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12.1 Introduction

We are visual animals and vision is the primary source of information about the
3D layout of our environment or the occurrence of events around us. In nature,
visual motion is abundant and generated by a large set of sources, such as the
movement of another animal, be it predator or prey, or our own movements.
Primates possess an highly performant system for motion processing. Such sys-
tem is tightly linked to ocular tracking behaviors: a combination of smooth
pursuit and saccadic eye movements is engaged to stabilize the retinal image of
a selected moving object within the high-acuity region of our retinas, the fovea.
During smooth phases of tracking, eye velocity nearly perfectly matches the
target velocity, minimizing retinal slip. Fast saccadic eye movements interrupt
these slow phases to correct position errors between the retinal location of the
target image and the fovea. Thus, smooth pursuit and saccadic eye movements
are respectively largely controlled by velocity and position information (Rash-
bass, 1961). Smooth pursuit eye movements (which are the focus of this chapter)
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are traditionally considered as the product of a reflexive sensorimotor circuitry.
Two important observations support this assumption: first, it is not possible
to generate smooth pursuit at will across a stationary scene, and, second, it
is not possible to fully suppress pursuit in a scene consisting solely of moving
targets (Kowler, 2011; Kowler et al., 2014).

In non-human and human primates, visual motion information is extracted
through a cascade of cortical areas spanning the dorsal stream of the cortical vi-
sual pathways (for reviews, see (Maunsell and Newsome, 1987)). Direction and
speed selective cells are found in abundance in two key areas lying at the junc-
tion between occipital and parietal lobes. Middle temporal (MT) and Medio-
Superior Temporal (MST) areas can decode local motion information of a single
object at multiple scales, isolate it from its visual background and reconstruct
its trajectory (Bradley and Goyal, 2008; Born and Bradley, 2005). Interestingly,
neuronal activities in areas MT and MST have been firmly related to the initia-
tion and maintenance of tracking eye movements (Newsome and Wurtz, 1988).
Dozens of experimental studies have shown that local direction and speed in-
formation for pursuit are encoded by MT populations (Lisberger and Movshon,
1999) and transmitted to MST populations where non retinal information are
integrated to form an internal model of object motion (Newsome et al., 1988).
Such model is then forwarded to both frontal areas involved in pursuit control,
such as frontal eye fields (FEF) and supplementary eye fields (SEF), as well as
to the brainstem and cerebellar oculomotor system (see (Krauzlis, 2004) for a
review).

What can we learn about visual motion processing by investigating smooth
pursuit responses to moving objects? Since the pioneering work of Hassen-
stein and Reichardt (Hassenstein and Reichardt, 1956), behavioural studies of
tracking behavioural responses have been highly influential upon theoretical ap-
proaches to motion detection mechanisms (see Chapter 017_tim_tiedemann,
this book), as illustrated by the fly vision literature (see (Borst, 2014; Borst
et al., 2010) for recent reviews) and its application in bio-inspired vision hard-
wares (e.g. (Harrison and Koch, 2000; Kohler et al., 2009)). Because of their
strong stimulus-driven nature, tracking eye movements have been used similarly
in primates to probe the properties of fundamental aspects of motion process-
ing, from detection to pattern motion integration (see a series of recent reviews
in (Masson, 2004; Kowler, 2011; Lisberger, 2010)) and the coupling between the
active pursuit of motion and motion perception (Spering and Montagnini, 2011).
One particular interest of tracking responses is that they are time-continuous,
smooth, measurable movements that reflect the temporal dynamics of sensory
processing in the changes of eye velocity (Masson, 2004; Masson and Perrinet,
2012). Here, we would like to focus on a particular aspect of motion processing
in the context of sensorimotor transformation: uncertainty. Uncertainty arises
from both random processes, such as the noise reflecting unpredictable fluctu-
ations on the velocity signal, as well as from non stochastic processes such as
ambiguity when reconstructing global motion from local information. We will
show that both sensory noise and ambiguities impact the sensorimotor transfor-
mation as seen from the variability of eye movements and their course towards
a steady, optimal solution.

Understanding the effects of various sources of noise and ambiguities can
change our views on the two faces of the sensorimotor transformation. First,
we can better understand how visual motion information is encoded in neu-
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ral populations and the relationships between these population activities and
behaviors (Lisberger, 2010; Osborne, 2011). Second, it may change our view
about how the brain controls eye movements and open the door to new theo-
retical approaches based on inference rather than linear control systems. Albeit
still within the framework of stimulus-driven motor control, such new point of
view can help us elucidate how higher level, cognitive processes, such as predic-
tion, can dynamically interact with sensory processing to produce a versatile,
adaptive behavior by which we can catch a flying ball despite its complex and
even sometimes partially occluded trajectory.

This chapter is divided in four parts. First, we will examine how noise and
ambiguity both affect the pursuit initiation. In particular, we will focus on
the temporal dynamics of uncertainty processing and the estimate of the opti-
mal solution for motion tracking. Second, we will summarize how non-sensory,
predictive signals can help maintaining a good performance when sensory evi-
dences become highly unreliable and, on the contrary, when the future sensory
inputs become highly predictable. Herein, we will illustrate these aspects with
behavioral results gathered in both human and non-human primates. Third, we
will show that these different results on visually guided and predictive smooth
pursuit dynamics can be reconciled within a single Bayesian framework. Last,
we will propose a biologically-plausible architecture implementing a hierarchical
inference network for a closed-loop, visuomotor control of tracking eye move-
ments.

12.2 Pursuit initiation: facing uncertainties

The ultimate goal of pursuit eye movements is to reduce the retinal slip of im-
age motion down to nearly zero such that fine details of the moving pattern can
be analyzed by spatial vision mechanisms. Overall, the pursuit system acts as
a negative feedback loop where the eye velocity matches target velocity (such
that the pursuit gain is close to 1) to cancel the image motion on the retina.
However, because of the delays due to both sensory and motor processing, the
initial rising phase of eye velocity, known as pursuit initiation, is open-loop.
This means that during this short period of time (less than about 100 ms) no
information about eye movements is available to the system and the eye velocity
depends only on the properties of the target motion presented to the subject.
This short temporal window is ideal to probe how visual motion information is
processed and transformed into an eye movement command (Lisberger et al.,
1987; Lisberger, 2010). It becomes possible to map the different phases of visual
motion processing to the changes in initial eye velocity and therefore to dissect
out the contribution of spatial and temporal mechanisms of direction and speed
decoding (Masson and Perrinet, 2012). However, this picture becomes more
complicated as soon as one considers more naturalistic and noisy conditions
for motion tracking, whereby, for instance, the motion of a complex-shaped ex-
tended object has to be estimated, or when several objects move in different
directions. We will not focus, here, on the last problem, which involves the
complex and time-demanding computational task of object segmentation (Mas-
son, 2004; Schütz et al., 2010). In the next subsections, we focus instead on the
nature of the noise affecting pursuit initiation and the uncertainty related to
limitations in processing spatially-localized motion information.
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12.2.1 Where is the noise? Motion tracking precision and
accuracy

Human motion tracking is variable across repeated trials and the possibility to
use tracking behavior (at least during the initiation phase) to characterize visual
motion processing across time and across all kinds of physical properties of the
moving stimuli relies strongly on the assumption that oculomotor noise does
not override the details of visual motion processing. In order to characterize
the variability of macaques’ pursuit responses to visual motion signals, Osborne
et al. (2005) analyzed monkeys’ pursuit eye movements during the initiation
phase — here, the first 125 ms after pursuit onset. On the basis of a principal
component analysis of pursuit covariance matrix, they concluded that pursuit
variability was mostly due to sensory fluctuations in estimating target motion
parameters such as onset time, direction and speed, accounting for around 92%
of the pursuit variability. In a follow-up study, they estimated the time course
of the pursuit system’s sensitivity to small changes in target direction, speed
and onset time (Osborne et al., 2007). This analysis was based on pursuit
variability during the first 300 ms after target motion onset. Discrimination
thresholds (inverse of sensitivity) decreased rapidly during open-loop pursuit
and, in the case of motion direction, followed a similar time course to the one
obtained from the analysis of neuronal activity in area MT (Osborne et al.,
2004).

