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In this paper we prove a stability result for the reconstruction of the potential q associated with the operator ∂ t -∆ + q in an infinite guide using a finite number of localized observations.

Introduction

Let ω be a bounded domain in R n-1 , n ≥ 2. Denote by Ω := R × ω and Q = Ω × (0, T ), Σ = ∂Ω × (0, T ). We consider the following problem    ∂ t u -∆u + qu = 0 in Q, u = g on Σ u(x, 0) = u 0 (x) in Ω, [START_REF] Bukhgeim | KlibanovUniqueness in the Large of a Class of Multidimensional Inverse Problems[END_REF] where u 0 and g are sufficiently smooth positive functions and q is a bounded coefficient defined in Ω. Our problem can be stated as follows: Let l > 0 and denote by Ω * = (- * , * ) × ω. We determine the coefficient q on Ω l from a finite number of measurements of the solution u of the system (1) on a lateral subset of ∂Ω L for L > l and from the knowledge of the solution at the time T 2 . In the area of inverse problems, the classical understanding of finite number of measurements is formulated with respect to the infinite number of measurements involved by the Dirichlet to Neumann method. The major novelty of this article is to obtain a Hölder stability result for the potential q(x) in terms of a finite number of observations of the solution u 1 of (1) on a bounded part of the boundary for a problem stated in an infinite guide. The problem of the reconstruction of zeroth order term for parabolic operators has already been studied but most of the papers have investigated the case of bounded domains. For approaches based on Carleman estimates we can cite [START_REF] Cristofol | Biological invasions: Deriving the regions at risk from partial measurements[END_REF], [START_REF] Yuan | Lipschitz stability in the determination of the principal part of a parabolic equation[END_REF] (see also [START_REF] Yamamoto | Carleman estimates for parabolic equations and applications[END_REF] as a survey on this topic). Another approach based on pointwise observations in the one dimensional case can be found in [START_REF] Cristofol | On the determination of the nonlinearity from localized measurements in a reaction-diffusion equation[END_REF]. The situation of unbounded domains is very few addressed: we can cite the reference [START_REF] Cristofol | Roques Coefficient determination via asymptotic spreading speeds[END_REF] in which the authors use the notion of asymptotic spread of propagation as observations in the one dimensional case for periodic potentials.

In this paper we use the technique of Carleman estimates by defining special weight functions adapted to the case of an unbounded guide. For this, we adapt ideas from [START_REF] Cristofol | Soccorsi Determining the waveguide conductivity in a hyperbolic equation from a single measurement on the lateral boundary[END_REF]. This article is organized as follows. In section 2, we precise our notations and the conditions required for the weight functions. In section 3 we state our main result. In section 4, we derive an adapted global Carleman estimate for our problem and finally in section 5 we prove our stability inequality.

Settings and hypotheses

We denote by Q * = Ω * ×(0, T ) = (- * , * )×ω ×(0, T ) and define the operator

Au = ∂ t u -∆u + qu.
Denote by x = (x 1 , ..., x n ) ∈ Ω and x ′ = (x 2 , ..., x n ) ∈ ω. Let l > 0, we are going to carry out special weight functions allowing us to avoid observations on the cross section of the wave guide in our inverse problem. For this we consider some positive real L > l, and we choose

a ∈ R n \ Ω such that if d(x) = |x ′ -a ′ | 2 -x 2 1 for x ∈ Ω L , then d > 0 in Ω L , |∇d| > 0 in Ω L . (2) 
Moreover we define Γ L = {x ∈ ∂Ω L , < x -a, ν(x) >≥ 0} and γ L = Γ L ∩ ∂Ω.

Here < ., . > denotes the usual scalar product in R n and ν(x) is the outwards unit normal vector to ∂Ω L at x. From [START_REF] Yamamoto | Carleman estimates for parabolic equations and applications[END_REF]- [START_REF] Yuan | Lipschitz stability in the determination of the principal part of a parabolic equation[END_REF] we consider weight functions as follows, for λ > 0, t ∈ (0, T ),

ψ(x, t) = d(x) -t - T 2 2 + M 1 where M 1 > sup 0<t<T (t -T /2) 2 = (T /2) 2 ,
and φ(x, t) = e λψ(x,t) .

