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Revenue Sharing in Network Utility Maximization

Problems

Isabel Amigo · Pablo Belzarena ·

Sandrine Vaton

Abstract Alliances arise in a wide variety of domains, when a group of coun-
tries, political parties, people or other entities agree to work together because
of shared interests or aims. They make sense, if the output obtained is some-
how better than the outcome of acting individually. Revenue or cost sharing
is key when determining if individuals are better off by contributing to an
alliance or not. In our alliance each member owns a unique resource –or set of
resources–, which is given to the alliance . The alliance sells services, which are
supported thanks to one or a set of these resources. We focus on alliances that
sell services in such a way that the total revenue of the alliance is maximized.
We show that this kind of problems can be modeled through a Network Utility
Maximization problem. We subsequently explore the problem of revenue shar-
ing among the members of the alliance. Such a problem is a complex one since
the interests of all participants must be ensured and correct incentives must be
provided. We formally formulate the members’ interests through a set of prop-
erties the revenue sharing method should verify. We then discuss the existing
methods for revenue sharing and conclude that none of them verify the needed
properties for the case of a revenue maximizing alliance. We finally propose a
revenue sharing method based on projecting the contributions of each member
of the alliance into an economic stable set. Through an exhaustive simulative
study we conclude that our method provides, in addition to economic stabil-
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ity, fairness among members and the right incentives to them. Through our
analysis Network Service Provider alliances, which sell quality-assured data
transport services, are considered as an application example.

Keywords Revenue sharing, Network utility maximization, Alliances,
Cooperative game theory, Stability, Efficiency, Fairness, Monotonicity

1 Introduction

In different contexts where services must be provided throughout several ge-
ographical regions, with high availability and assured quality, collaboration
arises as a viable way to reach the requirements of high-demanding clients
without the need of ubiquitous deployment of redundant infrastructure. This
statement is valid in a wide set of cases. The Internet connectivity provision-
ing context is one example, but it also happens, for instance, in the legacy
telephony network, in cloud computing clusters, or even in railway companies
and airlines. The collaboration ranges from merely network interconnection to
common coordination and cooperation principles. The former occurs already
in the Internet, the network of networks, for best-effort traffic, while examples
of the latter are airline alliances.

After the introduction of Kelly’s innovative network resource allocation
method [10], Network Utility maximization (NUM) problems have been widely
used in networking research activities (see e.g. [20] for a summary). In a NUM
problem, network links capacities and a routing table determine linear con-
straints for the resource allocation problem. An optimization problem under
such constraints is then established to maximize an aggregate objective func-
tion. This objective function is obtained as the sum of the utility of using
each network’s path. The decision variable is the amount of bandwidth to
allocate to each network’s path. Several proposals about applications further
than networking can be found in the literature. In [17], the authors propose a
real time pricing algorithm for smart grids based on the optimization of users’
aggregated utility by selecting each user’s energy consumption schedule, un-
der constraints of energy availability. Yet another example can be found in [6],
where a NUM problem is used for joint transmission scheduling and conges-
tion control for adaptive streaming in the context of wireless Device-to-Device
networks.

Synergy is one of the main attractions for the creation of an alliance, though
it must be noticed that it is not achievable by the joint effort per se. Indeed,
in order to provide higher revenues, coordination principles must be set in
place, so as to allow for optimum resource allocation, along with the use of an
appropriate revenue sharing mechanism, which guarantees that each member’s
share is at least equal to or greater than what he would obtain by acting alone.

Revenue sharing is also important for it acts as a mean to encourage the
correct behavior of the alliance’s members. Indeed, if, for instance, a member of
the alliance that brings more clients to the alliance is compensated adequately,
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all members would dedicate efforts to attract clients, which in the end would
result in higher revenues for the alliance.

This work is motivated by both the need of a fair and a right-incentive
provider revenue sharing method, for revenue maximizing alliances. The NUM
problem, which allows to maximize the alliance’s revenue, makes the revenue
sharing a challenge, since existing methods can not be applied directly and
must be carefully revised. Moreover, the intersection of solutions that provide
both incentive properties and fairness in the broad sense is not always clear. In
this work we aim to find such intersection, while seeking as well implementable
solutions.

Throughout this work we shall look at a Network Service Providers (NSP)
alliance as an illustrative example. Such alliances have been proposed to offer
quality-assured end-to-end data transport services between different parts of
the globe [2]. In addition to benefits such as, for instance, services’ offer di-
versification, increase of the regions reached by those services, increase of the
available resources and back-up paths, one of the main motivations for such
alliances is the increase of the revenue of the NSPs that belong to it. This
revenue increase comes from the fact that given a collaborative environment,
services can be sold (or what is the same in this context, resources can be allo-
cated) so as to maximize the revenue of the alliance as a whole, and moreover,
possibly increase it with respect to what all its members would earn by acting
by themselves. Besides, the advent of the software-defined networking (SDN)
paradigm is likely to foster collaboration among different NSP, such as this
kind of alliances. Indeed, in the SDN paradigm, network programmability and
interoperability becomes possible, promising to simplify management.