Noise inherent to the kinematic parameters of the moving target is not the
only source of uncertainty for visual motion processing. A very well-known and
puzzling finding in visual motion psychophysics is that the speed of low-contrast
moving stimuli is most often underestimated as compared to high contrast stim-
uli moving with exactly the same motion properties (see chapter 009_series).
In parallel with the perceptual misjudgment, previous studies have shown that
tracking quality is systematically degraded (with longer onset latencies, lower ac-
celeration at initiation and lower pursuit gain) with low contrast stimuli (Spering
et al., 2005). This reduction of motion estimation and tracking accuracy when
decreasing the luminance-contrast of the moving stimulus has been interpreted
as evidence in favor of the fact that, when visual information is corrupted, the
motion tracking system relies more on internal models of motion, or motion
Priors (Weiss et al., 2002).

12.2.2 Where is the target really going?

The external world is largely responsible for variability. Another major source
of uncertainty when considering sensory processing is ambiguity: a single retinal
image can correspond to many different physical arrangements of the objects
in the environment. In the motion domain, a well-known example of such in-
put ambiguity is called ”the aperture problem”. When seen through a small
aperture, the motion of an elongated edge (i.e. a one-dimensional -1D- change
in luminance, see Figure 12.1a, middle panel) is highly ambiguous. The same
local motion signal can be generated by a infinite number of physical trans-
lations of the edge. Hans Wallach (see (Wuerger et al., 1996) for an English
translation of the original publication in German) was the first psychologist to
recognize this problem and to propose a solution for it. A spatial integration of
motion information provided by edges with different orientations can be used
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to recover the true velocity of the pattern. Moreover, two-dimensional (2D)
features such as corners or line-endings (whereby luminance variations occur
along two dimensions, see Figure 12.1a, right panel, for an example) can also
be extracted through the same, small aperture as their motion is no longer am-
biguous. Again, 1D and 2D motion signals can be integrated to reconstruct the
two-dimensional velocity vector of the moving pattern. After several decades of
intensive research at both physiological and behavioral levels, it remains largely
unclear what computational rules are used by the brain to solve the 2D mo-
tion integration problem (see (Masson and Ilg, 2010) for a collection of review
articles).

Indeed, several computational rules for motion integration have been pro-
posed over the last 40 years (see (Bradley and Goyal, 2008) for a review). In a
limited number of cases, a simple vector averaging of the velocity vectors cor-
responding to the different 1D edge motions can be sufficient. A more generic
solution, the Intersection-of-Constraints (IOC) is a geometrical solution that
can always recover the exact global velocity vector from at least two moving
edges with different orientations (Fennema and Thompson, 1979; Adelson and
Movshon, 1982). However, the fact that perceived direction does not always cor-
respond to the IOC solution (for instance, for very short stimulus duration (Yo
and Wilson, 1992) or when a single 1D motion signal is present (Lorenceau
et al., 1993; Gorea and Lorenceau, 1991)) has supported the role of local 2D
features in motion integration.

Several feedforward computational models have been proposed to implement
these different rules (Wilson et al., 1992; Löffler and Orbach, 1999). All these
feedforward models have the same architecture. Motion integration is seen as
a two-stage computation. The first stage, corresponding to cortical area V1
in primates, extracts local motion informations through a set of oriented spa-
tiotemporal filters. This correspond to the fact that most V1 neurons respond
to the direction orthogonal to the orientation of an edge drifting across their
receptive field (Albright, 1984). The local motion analyzers feed a second, in-
tegrative stage where pattern motion direction is computed. This integrative
stage is thought to correspond to the extra-striate cortical area MT in primates.
MT neurons have large receptive fields, they are strongly direction selective and
a large fraction of them can unambiguously signal the pattern motion direction,
regardless of the orientation of its 1D components (Movshon et al., 1985; Al-
bright, 1984). Different nonlinear combinations of local 1D motion signals can
be used to extract either local 2D motion cues or global 2D motion velocity vec-
tors. Another solution proposed by Perrinet and Masson (2012) is to consider
that local motion analyzers are modulated by motion coherency (Burgi et al.,
2000). This theoretical model shows the emergence of similar 2D motion detec-
tors. These two-stage frameworks can be integrated into more complex models
where local motion information is diffused across some retinotopic maps.

12.2.3 Human smooth pursuit as dynamic readout of the
neural solution to the aperture problem

Behavioral measures do not allow to capture the detailed temporal dynamics
of the neuronal activity underlying motion estimate. However, smooth pursuit
recordings do still carry the signature of the dynamic transition between the
initial motion estimate dominated by the vector average of local 1D cues and

7

http://dx.doi.org/10.1002/9783527680863.ch12


Montagnini et al (2015) doi:10.1002/9783527680863.ch12

the later estimate of global object motion. In other terms, human tracking
data provides a continuous (delayed and low-pass filtered) dynamic readout of
the neuronal solution to the aperture problem. Experiments in our and other
groups (Masson and Stone, 2002; Wallace et al., 2005; Born et al., 2006) have
consistently demonstrated, in both humans and monkeys, that tracking is tran-
siently biased at initiation toward the direction orthogonal to the moving edge
(or the vector average if multiple moving edges are present), when such direction
does not coincide with the global motion direction. After some time (typically
200− 300 ms) such bias is extinguished and the tracking direction converges to
the object’s global motion. In the example illustrated in Figure 12.1, a tilted bar
translates horizontally, thereby carrying locally ambiguous edge-related infor-
mation (middle panel of part a). A transient non-zero vertical smooth pursuit
velocity (lower right panel of Figure 12.1b) reflects the initial aperture-induced
bias, differently from the case where local and global motion are coherent (as
for the pursuit of a horizontally moving vertical bar, see Figure 12.1b, leftmost
panels).

The size of the transient directional tracking bias and the time needed for
converging to the global motion solution depend on several properties of the
visual moving stimulus (Wallace et al., 2005) including stimulus luminance con-
trast (Montagnini et al., 2007; Bogadhi et al., 2011). In section 12.4.1 we will see
that this tracking dynamics is consistent with a simple Bayesian recurrent model
(or equivalently a Kalman filter (Montagnini et al., 2007), which takes into ac-
count the uncertainty associated to the visual moving stimulus and combines it
with prior knowledge about visual motion (see also chapter 009_series).

12.3 Predicting future and on-going target mo-
tion

Smooth pursuit eye movements can also rely on prediction of target movement
to accurately follow the target despite a possible major disruption of the sen-
sory evidence. Prediction allows also to compensate for processing delays, an
unavoidable problem of sensory-to-motor transformations.

