennard-Jones potential, Ground state, Local minimum

In this paper, we focus on finite Bravais lattice energies per point in two dimensions. We compute the first and second derivatives of these energies. We prove that the Hessian at the square and the triangular lattice are diagonal and we give simple sufficient conditions for the local minimality of these lattices. Furthermore, we apply our result to Lennard-Jones type interacting potentials that appear to be accurate in many physical and biological models. The goal of this investigation is to understand how the minimum of the Lennard-Jones lattice energy varies with respect to the density of the points. Considering the lattices of fixed area A, we find the maximal open set to which A must belong so that the triangular lattice is a minimizer (resp. a maximizer) among lattices of area A. Similarly, we find the maximal open set to which A must belong so that the square lattice is a minimizer (resp. a saddle point). Finally, we present a complete conjecture, based on numerical investigations and rigorous results among rhombic and rectangular lattices, for the minimality of the classical Lennard-Jones energy per point with respect to its area. In particular, we prove that the minimizer is a rectangular lattice if the area is sufficiently large.

Introduction and main results

Many two-dimensional interacting systems exhibit a periodic order, especially at very low temperature. Ginzburg-Landau vortices, Wigner crystal, Bose-Einstein Condensates and graphene sheets are well-known examples of the manifestation of the so-called "crystallization": the ground state of their interaction energy tends to be a lattice structure. As explained in [START_REF] Blanc | The Crystallization Conjecture: A Review[END_REF], the mathematical justification of such phenomena is a challenging problem, even in two dimensions. If we consider only points interacting in the whole plane via a radially symmetric potential, only few results are known [START_REF] Heitmann | The Ground State for Sticky Disks[END_REF][START_REF] Luca | Crystallization in two dimensions and a discrete gauss-bonnet theorem[END_REF][START_REF] Radin | The Ground State for Soft Disks[END_REF][START_REF] Theil | A Proof of Crystallization in Two Dimensions[END_REF]. In each case, the interaction potential can be viewed as an approximation of a Lennard-Jones type potential defined for r > 0 by V LJ a,t (r) := a 2 r t 2 -a 1 r t 1 , a = (a 1 , a 2 ) ∈ (0, +∞) 2 , t = (t 1 , t 2 ) s.t. 1 < t 1 < t 2 .

(1.1)

For these models, the global optimality of a triangular lattice, i.e. a dilation of Z(1, 0)⊕Z(1/2, √ 3/2) (see (2.1)), is proved as the number of points goes to infinity, in the sense of the thermodynamic limit (i.e. for the average energy).

The Lennard-Jones type potentials, also called "Mie potentials" appear to be a good model for the interactions in a solid (see e.g. [28, p. 624]), or to describe hydrogen bonds [START_REF] Gelin | Side-chain torsional potentials: effect of dipeptide, protein, and solvent environment[END_REF]. They are also used in mathematical biology to study social aggregation [START_REF] Mogilner | Mutual interactions, potentials, and individual distance in a social aggregation[END_REF]. Furthermore, they can be seen as the difference of two homogeneous functions, which allows to efficiently use the change of scale. It was also pointed out by Ventevogel and Nijboer [START_REF] Ventevogel | On the Configuration of Systems of Interacting Particle with Minimum Potential Energy per Particle[END_REF] that the crystallization (at least in dimension 1) is easier to prove for Lennard-Jones type potentials than for other long-range decreasing-increasing functions like the Morse potential V M (r) = Ae -λr -Be -µr , λ > µ > 0.

In this paper, we choose the following approach. Let f ∈ C 2 ((0, +∞)) be a radially symmetric potential such that, for any k ∈ {0, 1, 2}, f (k) is integrable at infinity (see 2.2). Assuming that the ground state of the associated energy per point E f is a Bravais lattice

L = Zu ⊕ Zv ⊂ R 2 , what is the minimizer of E f [L] := p∈L\{0} f (|p| 2 )
among those lattices? Thus, we restrict the minimization problem to the simplest periodic sets of points. This problem, also discussed in [9, Sect. 2.5], appears to be an interesting first step in order to obtain information about the ground state of the energy. For example, it is possible to exclude a large majority of lattice structures from the list of possible minimizers thanks to it. Furthermore, any optimality result for L → E f [L] supports the associated crystallization conjecture for particles interacting through f . This problem of minimizing energies among Bravais lattices has been investigated for inverse power laws f (r) = r -s/2 , s > 0 [START_REF] Cassels | On a Problem of Rankin about the Epstein Zeta-Function[END_REF][START_REF] Diananda | Notes on Two Lemmas concerning the Epstein Zeta-Function[END_REF][START_REF] Ennola | A Lemma about the Epstein Zeta-Function[END_REF][START_REF] Rankin | A Minimum Problem for the Epstein Zeta-Function[END_REF] and gaussian potentials f (r) = e -παr [START_REF] Montgomery | Minimal Theta Functions[END_REF] where the corresponding energies are respectively the Epstein zeta function and the lattice theta function defined by (

ζ L (s) =
In each case, the triangular lattice is the unique minimizer at any scale, i.e. among all Bravais lattices of any fixed density. These results were used in Mathematical Physics to prove, for instance, the optimality of the triangular lattice for Bose-Einstein condensates [START_REF] Aftalion | Lowest Landau level functional and Bargmann spaces for Bose-Einstein condensates[END_REF] and Ginzburg-Landau vortices [START_REF] Sandier | From the Ginzburg-Landau Model to Vortex Lattice Problems[END_REF] among Bravais lattices of fixed density, supporting some important conjectures (see e.g. [START_REF] Bétermin | Renormalized Energy and Asymptotic Expansion of Optimal Logarithmic Energy on the Sphere[END_REF] for a connection between Sandier-Serfaty's Vortices Conjecture and Smale's 7 th problem).

This kind of problem contains a high degree of nonlinearity. Indeed, as explained in [START_REF] Montgomery | Minimal Theta Functions[END_REF][START_REF] Rankin | A Minimum Problem for the Epstein Zeta-Function[END_REF], a two-dimensional Bravais lattice L can be parametrized by three real numbers (x, y, A) where (x, y) ∈ D := (x, y) ∈ R 2 ; 0 ≤ x ≤ 1/2, y > 0, x 2 + y 2 ≥ 1 , and A > 0.

The set D is called the half modular domain, (x, y) parametrizes the "shape" of the lattice, and A is its area (the area of its unit cell R 2 /L, A = |u ∧ v|, also called the covolume of L). Four types of lattices play an important role:

• The triangular lattice of area A (see Figure 1), Λ A :=

2A √ A Z(1, 0) ⊕ Z 1 2 , √ 3 2 
parametrized by (1/2, √ 3/2, A).

• The square lattice of area A (see Figure 2), √ AZ 2 parametrized by (0, 1, A).

• The rhombic lattices (see Figure 3) parametrized by (cos θ, sin θ, A), 60 • ≤ θ ≤ 90 • , having their generating vectors u, v such that |u| = |v| and ( u, v) = θ (including the triangular lattice if θ = 60 • and the square lattice if θ = 90 • ).

• The rectangular lattices √ A Z 1 √ y , 0 ⊕ Z 0, √ y (see Figure 4) parametrized by (0, y, A), y ≥ 1 (including the square lattice if y = 1). Thus, the (nonlinear) energy of the lattice can be written as

E f [L] = E f (x, y, A) = (m,n)∈Z 2 \(0,0) f A 1 y (m + xn) 2 + yn 2 .
Then, once A > 0 is fixed, the equations of the critical points of (x, y) → E f (x, y, A) are nonlinear (see Proposition 3.1), as is the behaviour of the minimizer with respect to A, i.e. A → argmin (x,y)∈D E f (x, y, A). In this paper, we study the local minima of (x, y) → E f (x, y, A) for fixed A > 0 in order to get a better understanding of the multistability of this system. More precisely, we want to characterize the values of A such that the triangular lattice (resp. square lattice) given It appears that finding the global minimum of L → E f [L] among all the Bravais lattices (with or without a fixed density) is a difficult problem, especially in larger dimension than two (see e.g. [START_REF] Sarnak | Minima of Epstein's Zeta Function and Heights of Flat Tori[END_REF]). In [START_REF] Bétermin | Dimension reduction techniques for the minimization of theta functions on lattices[END_REF], the author and Petrache developed some methods to study the lattice theta function defined by (1.2) based on dimension reduction. Using local minimality results in dimension 2 for the triangular lattice and the square lattice, the local minimality of the Face-Centred-Cubic (FCC) and the Body-Centred-Cubic (BCC) lattices have been proved, for L → θ L (α), with respect to the parameter α. Thus, the local stability of the triangular (or square) layers of a three-dimensional lattice can give information about the stability of the whole lattice. In [START_REF] Bétermin | Local optimality of cubic lattices for interaction energies[END_REF], we have studied the same problem of local stability in dimension 3 for cubic lattices. Some analogies with this work will be pointed out in this paper (see Table 1). Furthermore, general results in any dimension have been proved by Coulangeon and Schürmann [START_REF] Coulangeon | Spherical Designs and Zeta Functions of Lattices[END_REF][START_REF] Coulangeon | Energy Minimization, Periodic Sets and Spherical Designs[END_REF][START_REF] Coulangeon | Local energy optimality of periodic sets[END_REF] connecting local minimality and metric properties of some lattices.

