Technical Report associated with the Paper: "Determining the Singularities for the Observation of Three Image Lines"
Sébastien Briot, Philippe Martinet, François Chaumette

To cite this version:
Sébastien Briot, Philippe Martinet, François Chaumette. Technical Report associated with the Paper: "Determining the Singularities for the Observation of Three Image Lines". [Research Report] IRCCyN; IRISA. 2016. hal-01400575

HAL Id: hal-01400575
https://hal.science/hal-01400575
Submitted on 22 Nov 2016

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Technical Report Associated with the Paper: “Determining the Singularities for the Observation of Three Image Lines”

Sébastien Briot, Philippe Martinet and François Chaumette.

Singularity cases in the visual servoing of three general lines in space

We consider here the case where the three observed lines have a general configuration. We define the frame $\mathcal{F}_b : (Q, x_b, y_b, z_b)$ attached to the observed body B such that x_b is collinear to U_1, y_b is lying in the plane \mathcal{P} containing L_1 and L_2. We parameterize the lines as follows (see Fig. 1)

$$\overrightarrow{OP_1} = [(X - b) (Y - c) (Z - a)]^T, \; U_1 = [1 \; 0 \; 0]^T$$
$$\overrightarrow{OP_2} = [(X - b) (Y - c) (Z + a)]^T, \; U_2 = [d \; e \; 0]^T$$
$$\overrightarrow{OP_3} = [(X + b) (Y + c) Z]^T, \; U_3 = [f \; g \; h]^T$$

where d, e, f, g and h are variables parameterizing the direction of the lines L_2 and L_3.

Then, we have

$$f_{12} \propto U_1 \times \overrightarrow{OP_2}, \; m_{12} \propto U_1 \times \overrightarrow{OP_3}$$

which, from the singularity conditions which are recalled here for reasons of clarity,

$$f_1 = f_{12}^T (f_{21} \times f_{31}) = 0 \quad \text{or} \quad f_2 = m_{12}^T (m_{22} \times m_{32}) = 0$$

leads to

$$f_1 = 0 \iff a_{22} Z^2 + a_{12} Z + a_{02} = 0$$
$$f_2 = 0 \iff b_{22} Z^2 + b_{12} Z + b_{02} = 0$$

where

$$a_{22} = 2e(cf - bg)$$
$$a_{12} = c_1 y + c_0 y$$
$$a_{02} = d_2 y^2 + d_1 y + d_0 y$$
$$b_{22} = e_1 x + e_1 y + e_0$$

in which

$$c_1 y = 2adg - ac f + 2bch$$
$$c_0 y = abg - 2acdg + ace f - (2ch - acg)eX$$
$$d_{2y} = -2adh$$

and

$$e_{1x} = (ghe + dfh)e$$
$$e_{1y} = (fhe - dgh)e$$
$$e_{0} = -eh(bdf + beg - cdg + cef)$$

$$f_{2xy} = -e(dy^2 - cf g + dh^2)$$
$$f_{1xy} = -2c^2 h^2$$
$$f_{1x} = -e(2ce f^2 + adf h - 2cdf g + aeh g)$$
$$f_{1y} = 2ahd^2 f + 2ced f^2 - 2bde f g + 2cde^2 f^2 + ahdeg + ahe f^2 - 2bce g^2$$
$$f_0 = b^2 d e g^2 + b^2 d e h^2 - b^2 e^2 f g + 2bce^2 f^2 + 2bce^2 h^2 + abde h + a e c^2 g h - 2c^2 d e f^2 - c^2 d e g^2 - c^2 d e h^2 - c^2 e^2 f g - 2acde f h - acdegh - a e c^2 f h$$
$$g_{3y} = deg h$$
$$g_{22xy} = -e^2 f h$$
$$g_{22xy} = dfh e - ghe^2$$
$$g_{2x} = c f e^2 h + adef^2 + adeh^2 - a f e^2 g$$
$$g_{2y} = 2agf^2 f - ade f^2 + bde f h - ade h^2 - cge de f + age f + bh e g^2$$
$$g_{1xy} = -2ad^2 g^2 - 2ad^2 h^2 - 2ced f h + ace^2 f^2$$
$$g_{1y} = c^2 d e f h + c^2 e^2 g h + 2acde f^2 + 2acde h^2$$
$$g_{1x} = c^2 d e f h + c^2 e^2 g h + 2acde f^2 + 2acde h^2$$

Fig. 1. Observation of three general lines in space
\[g_{1g} = b^2 e^2 f h - 2bcdefh - 2abcd^2 g^2 - 2ab^2 d^2 h^2 \\
+ 2abdefg - abc^2 f^2 - abc^2 g^2 - 2abc^2 h^2 \\
- c^2 degh \\
g_0 = b^2 ce^2 f h - ab^2 de^2 g^2 - ab^2 deh^2 + ab^2 e^2 fg \\
+ bc^2 de f h - bc^2 e^2 gh + 2abcd^2 g^2 + 2abcd^2 h^2 \\
- abce^2 f^2 + abce^2 g^2 + c^3 degh - 2ac^2 d^2 fg \\
+ ac^2 de f^2 + ac^2 deh^2 - ac^2 e^2 fg \]