12.3.1 Anticipatory smooth tracking

The exploitation of statistical regularities in the sensory world and/or of cog-
nitive information ahead of a sensory event is a common trait of adaptive and
efficient cognitive systems that can, on the basis of such predictive information,
anticipate choices and actions. It is a well-established fact that humans cannot
generate smooth eye movements at will: for instance it is impossible to smoothly
track an imaginary target with the eyes, except in the special condition in which
an unseen target is self-moved through the smooth displacement of one’s own fin-
ger (Gauthier and Hofferer, 1976). In addition, smooth pursuit eye movements
do necessarily lag unpredictable visual target motion by a (short) time delay. In
spite of this, many years ago, already, it was known that, when tracking regular
periodic motion, pursuit sensorimotor delay can be nulled and a perfect syn-
chronicity between target and eye motion is possible (see (Kowler et al., 2014;
Barnes, 2008) for detailed reviews). Furthermore, when the direction of motion
of a moving target is known in advance (for instance because motion properties
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Figure 12.1: Smooth pursuit’s account for the dynamic solution of motion am-
biguity and motion prediction: (a) A tilted bar translating horizontally in time
(left panel) carries both ambiguous 1D motion cues (middle panel), and non-
ambiguous 2D motion cues (rightmost panel). (b) Example of average horizontal
(ėh) and vertical (ėv) smooth pursuit eye velocity while tracking a vertical (left)
or a tilted bar (right) translating horizontally, either to the right (red curves) or
to the left (green curves). Velocity curves are aligned on smooth pursuit onset.
(c) Schematic description of a trial in the experiment on anticipatory smooth
pursuit: after a fixation display, a fixed duration blank precedes the motion
onset of a tilted line moving rightwards (with probability p) or leftward (with
probability 1 − p). (d) Example of average horizontal (ėh) and vertical (ėv)
smooth pursuit eye velocity in the anticipation experiment for two predictabil-
ity conditions, p = 0.5 (unpredictable, black curves) and p = 1 (completely
predictable, grey curves).
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are the same across many repeated experimental trials), anticipatory smooth
eye movements are observed in advance of the target motion onset (Montagnini
et al., 2006), as illustrated in the upper panel of Figure 12.1d. Interestingly,
also relatively complicated motion patterns, such as piecewise linear trajecto-
ries (Barnes and Schmid, 2002), or accelerated motion (Bennett et al., 2007)
can be anticipated. Finally, probabilistic knowledge about target motion di-
rection or speed (Montagnini et al., 2010), and even subjectively experienced
regularities extracted from the previous few trials (Kowler et al., 1984) can
modulate in a systematic way anticipatory smooth pursuit. Recently, several
researchers have tested the role of higher-level cognitive cues for anticipatory
smooth pursuit, leading to a rather diverse set of results. Although verbal or
pictorial abstract cues indicating the direction of the upcoming motion seem to
have a rather weak (though non inexistent) influence on anticipatory smooth
pursuit, other cues are more easily and immediately interpreted and used for
motion anticipation (Kowler et al., 2014). For instance, a barrier blocking one
of two branches in a line-drawing illustrating an inverted-y-shaped tube, where
the visual target was about to move (Kowler, 1989), leads to robust anticipatory
smooth tracking in the direction of the other, unblocked branch.

12.3.2 If you don’t see it, you can still predict (and track)
it

While walking on a busy street downtown, it can occur that we track a moving
car with our gaze and, despite it being hidden behind a truck occasionally driv-
ing in front of it, we can still closely follow its motion and have our gaze next to
the car’s position at its reappearance. In the lab, researchers have shown (Becker
and Fuchs, 1985) that during the transient disappearance of a moving target
human subjects are capable to keep tracking the hidden motion with their gaze,
although with a lower gain (see Figure 12.2, upper panels). During blanking,
indeed, after an initial drop, eye velocity can be steadily maintained, typically
at about 70% of pre-blanking target velocity, although higher eye speed can
be achieved with training (Madelain and Krauzlis, 2003). In addition, when
the blank duration is fixed, an anticipatory re-acceleration of the gaze rotation
is observed ahead of target reappearance (Bennett and Barnes, 2003). Extra-
retinal, predictive information is clearly called into play to drive ocular tracking
in the absence of a visual target. The true nature of the drive for such predictive
eye velocity is still debated (see (Kowler, 2011) for a review). Previous studies
have proposed that it could either be a copy of the oculomotor command (an
efference copy) serving as a positive feedback (Churchland et al., 2003; Madelain
and Krauzlis, 2003) or a sample of visual motion being held in working mem-
ory (Bennett and Barnes, 2003). In all cases a rather implausible ”switch-like”
mechanism was assumed, in order to account for the change of regime between
the visual- and prediction-driven tracking.

While the phenomenology of human smooth pursuit during the transient
absence of a visual target is well investigated (see for example (Bennett and
Barnes, 2003; Orban de Xivry et al., 2006, 2008)), less is known about its func-
tional characterization, and about how the extra-retinal signals implicated in
motion tracking without visual input interact with retinal signals across time.
In particular, as motion estimation for tracking is affected by sensory noise and
computational limitations (see sections 12.2.1 and 12.2.2), do we rely on extra-
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Figure 12.2: Examples of human smooth pursuit traces (one different participant
on each column, a naive one on the left and a non-naive one on the right side)
during horizontal motion of a tilted bar which is transiently blanked during
steady-state pursuit. (a) and (b): Average horizontal (ėh) and vertical (ėv) eye
velocity. Different blanking conditions are depicted with different colors, as from
figure legend. The vertical dashed line indicated the blank onset; vertical full
colored lines indicate the end of the blanking epoch for each blanking duration
represented. (c) and (e): Zoom on the aperture-induced bias of vertical eye
velocity at target motion onset, for all blanking conditions. (d) and (f): Zoom
on the aperture-induced bias of vertical eye velocity at target reappearance after
blank (time is shifted so that 0 corresponds to blank offset), for all blanking
conditions.
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retinal predictive information in a way that depends on sensory uncertainty?
In the past two decades, the literature on optimal cue combinations in multi-
sensory integration has provided evidence for a weighted sum of different sources
of information (such as visual and auditory (Alais and Burr, 2004), or visual
and haptic cues (Ernst and Banks, 2002), whereby each source is weighted ac-
cording to its reliability (defined as inverse variance). Recently, Khoei et al.
(2013) have shown that a predictive term on the smoothness of the trajectory
is sufficient to account for the motion extrapolation part of the motion, how-
ever it lacked a mechanism to weight retinal and extra retinal information. In
another recent study, we have tested the hypothesis that visual and predictive
information for motion tracking are weighted according to their reliability and
dynamically integrated to provide the observed oculomotor command (Bogadhi
et al., 2013).

In order to do so, we have analyzed human smooth pursuit during the track-
ing of a horizontally-moving tilted bar that could be transiently hidden at dif-
ferent moments (blanking paradigm), either early, during pursuit initiation, or
late, during steady-state tracking. By comparing the early and late blanking
conditions we found two interesting results: first, the perturbation of pursuit
velocity caused by the disappearance of the target was more dramatic for the
late than the early blanking, both in terms of relative velocity drop and presence
of an anticipatory acceleration before target reappearance. Second, a small, but
significant, aperture-induced tracking bias (as described in section 12.2.3) was
observed at target reappearance after late but not early blanking. Interestingly,
these two measures (the size of the tracking velocity reduction after blank onset
and the size of the aperture bias after target disappearance) turned out to be
significantly correlated across subjects for the late blanking conditions.