In [START_REF] Bétermin | Two-dimensional Theta Functions and Crystallization among Bravais Lattices[END_REF][START_REF] Bétermin | Minimization of energy per particle among Bravais lattices in R 2 : Lennard-Jones and Thomas-Fermi cases[END_REF], the author and Zhang studied E f where f = V LJ a,t is a Lennard-Jones type potential defined by (1.1). Using theta functions, the triangular lattice has been proved to be a global minimum for small parameters (t 1 , t 2 ) and a minimizer at high density (i.e. for small A) for any parameters. It was also shown that the triangular lattice is no longer a minimizer of E V LJ a,t if A is large enough. These results are summarized in the following theorem, where Γ is the usual Gamma function: [START_REF] Bétermin | Two-dimensional Theta Functions and Crystallization among Bravais Lattices[END_REF][START_REF] Bétermin | Minimization of energy per particle among Bravais lattices in R 2 : Lennard-Jones and Thomas-Fermi cases[END_REF]). Let V LJ a,t be defined by (1.1), then:

Theorem 1.1 ([
1. for any A ≤ π a 2 Γ(t 1 ) a 1 Γ(t 2 ) 1 t 2 -t 1 , the triangular lattice Λ A is the unique minimizer, up to rotation, of L → E V LJ a,t [L]
among Bravais lattices of fixed area A; 2. the triangular lattice Λ A is a minimizer of E V LJ a,t among Bravais lattices of fixed area A if and only if

A ≤ inf |L|=1,L =Λ 1 a 2 (ζ L (2t 2 ) -ζ Λ 1 (2t 2 )) a 1 (ζ L (2t 1 ) -ζ Λ 1 (2t 1 )) 1 t 2 -t 1 , (1.3)
where the infimum is taken over the Bravais lattices L of area 1 and the Epstein zeta function ζ L is defined by (1.2);

3. if π -t 2 Γ(t 2 )t 2 ≤ π -t 1 Γ(t 1 )t 1 , then the minimizer of L → E V LJ a,t [L]
among all the Bravais lattices (without a density constraint) is unique and triangular.

We remark that point 2. implies the non-minimality of Λ A if A is sufficiently large. Hence, in [START_REF] Bétermin | Minimization of energy per particle among Bravais lattices in R 2 : Lennard-Jones and Thomas-Fermi cases[END_REF], we numerically computed that the right side term of (1.3) in the classical case V (r) = r -6 -2r -3 (i.e. a = (2, 1), t = (3, 6)) is

A BZ := inf |L|=1 L =Λ 1 ζ L (12) -ζ Λ 1 (12) 2(ζ L (6) -ζ Λ 1 (6)) 1/3 ≈ 1.138.
Furthermore, we conjectured that the square lattice must be a minimizer for some values of the area (in an interval) larger than A BZ . Obviously, our method, based on the global optimality of the triangular lattice for the theta function L → θ L (α) defined by (1.2), was not adapted to prove the optimality of another lattice (square, rectangular or rhombic). Thus, the goal of this paper is to study L → E V LJ a,t [L] locally in order to get more information about the optimality of the triangular and the square lattice, and then to specify our conjecture -in the classical case -about the minimizers of (x, y) → E f (x, y, A) with respect to the area A.

The fact that the square and the triangular lattices are critical points of (x, y) → E f (x, y, A) for any fixed A is a consequence of the lattice symmetries, as proved in [START_REF] Coulangeon | Energy Minimization, Periodic Sets and Spherical Designs[END_REF]Thm. 4.4.(1)]. We give an alternative proof of this result in Propositions 3.2 and 3.4. Then, the Hessians of (x, y) → E f (x, y, A) appear to be diagonal for both lattices (see Corollary 3.8 and Proposition 3.10), which is again a consequence of the symmetries. Moreover, the Hessian for the triangular lattice is a multiple of the identity. Thus, it is clear that, for any classical interacting potential f (constructed with exponentials, inverse power laws or other classical functions), the triangular lattice is, for almost every A > 0, a local minimizer or a local maximizer (see Corollary 3.12). Furthermore, we get the following result: Theorem 1.2 (See Thm. 4.1 and Thm. 4.3 below). We define the following sums:

S 1 (s) = m,n m 4 (m 2 + mn + n 2 ) s , S 3 (s) = m,n m 2 n 2 (m 2 + n 2 ) s , S 2 (s) = m,n m 2 (m 2 + n 2 ) s , S 4 (s) = m,n (n 2 -m 2 ) 2 (m 2 + n 2 ) s .
Part A: Local optimality of the triangular lattice. For any (a, t) as in (1.1), let

A 0 := √ 3 2 
a 2 t 2 (t 2 -1)S 1 (t 2 + 2) a 1 t 1 (t 1 -1)S 1 (t 1 + 2) 1 t 2 -t 1
, then we have:

1. if A < A 0 , then 1 2 , √ 3 2
is a local minimizer of (x, y) → E V LJ a,t (x, y, A);

2. if A > A 0 , then 1 2 , √ 3 2
is a local maximizer of (x, y) → E V LJ a,t (x, y, A). Part B. Local optimality of the square lattice. Let g(s) = S 2 (s + 1) -2(s + 1)S 3 (s + 2), k(s) = (s + 1)S 4 (s + 2) -2S 2 (s + 1), and define

A 1 := a 2 t 2 g(t 2 ) a 1 t 1 g(t 1 ) 1 t 2 -t 1 and A 2 := a 2 t 2 k(t 2 ) a 1 t 1 k(t 1 ) 1 t 2 -t 1 . It holds: 1. if A 1 < A < A 2 , then (0, 1) is a local minimizer of (x, y) → E V LJ a,t (x, y, A); 2. if A ∈ [A 1 , A 2 ]
, then (0, 1) is a saddle point of (x, y) → E V LJ a,t (x, y, A). Remark 1.3. It seems difficult to compare A 0 and A 1 in general. However, in the classical case a = (2, 1), t = (3, 6), we have A 1 ≈ 1.143 < A 0 ≈ 1.152. Therefore, for any A ∈ (A 1 , A 0 ), the triangular and the square lattices are local minimizers of the energy.

For the classical Lennard-Jones interaction V , i.e. a = (2, 1) and t = [START_REF] Bétermin | Two-dimensional Theta Functions and Crystallization among Bravais Lattices[END_REF][START_REF] Bétermin | Dimension reduction techniques for the minimization of theta functions on lattices[END_REF], we can compare this result with [START_REF] Bétermin | Local optimality of cubic lattices for interaction energies[END_REF] where the local optimality of the cubic lattice Z 3 , the BCC lattice and the FCC lattice has been studied. In Table 1, we have summarized our results in terms of scaling parameter = V 1/3 in the three-dimensional case (V being the volume of the unit cell) and = √ A in the twodimensional case. Comparing the optimality of Z 2 and Z 3 , it turns out that the results are similarthere is an interval of area/volume where they are local minimizers and saddle points outside -and the numerical values for the bounds of these intervals are very close to each other (once the volumes and areas are converted to lengths). The main difference is for the FCC and BCC lattices, which can be viewed as layering of triangular lattices (see e.g. [START_REF] Bétermin | Dimension reduction techniques for the minimization of theta functions on lattices[END_REF]Sect. 2

.B.]

). There is a small volume region where the FCC and BCC lattices are saddle points, which is not the case for the triangular lattice. This phenomenon, as well as the fact that all the values are different, is obviously explained by the additional dimension. However, the numerical values of the volume for the local minimality and maximality of these lattices are also very close to each other. Thus, as explained in [START_REF] Bétermin | Dimension reduction techniques for the minimization of theta functions on lattices[END_REF] for the lattice theta function, it seems that the study of the local minimality/maximality of one layer of a three-dimensional lattice gives a rather accurate information on the local minimality/maximality of the whole lattice for the classical Lennard-Jones energy. 