In [4] we have introduced the problem under study and proposed guidelines
for a method to solve it. The main contributions of this extended version of
the work are: generalization of the problem, rich discussion of the desired
properties, presentation and evaluation of existing methods which concludes
that none of them are suitable for our problem and description of the solution
proposal. The method is validated through exhaustive simulation studies.

The remainder of this paper is organized as follows. In section 2 we intro-
duce notation and formally define the problem. We then discuss the desired
properties for the revenue sharing mechanism in Section 3. In Section 4 we re-
view the most common sharing rules used in the economics field, and we argue
on why they are not useful when the revenue is determined through a NUM
problem. In Section 5 we present a new method, which provides a solution that
guarantees stability and efficiency in economic terms. In Section 6we present
our simulation studies. In particular, results demonstrate the correct behavior
of the proposed method towards desired properties, such as fairness and mono-
tonicity. Finally, in Section 7 we discuss some implementation considerations
and conclude in Section 8.
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2 Mathematical Model

We now introduce some notations so as to formally represent the working
scenario.

2.1 The Alliance

The alliance is formed by a set N of members. Each member of the alliance
is identified by n, where n = 1 . . . |N |, and provides to the alliance a quantity
cn of a resource. We shall refer to vector c defined as c = {cn}n∈N as the
stock vector. The alliance sells different services, the services belong to the set
S and are identified by s, where s = 1 . . . |S|. Each service s needs a given
combination of resources, and a given quantity of each resource. We represent
these combinations with the |N | × |S| matrix R, where | • | stands for the
cardinality of •. Then, entry Rn,s means that service s uses an amount Rn,s

of the resource provided by n. The amount of a given service s to deliver,
or sell, or produce by the alliance, is denoted by as. Vector a is defined as
a = {as}s∈S . Each service s has a utility function associated to it, referred
to as Us(as). We assume that Us(as) is known and, as usual in this context,
it is a strictly concave function of the amount of services sold. This utility is
interpreted as the revenue each service can provide to the alliance, in some
unit, as a function of the amount of service sold. In addition, as are assumed
to take continuous values.

Example Consider an alliance of NSPs.The interest of the collaboration is to
provide end-to-end quality-assured connectivity services. Each NSP member
of the alliance can be abstracted to a node. Each NSP or node n ∈ N of-
fers connectivity to neighboring nodes with a certain capacity, cn, which is
expressed in any data transfer unit. The services offered by the alliance, the
end-to-end connectivity services, are described by routing matrix R whose bi-
nary entries Rn,s are equal to 1 if service s’s route goes through NSP n, and
0 otherwise. The amount of bandwidth dedicated to each service is then noted
by as. Utilities represent the price paid for each service and are functions of
the amount of bandwidth of a service. For more detail in the NSP alliance
model, the reader is referred to [3]. �

Please note that c can be interpreted as a resource contribution, however,
it can not be interpreted as a monetary contribution, since a contribution in
resources does not necessarily imply increasing the alliance’s revenue. Next
subsection introduces how resources are allocated, and thus, in which case
they are translated into a monetary contribution.

2.2 Resource Allocation

We work with a revenue maximizing alliance, meaning that the resources pro-
vided by the members are allocated to services in such a way that the revenue
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of the alliance is maximized. This can be formalized following the approach
proposed in the seminal work of Kelly [10]. In such work, a NUM problem is
proposed to solve the resource allocation in such a way that a global network
utility function is maximized while link capacities are respected. In our case
we apply the same principle to our model of an abstracted alliance. Indeed,
in our scenario the amount of resources allocated to each type of service must
be such that the revenue perceived by the alliance is maximized, while the
resource constraints are fulfilled.

We shall refer to the set of members N as the grand coalition and sub-
groups of members shall receive the name of sub-coalitions or sub-alliances.
For convenience, as we shall shortly see, we shall define the resource allocation
problem for the grand coalition as well as for any sub-coalition. Let Q ⊆ N be
any sub-coalition ofN and let cQ be the stock vector restricted to sub-coalition
Q, that is:

cQn = cn if n ∈ Q ; cQn = 0 otherwise. (1)

Then, the resource allocation problem is formalized in the following optimiza-
tion problem:

Problem 1

max
a

∑

s∈S

Us(as)

s.t. Ra ≤ cQ

In Problem 1 we have not considered the fact that the alliance may not
want to sell a given service if the incomes perceived by doing so are lower
than a certain bound. However, we can model this situation by defining a cost
function of the allocated services κs(as) for each service s ∈ S and redefine
Problem 1 considering as objective function

∑

s∈S [Us(as)− κs(as)]. Provided
the cost function is convex, this will result in a problem analogous to Problem
1. For the sake of notations simplicity we shall not consider the cost function
hereafter.

Another interesting remark can be made considering costs and resources. Is
it convenient for a member to increase its resources? This can not be answered
without considering a revenue sharing mechanism, and in particular, the prop-
erties of the revenue sharing mechanism. This aspect will thus be addressed
in Section 3.