First we define β 0 := inf

x∈Ω l ψ(x, T 2 ) = inf x∈Ω l (|x ′ -a ′ | 2 -x 2 1 ) + M 1 and β 1 > 0 such that β 2 1 := sup x∈Ω L (|x ′ -a ′ | 2 -x 2 1 ) -inf x∈Ω l (|x ′ -a ′ | 2 -x 2 1 ). Note that β 2 1 = sup x ′ ∈ω |x ′ -a ′ | 2 -inf x ′ ∈ω |x ′ -a ′ | 2 +l 2 .
Then, more precisely, we consider L and T = 2L sufficiently large such that β 2 := T /2 -β 1 > 0 (even if it means changing a in order to keep the condition ( 2)). We get

T 2 2 ≥ β 2 1 + β 2 2 = sup x∈Ω L (|x ′ -a ′ | 2 -x 2 1 ) -inf x∈Ω l (|x ′ -a ′ | 2 -x 2 1 ) + β 2 2 ,
and so

T 2 2 ≥ sup x∈Ω L (|x ′ -a ′ | 2 -x 2 1 ) + M 1 -β 0 + β 2 2 .
Then for all

x ∈ Ω L , ψ(x, T ) ≤ |x ′ -a ′ | 2 -x 2 1 -sup x∈Ω L (|x ′ -a ′ | 2 -x 2 1 ) + β 0 -β 2 2 ≤ β 0 -β 2 2 .
Thus there exists ǫ > 0 such that, for all x ∈ Ω L and t ∈ ((0, 2ǫ) ∪ (T -2ǫ, T )), ψ(x, t) < β 0 . We choose ǫ small enough such that l ≤ L -2ǫ. Due to the symmetric role played by t -T 2 and x 1 in the formulation of ψ, by the same way we have for all x ∈ ((-L, -L + 2ǫ) ∪ (L -2ǫ, L)) × ω and t ∈ (0, T ), ψ(x, t) < β 0 .

We set:

O L,ǫ = (Ω L ×((0, 2ǫ)∪(T -2ǫ, T )))∪(((-L, -L+2ǫ)∪(L-2ǫ, L))× ω × (0, T )). Therefore, if we denote by d 0 = min Ω l φ(., T 2 ), d 1 = max O L,ǫ φ, d 2 = max Ω L φ(., T 2 
) we get

d 1 < d 0 < d 2 .
(3)

Main result

The method of Carleman estimate used in this paper requires solutions of the problem (1) with a minimum of regularity. Indeed the Buckgheim-Klibanov method [START_REF] Bukhgeim | KlibanovUniqueness in the Large of a Class of Multidimensional Inverse Problems[END_REF] implies several time differentiations of the equation of system [START_REF] Bukhgeim | KlibanovUniqueness in the Large of a Class of Multidimensional Inverse Problems[END_REF]. We assume in the following that q ∈ C 0 (Ω) ∩ L ∞ (Ω), and that u is an element of H = C 0 (0, T, H 2 (Ω)) ∩ H 3 (0, T, H 2 (Ω)) such that u H < M for given M > 0. We will use the following notations:

Let α = (α 1 , • • • , α n ) be a multi-index with α i ∈ N ∪ {0}. We set ∂ α x = ∂ α 1 1 • • • ∂ αn n , |α| = α 1 + • • • + α n and we define H 2,1 (Q L ) = {u ∈ L 2 (Q L ), ∂ α x ∂ α n+1 t u ∈ L 2 (Q L ), |α| + 2α n+1 ≤ 2}.
We set ∂u ∂ν = ν • ∇u. We can state our main result.

Theorem 1. Assume that u j for j = 1, 2 are solutions of (1) where q j and u 0,j are substituted respectively to q and u 0 . Assume also that q 1 , q 2 are bounded and continuous potentials defined on Ω. Then, for any l > 0, there exist L > 0 and T > 0 such that

q 1 -q 2 2 L 2 (Ω l ) ≤ K (u 1 -u 2 )(., T /2) 2 H 2 (Ω L ) + γ L ×(0,T ) 2 k=1 ∂(∂ k t (u 1 -u 2 )) ∂ν 2 κ
.