Z 2 Λ 2 Z 3 FCC and BCC Local minimum 1.069 < < 1.126 0 < < 1.073 1.063 < < 1.104 0 < < 1.
{ √ A, V 1/3 }.
Furthermore, again in the classical case, we give a complete conjecture, improving that of [START_REF] Bétermin | Minimization of energy per particle among Bravais lattices in R 2 : Lennard-Jones and Thomas-Fermi cases[END_REF], based on our previous result and numerical simulations. A summary of this conjecture is given in Figure 5 and justified in Sections 5.1 and 5.2. Furthermore, we summarize in Table 2 what is precisely conjectured, proved and numerically checked.

Area A Min of L A → E V [L A ] Status 0 < A < π (120) 1/3 ≈ 0.637 triangular proved in [8] π (120) 1/3 < A < A BZ ≈ 1.138 triangular num. + loc. min. proved in Th. 4.1 A BZ < A < A 1 ≈ 1.143 rhombic num. A 1 < A < A 2 ≈ 1.268 square num. + loc. min. proved in Th. 4.3 A > A 2 rectangular num.
, proved for large A in Prop 5.5

Table 2: Summary of our works. The abbreviations "num." and "loc. min" mean "numerically checked" and "local minimality".

Using a method of Rankin [START_REF] Rankin | A Minimum Problem for the Epstein Zeta-Function[END_REF] and bounding the minimizer of y → E V (0, y, A) in terms of A, we show the following result, which partially proves the point (4) of our Conjecture in Figure 5: [START_REF] Coulangeon | Energy Minimization, Periodic Sets and Spherical Designs[END_REF], is minimized by the triangular lattice and the second one, -A 3 ζ L (6), admits a degenerate minimizer. Thus, if A is small enough, then the global behavior of E V (x, y, A) is similar to the one of ζ L (12), i.e. the triangular lattice is the minimizer, and if A is large enough, the minimizer must degenerate. That is precisely what appears in our results and numerics. We find exactly the same kind of terms in the energy studied by Ho and Mueller (see Section 5.4 for more explanations). Furthermore, according to the one-dimensional study of Ventevogel and Nijboer [START_REF] Ventevogel | On the Configuration of Systems of Interacting Particle with Minimum Potential Energy per Particle[END_REF], it is reasonable to think that the behavior of A → argmin L A E f [L A ] should be the same for a large class of potentials with a well and that are equivalent to a completely monotone function (see Definition 3.1) in a neighbourhood of the origin (which ensures the optimality of the triangular lattice at high density). By a Mellin transform argument (see e.g. [11, Eq. ( 27)]), it may be possible to derive some properties from the Lennard-Jones type potentials to some more general physically-relevant radially symmetric potentials, and maybe also for Ho-Mueller's lattice energy. In other words, we believe that the properties of the minimizers depicted in Figure 5 could be universal for a large class of potentials and energies involving repulsion at short distance, equilibrium at finite distance and decay of the interaction at large distance to 0. For example, another recent work [START_REF] Antlanger | Rich polymorphic behavior of Wigner bilayers[END_REF][START_REF] Samaj | Critical phenomena and phase sequence in a classical bilayer wigner crystal at zero temperature[END_REF] on Wigner bilayers presents a surprising similarity.

Another question would be to generalize these results to non-radially symmetric potentials. For instance, it is possible to add an angle-dependent term to the energy. These types of potentials were used in [START_REF] Li | On the crystallization of 2d hexagonal lattices[END_REF][START_REF] Mainini | Crystallization in carbon nanostructures[END_REF] to prove the minimality of a honeycomb structure and in [START_REF] Mainini | Finite crystallization in the square lattice[END_REF] to show the optimality of a square lattice configuration. In both cases, the radial part of the energy is an approximation of a Lennard-Jones type potential and the angle parts favour a certain geometry for the minimizer (square or hexagonal). Then, we can easily believe that our results (especially Theorem 1.2 on local minimality) can be applied to such models, once the angle parts is taken in order to favour the square or the triangular lattice. It is however absolutely not clear that our conjecture would stay true for this kind of potential. Furthermore, it has been recently shown in [START_REF] Bétermin | Optimal lattice configurations for interacting spatially extended particles[END_REF] that the (global and local) minimality results obtained for the lattice theta function stay true for interactions of radially symmetric masses. Therefore, it is natural to think that the result of our paper could stay true for Lennard-Jones interactions of masses which would be sufficiently concentrated around the lattice sites.

Plan of the paper: The next section is devoted to the precise definition of the potentials, energy and lattices. In Section 3, we compute the two first derivatives of our energy E f in the general case. Thus, we apply these results to Lennard-Jones type potentials V LJ a,t in Section 4 and we prove Theorem 1.2. In Section 5, we study numerically (x, y) → E V (x, y, A) in the classical Lennard-Jones case V (r) = r -6 -2r -3 , especially among rhombic and rectangular lattices. Our conjecture is explained and justified in Section 5.4.

Lattices, parametrization and energies 2.1 Lattice parametrization and general energy

Let L = Zu ⊕ Zv ⊂ R 2 be a Bravais lattice. We say that A > 0 is the area (or covolume) of L if |u ∧ v| = A, i.e. the area of its primitive cell is A. If L is of area 1/2, we use the usual parametrization (see Rankin [START_REF] Rankin | A Minimum Problem for the Epstein Zeta-Function[END_REF] or Montgomery [START_REF] Montgomery | Minimal Theta Functions[END_REF]) of L by

(x, y) ∈ D = {(x, y) ∈ R 2 ; 0 ≤ x ≤ 1/2, y > 0; x 2 + y 2 ≥ 1},
where D is the half fundamental modular domain. It actually corresponds to parametrize u and v by (x, y) ∈ D such that

u = 1 √ 2y , 0 and v = x √ 2y , y 2 .
Thus, a lattice L A of given area A > 0 is uniquely parametrized by u A and v A such that

L A = Zu A ⊕ Zv A := Z √ A √ y , 0 ⊕ Z x √ A √ y , √ A √ y ,
with (x, y) ∈ D. The point (x, y) parametrizes the shape of L A and A it's inverse density. Furthermore, we have, for any (m, n) ∈ Z 2 ,

|mu A + nv A | 2 = A 1 y (m + xn) 2 + yn 2 ,
and all these values are the square of the distances from (0, 0) to the points of L A . This function of (m, n) is the quadratic form associated to L A .

We recall that the triangular lattice of area A (also called "hexagonal lattice" or "Abrikosov lattice" in the context of Superconductivity [START_REF] Sandier | From the Ginzburg-Landau Model to Vortex Lattice Problems[END_REF]) is defined, up to rotation, by

Λ A := 2A √ 3 Z(1, 0) ⊕ Z(1/2, √ 3/2) , (2.1)
and the square lattice of area A is √ AZ 2 . In Figure 7, we have represented the fundamental domain D. The point (0, 1) corresponds to the square lattice 2 -1/2 Z 2 of area 1/2 and (1/2, √ 3/2) corresponds to the triangular lattice Λ 1/2 of area 1/2. We define the space of functions F by

F := f ∈ C 2 (R * + ); ∀k ∈ {0, 1, 2}, |f (k) (r)| = O(r -η k -k ), for some η k > 1 . (2.2)
Thus, for any A > 0, for any Bravais lattice L A of area A and any f ∈ F, we define its f -energy by

E f [L A ] = E f (x, y, A) = p∈L A \{0} f (|p| 2 ) = m,n f A 1 y (m + xn) 2 + yn 2 ,
where the sum is taken over all (m, n) ∈ Z 2 \{(0, 0)}. Throughout the paper, we do not specify if the summation is taken over Z 2 or Z 2 \{(0, 0)} because it will be obvious according to the definition of f . Furthermore, the possible value at the origin is the same for any Bravais lattice and then does not have any importance in our problem. Thus, the function (x, y) → E f (x, y, A) belongs to C 2 (D) and, for any k ∈ {1, 2}, the k-th derivative of E f is

∂ (k) E f (x, y, A) = m,n ∂ (k) f A 1 y (m + xn) 2 + yn 2 ,
with respect to any variables. Furthermore, the symmetry E f (-x, y, A) = E f (x, y, A) justifies the fact that we study (x, y) → E f (x, y, A) in the half modular domain D.

