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Abstract—In this paper we propose an extension of a blind
source separation algorithm that can be used to process the data
obtained by an array of ion-selective electrodes to measure the
ionic activity of different ions in an aqueous solution. While
the previous algorithm used a polynomial approximation of
the mixing model and used mutual information as means of
estimating the mixture coefficients, but it only worked for a
constrained configuration of two sources with the same ionic
valence. Our proposed method is able to generalize it to any
number of sources and any type of ions, and is therefore able to
solve the problem for any configuration. Simulations show good
results for the analyzed application.

I. INTRODUCTION

The blind source separation (BSS) problem is an important
cornerstone in signal processing theory [1], and its appli-
cations include audio signal processing, telecommunications,
image processing, brain-computer interface design, analysis
of seismic data, among others. Essentially, the BSS problem
consists of estimating a set of signals, also called sources,
using measurements which are effectively a mixture of them,
possibly including some a priori information on the nature of
the desired signals and mixing process.

The standard approach for solving the BSS problem is
based on the hypotheses that the mixing process is linear and
that the source signals are statistically independent. In that
case, successful algorithms such as the independent component
analysis (ICA) [1] have been proposed and extensively studied
over the last years. However, for certain applications the linear
model is insufficient, and a nonlinear mixing model might
be required. Among the nonlinear BSS mixing models that
have been studied so far, it is important to mention the post-
nonlinear (PNL) [2], [3], in which a linear mixture is further
distorted by a nonlinear function before the measurement, as
well as the linear quadratic (LQ) model, which represents the
mixtures as a second-order polynomial on the sources.

In this work, we shall focus on the problem of source sepa-
ration for ion-selective electrode (ISE) arrays [4], [5], [6], [7].
ISEs are simple devices which are used for measuring the ionic
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activity (essentially the effective concentration of an ion) in
an aqueous solution. An ISE consists of a sensitive membrane
for which the electrochemical potential varies according to the
concentration of a specific ion. A well-known example of ISE
is the glass electrode used for measuring the pH value [8].

The problem of the ISEs, however, is that the membranes
are not perfectly selective. When trying to estimate the activity
of a certain ion, the measurement will include not only the
activity from the target ion, but also an interference from
different ions which are also present in the same chemical
solution. Because the measurements are a mixture of the
activities, a BSS paradigm can be used to separate the signals
from each ion by using an array of multiple ISEs.

The problem of estimating the ionic activities based on
ISE arrays has already been studied in the past, with the
use of a Bayesian source separation method [9], sparsity-
based methods [10] and a PNL model and with a polynomial
representation as well, but with limiting constraints which
made it work only in specific circumstances [7]. In this paper,
we shall propose a more general version of the polynomial
algorithm, which should be able to account for all possible
configurations, at the expense of additional complexity.

In the paper, we will initially present, in Section II, a
description of the BSS problem statement and how it relates to
measurements with chemical sensor arrays. In Section III, we
will briefly present the previous algorithm for the constrained
version of the problem, followed by an explanation of the
proposed method for its general version. We shall then present
experimental results in Section IV, and a conclusion and future
plans shall finally be presented in Section V.

II. PROBLEM STATEMENT

A. Blind Source Separation

For the problem of BSS, let us consider a set of N
sources s(n) = [s1(n), s2(n), ..., sN (n)]T and M mixtures
x(n) = F [s(n)] = [x1(n), x2(n), ..., xM (t)]T , where n is the
temporal index and F [.] is the mixing function, not necessarily
linear. The goal of the source separation problem is to obtain
the sources s(n) given the mixtures x(n), and possibly some



a priori information on the properties of the sources (e.g. in-
dependence, sparsity, non-negativity, etc) and/or on the mixing
process (e.g. linearity, PNL model, etc). The problem is said to
be non-blind if the mixing function F [.] is known in advance,
and it is otherwise said to be blind. If the function F [.] is
linear, the mixing function can be represented by a matrix:

x(n) = As(n) (1)

where A is the N×M mixing matrix. For the linear case, there
are several classical methods in the literature that can solve
the BSS problem under different priors for the sources. A very
well-known class of methods is the independent component
analysis (ICA) [1].

For the nonlinear case, however, no general solution exists,
and the problem has to be analyzed on a case-by-case basis
[1], depending on the nature of the mixing function. Among
the commonly studied nonlinear models are the post nonlinear
(PNL) [3] and the polynomial model [11].