We interpreted the ensemble of these results as an evidence in favor of dy-
namic optimal integration of visual and predictive information: at pursuit ini-
tiation, sensory variability is strong and predictive cues related to target- or
gaze-motion dominate, leading to a relative reduction of both the effects of
target blanking and of the aperture-bias. On the contrary, later on, sensory
information becomes more reliable and the sudden disappearance of a visible
moving target leads to a more dramatic disruption of motion tracking; coher-
ently with this, the (re)estimation of motion is more strongly affected by the
inherent ambiguity of the stimulus (a tilted bar). Finally, the observed corre-
lation of these two quantities across different human observers indicates that
the same computational mechanism (i.e. optimal dynamic integration of visual
and predictive information) is scaled, at the individual level, in such a way that
some people rely more strongly than others on predictive cues rather than on
intrinsically noisy sensory evidence. Incidentally, in our sample of human vol-
unteers, the expert subjects seemed to rely more on predictive information than
the naive ones.

In section 12.4.2, we will illustrate a model which is based on hierarchical
Bayesian inference and is capable to qualitatively capture the human behavior
in our blanking paradigm. A second important question is whether and how
predictive information is affected by uncertainty as well. We will start to address
this question in the next section.
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12.4 Dynamic integration of retinal and extra-
retinal motion information: computational
models

12.4.1 A Bayesian approach for open-loop motion track-
ing

Visual image noise and motion ambiguity, the two sources of uncertainty for
motion estimate described in sections 12.2.1 and 12.2.2 can be well integrated
within a Bayesian (Weiss et al., 2002; Stocker and Simoncelli, 2006; Mon-
tagnini et al., 2007; Perrinet and Masson, 2007) or, equivalently, a Kalman-
filtering framework (Dimova and Denham, 2009; Orban de Xivry et al., 2013),
whereby estimated motion is the solution of a dynamical statistical inference
problem (Kalman, 1960). In these models, the information from different vi-
sual cues (such as local 1D and 2D motions) can be represented, as proba-
bility distributions, by their likelihood functions. Bayesian models also allow
the inclusion of prior constraints related to experience, expectancy bias and all
possible sources of extra-sensory information. On the ground of a statistical
predominance of static or slowly moving objects in nature, the most common
assumption used in models of motion perception is a preference for slow speeds,
typically referred to as low-speed prior (represented in panel a of Figure 12.3).
The effects of priors are especially salient when signal uncertainty is high (see
chapter 009_series).

The sensory likelihood functions can be derived for simple objects with the
help of a few reasonable assumptions. For instance the motion cue associated
with a non-ambiguous 2D feature would be approximated by a gaussian Likeli-
hood centered on the true stimulus velocity and with a variance proportional to
visual noise (e.g. inversely related to its visibility, see panel c in Figure 12.3).
On the other hand, edge-related ambiguous information would be represented
by an elongated velocity distribution parallel to the orientation of the moving
edge, with an infinite variance along the edge direction reflecting the aperture
ambiguity (panel b). Weiss and colleagues (Weiss et al., 2002) have shown that,
by combining a low-speed prior with an elongated velocity likelihood distribu-
tion parallel to the orientation of the moving line, it is possible to predict the
aperture-induced bias (as illustrated in Figure 12.3d). By introducing the inde-
pendent contribution of the non-ambiguous 2D likelihood, as well as a recurrent
optimal update of the Prior (with a feedback from the Posterior (Montagnini
et al., 2007), see Figure 12.3), and cascading this recurrent network with a
realistic model of smooth pursuit generation (Bogadhi et al., 2011), we have
managed to reproduce the complete dynamics of the solution of the aperture
problem for motion tracking, as observed in human smooth pursuit traces.

12.4.2 Bayesian (or Kalman-filtering) approach for smooth
pursuit: Hierarchical models

Beyond the inferential processing of visual uncertainties, that mostly affect
smooth pursuit initiation, we have seen in section 12.3.2 that predictive cues
can efficiently drive motion tracking when the visual information is deteriorated
or missing. This flexible control of motion tracking has traditionally been mod-
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Figure 12.3: A Bayesian recurrent module for the aperture problem and its
dynamic solution. Top: (a) the Prior and the two independent 1D (b) and 2D
(c) Likelihood functions (for a tilted line moving rightwards at 5 deg/s) in the
velocity space are multiplied to obtain the posterior velocity distribution (panel
d). The inferred image motion is estimated as the velocity corresponding to
the posterior maximum (MAP). Probability density functions are colour-coded,
such that dark red corresponds to the highest probability and dark blue to the
lowest one.

14

http://dx.doi.org/10.1002/9783527680863.ch12


Montagnini et al (2015) doi:10.1002/9783527680863.ch12

eled (Churchland et al., 2003; Bennett and Barnes, 2003; Madelain and Krauzlis,
2003; Orban de Xivry et al., 2008) in terms of two independent modules, one
processing visual motion and the other maintaining an internal memory of target
motion. The weak point of these classical models is that they did not provide a
biologically plausible mechanism for the interaction or alternation between the
two types of control: a somewhat ad hoc switch was usually assumed for this
purpose.

Inference is very likely to occur at different spatial, temporal and neuro-
functional scales. Sources of uncertainty can indeed affect different steps of
the sensorimotor process in the brain. Recent work in our group (Bogadhi
et al., 2013) and other groups (Orban de Xivry et al., 2013) has attempted
to model several aspects of human motion tracking within a single framework,
that of Bayesian inference, by postulating the existence of multiple inferential
modules organized in a functional hierarchy and interacting according to the
rules of optimal cue combination (Kalman, 1960; Fetsch et al., 2012). Here we
outline an example of this modeling approach applied to the processing of visual
ambiguous motion information under different conditions of target visibility (in
the blanking experiment).

In order to explain the data summarized in section 12.3.2 for the transient
blanking of a translating tilted bar, we designed a two-modules hierarchical
Bayesian recurrent model, illustrated in Figure 12.4. The first module, the
retinal recurrent network (panel a), implements the dynamic inferential pro-
cess which is responsible for solving the ambiguity at pursuit initiation (see
section 12.2.3) and it only differs from the model scheme in Figure 12.3 for
the introduction of processing delays estimated from the literature in mon-
key electrophysiology (Pack and Born, 2001). The second module (panel b),
the extra-retinal recurrent network, implements a dynamic short-term mem-
ory buffer for motion tracking. Crucially, the respective outputs of the retinal
and extra-retinal recurrent modules are optimally combined in the Bayesian
sense, so that their mean is weighted with their reliability (inverse variance)
before the combination. By cascading the two Bayesian modules with a stan-
dard model (Goldreich et al., 1992) for the transformation of the target velocity
estimate into eye velocity (panel c) and adding some feedback connections (also
standard in the models of smooth pursuit to mimic the closed-loop phase), the
model is capable, with few free parameters, to simulate motion tracking curves
that resemble qualitatively the ones observed for human subjects both during
visual pursuit and during blanking. Note that one single crucial free parameter,
representing a scaling factor for the rapidity with which the sensory variance
increases during target blank, is responsible for the main effects described in
section 12.3.2 on the tracking behavior during the blank and immediately after
the end of it.