Rhombic and rectangular lattices

Definition 2.1 (Rhombic lattice). We say that a Bravais lattice L A = Zu A ⊕ Zv A , parametrized by (x, y, A), is rhombic if it is generated by two vectors of the same length

|u A | = |v A |, which is equivalent to x 2 + y 2 = 1.
In particular, if L A is rhombic, then there exists θ ∈ [60 • , 90 • ] such that x = cos θ and y = sin θ. Thus, we define, for any f ∈ F, any 60 • ≤ θ ≤ 90 • and any A > 0,

E f (θ, A) := E f (cos θ, sin θ, A). Lemma 2.1. If L A = Zu A ⊕ Zv A is rhombic and (x, y) = (cos θ, sin θ), then ( u A , v A ) = θ.
Proof. This is clear because, since L is rhombic, we have

u A • v A = Ax y = |u A ||v A | cos( u A , v A ) = A x 2 + y 2 y cos( u A , v A ) = A cos( u A , v A ) y . Therefore cos( u A , v A ) = x = cos θ and ( u A , v A ) = θ because θ ∈ [60 • , 90 • ].
Definition 2.2 (Rectangular lattice). We say that a Bravais lattice L A , parametrized by (x, y, A), is rectangular if its primitive cell is a rectangle, i.e. u A ⊥v A or, equivalently, if x = 0 and y ≥ 1. Thus, we define, for any f ∈ F, any y ≥ 1 and any A > 0,

E f (y, A) := E f (0, y, A). Remark 2.2. If L A is rectangular, then it is generated by u A = √ A 1 √ y , 0 and v A = √ A (0, √ y).
3 Computation of the first and the second derivatives of E f

In this part, we compute the first and second derivatives of (x, y) → E f (x, y, A) with respect to x and y, for fixed A > 0. We do not give all the details of the computations, but only the key points.

First derivatives

The following results stay true if there is no condition for the second derivative of f . Furthermore, we will find again a result of Coulangeon and Schürmann [START_REF] Coulangeon | Energy Minimization, Periodic Sets and Spherical Designs[END_REF]Thm. 4.4.(1)] in the simple twodimensional case: the square lattice and the triangular lattice are both critical points of L A → E f [L A ] for any A > 0. Indeed, it turns out (see e.g. [START_REF] Martinet | Réseaux euclidiens, designs sphériques et formes modulaires[END_REF]) that each shell (or layer) of Λ A and √ AZ 2 is a spherical 2-design, i.e. for any shell S of Λ A or √ AZ 2 that belongs to the circle C r of radius r we have

1 2πr Cr p(x)dx = 1 S x∈S p(x)
for any polynomial p of degree up to 2.

Proposition 3.1. We have, for any f ∈ F, any A > 0 and any (x, y) ∈ D,

∂ x E f (x, y, A) = 2A y m,n (mn + n 2 x)f A 1 y (m + xn) 2 + yn 2 , ∂ y E f (x, y, A) = - A y 2 m,n (m 2 + 2xmn + (x 2 -y 2 )n 2 )f A 1 y (m + xn) 2 + yn 2 .
Proposition 3.2. For any A > 0 and any f ∈ F, (0, 1) is a critical point of (x, y) → E f (x, y, A).

Proof. By Proposition 3.1, we get

∂ x E f (0, 1, A) = 2A m,n mnf A m 2 + n 2 , ∂ y E f (0, 1, A) = -A m,n (m 2 -n 2 )f A m 2 + n 2 .
The first sum is equal to zero by pairing (m, n) and (-m, n). The second is equal to zero because

m,n m 2 f (A[m 2 + n 2 ]) = m,n n 2 f (A[m 2 + n 2 ])
by exchange of variables.

Lemma 3.3. For any (m, n) ∈ Z 2 \{(0, 0)}, let q(m, n) = m 2 + mn + n 2 and F : R → R be such that the following sums are convergent, then

m,n mnF (q(m, n)) = - 1 2 m,n n 2 F (q(m, n)), (3.1) 
m,n

n 3 mF (q(m, n)) = - 1 2 m,n n 4 F (q(m, n)), (3.2) 
m,n m 2 n 2 F (q(m, n)) = 1 2 m,n n 4 F (q(m, n)). (3.3) 
Proof. The key point is the fact that, for any (m, n) ∈ Z 2 \{(0, 0)},

q(-m -n, n) = q(m, n).
Consequently, we get

m,n mnF (q(m, n)) = m,n (-m -n)nF (q(m, n)) = - m,n mnF (q(m, n)) - m,n n 2 F (q(m, n)),
and (3.1) is proved. For the second equality, we compute m,n

mn 3 F (q(m, n)) = m,n n 3 (-m -n)F (q(m, n)) = - m,n mn 3 F (q(m, n)) - m,n n 4 F (q(m, n)),
and (3.2) is proved. For the last one, we remark that, using q(m, n) = q(n, m), m,n

n 4 F (q(m, n)) = m,n (-m -n) 4 F (q(m, n)) = m,n (2m 4 + 6m 2 n 2 + 8m 3 n)F (q(m, n)),
and it follows that

m,n m 2 n 2 F (q(m, n)) = - 1 6 m,n n 4 F (q(m, n)) - 4 3 m,n m 3 nF (q(m, n)).
Combining this equality with (3.2), we get the result.

Proposition 3.4. For any A > 0 and any f ∈ F, 1 2 ,

√ 3 2
is a critical point of (x, y) → E f (x, y, A).

Proof. Using Proposition 3.1, we obtain

∂ x E f 1 2 , √ 3 2 , A = 4A √ 3 m,n mn + n 2 2 f 2A √ 3 [m 2 + mn + n 2 ]
and

∂ y E f 1 2 , √ 3 2 , A = - 2A 3 m,n m 2 + mn - n 2 2 f 2A √ 3 [m 2 + mn + n 2 ] .
We remark, exchanging m and n, that

∂ y E f 1 2 , √ 3 2 , A = - 2A 3 m,n mn + n 2 2 f 2A √ 3 [m 2 + mn + n 2 ] = - ∂ x E f 1 2 , √ 3 2 , A 2 √ 3 .
Thus, by (3.1), we get

m,n mnf 2A √ 3 [m 2 + mn + n 2 ] = - 1 2 m,n n 2 f 2A √ 3 [m 2 + mn + n 2 ] , i.e. m,n mn + n 2 2 f 2A √ 3 [m 2 + mn + n 2 ] = 0,
and the result is proved. Now we recall a simple application of Montgomery results [START_REF] Montgomery | Minimal Theta Functions[END_REF] to the case of completely monotone interacting potentials. Definition 3.1. We say that f : (0, ∞) → R is completely monotone if, for any k ∈ N and any r > 0, (-1) k f (k) (r) ≥ 0. Proposition 3.5. ( [START_REF] Montgomery | Minimal Theta Functions[END_REF]) If f ∈ F is completely monotone, then for any A > 0 and for any (x, y) such that 0 < x < 1/2 and y > √ 3/2, we have

∂ x E f (x, y, A) < 0 and ∂ y E f (x, y, A) > 0.
In particular, (x, y) = (1/2, √ 3/2) is the only minimizer of (x, y) → E f (x, y, A) and x = (0, 1) is a saddle point. Furthermore, this function has no other critical point. Examples 3.6. In particular, the previous proposition holds for the Epstein zeta function and the theta functions defined by (1.2).

Second derivatives

Proposition 3.7. For any A > 0, any f ∈ F and any (x, y) ∈ D, we have

∂ 2 xx E f (x, y, A) = 2A y m,n n 2 f A 1 y (m + xn) 2 + yn 2 + 4A 2 y 2 m,n (mn + n 2 x) 2 f A 1 y (m + xn) 2 + yn 2 , ∂ 2 yy E f (x, y, A) = 2A y 3 m,n (m + xn) 2 f A 1 y (m + xn) 2 + yn 2 + A 2 m,n n 2 - (m + xn) 2 y 2 2 f A 1 y (m + xn) 2 + yn 2 ,
and

∂ 2 xy E f (x, y, A) = - 2A y 2 m,n (mn + n 2 x)f A 1 y (m + xn) 2 + yn 2 + 2A 2 y m,n (mn + n 2 x) n 2 - (m + xn) 2 y 2 f A 1 y (m + xn) 2 + yn 2 .
In particular, if (x, y) ∈ D is a critical point of (x, y) → E f (x, y, A), then

∂ 2 xy E f (x, y, A) = 2A 2 y m,n (mn + n 2 x) n 2 - (m + xn) 2 y 2 f A 1 y (m + xn) 2 + yn 2 .
Proof. It is a straightforward computation. The last point follows from the equation ∂ x E f (x, y, A) = 0 and the expression of ∂ 2 xy E f (x, y, A).