B. Chemical Sensor Arrays

For the problem of chemical sensor arrays, let us consider an
aqueous solution in which we have N different ions and M ion
selective electrodes (ISE) to measure their activities si, which
are our sources. However, due to the interference problem,
the values measured are actually a nonlinear mixture of the
activities of each ion. According to the Nicolsky-Eisenman
(NE) equation [12], this interference can be approximately
modeled by the equation below:

yi(n) = ei +
RT

ziF
ln

si(n) +

N∑
j=1,j 6=i

aijs
zi/zj
j (n)

 (2)

where yi are the observed values (our mixtures), ei is the
standard electrode potential (a scalar constant), R is the
universal gas constant, T is the temperature, F is the Faraday
constant, zi is the valence of the ith ion, and aij are the
selectivity coefficients. The RT

ziF
slope is called the Nernst

slope, and at room temperature of 25◦C, it is approximately
26mV, or 59mV if the logarithm is converted to base 10 (which
is the standard practice in chemical applications).

III. METHODS AND ALGORITHM

A. Previous Algorithm

In the simplest version of the problem, we have the case
of two sources and two mixtures, in which both ions have the
same valences, in which case the model can be written as:

y = e + d ◦ log (As) (3)

where A is a 2 × 2 matrix with a11 = a22 = 1, d is
the vector containing the estimates of the slope for each
ISE, and the operator ◦ denotes the Hadamard (entrywise)
matrix product1. While the slopes represented by d can be

1The logarithm operation is also performed entrywise.

theoretically calculated directly by (2), the empirical nature
of the NE equation cannot always accurately model the data,
and better results can be obtained by giving the model an
additional degree of freedom, allowing it to vary the slope.

In our previous work, we had estimated the d slope values
using theoretical values and defined the modified mixture set
x, with

xi = 10
yi−ei

di . (4)

If the slope values were exact (and the mixture were
perfectly modeled by (2), which is not the case), it can be
shown that x = As, which is a linear mixture of the two
sources which can then be solved by classical linear BSS
algorithms. This results in the classical PNL approach in which
the difficult part is to estimate the parameters that correctly
cancel the nonlinearity - in this case the slopes d. However,
in our previous work we had simply used the theoretical slope
value, and together with the fact that (2) only approximately
models the mixture, we can only claim that the modified set
x is an approximately linear mixture of the sources. The idea,
then, was to represent x as a second degree polynomial, in
which the quadratic terms can correct small nonlinearities in
the modified mixture. The mixture was represented then as

x = As + Bs◦2 + cs1s2 (5)

where a11 = a22 = 1 and s◦n = [sn1 , s
n
2 ]T represents the

entrywise power operator. This mixing model encompasses the
class known as linear-quadratic model, for which one can find
several methods to deal with [11]. Since the mixing model is
not as simple as the linear case, inverting it is no longer trivial,
and a recurrent network seems indicated to solve it even in the
non-blind case [11].

This algorithm, however, only works for the simplest case
in which we had two mixtures of two sources with the same
valence.

B. General case

A more general case could contain any number of sources
and mixtures, and the ions could have different valences. The
valences of the ions are known in advance. We shall still
restrain ourselves to the case in which the number of sources
and mixtures are equal - that is, the determined case.

It is important to start by noticing that when the valences
are different, the mixing model is no longer PNL, even if the
NE equation (2) were able to perfectly model the mixture.
This is because, in (2), we are actually mixing szi/zjj , with zi
and zj possibly different. A useful change of variable can be
made by defining the pseudo-source:

pi(n) = (si(n))1/zi (6)

Then (2) becomes

yi(n) = ei +
RT

ziF
ln

 N∑
j=1

aijp
zi
j (n)

 . (7)



The associated modified mixture, as defined in (4), be-
comes then polynomial in the pseudo-sources p with degree
k = max(z)/gcd(z), where gcd(z) is the greatest common
denominator of all the valences of zi. Since we want to
add an additional degree of freedom in order to capture the
inaccuracies of the NE-model, we can therefore model the
modified mixture set as a polynomial of degree k + 1.

Since the modified model is nonlinear, even in the blind case
the solution is not trivial, even more so in the general case in
which we can have multiple sources and different valences.
Therefore, an analytical solution is generally impossible to
obtain, we resort to a recurring network to achieve the solution
numerically.

C. Recurring Network

Using the definition of our pseudo-sources vector p, we can
rewrite the modified mixture vector x, with each component
given by (4) as

x = F [p] (8)

where F [.] is a polynomial of the appropriate degree, including
all possible cross-multiplied terms of the pseudo-sources pi.
For example, for the case of 3 sources with valences +1, +2
and +3, our polynomial would have degree 4, and could be
written as:

x =

4∑
i=1

(
Aip

◦i)+ Bpcross (9)

where Ai are square matrices, pcross contains all the cross
multiplied terms of the pseudo-sources and B is a coefficient
matrix of appropriate dimension. While it can be said that
the modified mixture set given by (4) should not contain
cross multiplied terms, this would only be true if both the
estimates of the Nernst slopes and the NE equation (2)
were perfectly correct. Since they are in fact only empirical
approximations, the additional degrees of freedom provided
by the cross multiplied terms, as well as the higher order of
the polynomial, can be used to correct inaccuracies in the
model.