Orban de Xivry et al. (2013) have proposed an integrated Kalman filter
model based on two filters, the first one extracting a motion estimate from noisy
visual motion input, similar to a slightly simplified version of the previously
described Bayesian retinal recurrent module. The second filter (referred to
as predictive pathway) provides a prediction for the upcoming target velocity
on the basis of long term experience (i.e. from previous trials). Importantly,
the implementation of a long term memory for a dynamic representation of
target motion (always associated to its uncertainty) allows to reproduce the
observed phenomenon of anticipatory tracking when target motion properties
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a

b

c

a

Figure 12.4: Two-stages hierarchical Bayesian model for human smooth pursuit
in the blanking experiment. The retinal recurrent loop (a) is the same as in
figure 12.3, with the additional inclusion of physiological delays. The posterior
from the retinal recurrent loop and prior from the extra-retinal Bayesian network
(b) are combined to form the post-sensory output (Pout). The maximum a
posteriori of the probability (PT ) of target velocity in space serves as an input
to both the positive feedback system as well as the oculomotor plants (c). The
output of the oculomotor plant is subtracted from the target velocity to form the
image’s retinal velocity (physical feedback loop shown as broken line). During
the transient blank when there is no target on the retina, the physical feedback
loop is not functional so that the retinal recurrent block does not decode any
motion. The output of the positive feedback system (shown in broken line) is
added to the post-sensory output (Pout) only when the physical feedback loop
is functional. The probability distribution of target velocity in space (PT ) is
provided as an input to the extra-retinal recurrent Bayesian network where it is
combined with a prior to obtain a posterior which is used to update the prior.
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are repeated across trials (see section 12.3.1. However in section 12.6 we will
mention some results that challenge the current integrated models of hierarchical
inference for motion tracking.

12.4.3 A Bayesian approach for smooth pursuit: Dealing
with delays

Recently, we considered optimal motor control and the particular problems
caused by the inevitable delay between the emission of motor commands and
their sensory consequences (Perrinet et al., 2014). This is a generic problem that
we illustrate within the context of oculomotor control where it is particularly
insightful (see for instance (Nijhawan, 2008) for a review). Although focusing on
oculomotor control, the more general contribution of this work is to treat motor
control as a pure inference problem. This allows us to use standard (Bayesian
filtering) schemes to resolve the problem of sensorimotor delays — by absorb-
ing them into a generative (or forward) model. A generative model is a set of
parameterized equations which describe our knowledge about the dynamics of
the environment. Furthermore, this principled and generic solution has some
degree of biological plausibility because the resulting active (Bayesian) filter-
ing is formally identical to predictive coding, which has become an established
metaphor for neuronal message passing in the brain (see (Bastos et al., 2012) for
instance). It uses oculomotor control as a vehicle to illustrate the basic idea us-
ing a series of generative models of eye movements — that address increasingly
complicated aspects of oculomotor control. In short, we offer a general solution
to the problem of sensorimotor delays in motor control — using established
models of message passing in the brain — and demonstrate the implications of
this solution in the particular setting of oculomotor control.

Specifically, we considered delays in the visuo-oculomotor loop and their im-
plications for active inference. Active inference uses a generalization of Kalman
filtering to provide Bayes optimal estimates of hidden states and action (such
that our model is a particular Hidden Markov Model) in generalized coordi-
nates of motion. Representing hidden states in generalized coordinates provides
a simple way of compensating for both sensory and oculomotor delays. The effi-
cacy of this scheme is illustrated using neuronal simulations of pursuit initiation
responses, with and without compensation. We then considered an extension
of the generative model to simulate smooth pursuit eye movements — in which
the visuo-oculomotor system believes both the target and its centre of gaze are
attracted to a (hidden) point moving in the visual field, similarly to what was
proposed above in section 12.4.1. Finally, the generative model is equipped
with a hierarchical structure, so that it can recognize and remember unseen
(occluded) trajectories and emit anticipatory responses (see section 12.4.2).

We show in Figure 12.5 the results of this model for a two-layered hier-
archical generative model. The hidden causes are informed by the dynamics
of hidden states at the second level: These hidden states model underlying
periodic dynamics using a simple periodic attractor that produces sinusoidal
fluctuations of arbitrary amplitude or phase and a frequency that is determined
by a second level hidden cause with a prior expectation of a frequency of η
(in Hz). It is somewhat similar to a control system model that attempts to
achieve zero-latency target tracking by fitting the trajectory to a (known) pe-
riodic signal (Bahill and McDonald, 1983). Our formulation ensures a Bayes
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Figure 12.5: This figure reports the simulation of smooth pursuit when the
target motion is hemi-sinusoidal, as would happen for a pendulum that would
be stopped at each half cycle left of the vertical (broken black lines in the lower-
right panel). We report the horizontal excursions of oculomotor angle in retinal
space (two upper panels) and the angular position of the target in an intrinsic
frame of reference (visual space, lower panels). The lower-right panel shows
the true value of the displacement in visual space (broken black lines) and the
action (blue line) which is responsible for oculomotor displacements. The upper
left panel shows in retinal space the predicted sensory input (colored lines) and
sensory prediction errors (dotted red lines) along with the true values (broken
black lines). The latter is effectively the distance of the target from the centre
of gaze and reports the spatial lag of the target that is being followed (solid red
line). One can see clearly the initial displacement of the target that is suppressed
after a few hundred milliseconds. The sensory predictions are based upon the
conditional expectations of hidden oculomotor (blue line) and target (red line)
angular displacements shown on the upper right. The grey regions correspond
to 90% Bayesian confidence intervals and the broken lines show the true values
of these hidden states. The generative model used here has been equipped with
a second hierarchical level that contains hidden states, modeling latent periodic
behavior of the (hidden) causes of target motion (states not shown here). The
hidden cause of these displacements is shown with its conditional expectation
on the lower left. The true cause and action are shown on the lower right. The
action (blue line) is responsible for oculomotor displacements and is driven by
the proprioceptive prediction errors.
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optimal estimate of periodic motion in terms of a posterior belief about its fre-
quency. In these simulations, we used a fixed Gaussian prior centered on the
correct frequency with a period of 512 ms. This prior reproduces a typical ex-
perimental setting in which the oscillatory nature of the trajectory is known,
but its amplitude and phase (onset) are unknown. Indeed, it has been shown
that anticipatory responses are cofounded when randomizing the inter-cycle in-
terval (Becker and Fuchs, 1985). In principle, we could have considered many
other forms of generative model, such as models with prior beliefs about contin-
uous acceleration (Bennett et al., 2010). With this addition, the improvement
in pursuit accuracy apparent at the onset of the second cycle is consistent with
what was observed empirically (Barnes et al., 2000).

This is because the model has an internal representation of latent causes of
target motion that can be called upon even when these causes are not expressed
explicitly in the target trajectory. These simulations speak to a straightforward
and neurobiologically plausible solution to the generic problem of integrating
information from different sources with different temporal delays and the par-
ticular difficulties encountered when a system — like the oculomotor system —
tries to control its environment with delayed signals. Neurobiologically, the ap-
plication of delay operators just means changing synaptic connection strengths
to take different mixtures of generalized sensations and their prediction errors.

12.5 Reacting, inferring, predicting: a neural
workspace

We have proposed herein a hierarchical inference network that can both esti-
mate the direction and speed of a moving object despite the inherent ambiguities
present in the images and predict the target trajectory from accumulated retinal
and extra-retinal evidence. What could be the biologically-plausible implemen-
tation of such a hierarchy? What are its advantages for a living organism?