Corollary 3.8. Let A > 0 and f ∈ F, then the second derivatives of (x, y) → E f (x, y, A) at point (0, 1) are:

∂ 2 xx E f (0, 1, A) = 2A m,n n 2 f A m 2 + n 2 + 4A 2 m,n m 2 n 2 f A m 2 + n 2 , ∂ 2 yy E f (0, 1, A) = 2A m,n m 2 f A m 2 + n 2 + A 2 m,n (n 2 -m 2 ) 2 f A m 2 + n 2 , ∂ 2 xy E f (0, 1, A) = 0.
Proof. The both first results are obvious. Furthermore, we have

∂ 2 xy E f (0, 1, A) = -2A m,n mnf A m 2 + n 2 + 2A m,n mn(n 2 -m 2 )f A m 2 + n 2 = 0
by pairing (m, n) and (-m, n) in each sum.

Proposition 3.9. If A > 0 and f ∈ F are such that are:

K 1 f (A) := m,n n 2 f A m 2 + n 2 + 2A m,n m 2 n 2 f A m 2 + n 2 > 0, K 2 f (A) := m,n 2m 2 f A m 2 + n 2 + A m,n (n 2 -m 2 ) 2 f A m 2 + n 2 > 0, then (0,
T f (A) : = ∂ 2 xx E f 1 2 , √ 3 2 , A = ∂ 2 yy E f 1 2 , √ 3 2 , A = 4A √ 3 m,n n 2 f 2A √ 3 [m 2 + mn + n 2 ] + 4A 2 3 m,n n 4 f 2A √ 3 [m 2 + mn + n 2 ] ,
and

∂ 2 xy E f 1 2 , √ 3 2 
, A = 0.

Remark 3.11. By Proposition 3.2, we already know that the triangular lattice is a critical point of the energy. Consequently, if T f (A) > 0, then 1 2 ,

√ 3 2
is a local minimizer of (x, y) → E f (x, y, A)

and if T f (A) < 0, then 1 2 , √ 3 2
is a local maximizer of (x, y) → E f (x, y, A).

Proof. We define, for any (m, n) ∈ Z 2 \{(0, 0)} and any A > 0, the quadratic form associated to Λ A by

Q A (m, n) := 2A √ 3 [m 2 + mn + n 2 ].
It is straightforward to get

∂ 2 xx E f 1 2 , √ 3 2 , A = 4A √ 3 m,n n 2 f (Q A (m, n)) + 16A 2 3 m,n mn + n 2 2 2 f (Q A (m, n)) , ∂ 2 yy E f 1 2 , √ 3 2 , A = 16A 3 √ 3 m,n m + n 2 2 f (Q A (m, n)) + A 2 m,n n 2 - 4 3 m + n 2 2 2 f (Q A (m, n)) ,
and

∂ 2 xy E f 1 2 , √ 3 2 , A = - 8A 3 m,n mn + n 2 2 f (Q A (m, n)) + 4A 2 √ 3 m,n mn + n 2 2 n 2 - 4 3 m + n 2 2 f (Q A (m, n)) . Now, let us prove that ∂ 2 xx E f 1 2 , √ 3 
2 , A = ∂ 2 yy E f 1 2 , √ 3 
2 , A , and more precisely that

4 √ 3 m,n n 2 f (Q A (m, n)) = 16 3 √ 3 m,n m + n 2 2 f (Q A (m, n)) (3.4) and 16 3 m,n mn + n 2 2 2 f (Q A (m, n)) = m,n n 2 - 4 3 m + n 2 2 2 f (Q A (m, n)) . (3.5)
By (3.1), we get,

16 3 √ 3 m,n m + n 2 2 f (Q A (m, n)) = 16 3 √ 3 m,n m 2 + n 2 4 + mn f (Q A (m, n)) = 16 3 √ 3 m,n m 2 + n 2 4 - n 2 2 f (Q A (m, n)) = 4 √ 3 m,n n 2 f (Q A (m, n)) ,
and (3.4) is proved. For the second equality, applying (3.2) and (3.3), we obtain

m,n n 2 - 4 3 m + n 2 2 2 f (Q A (m, n)) = 4 9 m,n (5n 4 + 4m 3 n)f (Q A (m, n)) = 4 3 m,n n 4 f (Q A (m, n)) and 16 3 m,n mn + n 2 2 2 f (Q A (m, n)) = 16 3 m,n m 2 n 2 + n 4 4 + mn 3 f (Q A (m, n)) = 16 3 m,n n 4 2 + n 4 4 - n 4 2 f (Q A (m, n)) = 4 3 m,n n 4 f (Q A (m, n)) .
Hence, (3.5) is established. By (3.1), the first sum in the expression of

∂ 2 xy E f 1 2 , √ 3 
2 , A is equal to 0. Combining (3.2) and (3.3), we easily prove that the second part of

∂ 2 xy E f 1 2 , √ 3 
2 , A is also equal to 0. Corollary 3.12. If f ∈ F is analytic on an open neighbourhood of (0, +∞), then for almost every A > 0, (1/2, √ 3/2) is a local minimizer or a local maximizer of (x, y) → E f (x, y, A).

Proof. If f is analytic, then f and f are analytic on an open neighbourhood of (0, +∞) and T f is also analytic on an open neighbourhood of (0, +∞). Then, the set of zeros of A → T f (A) is a discrete set and T f (A) = 0 for almost every A > 0.

Examples 3.13. This result is true for any sum of inverse power laws f (r) = p i=1 a i r -s i , s i > 1, any sum of exponential functions or any sum of those types of functions (see [START_REF] Bétermin | Two-dimensional Theta Functions and Crystallization among Bravais Lattices[END_REF] for more examples).

Application to Lennard-Jones type interactions

The aim of this part is to apply the previous results to the class of Lennard-Jones type potentials (also called "Mie potentials"). We recall our definition from [3, Section 6.3]. Definition 4.1. For any t = (t 1 , t 2 ) ∈ R 2 such that 1 < t 1 < t 2 and any a = (a 1 , a 2 ) ∈ (0, +∞) 2 , we define the Lennard-Jones type potential (see Figure 8 for its graph) on (0, +∞) by

V LJ a,t (r) := a 2 r t 2 - a 1 r t 1 .
Hence, its lattice energy is defined, for any Bravais lattice L ⊂ R 2 , by

E V LJ a,t [L] = a 2 ζ L (2t 2 ) -a 1 ζ L (2t 1 ),
where the Epstein zeta function ζ L is defined by (1.2). Furthermore, we define the following lattice sums:

S 1 (s) = m,n m 4 (m 2 + mn + n 2 ) s , S 3 (s) = m,n m 2 n 2 (m 2 + n 2 ) s , S 2 (s) = m,n m 2 (m 2 + n 2 ) s , S 4 (s) = m,n (n 2 -m 2 ) 2 (m 2 + n 2 ) s . Figure 8: Graph of r → V LJ a,t (r 2 )
As we explained in [3, Section 6.3], these Lennard-Jones potentials are used in molecular simulation (classical interaction between atoms, hydrogen bonds, for finding energetically favourable regions in protein binding sites) or in the study of social aggregation [START_REF] Mogilner | Mutual interactions, potentials, and individual distance in a social aggregation[END_REF]. In particular, the classical (12-6) Lennard-Jones potential (see [START_REF] Jones | On the determination of molecular fields II. From the equation of state of a gas[END_REF]) is a good simple model that approximates the interaction between neutral atoms. Theorem 4.1. For any (a, t) as in Definition 4.1, let

A 0 := √ 3 2 
a 2 t 2 (t 2 -1)S 1 (t 2 + 2) a 1 t 1 (t 1 -1)S 1 (t 1 + 2) 1 t 2 -t 1
, then we have:

1. if A < A 0 , then 1 2 , √ 3 2
is a local minimizer of (x, y) → E V LJ a,t (x, y, A);

2. if A > A 0 , then 1 2 , √ 3 2
is a local maximizer of (x, y) → E V LJ a,t (x, y, A). Proof. According to Proposition 3.10, we easily get

T f (A) = 4A √ 3 √ 3 2A t 2 +1 -a 1 t 1 √ 3/2 t 1 -t 2 h(t 1 )A t 2 -t 1 + a 2 t 2 h(t 2 ) , where h(s) = s + 1 2 S 1 (s + 2) - m,n m 2 (m 2 + mn + n 2 ) s+1 . Combining (3.2) and (3.3), we remark that m,n m 2 (m 2 + mn + n 2 ) s+1 = m,n m 2 (m 2 + mn + n 2 ) (m 2 + mn + n 2 ) s+2 = m,n m 2 n 2 + mn 3 + m 4 (m 2 + mn + n 2 ) s+2 = S 1 (s + 2).