If the coefficients are known (i.e., the nonblind case),
we have to solve the nonlinear equation system:

G[p] = F [p]− x = 0. (10)

Applying the Newton-Rhapson root-finding algorithm to (10),
we obtain the following recurrent network:

qt+1 = qt − J−1G (qt)G[qt] (11)

where JG is the Jacobian of G. Since G is a polynomial, this
is easy to calculate. As usual, to lower the computational cost
of the operation, it is better to solve the linear equation system
JG(qt)∆qt = −G[qt] instead of inverting the matrix. When
the network converges, q would eventually converge to the
pseudo-sources p.

However, in the problem we are trying to solve, the mixing
coefficients are unknown, since the problem is blind. Thus,
before being able to use this recurrent network we need a
way to estimate the polynomial coefficients first.

D. Estimation of the Polynomial Coefficients

In order to estimate the coefficients of the mixture, we
assume that the sources are independent, which automatically
implies that our pseudo-sources are also independent. It is
important to notice that source independence is a common
hypothesis in many BSS problems, and is a good assumption
in our application as well.

In order to maximize the independence of the estimated
sources, in the first algorithm, for 2 sources, we used the
mutual information as a cost function for estimating the pa-
rameters, with good results. While different generalizations of
the concept of mutual information for more than two sources
exists, we can use the total correlation for our problem [13].
The total correlation can be defined as the Kullback-Leibner
divergence between the joint distribution and the independent
distribution, which can be simplified to:

C(X1, X2, ..., Xn) =

(
n∑

i=1

H(Xi)

)
−H(X1, X2, ..., Xn)

(12)
where C(X1, X2, ..., Xn) is the total correlation, H(Xi) =
−pi(xi) log (pi(xi)) is the information entropy of Xi and

H(X1, X2, ..., Xn) =

−
∑
x1

...
∑
xn

p(x1, ..., xn) log (p(x1, ..., xn)) (13)

is the joint entropy of the variables. It is important to notice
that since the total correlation is a Kullback-Leibner diver-
gence, we have C ≥ 0 with equality if, and only if, the random
variables are statistically independent. Therefore, when trying
to obtain polynomial coefficients that produces independent
source estimates, the total correlation can be used as a cost
function, and we can use the gradient method to minimize it.

A detailed derivation of the differential of the mutual
information (or, for the case of more than two sources, the
total correlation) can be found in [14], and can be calculated
approximated by

∂C

∂w
= E

{
∂q

∂w

T

βq(q)

}
(14)

where w is the vector containing all the polynomial coeffi-
cients, and

βqi(q) =

(
−∂ log p(q)

∂qi

)
−
(
−d log p(qi)

dqi

)
(15)

is what can essentially be interpreted as “gradient” of C with
respect to the source estimates q [14].

By defining the score function as the opposite of the log-
derivative of a density function, i.e.,



φ(x) = − d

dx
ln px(x) (16)

it can be seen that βqi(q) is the difference between the ith
component of the joint score function of q and the marginal
score function of qi. It is interesting to note that the score
functions, and, by extension, βq(q) as defined in (15), can
be accurately computed by efficient methods as described, for
instance, in [15], which leads to an efficient computation of
our cost function.

As a result, the iteration to find the parameters can be
written as:

wk+1 = wk − µ
∂C

∂wk
(17)

where µ denotes the learning rate2.
Note that the expression for ∂q

∂w would depend on the
mixing model. For our problem, we can start from the modified
mixing model (8) and apply implicit derivatives, replacing p
(our desired result) by q (our estimates). For instance, for the
example with 3 sources with valences +1, +2 and +3 shown
in (9), we would have:

0 =
∂

∂w

(
4∑

i=1

(
Aiq

◦i)+ Bqcross

)

=
∂

∂w

(
4∑

i=1

(
Aiq

◦i)+ Bqcross

)∣∣∣∣∣
Ai,B constant

+
∂

∂w

(
4∑

i=1

(
Aiq

◦i)+ Bqcross

)∣∣∣∣∣
q,qcross constant

(18)

where the product rule is used. The first expression, with
the constant matrices, is JG

∂q
∂w . For the second expression,

with the constant vectors, notice that our coefficient vector w
contains all the variables from matrices A1, ...,A4,B. Let us
define w so that the elements are ordered in such a way that
all variables from A1 appear first, followed by the elements
of A2, and so on until B, and on each matrix the elements
are extracted row-by-row.