The fact that the pursuit system can be separated into two distinct blocks
has been proposed by many others (see for recent reviews (Barnes, 2008; Lis-
berger, 2010; Masson et al., 2010; Fukushima et al., 2013). Such structure is
rooted on the need to mix retinal and extra-retinal information to ensure stabil-
ity of pursuit, as originally proposed by (Yasui and Young, 1975). Elaborations
of this concept have formed the basis of a number of models based on a neg-
ative feedback control system (Robinson et al., 1986; Krauzlis and Lisberger,
1994). However, the fact that a simple efference copy feedback loop can not
account for anticipatory responses during target blanking as well as for the role
of expectation about future target trajectory (Barnes, 2008) or reinforcement
learning during blanking (Madelain and Krauzlis, 2003) has called into question
the validity of this simplistic approach (see (Fukushima et al., 2013) for a recent
review). This has led to more complex models where an internal model of target
motion is reconstructed from an early sampling and storage of target velocity
and an efference copy of the eye’s velocity signal. Several memory components
have been proposed to serve different aspects of cognitive control of smooth
pursuit and anticipatory responses (Barnes and Collins, 2011; Fukushima et al.,
2013). The Hierarchical Bayesian model presented above (see section 12.4.2)
follows the same structure with two main differences. First, the sensory pro-
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cessing itself is seen as a dynamical network whereas most of the models cited
in this section have oversimplified target velocity representation. Second, we
collapse all the different internal blocks and loops into a single inference loop
representing the perceived target motion.

We have proposed earlier that these two inference loops might be imple-
mented by two large-scale brain networks (Masson et al., 2010). The dynamical
inference loop is based on the properties of primate visual areas V1 and MT
where local and global motion signals have been clearly identified, respectively
(see (Masson and Ilg, 2010) for a series of recent review articles). MT neurons
solve the aperture problem with a slow temporal dynamics. When presented
with a set of elongated, tilted bars, their initial preferred direction matches the
motion direction orthogonal to the bar orientation. From there, that preferred
direction gradually rotate toward the true, 2D translation of the bar so that af-
ter about 120 ms, MT population signals the correct pattern motion direction,
independently of the bar orientation (Pack and Born, 2001). Several models
have proposed that such dynamics is due to reccurent interactions between V1
and MT cortical areas (e.g. (Tlapale et al., 2010; Bayerl and Neunmann, 2004;
Berzhanskaya et al., 20)) and we have shown that the dynamical Bayesian model
presented above give a good description of such neuronal dynamics and its per-
ceptual and behavioural counterparts (Montagnini et al., 2007) (see also chapter
010_keil). Such recurrent network can be upscaled to include other cortical
visual areas involved in shape processing (e.g. areas V2, V3, V4) to further im-
prove form-motion integration and select one target among several distractors
or the visual background (Tlapale et al., 2010). The V1-MT loop exhibits how-
ever two fundamental properties with respect to the tracking of object motion.
First, neuronal responses stop immediately when the retinal input disappears
as during object blanking. Second, the loop remains largely immune to higher,
cognitive inputs. For instance, the slow speed Prior used in our Bayesian model
can hardly be changed by training in human observers (Montagnini et al., 2006).

In non-human primates, the medial superior temporal (MST) cortical area
is essential for pursuit. It receives MT inputs about target direction and speed
of visual pattern and represents the target’s velocity vector. In the context of
smooth pursuit control, neuronal activities in area MST show several interesting
features. First, during pursuit, if the target is blanked, the neuronal activity is
maintained throughout the course of the blanking. This is clearly different from
area MT where neurons stop firing in the occurrence of even a brief disappear-
ance of the target (Newsome et al., 1988). Second, both monkeys and humans
can track imaginary large line-drawing targets where the central, foveal part is
absent (Ilg and Thier, 1999). MST neurons, but not MT cells, can signal the mo-
tion direction of these parafoveal targets, despite the fact visual edges fall outside
their receptive fields. Thus, in area MST, neurons are found whose activities are
not different during pursuit of real (i.e. complete) or imaginary (i.e. parafoveal)
targets (Ilg and Thier, 2003; Masson and Ilg, 2010). Lastly, many MST neu-
rons can encode target motion veridically during eye movements in contrast to
MT cells (Chukoskie and Movshon, 2008). All these evidences strongly suggest
that MST neurons integrate both retinal and extra-retinal information to recon-
struct the perceived motion of the target. However, despite the fact that areas
MT and MST are strongly, and recurrently connected, the strong difference be-
tween MT and MST neuronal responses between pursuit seems to indicate that
extra-retinal signals are not back propagated to early visual processing areas.
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Figure 12.6: A lateral view of the macaque cortex. The neural network corre-
sponding to our hierarchical Bayesian model of smooth pursuit is made of three
main cortico-cortical loop. The first loop between primary visual cortex (V1)
and the medio-temporal (MT) computes image motion and infers the optimal
low-level solution for object motion direction and speed. Its main output is the
medio-superior temporal (MST) area that acts as a gear between the sensory
loop and the object motion computation loop. Retinal and extra-retinal signals
are integrated in both MST and FEF areas. Such dynamical integration com-
putes the perceived trajectory of the moving object and implements an online
prediction that can be used on the course of a tracking eye movement to com-
pensate for target perturbation such as transient blanking. FEF and MST areas
signals are sent to the supplementary eye field (SEF) and the interconnected
prefrontal cortical areas. This third loop can elaborate a motion memory of
the target trajectory and is interfaced with higher cognitive processes such as
cue instruction or reinforcement learning. It also implements offline predictions
that can be used across trials, in particular to drive anticipatory responses to
highly predictable targets.

Interestingly, several recent models have articulated their two-stage computa-
tional approach with this architecture (Pack et al., 2001; Grossberg et al., 2012)
in order to model the dynamics of primate smooth-pursuit.

From there, output signals are sent in two directions. One signal reaches
the brainstem oculomotor structures through the pontine nuclei, the cerebellar
floccular region and the vestibular nuclei (Leigh and Zee, 2006). This cortico-
subcortical pathway conveys the visual drive needed for pursuit initiation and
maintenance. The second signal reaches the frontal cortex that includes the cau-
dal parts of the frontal eye fields (FEF) and the supplementary eye field (SEF)
(see (Krauzlis, 2004; Fukushima et al., 2013) for recent reviews). FEF neurons
share many properties of MST cells. In particular, they integrate both retinal
and extra-retinal information during pursuit so that responses remain sustained
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during blanking or when simulated with imaginary targets (Ilg and Thier, 2003;
Masson et al., 2010). Moreover, both FEF and MST cells show a build-up of
activity during anticipatory pursuit (Ilg, 2003; Fukushima et al., 2002). Thus,
FEF and MST appear to be strongly coupled to build an internal representa-
tion of target motion that can be used during steady-state tracking as well as
during early phases of pursuit. Moreover, FEF area issues pursuit commands
that are sent to the brainstem nucleus reticularis tegmenti pontis (NRTP) and
the cerebellar vermis lobules before reaching the pursuit oculomotor structures.
Several authors have proposed that such parieto-frontal loop might implement
the prediction component of the pursuit responses (see (Masson et al., 2010)
for review). Other have proposed to restrict its role to the computation of the
perceived motion signal that drive the pursuit response (Fukushima et al., 2013)
while higher signals related to prediction might be computed in more anterior
areas such as SEF and prefrontal cortex (PFC).

Prediction is influenced by many cognitive inputs (cues, working memory,
target selection) (Barnes, 2008). Accordingly, prediction-related neuronal re-
sponses during pursuit have been reported in area SEF (Heinen, 1995) and the
caudal part of FEF (Fukushima et al., 2002). Moreover, SEF activity facili-
tates anticipatory pursuit responses to highly predictable targets (Missal and
Heinen, 2004). The group of Fukushima have identified several subpopulations
of neurons in both areas that can encode directional visual motion-memory, in-
dependently of movement preparation signals (see (Fukushima et al., 2013) for
a complete review). However, FEF neurons are more often mixing predictive
and motor preparation signals while SEF cells more specifically encode a vi-
sual motion memory signal. This is consistent with the fact that many neurons
in the prefrontal cortex have been linked to temporal storage of sensory sig-
nals (Goldman-Rakic, 1995). Thus, a working memory of target motion might
be formed in area SEF by integrating multiple inputs from parietal (MST) and
prefrontal (FEF, PFC) cortical areas. Fukushima et al. (2013) proposed that
a recurrent network made of these areas (MST, FEF, SEF, PFC) might signal
future target motion using prediction, timing, expectation as well as experience
gained over trials.