Consequently, we obtain

h(s) = s -1 2 S 1 (s + 2),
and T f (A) > 0 if and only if A < A 0 . The second point is clear.

Remark 4.2. In the particular classical case a = (2, 1) and t = (3, 6), the interaction potential is

V (r) = 1 r 6 - 2 r 3 , and V (r 2 ) = 1 r 12 - 2 r 6
is the so-called classical Lennard-Jones potential. The previous result shows that, for any

A < A 0 ≈ 1.152 (resp. A > A 0 ) the triangular lattice is a local minimizer (resp. maximizer) of L A → E V [L A ].
Theorem 4.3. For any (a, t) as in Definition 4.1, let g(s) = S 2 (s + 1) -2(s + 1)S 3 (s + 2), k(s) = (s + 1)S 4 (s + 2) -2S 2 (s + 1), and define

A 1 := a 2 t 2 g(t 2 ) a 1 t 1 g(t 1 ) 1 t 2 -t 1 and A 2 := a 2 t 2 k(t 2 ) a 1 t 1 k(t 1 ) 1 t 2 -t 1 . It holds: 1. if A 1 < A < A 2 , then (0, 1) is a local minimizer of (x, y) → E V LJ a,t (x, y, A); 2. if A ∈ [A 1 , A 2 ]
, then (0, 1) is a saddle point of (x, y) → E V LJ a,t (x, y, A). Proof. We apply Proposition 3.9 and we compute

K 1 V LJ a,t (A) = 1 A t 2 +1 a 1 t 1 g(t 1 )A t 2 -t 1 -a 2 t 2 g(t 2 ) , K 2 V LJ a,t (A) = 1 A t 2 +1 -a 1 t 1 k(t 1 )A t 2 -t 1 + a 2 t 2 k(t 2 ) .
We now remark that g(s) > 0 and k(s) > 0. Indeed, we have

g(s) = m,n m 2 (m 2 + n 2 ) s+1 -2(s + 1) m,n m 2 n 2 (m 2 + n 2 ) s+2 = m,n m 2 (m 2 + n 2 ) (m 2 + n 2 ) s+2 -2(s + 1) m,n m 2 n 2 (m 2 + n 2 ) s+2 = m,n m 4 (m 2 + n 2 ) s+2 -(2s + 1) m,n m 2 n 2 (m 2 + n 2 ) s+2 .
By change of variable (m, n) = (k + , k -), we obtain, since the number of terms in the right-hand sum is larger than in the left-hand one,

m,n m 2 n 2 (m 2 + n 2 ) s+2 ≤ k, (k + ) 2 (k -) 2 (2k 2 + 2 2 ) s+2 = 1 2 s+2 k, k 4 + 4 -2k 2 2 (k 2 + 2 ) s+2 , = 1 2 s+1 k, k 4 (k 2 + 2 ) s+2 - 1 2 s+1 k, k 2 2 (k 2 + 2 ) s+2 , i.e. m,n m 2 n 2 (m 2 + n 2 ) s+2 ≤ 1 1 + 2 s+1 m,n m 4 (m 2 + n 2 ) s+2
. Therefore, we get, for any s > 1,

g(s) ≥ 1 - 1 + 2s 1 + 2 s+1 > 0.
With exactly the same arguments, it follow that, for any s > 1,

k(s) ≥ s2 s+2 -4 1 + 2 s+1 m,n m 4 (m 2 + n 2 ) s+2 > 0.
Hence, the result is proved because

K 1 V LJ a,t (A) > 0 ⇐⇒ A > A 1 and K 2 V LJ a,t (A) > 0 ⇐⇒ A < A 2 .
Remark 4.4. In the classical Lennard-Jones case a = (2, 1) and t = (3, 6), we numerically compute A 1 ≈ 1.143 and A 2 ≈ 1.268. In particular, if A > A 2 , then the square lattice cannot be a minimizer of (x, y) → E V (x, y, A). [START_REF] Bétermin | Optimal lattice configurations for interacting spatially extended particles[END_REF] The classical Lennard-Jones energy: numerical study, degeneracy as A → +∞ and conjecture

In this part, we study the energy per point associated to the classical Lennard-Jones potential, i.e. a = (2, 1) and t = [START_REF] Bétermin | Two-dimensional Theta Functions and Crystallization among Bravais Lattices[END_REF][START_REF] Bétermin | Dimension reduction techniques for the minimization of theta functions on lattices[END_REF]. The corresponding interaction potential is hence given by

V (r) = 1 r 6 - 2 r 3 ,
and its lattice energy is defined, for any Bravais lattice L, by

E V [L] = ζ L (12) -2ζ L (6).

Minimality among rhombic lattices

In Table 3, we give the results of our numerical and theoretical investigations for the minimization of

θ → E V (θ, A) := E V (cos θ, sin θ, A)
with respect to the area A. For any fixed A > 0, we call θ A a minimizer of θ → E V (θ, A). We have split (0, +∞) into four domains Rhi, 1 ≤ i ≤ 4, and we explain below the results we obtained.

Domain Area A Minimizer θ A Status Rh1 0 < A < π (120) 1/3 ≈ 0.637 60 • proved in [8] Rh2 π (120) 1/3 < A < A BZ ≈ 1.138 60 • num.+loc. min. proved in Th. 4.1 Rh3 A BZ < A < A 1 ≈ 1.143 76.43 • ≤ θ < 90 • num. Rh4 A > A 1 90 • num.+loc. min. proved in Th. 4.3
Table 3: Summary of our numerical and theoretical studies for the minimization among rhombic lattices of θ → E V (θ, A) with respect to the value of A.

In [8, Theorem 3.1], we proved that if 0 < A < π (120) 1/3 , then Λ A is the unique minimizer of L → E V [L] among Bravais lattices of fixed area A. Hence, it is clear that, on Rh1, θ A = 60 • .

The optimality of θ A = 60 • on Rh2 follows from [START_REF] Bétermin | Minimization of energy per particle among Bravais lattices in R 2 : Lennard-Jones and Thomas-Fermi cases[END_REF]Proposition 3.5]. Indeed, we proved that Λ A is a minimizer of L → E V [L] among Bravais lattices of fixed area A if and only if

A ≤ A BZ := inf |L|=1 L =Λ 1 ζ L (12) -ζ Λ 1 (12) 2(ζ L (6) -ζ Λ 1 (6)) 1/3
, and we numerically compute that A BZ ≈ 1.138. Furthermore, we have plotted in Figure 9 θ → E V (θ, 1). It turns out that this A = 1 case plays an important role for the global minimization (i.e. without a density constraint) of L → E V [L] (see Section 5.3).

For an area between A BZ ≈ 1.138 and A 1 ≈ 1.143, the minimizer seems (numerically) to cover monotonically and continuously the interval [76.43 • , 90 • ) (see Figure 10,11 and 12). There is no doubt about the fact that the transition from 60 • to 76.43 • is discontinuous (see Figure 10).

For A in the domain Rh4, our numerical simulations give us the optimality of θ A = 90 • for A 1 < A < 20. We will see in the next subsection that the minimizer stays rectangular if A is large enough (see Figure 13 for the A = 3 case).

Remark 5.1. It numerically appears that the minimizers of (x, y) → E V (x, y, A) on D are rhombic lattices if 0 < A < A 2 . 

Minimality among rectangular lattices

As in the previous subsection, we give the results of our numerical and theoretical investigations for the minimization of

y → E V (y, A) := E V (0, y, A) on [1, +∞)
with respect to area A in Table 4. For any fixed A > 0, we call y A a minimizer of y → E V (y, A). We have split (0, +∞) into three domains Recti, 1 ≤ i ≤ 3 and we explain below the results we obtained. In particular, we will partially explain the behavior of the minimizer on Rect3.