(4) Here, K > 0 and κ ∈ (0, 1) are two constants depending only on ω, l, M , M 1 , T and a.

We stress out that, as in [START_REF] Cristofol | Soccorsi Determining the waveguide conductivity in a hyperbolic equation from a single measurement on the lateral boundary[END_REF], the observation data are required on the lateral boundary γ L and not on the whole boundary ∂Ω L . We underline that this stability result for the potential is not obtained on Ω = R × ω but on Ω l = (-l, l) × ω, for an arbitrary l > 0, and that the observation domains Ω L and γ L , depend on l.

Global Carleman Inequality for a parabolic equation in a cylindrical domain

We recall here a global Carleman-type estimate proved in Yuan-Yamamoto [START_REF] Yuan | Lipschitz stability in the determination of the principal part of a parabolic equation[END_REF], Yamamoto ([7] Theorem 7.3 p.48). Let s > 0 and denote by LHS(u) :=

Q L 1 sφ (|∂ t u| 2 + |∆u| 2 ) +sλ 2 φ |∇u| 2 + s 3 λ 4 φ 3 |u| 2 e 2sφ , Au := f and Obs Γ L ×(0,T ) (u) := Γ L ×(0,T ) | ∂u ∂ν | 2 e 2sφ .
In the following parts, C will be a generic positive constant. Proposition 4.1. There exist positive constants λ 0 , s 0 and C = C(λ 0 , s 0 ) such that

LHS(u) ≤ C e sφ f 2 L 2 (Q L ) + Csλ Obs Γ L ×(0,T ) (u), (5) 
for all s > s 0 , λ > λ 0 and all u ∈ H 2,1 (Q L ) satisfying u(., 0) = u(., T ) = 0 in Ω, u = 0 on ∂Ω L × (0, T ).

Then we deduce the following Carleman inequality Proposition 4.2. There exist positive constants λ 0 , s 0 and C = C(λ 0 , s 0 ) such that

LHS(u) ≤ C e sφ f 2 L 2 (Q L ) + Cs 3 λ 4 e 2sd 1 u 2 H 2,1 (Q L ) + Csλ Obs γ L ×(0,T ) (u), (6) 
for all s > s 0 , λ > λ 0 and all u ∈ H 2,1 (Q L ) satisfying u(., 0) = u(., T ) = 0 in Ω, u = 0 on ∂Ω L × (0, T ).

Proof. Let χ, η cut-off functions be defined by |χ| ≤ 1, |η| ≤ 1, η(t) = 0 if t ∈ (0, ǫ) ∪ (T -ǫ, T ), η(t) = 1 if t ∈ ×(2ǫ, T -2ǫ), χ(x) = 0 if x ∈ ((-∞, -L + ǫ) ∪ (L -ǫ, +∞)) × ω, χ(x) = 1 if x ∈ (-L + 2ǫ, L -2ǫ) × ω.
Recall that ∂ t u -∆u + qu = f. We consider y = ηχu and we get

∂ t y -∆y + qy = h with h = ηχf + ηR(u) + (∂ t η)χu,
where R is the first order differential operator defined by R(u) = -(∆χ)u -2∇χ • ∇u. Then we can apply the previous Carleman estimate ( 5) and we deduce that there exists a positive constant C such that

LHS(y) ≤ C e sφ h 2 L 2 (Q L ) + Csλ Obs Γ L ×(0,T ) (y).
Thanks to the cut-off functions the term Obs Γ L ×(0,T ) (y) can be rewritten in the form Obs γ L ×(0,T ) (u). Moreover

e sφ ηR(u) 2 L 2 (Q L ) ≤ Ce 2sd 1 u 2 L 2 (0,T,H 1 (Ω L ))
and e sφ (∂

t η)χu 2 L 2 (Q L ) ≤ Ce 2sd 1 u 2 L 2 (0,T,L 2 (Ω L )) . Then we obtain LHS(y) ≤ C e sφ f 2 L 2 (Q L ) + Ce 2sd 1 u 2 L 2 (0,T,H 1 (Ω L )) + Csλ Obs γ L ×(0,T ) (u). ( 7 
) Now we deal with LHS(y). For j = 0, 1, 2, (with