All these studies define a neuronal workspace for our hierarchical inference
model, as illustrated in Figure 12.6. Two main loops seem to be at work. A
first loop predicts the optimal target motion direction and speed from sensory
evidence (image motion computation, in red). It uses sensory priors such as the
”smooth and slow motion prior” used for both perception and pursuit initiation
that are largely immune to higher influence. By doing so, the sensory loop can
preserve its ability to quickly react to new sensory event and avoid the inertia
of prediction systems. This loop would correspond to the reactive pathway of
the pursuit model proposed by Barnes (2008); Fukushima et al. (2013). On the
ground of some behavioral evidence (Montagnini et al., 2006), we believe that
target motion prediction can not easily overcome the aperture problem (see also
the open questions discussed in section 12.6), providing a strong indication that
this sensory loop is largely not penetrable to cognitive influences. The second
loop involves areas MST and FEF to compute and store online target motion
by taking into account both sensory and efference copy signals (object motion
computation, green). A key aspect is that MST must act as a gear to prevent
predictive or memory-related signals to back propagate downstream to the sen-
sory loop. We propose to distinguish between online prediction, involving these

22

http://dx.doi.org/10.1002/9783527680863.ch12


Montagnini et al (2015) doi:10.1002/9783527680863.ch12

two areas during on-going event such as target blanking to offline prediction.
The later is based on a memory of target motion that span across trials and
might be used to both trigger anticipatory responses or drive responses based
on cues. It might most certainly involve a dense, recurrent prefrontal network
articulated around SEF and that offers a critical interface with the cognitive
processes interfering with pursuit control (Object memory loop, in blue).

This architecture presents many advantages. First, it preserves the brain
to quickly react to new event as a brutal change in target motion direction.
Second, it ensures maintaining pursuit in a wide variety of conditions with good
stability and by constructing an internal model of target motion it allows a
tight coordination between pursuit and saccades (Orban de Xivry and Lefèvre,
2004). Third, it provides an interface with higher cognitive aspects of senso-
rimotor transformation. Several questions remain however unsolved. Because
of the strong changes seen in prediction with different behavioral context, sev-
eral models, including the one presented here, postulate the existence of hard
switches that can turn on or off the contribution of a particular model compo-
nent. We need a better theoretical approach about decision making between
these different loops. The Bayesian approach proposed here, similar to the
Kalman filter models, opens the door to better understanding these transitions.
It proposes that each signal (sensory evidence, motion memory, prediction) can
be weighted from its reliability. Such unifying theoretical approach can then be
used to design new behavioral and physiological experiments.

12.6 Conclusion

Recent experimental evidence points to the need to revise our view of the
primates’ smooth pursuit system. Rather than a reflexive velocity-matching
negative-feedback loop, the human motion tracking system seems to be grounded
on a complex set of dynamic functions that subserve a quick and accurate adap-
tive behavior even in visually challenging situations. By analyzing tracking
eye movements produced with a simple, unique and highly-visible moving tar-
get, many of these notions could not have clearly emerged and it is now clear
that testing more naturalistic visual motion contexts and carefully taking into
account the sources of uncertainty at different scales is a crucial step for under-
standing biological motion tracking. The approach highlighted here opens the
door to several open questions.

First, we have focused herein on luminance-based motion processing mecha-
nisms. Such inputs can be well extracted by a bank of filters extracting motion
energy at multiple scales. The human visual motion system is however more
versatile and psychophysical studies have demonstrated that motion perception
is based on cues that can be defined in many different ways. These empirical
studies have led to the three-systems theory of human visual motion perception
by Lu and Sperling (2001). Beside the first-order system that responds to mov-
ing luminance patterns, a second-order system responds to moving modulations
of feature types (i.e. stimuli where the luminance is the same everywhere but
an area of higher contrast or of flicker moves). A third-order system slowly
computes the motion of marked locations in a “salience map” where locations
of important visual features in the visual space (i.e. a figure) are highlighted
respective to its “background” (see Chapter 013_lemeur). The contribution of
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the first-order motion to the initiation of tracking responses have been largely
investigated (see (Masson and Perrinet, 2012; Lisberger, 2010) for reviews).
More recent studies have pointed out that feature tracking mechanisms (i.e. a
second-order system) are critical for finely adjusting this initial eye accelera-
tion to object speed when reaching steady-state tracking velocity (Wilmer and
Nakayama, 2007). Whether the third-order motion system is involved, and how
in the attentional modulation of tracking, is currently under investigation by
many research groups. Altogether, these psychophysical and theoretical stud-
ies point towards the need for more complex front-end layers of visuomotor
models so that artificial systems would more versatile and adapted to complex,
ambiguous environments.

Second, although the need of hierarchical, multi-scale inferential models is
now apparent, current models will have to meet the challenge of explaining a
rich and complex set of behavioral data. Just to detail an example, somewhat
unexpectedly we have found that predicting 2D motion trajectories does not
help solving the aperture problem (Montagnini et al., 2006). Indeed, when
human subjects are exposed to repeated motion conditions for a horizontally-
translating tilted bar across several experimental trials and they develop antici-
patory smooth pursuit in the expected direction, still their pursuit traces reflect
the aperture-induced bias at initiation, as illustrated in Figure 12.1, panel d. It
is important to notice that the robust optimal cue combination of the output
of sensory and predictive motion processing modules postulated in the previous
section (Orban de Xivry et al., 2013; Bogadhi et al., 2013) are not capable, at
this stage, to explain this phenomenon. Other crucial issues deserve to be bet-
ter understood and modeled in this new framework, such as, for instance, the
dynamic interaction between global motion estimate and object segmentation,
the precise functional and behavioral relationship between smooth tracking and
discrete jump-like saccadic movements, or the role of high-level cognitive cues
in modulating motion tracking (Kowler et al., 2014).

12.6.1 Interest for computer vision

Machine-based motion tracking, similar to human motion tracking, needs to be
robust to visual perturbations. As we have outlined above, including some form
of predictive information might be extremely helpful to stabilize object tracking,
in much the same way as what happens during transient target blanking for
human smooth pursuit. Importantly, human tracking seems to be equipped
with a more complete and advanced software for motion tracking, namely one
that allows us i) to exploit the learned regularities of motion trajectories to
anticipate and compensate for sensorimotor delays and consequent mismatch
between gaze and target position in the event of a complex trajectory; ii) to
keep tracking an object temporarily occluded by other objects; and iii) to start
tracking in the dark when the future motion of an object is predictable, or even
partly predictable. Some of these predictive cues might depend upon a high-
level cognitive representation of kinematic rules or arbitrary stimulus-response
associations. This type of apparatus is probably much too advanced to be
implemented into a common automatic motion tracking device, but still it may
be a source of inspiration for future advanced developments for machine vision
and tracking.
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G Löffler and H S Orbach. Computing feature motion without feature detectors:
a model for terminator motion without end-stopped cells. Vision Research,
39(4):859–71, Feb 1999.

T D Albright. Direction and orientation selectivity of neurons in visual area
MT of the macaque. Journal of Neurophysiology, 52(6):1106–30, Dec 1984.