The optimality of y A = 1, i.e. the square lattice, on Rect1 is clear by [START_REF] Bétermin | Minimization of energy per particle among Bravais lattices in R 2 : Lennard-Jones and Thomas-Fermi cases[END_REF]Theorem 3.1] and Montgomery result [26, Lemma 7]. Indeed, Montgomery proved that ∂ y θ(x, y, α) ≥ 0 for any (x, y) ∈ D and any α > 0, where θ(x, y, α) := E fα (x, y, 1/2) and f α (r) = e -παr . Furthermore, we proved in [START_REF] Bétermin | Minimization of energy per particle among Bravais lattices in R 2 : Lennard-Jones and Thomas-Fermi cases[END_REF]Theorem 3.1] that, for any 0 < A < π (120) 1/3 and any Bravais lattice L A with area A, where C A is a constant depending on A but independent of L A , and g A (α) ≥ 0 for any α ≥ 1. Thus, we get ∂ y E V (y, A) ≥ 0 for any y ≥ 1 when 0 < A < π (120) 1/3 . Therefore, y = 1 is the unique minimizer of y → E V (y, A). On Rect2, y = 1 seems numerically to be the minimizer (see Figure 14). Actually, it is not difficult to prove rigorously, by using the algorithmic method detailed in [START_REF] Bétermin | Dimension reduction techniques for the minimization of theta functions on lattices[END_REF]Lem. 4.19], that y → E V (y, A) is an increasing function, for any chosen value A ∈ Rect2. Numerically, in the domain Rect3, the minimizer seems to cover (1, +∞) monotonically and continuously with respect to A. In particular, the minimizer degenerates as A goes to infinity, i.e. lim A→+∞ y A = (see Figures 15,16 and 17). 

E V [L A ] = C A + π 3 A 3 +∞ 1 θ L A α 2A -1 g A (α) dα α ,
E V [L A ] = 1 A 6 ζ L (12) -2A 3 ζ L (6) ∼ - 2 A 3 ζ L ( 6 
) and the derivative, with respect to x, of the right-hand side expression is positive by Proposition 3.5. Furthermore, the competition between ζ L (12) and -2A 3 ζ L (6) is naturally won by the first one as A → 0, and that explains why the triangular lattice is the minimizer for A ∈ Rect1.

The following results prove the degeneracy of the minimizer among rectangular lattices, as A → +∞, and the fact that the minimizer of

L A → E V [L A ] is rectangular if A is large enough.

Proposition 5.3 (Degeneracy in the rectangular case). There exists

A 3 > 0 such that, if y A ≥ 1 is a minimizer of y → E V (y; A), then for any A > A 3 , X 1 (A) 1/3 ≤ y A ≤ X 2 (A) 1/3
Proof. Let us prove that, for A sufficiently large and any (x, y) ∈ D, ∂ x E V (x, y, A) ≥ 0 with equality if and only if x = 0. Using notations [30, Section 4., p. 157] and the notation ζ(x, y, s, A) = ζ L A (s), we get, for any x = 0,

A 6 ∂ x E V (x, y, A) = ∂ x ζ(x, y, 12, 1) -2A 3 ∂ x ζ(x, y, 6, 1) = 16 √ π 4 sin 2 πx +∞ k=1 C 1 y 3 Λ(k, y, 3)A 3 - C 2 y 6 Λ(k, y, 6) {(k + 1) sin 2πx -sin 2π(k + 1)x} = 16 √ π 4y 6 sin 2 πx +∞ k=1 C 1 y 3 Λ(k, y, 3)A 3 -C 2 Λ(k, y, 6) {(k + 1) sin 2πx -sin 2π(k + 1)x} where • C 1 and C 2 are both positive constants; • Λ(k, y, s) := λ k+2 (y, s) -2λ k+1 (y, s) + λ k (y, s); • λ k (y, s) := σ 1-2s (k)(2πky) s+1/2 K s-1/2 (2πky); • σ k (n) = d|n d k ; • K ν (u) = +∞ 0 e -u cosh t cosh(νt)dt.
Rankin [30, Eq. ( 21)] proved that Λ(k, y, 3) > 0 for any k ≥ 1 and any y ≥ √ 3/2. Furthermore, by definition, we can write Λ(k, y, 3) = y 7/2 Λ(k, y, 3) and Λ(k, y, 6) = y 13/2 Λ(k, y, 6), where Λ(k, y, 3) and Λ(k, y, 6) are of the same order with respect to y. Therefore, we get, for any (x, y) ∈ D,

A 6 ∂ x E V (x, y, A) = 16 √ π √ y 4 sin 2 πx +∞ k=1 C 1 Λ(k, y, 3)A 3 -C 2 Λ(k, y, 6) {(k + 1) sin 2πx -sin 2π(k + 1)x} .
Thus, since (see Rankin [30, p. 158])

1 ≤ σ 1-2s (r) < ζ(2s -1), s ∈ {3, 6}
and (see [26, p. 81])

(k + 1) sin 2πx -sin 2π(k + 1)x ≥ 0, k ≥ 1, 0 ≤ x ≤ 1/2,
with equality for any k ≥ 1 if and only if x = 0, we obtain that A 6 ∂ x E V (x, y, A) is positive, for any (x, y) ∈ D, for A sufficiently large. Consequently, there exists A 4 such that for any A > A 4 ,

∂ x E V (x, y, A) ≥ 0,
with equality if and only if x = 0. It follows that the minimizer of (x, y) → E V (x, y, A) is such that x A = 0 for any A > A 4 .

A summary of both previous results is:

Corollary 5.6. For any A > 0, we call (x A , y A ) ∈ D a minimizer of (x, y) → E V (x, y, A). Then:

1. for A sufficiently large, x A = 0;

it holds lim

A→+∞ y A = +∞.

Remark 5.7. It numerically appears that the minimizer of (x, y) → E V (x, y, A) on D is a rectangular lattice for any A > A 1 .

Remarks about the global minimality

Using our previous work [START_REF] Bétermin | Minimization of energy per particle among Bravais lattices in R 2 : Lennard-Jones and Thomas-Fermi cases[END_REF], we can prove the following result explaining why the A = 1 case is fundamental for finding the global minimizer of the Lennard-Jones energy, among Bravais lattices, without an area constraint.

Proposition 5.8. If (1/2, 3/2) is the unique minimizer of (x, y) → E V (x, y, 1), then the global minimizer of (x, y, A) → E V (x, y, A) is unique and triangular.

Proof. By [8, Proposition 3.5], we know that Λ A is a minimizer of L → E V [L] among Bravais lattices of fixed area A if and only if

A ≤ inf |L|=1 L =Λ 1 ζ L (12) -ζ Λ 1 (12) 2(ζ L (6) -ζ Λ 1 (6)) 1/3
. Furthermore, we proved in [8, Proposition 4.1] that the area of a global minimizer is smaller than 1. Thus, if the triangular lattice is the unique minimizer among Bravais lattices of fixed area 1, then it is the case for every fixed area A such that 0 < A < 1. Consequently, the minimizer of the energy is unique and triangular, because the minimum among dilated triangular lattices with respect to the area is unique (see [START_REF] Bétermin | Minimization of energy per particle among Bravais lattices in R 2 : Lennard-Jones and Thomas-Fermi cases[END_REF]Proposition 4.3]).

We numerically check that (1/2, √ 3/2) seems to be the minimizer of (x, y) → E V (x, y, 1), but a rigorous proof have to be done. A strategy could be the following:

1. By Rankin's method (see proof of Proposition 5.5), we find ∂ x E V (x, y, 1) ≤ 0 for any (x, y) ∈ D, with equality if and only if x = 1/2; While the first point seems difficult to prove by using classical estimates, the proofs of both other points are clear.

Summary of our results, numerical studies and conjectures

In this part, we summarize the expected behavior of the minimizer (x A , y A ) of (x, y) → E V (x, y, A) based on our theoretical and numerical studies of the energy among rhombic and rectangular lattices. The summary is given in Figure 18. In the following description, we detail the proved results and the conjectures based on numerical investigations.

1. For 0 < A < π (120) 1/3 ≈ 0.637, the minimizer is triangular. This is proved in [8, Theorem 3.1].

For

π (120) 1/3 < A < A BZ ≈ 1.138, the minimizer seems to be triangular. This is only a numerical result. In particular, if we know that A BZ > 1, then the global minimizer of L → E V [L], without a density constraint, is unique and triangular (see Proposition 5.8).