The second expression, then, would be a matrix K = kij
with kij 6= 0 if, and only if, the variable represented by column
j appears in the equation for mixture i, and in that case, kij is
the coefficient of that variable. This can be concisely written
with the use of the Kronecker product. The Kronecker product
of two matrices of arbitrary sizes, denoted by A⊗B, is the
block matrix defined by:

A⊗B =

a11B · · · a1nB
...

. . .
...

am1B · · · amnB

 . (19)

The expression with constant vectors from (18) can, there-
fore, be written as:

2Smaller learning rates improve the algorithm’s robustness at the expense
of longer convergence times. In our simulations we used µ ∈ [0.001; 0.01].

K =
[
I3 ⊗ qT · · · I3 ⊗

(
q◦4
)T

I3 ⊗ qT
cross

]
= −JG

∂q

∂w

(20)

where I3 is the identity matrix of order 3 (the number of
sources in our example) and, with the Kronecker product, the
expression of K is written as block matrix. Using (20), we
can finally isolate ∂q

∂w , as necessary for the iterations of the
gradient method proposed.

E. Algorithm
The algorithm can then be summarized as follows:
1) From the mixtures y, obtain the modified mixture set x

as defined by (4).
2) Start with random parameters w.
3) Estimate the pseudo sources p using the recurrent net-

work (11) with the weights w.
4) Update w using the gradient of the total correlation of

the estimates, calculated via equations (15) to (20)
5) If stopping criterion is not met, return to step 3.
6) After convergence, recover the sources s from the

pseudo-sources p, using equation (6).

It is important to notice that while this paper shows the
example of three sources with valences +1, +2 and +3, the
same algorithm works with any number of sources and any
valences. The number of sources and valences, however, must
be known in advance since they are required to calculating the
Jacobian JG [.], which is used both on steps 3 and 4.

IV. EXPERIMENTAL RESULTS

In our simulation, we used 3 sources with valences +1, +2
and +3 – a good representation of the more general case in
which we have more than 2 sources and different valences,
and therefore could not have been solved by the previous
algorithm. Our simulation had a sample size of N = 400.
In Fig. 1, we can see the results of a simulation.

We can see in the first row of the figure three independent
and uniformly distributed sources in the interval [0, 1], but
with the samples of the first one being sorted in ascending
in order to be easier to visualize, but without affecting the
independence of the sources. The sources are then mixed
according to Eq. (2), as shown in the second row.

The estimates obtained by the algorithm can be seen in the
third line, and at the end we can see a plot of the estimates
and the sources. Ideally, it should be noted that we want to
obtain a straight line, of any inclination, since it only indicates
a different scalar factor. We can see that for the three sources,
we obtain what can be roughly approximated by a straight
line, indicating that the result is good. In order to measure
how well the estimates represent the sources, we can use the
signal to interference ratio, which can be defined, in decibels,
as:

SIR = 10 log10

E{s2}
E{(s− y)2}

(21)



Fig. 1. Plots of sources and estimates

where the s is the source vector, y is the estimate vector, and
the higher the SIR value the more accurate the estimate is.

For the simulation here, the SIR values obtained were 20.0
dB, 26.6 dB and 21.4 dB, which are typically considered as
good values for the application analyzed. It should also be no-
ticed that because of the random nature of the algorithm, both
in the initial point for the recurrent network, and the initial set
of parameters, the algorithm does not always converge. When
the algorithm fails to converge, we can simply rerun it with a
different set of initial conditions until an estimate is found.

V. CONCLUSION

In this paper, we have generalized an algorithm proposed
in [7] which was able to show promising results when applied
to the measurement of ionic concentrations using chemical
sensors, but was limited only to two sources that had to be
ions of the same valence. Using similar ideas, we were able
to generalized the algorithm to any number of sources with
possibly different valences.

By allowing the valences to be different, the resulting
mixture can no longer be classified as post non-linear (PNL)
and, as a result, the method previously found in the literature
[5] to compare with our proposed method does not work.
Nonetheless, while not as good as the simpler case of 2 sources
with equal valence, our simulations indicate that the separation
can be performed with accuracy, obtaining SIR between 20 and
27dB, which are typically good for this sort of application.

In the future, we would like to further analyze the theoretical
stability of the problem in order to improve the selection of

initial conditions for the algorithm. For the current version
of the algorithm, the conditions are randomly selected and
can sometimes lead to the algorithm not converging, in which
case we restart the method until it succeeds. While this has not
proven an issue for our current application (possibly due to the
fact that the mixing coefficients are typically small), a more
theoretical analysis would be important to avoid problems
with more general mixing models, and possibly improve the
accuracy and convergence speed of our proposed method.
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