J. Anthony Movshon, Edward H. Adelson, Martin S. Gizzi, and William T
Newsome. The analysis of moving visual patterns. In C. Chagas, R. Gattass,
and C. Gross, editors, Pattern Recognition Mechanisms, volume 54, pages
117–151. Rome: Vatican Press, 1985.

29

http://dx.doi.org/10.1002/9783527680863.ch12
http://w.journalofvision.org/content/5/5/6.full.pdf
http://w.journalofvision.org/content/5/5/6.full.pdf
http://dx.doi.org/10.1038/nn858


Montagnini et al (2015) doi:10.1002/9783527680863.ch12

Laurent U Perrinet and Guillaume S. Masson. Motion-Based prediction is
sufficient to solve the aperture problem. Neural Computation, 24(10):2726–
2750, October 2012. ISSN 1530-888X. doi: 10.1162/NECO\ a\ 00332. URL
http://dx.doi.org/10.1162/NECO_a_00332.

Pierre Y. Burgi, Alan L. Yuille, and Norberto M Grzywacz. Probabilistic motion
estimation based on temporal coherence. Neural Computation, 12(8):1839–
67, August 2000. ISSN 0899-7667. URL http://portal.acm.org/citation.

cfm?id=1121336.

Guillaume S Masson and Leland S Stone. From following edges to pursuing
objects. Journal of Neurophysiology, 88(5):2869–73, Nov 2002. doi: 10.1152/
jn.00987.2001.

Julian M Wallace, Leland S Stone, and Guillaume S Masson. Object motion
computation for the initiation of smooth pursuit eye movements in humans.
Journal of Neurophysiology, 93(4):2279–93, Apr 2005. doi: 10.1152/jn.01042.
2004.

Richard T Born, Christopher C Pack, Carlos R Ponce, and Si Yi. Temporal
evolution of 2-dimensional direction signals used to guide eye movements.
Journal of Neurophysiology, 95(1):284–300, Jan 2006. doi: 10.1152/jn.01329.
2005.

Anna Montagnini, Pascal Mamassian, Laurent U Perrinet, Eric Castet, and
Guillaume S. Masson. Bayesian modeling of dynamic motion integration.
Journal of Physiology-Paris, 101(1-3):64–77, January 2007. ISSN 0928-4257.
doi: 10.1016/j.jphysparis.2007.10.013. URL http://dx.doi.org/10.1016/

j.jphysparis.2007.10.013.

Amarender R. Bogadhi, Anna Montagnini, Pascal Mamassian, Laurent U Per-
rinet, and Guillaume S. Masson. Pursuing motion illusions: A realistic
oculomotor framework for Bayesian inference. Vision Research, 51(8):867–
880, April 2011. ISSN 00426989. doi: 10.1016/j.visres.2010.10.021. URL
http://dx.doi.org/10.1016/j.visres.2010.10.021.

G M Gauthier and J M Hofferer. Eye tracking of self-moved targets in the
absence of vision. Exp Brain Res, 26(2):121–39, Sep 1976.

Graham R Barnes. Cognitive processes involved in smooth pursuit eye move-
ments. Brain Cogn, 68(3):309–26, Dec 2008. doi: 10.1016/j.bandc.2008.08.
020.

Anna Montagnini, Miriam Spering, and Guillaume S Masson. Predicting
2D target velocity cannot help 2D motion integration for smooth pur-
suit initiation. Journal of Neurophysiology, 96(6):3545–50, Dec 2006. doi:
10.1152/jn.00563.2006.

Graham R Barnes and A M Schmid. Sequence learning in human ocular
smooth pursuit. Exp Brain Res, 144(3):322–35, Jun 2002. doi: 10.1007/
s00221-002-1050-8.

30

http://dx.doi.org/10.1002/9783527680863.ch12
http://dx.doi.org/10.1162/NECO_a_00332
http://portal.acm.org/citation.cfm?id=1121336
http://portal.acm.org/citation.cfm?id=1121336
http://dx.doi.org/10.1016/j.jphysparis.2007.10.013
http://dx.doi.org/10.1016/j.jphysparis.2007.10.013
http://dx.doi.org/10.1016/j.visres.2010.10.021


Montagnini et al (2015) doi:10.1002/9783527680863.ch12

Simon J Bennett, Jean-Jacques Orban de Xivry, Graham R Barnes, and
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Lefèvre. Kalman filtering naturally accounts for visually guided and predictive
smooth pursuit dynamics. Journal of Neuroscience, 33(44):17301–13, Oct
2013. doi: 10.1523/JNEUROSCI.2321-13.2013.

Rudolph Emil Kalman. A new approach to linear filtering and prediction prob-
lems. Transactions of the ASME–Journal of Basic Engineering, 82(Series D):
35–45, 1960.

Christopher R Fetsch, Alexandre Pouget, Gregory C DeAngelis, and Dora E
Angelaki. Neural correlates of reliability-based cue weighting during mul-
tisensory integration. Nature Neuroscience, 15(1):146–54, Jan 2012. doi:
10.1038/nn.2983.

Christopher C Pack and Richard T Born. Temporal dynamics of a neural so-
lution to the aperture problem in visual area MT of macaque brain. Nature,
409, 2001.

D. Goldreich, Richard J Krauzlis, and Stephen G Lisberger. Effect of changing
feedback delay on spontaneous oscillations in smooth pursuit eye movements
of monkeys. Journal of neurophysiology, 67(3):625–638, March 1992. ISSN
0022-3077. URL http://view.ncbi.nlm.nih.gov/pubmed/1578248.

Laurent U. Perrinet, Rick A. Adams, and Karl J. Friston. Active inference,
eye movements and oculomotor delays. Biological Cybernetics, 108(6):777–
801, December 2014. ISSN 1432-0770. doi: 10.1007/s00422-014-0620-8. URL
http://dx.doi.org/10.1007/s00422-014-0620-8.

32

http://dx.doi.org/10.1002/9783527680863.ch12
http://www.nature.com/neuro/journal/v9/n4/abs/nn1669.html
http://www.nature.com/neuro/journal/v9/n4/abs/nn1669.html
http://dx.doi.org/10.1016/j.jphysparis.2007.10.011
http://dx.doi.org/10.1016/j.jphysparis.2007.10.011
http://view.ncbi.nlm.nih.gov/pubmed/1578248
http://dx.doi.org/10.1007/s00422-014-0620-8


Montagnini et al (2015) doi:10.1002/9783527680863.ch12

Romi Nijhawan. Visual prediction: Psychophysics and neurophysiology of
compensation for time delays. Behavioral and Brain Sciences, 31(02):179–
198, May 2008. ISSN 1469-1825. doi: 10.1017/s0140525x08003804. URL
http://people.psych.cornell.edu/~{}jec7/pubs/nihjawan.pdf.

Andre M. Bastos, W. Martin Usrey, Rick A. Adams, George R. Mangun, Pascal
Fries, and Karl J. Friston. Canonical microcircuits for predictive coding. Neu-
ron, 76(4):695–711, November 2012. ISSN 0896-6273. doi: 10.1016/j.neuron.
2012.10.038. URL http://dx.doi.org/10.1016/j.neuron.2012.10.038.

A. T. Bahill and J. D. McDonald. Model emulates human smooth pursuit
system producing zero-latency target tracking. Biological cybernetics, 48(3):
213–222, 1983. ISSN 0340-1200. URL http://view.ncbi.nlm.nih.gov/

pubmed/6639984.

Simon J. Bennett, Jean-Jacques Orban de Xivry, Philippe Lefèvre, and Gra-
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