3. For A BZ < A < A 0 ≈ 1.152, the triangular lattice is a local minimizer by Theorem 4.1. 4. For A BZ < A < A 1 ≈ 1.143, the minimizer seems, numerically, to be a rhombic lattice. More precisely it covers continuously and monotonically the interval of angles [76.43 • , 90 • ).

5. For A 1 < A < A 2 ≈ 1.268, the square lattice is a local minimizer, by Theorem 4.3. Furthermore, it numerically seems that the square lattice is the unique minimizer of the energy.

6. For A > A 2 , it numerically seems that the minimizer is a rectangular lattice. For A large enough, we give a proof of this fact in Proposition 5.5.

7. As A → +∞, the minimizer becomes more more thin and rectangular: it degenerates. This is proved in Proposition 5.3. and -1 ≤ δ ≤ 1. Thus, as we explained in [START_REF] Bétermin | Dimension reduction techniques for the minimization of theta functions on lattices[END_REF], this energy is the sum of two energies with opposite properties:

1. L → θ L (1) is minimized by the triangular lattice Λ 1 . It is actually natural to conjecture that:

• the behavior of the minimizers of L → E f [L A ] with respect to the area A is qualitatively the same for all the Lennard-Jones type potentials;

• more generally, we can imagine that we should find the same result for any potential f written as

f = f 1 -f 2 ,
where f 1 and f 2 are both completely monotone and f has a well, i.e. f is decreasing on (0, a) and increasing on (a, +∞). Indeed, for any i ∈ {1, 2}, L → E f i [L A ] has the same properties as L → θ L (α), for any α > 0 (see Proposition 3.5).

p∈L\{0} 1

 1 |x| s , and θ L (α) := p∈L e -πα|p| 2 .

Figure 1 :

 1 Figure 1: Triangular lattice.

Figure 2 :

 2 Figure 2: Square lattice.

Figure 3 :

 3 Figure 3: Rhombic lattice.

Figure 4 :

 4 Figure 4: Rectangular lattice. by (x, y) = (1/2, √ 3/2) (resp. (x, y) = (0, 1)) is a local minimizer, maximizer or saddle point of the energy.

Figure 5 :

 5 Figure 5: Conjecture about the minimization of (x, y) → E V (x, y, A) with respect to A. (1) If 0 < A < A BZ ≈ 1.138, then the minimizer is triangular. (2) If A BZ < A < A 1 ≈ 1.143, then the minimizer is a rhombic lattice with an angle covering monotonically and continuously the interval [76.43 • , 90 • ). (3) If A 1 < A < A 2 ≈ 1.268, then the minimizer is a square lattice. (4) If A > A 2 , then the minimizer is a rectangular lattice which degenerates (the primitive cell is more and more thin, see Figure 6) as A → +∞.

Figure 6 :

 6 Figure 6: Degeneracy of the rectangular minimizer. The conjecture we give is actually comparable to the numerical study of Ho and Mueller [27, Fig. 1 and 2] about the two-component Bose-Einstein Condensates (see also the review [20, Fig. 16]). Indeed, A 6 E V (x, y, A) = ζ L (12) -A 3 ζ L (6) is the sum of two terms with opposite behavior. The first one, ζ L (12), is minimized by the triangular lattice and the second one, -A 3 ζ L (6), admits

Figure 7 :

 7 Figure 7: Fundamental domain D and parametrization of a lattice L by (x, y).

Proof.

  It is clear by Montgomery results [26, Lem. 4 and 7] and the fact (see e.g. [3, Section 3]) that any completely monotone function f can be written as the Laplace transform of a positive Borel measure µ on [0, +∞), i.e. f (r) = +∞ 0 e -rt dµ(t).

Figure 9 :

 9 Figure 9: Plot of θ → E V (θ, 1), for A = 1, on [60 • , 90 • ] (in radians on the figure). The minimizer seems to be θ A = 60 • .

Figure 10 :

 10 Figure 10: Plots of θ → E V (θ, A) on [60 • , 90 • ] (in radians on the figure), for A = 1.137 (on the left) and A = 1.138 (on the right). The minimizer seems to be θ A = 60 • for A = 1.137 and θ A = 76.43 • for A = 1.138.

Figure 11 :

 11 Figure 11: Plot of θ → E V (θ, 1.141) on [60 • , 90 • ] (in radians on the figure), for A = 1.141. The minimizer seems to be θ A ≈ 82.51 • .
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 123234 Figure 12: Plots of θ → E V (θ, A) on [60 • , 90 • ] (in radians on the figure), for A = 1.142 (on the left) and A = 1.1431 (on the right). The minimizer seems to be θ A ≈ 89.74 • for A = 1.142 and θ A = 90 • for A = 1.1431.DomainArea A Minimizer y A Status Rect1 0 < A < π (120) 1/3 ≈ 0.637 1 proved in[START_REF] Bétermin | Minimization of energy per particle among Bravais lattices in R 2 : Lennard-Jones and Thomas-Fermi cases[END_REF] 

Figure 13 :

 13 Figure 13: Plot of θ → E V (θ, 3) on [60 • , 90 • ] (in radians on the figure), for A = 3. The minimizer seems to be θ A = 90 • .

Figure 14 :

 14 Figure 14: Plots of y → E V (y, A) for A = 0.8 (on the left) and A = 1 (on the right). It seems that the minimizer is y A = 1.

Figure 15 :

 15 Figure 15: Plots of y → E V (y, A) for A = 1.26 (on the left) and A = 1.27 (on the right). It seems that the minimizer is y A = 1 in the fist case and y A ≈ 1.033 in the second case.

Figure 16 :

 16 Figure 16: Plots of y → E V (y, A) for A = 2 (on the left) and A = 4 (on the right).

Figure 17 :

 17 Figure 17: Plots of y → E V (y, A) for A = 8 (on the left) and A = 20 (on the right).

Remark 5 . 2 .

 52 Heuristically, the degeneracy of the minimizer as A → +∞ follows from the fact that

2 . 1 ; 3 .

 213 By the same arguments as in Proposition 5.3, it is possible to prove that the minimizer of y → E V (1/2, y, 1) on [ √ 3/2, +∞) admits an upper bound y By the algorithmic method based on [6, Lem. 4.19], the minimizer is y = √ 3/2 on [ √ 3/2, y 1 ].

Figure 18 :

 18 Figure 18: Conjecture: Behavior of the minimizer of (x, y) → E V (x, y, A) with respect to A.

2 .

 2 For any u ∈ L, θ L+u (1) < θ L (1) and L → θ L+u[START_REF] Aftalion | Lowest Landau level functional and Bargmann spaces for Bose-Einstein condensates[END_REF] does not admit any minimizer. More precisely, there exists a sequence of rectangular lattices (L k ) k which degenerates, as explained in Section 5.2, such that lim k→+∞ θ L k +c k (1) = 0, where c k is the center of the primitive cell of L k . Hence, since, for L A = √ AL where L has a unit area,A 6 E V [L A ] = ζ L (12) -A 3 ζ L (6),θ L (1) and θ L+u (1) can be compared respectively to ζ L (12) -ζ L (6). Furthermore, δ can be compared to A 3 . Increasing δ (respectively A), Ho and Mueller find, as in this paper, that L → argmin L {min (L,u) {E δ (L, u)}} (respectively argmin L {E V [L]}) is triangular for small values of the parameter, becoming rhombic (with a discontinuous transition), square and finally rectangular.
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where 2. more precisely, there exists C > 0 such that, for any A > A 3 , y A ≤ CA.

Proof. Let A > 0 and y ≥ 1, then we have

Let y A be a minimizer, then we have E V (y A , A) ≤ E V (A 1/3 , A), that is to say

We remark that, for any s ∈ {3, 6} and

Thus, we get for A ≥ 1,

In particular, this inequality fails if A is large enough. Indeed, we can rewrite this inequality as R A (y 3 A ) ≥ 0 where R A is defined by

The discriminant of the polynomial R A is

as A → +∞, where C 1 and C 2 are both positive constants, and the result is proved.

Remark 5.4. It is crystal clear that the same result holds for all the Lennard-Jones type potentials.

The following result shows why the minimizer is rectangular if A is large enough.

Proposition 5.5 (The minimizer is rectangular at sufficiently low density). There exists A 4 > 0 such that for any A > A 4 , a minimizer (x A , y A ) of (x, y) → E V (x, y, A) satisfies x A = 0, i.e. any minimizer is a rectangular lattice.