∇ 0 u = u, ∇ 1 u = ∇u, ∇ 2 u = ∆u) since χu = (1 -η)χu + y, (sφ) 3/2-j λ 2-j e sφ ∇ j (χu) L 2 (Q L ) ≤ (sφ) 3/2-j λ 2-j e sφ (1 -η)∇ j (χu) L 2 (Q L ) + (sφ) 3/2-j λ 2-j e sφ ∇ j y L 2 (Q L ) ,
and so

(sφ) 3/2-j λ 2-j e sφ ∇ j (χu) L 2 (Q L ) ≤ e sd 1 (sφ) 3/2-j λ 2-j u H 2,1 (Q L ) + (sφ) 3/2-j λ 2-j e sφ ∇ j y L 2 (Q L ) .
Doing the same for the term ∂ t (χu) we deduce that there exists a positive constant C such that

LHS(χu) ≤ C(e 2sd 1 (sφ) -1/2 u 2 H 2,1 (Q L ) +e 2sd 1 1 j=0 (sφ) 3/2-j λ 2-j ∇ j u 2 L 2 (Q L ) +LHS(y))
and

LHS(χu) ≤ C(s 3 λ 4 e 2sd 1 u 2 H 2,1 (Q L ) + LHS(y)). Then by the identities ∂ t u = ∂ t (χu) + (1 -χ)∂ t u, ∇u = ∇(χu) + (1 -χ)∇u -u∇χ, ∆u = ∆(χu) + (1 -χ)∆u -2∇χ • ∇u -u∆χ, we get LHS(u) ≤ C(LHS(χu) + s 3 λ 4 e 2sd 1 u H 2,1 (Q L ) ) ≤ C(s 3 λ 4 e 2sd 1 u 2 H 2,1 (Q L ) + LHS(y)).
Then, from [START_REF] Yamamoto | Carleman estimates for parabolic equations and applications[END_REF], we end up the proof.

Inverse Problem

Now we deal with the Carleman estimate proved in Proposition 4.2 in order to get a stability inequality for the potential, which implies a uniqueness result. First we recall the following classical lemma (see [START_REF] Cristofol | Soccorsi Determining the waveguide conductivity in a hyperbolic equation from a single measurement on the lateral boundary[END_REF]) and from now on, we will use the notation: w( T 2 ) = w(., T 2 ) for any function w.

Lemma 2. There exist some positive constants C, s 2 such that

Ω L e 2sφ( T 2 ) |z(T /2)| 2 ≤ Csλ 2 Q L e 2sφ |z| 2 + C s Q L e 2sφ |∂ t z| 2 ,
for all s ≥ s 2 , λ and z ∈ H 1 (0, T ; L 2 (Ω L )).

Consider now the following systems

   ∂ t u 1 -∆u 1 + q 1 u 1 = 0 in Q, u 1 = g on Σ, u 1 (x, 0) = u 0,1 (x) in Ω,
and

   ∂ t u 2 -∆u 2 + q 2 u 2 = 0 in Q, u 2 = g on Σ, u 2 (x, 0) = u 0,2 (x) in Ω. ( 8 
)
We recall that g, u 0,1 and u 0,2 are positive functions. Denote by

y = u 1 -u 2 , q = q 2 -q 1 , z = χηy, z 1 = ∂ t z, z 2 = ∂ 2 t z.
Note that ∂ t y -∆y + q 1 y = qu 2 , ∂ t (ηy) -∆(ηy) + q 1 ηy = qηu 2 + y∂ t η and

∂ t z -∆z + q 1 z = qχηu 2 -2∇χ • ∇(ηy) -ηy∆χ + χy∂ t η, (9) 
∂ t z 1 -∆z 1 +q 1 z 1 = f 1 := qχ∂ t (ηu 2 )-2∇χ•∇(∂ t (ηy))-∂ t (ηy)∆χ+χ∂ t (y∂ t η), ( 10 
) ∂ t z 2 -∆z 2 +q 1 z 2 = f 2 := qχ∂ 2 t (ηu 2 )-2∇χ•∇(∂ 2 t (ηy))-∂ 2 t (ηy)∆χ+χ∂ 2 t (y∂ t η).
(11) We have from (9)

∂ t z(T /2)-∆z(T /2)+q 1 z(T /2) = qχu 2 (T /2)-2∇χ•∇(y(T /2))-y(T /2)∆χ.
Then there exists a positive constant C such that, for all s > 0,

Ω L e 2sφ(T /2) q 2 χ 2 |u 2 (T /2)| 2 ≤ Ce 2sd 2 ( z(T /2) 2 H 2 (Ω L ) + y(T /2) 2 H 1 (Ω L ) ) +C Ω L e 2sφ(T /2) |∂ t z(T /2)| 2 .
But Ω L e 2sφ(T /2) |∂ t z(T /2)| 2 = Ω L e 2sφ(T /2) |z 1 (T /2)| 2 . Using Lemma 2 we get

Ω L e 2sφ( T 2 ) q 2 χ 2 |u 2 (T /2)| 2 ≤ Ce 2sd 2 F (T /2)+Csλ 2 Q L e 2sφ |z 1 | 2 + C s Q L e 2sφ |z 2 | 2 , (12) with F ( T 2 ) = z( T 2 ) 2 H 2 (Ω L ) + y( T 2 ) 2 H 1 (Ω L ) .
Moreover by the Carleman inequality (6) for z i , i = 1, 2 given by (10)-(11), for s sufficiently large, we have

Q L e 2sφ |z i | 2 ≤ C s 3 λ 4 Q L e 2sφ |f i | 2 +Ce 2sd 1 z i 2 H 2,1 (Q L ) + C s 2 λ 3 Obs γ L ×(0,T ) (z i ).
(13) Combining ( 12)-(13) we get

Ω L e 2sφ( T 2 ) q 2 χ 2 |u 2 (T /2)| 2 ≤ Ce 2sd 2 F (T /2)+ C s 2 λ 2 Q L e 2sφ (|f 1 | 2 + 1 s 2 λ 2 |f 2 | 2 ) +Ce 2sd 1 (sλ 2 z 1 2 H 2,1 (Q L ) + 1 s z 2 2 H 2,1 (Q L ) )+ C sλ γ L ×(0,T ) e 2sφ (| ∂z 1 ∂ν | 2 + 1 s 2 λ 2 | ∂z 2 ∂ν | 2 ).
Note that the conditions u 0,2 > 0 and g ≥ 0 imply that a sufficiently regular solution u 2 to the second system in [START_REF] Yuan | Lipschitz stability in the determination of the principal part of a parabolic equation[END_REF], is strictly positive (by the maximum principle for the parabolic equation, see [START_REF] Daners | Medina Abstract Evolution Equations, Periodic Problems and Applications[END_REF], Theorem 13.5 p.128). Then

Ω L e 2sφ( T 2 ) q 2 χ 2 ≤ Ce 2sd 2 F (T /2) + Ce 2sd Then, recalling that d 1 -d 0 < 0 and d 2 -d 0 > 0 we get our stability result (4).

q 2 L 2 (

 22 Ω l ) ≤ C(e 2s(d 2 -d 0 ) B(u 1 , u 2 , T /2) + sλ 2 e 2s(d 1 -d 0 ) ).

  1 sλ 2 ( z 1 Since e 2sφ ≤ e 2sd 2 on Ω L and e 2sφ ≤ e 2sd 1 on O L,ǫ , we get for s sufficiently largee 2sd 0 q 2 L 2 (Ω l ) ≤ C(e 2sd 2 B(u 1 , u 2 , T /2) + sλ 2 e 2sd 1 ), with B(u 1 , u 2 , T 2 ) = F ( T 2 )+ γ L ×(0,T ) | ∂ ∂ν (∂ t (χη(u 1 -u 2 )))| 2 +| ∂ ∂ν (∂ 2 t (χη(u 1u 2 )))| 2 .This inequality can be rewritten in the following form

									2 H 2,1 (Q L ) + z 2	2 H 2,1 (Q L ) )
	+	C s 2 λ 2 Ω L	e 2sφ( T 2 ) q 2 χ 2 +	C sλ γ L ×(0,T )	(|	∂z 1 ∂ν	| 2 + |	∂z 2 ∂ν	| 2 )e 2sφ +	C s 2 λ 2 O L,ǫ	e 2sφ .