2.3 Revenue Sharing

Revenue sharing problems constitute one of the objects of study of Game
Theory. Indeed, a revenue –or cost– sharing problem involves the interaction of
several agents or actors which may compete or collaborate acting in a rational
way. We shall thus from now on adopt the Game Theory’s nomenclature and
refer to the members of the alliance also as players.
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Variable Meaning
N Grand coalition, set of all members in the alliance.

Q ⊆ N Sub-coalition.
S Set of available services offered by the alliance.

R = {Rn,s}n∈N,s∈S Service s uses an amount Rn,s of n’s resource.
a = {as}s∈S Vector, amount sold of each service s ∈ S.

U = {Us(as)}s∈S Utility functions of each service.
c = {cn}n∈N Stock vector, cn amount of n’s resource.

cQ. cQn = cn, ∀n ∈ Q, cQn = 0 ∀n /∈ Q Stock vector for sub coalition Q.
V (Q) = maxaeT .U(a), s.t.Ra ≤ cQ Revenue of the coalition Q ⊆ N .

xn = Φn(N, c, U) Revenue share of member n.
x = {xn}n∈N = Φ(c,N, U) Revenue share vector.
vn = V (N)− V (N \ {n}) Member n’s contribution to the alliance.

Table 1: Summary of notations used throughout the paper

Our problem is to find a suitable method to share the revenue of the coali-
tion among its members. Let us first introduce the notion of revenue and of
revenue share, and the notations we shall use to represent them. We define the
revenue function V by the solution of Problem 1, which states that resources
are allocated in such a way that the revenue of the alliance is maximized, while
respecting the resource constraints.

The revenue function associates to each sub-coalitionQ ⊆ N with resources
cQ and utility functions U = {Us}s∈S , a real value V (Q, cQ, U). We also accept
the notation V (Q) to indicate the total revenue of coalition Q ⊆ N , where
resources and utility functions are implicit or V (Q, c) when utility functions
are implicit by context.

The total revenue is shared among all members in N according to the
sharing function Φ(N, c, U) which computes a revenue sharing vector {Φn}n∈N ,
where Φn is the total revenue that player n will receive, expressed in some
monetary unit. This function depends on the coalition N , the resources c and
the utility functions U . For convenience and brevity, we shall also use the
shorter notation x to denote the revenue sharing vector, where x ∈ R

|N | is a
column vector containing on each component xn, n ∈ N , the revenue share of
member n, when the values of N , c and U are implicit by context.

The notations presented in this section, along with further notations intro-
duced later in this paper, are summarized in Table 1.

3 Desired Properties of the Revenue Sharing Mechanism

Two main objectives motivate the desired properties of a revenue sharing
method. First, to provide with fair allocations. Second, to provide to the mem-
bers the right incentives to remain in the alliance and to contribute to it. The
properties discussed below, are usually discussed in cost/revenue sharing prob-
lems, with slightly different definitions (see for instance [7],[9],[11]). We select
from the literature the ones that we believe are more relevant to our problem,
argument on why they are relevant and formally define them.
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3.1 Efficiency and Stability

The mechanism should distribute all the alliance’s revenue among its members,
that is what we call efficiency, which is defined as follows.

Efficiency. Φ(N, c, U) = x is efficient if
∑

n:n∈N

xn = V (N). (2)

In addition, in order to assure the sustainability of the alliance, the mech-
anism should not provide incentives to any sub group of members to break
up the grand coalition. That is, no sub-coalition should have economic incen-
tives to form a smaller coalition outside the alliance, since this would lead to
instabilities in the alliance. This is the so-called stability property.

Stability. Φ(N, c, U) = x is stable if
∑

n:n∈Q

xn ≥ V (Q), ∀Q ⊆ N. (3)

The stability definition requires the shares to be such that, for every pos-
sible sub-coalition, the sum of the shares of the members belonging to that
sub-coalition are at least as large as the revenue that sub-coalition would per-
ceive. This property is also usually referred as the stand alone property. Please
note that this definition also implies that the revenue perceived by each mem-
ber n ∈ N in the coalition is not less than the revenue it could achieve alone,
i.e. xn ≥ V ({n}), ∀n ∈ N . The set of points that verify Inequalities (3) con-
stitutes the so-called core set in the context of Coalitional Game Theory. The
reader is referred to [19] for more details on the core concept and on coalitional
game theory.

3.2 Monotonicity

The mechanism should provide the right incentives to the members to perform
actions towards an increase in the alliance’s revenue. Incentives, in our context,
means having economic reasons to perform some action. In particular, the
economic reasons a player has for performing a given action are modeled by the
increase that this action can provide on his or her own revenue. We formalize
the concept of incentives through the monotonicity property. Several flavors of
monotonicity properties can be found in the literature. We now discuss three
of the more relevant ones to our problem. We finally keep one definition of
monotonicity as desirable for our revenue sharing mechanism.

N-resource-monotonicity. Φ(N, c, U) is N-resource-monotonic if given two
vectors of resources c and ĉ, such that ĉk ≥ ck and ĉn = cn ∀n 6= k then
Φn(N, ĉ, U) ≥ Φn(N, c, U) ∀n ∈ N .

N-resource monotonicity provides incentives to each member to increase
their amount of resource or not to decrease it, while members not increasing
their resources have no incentive to discourage such increase, which makes it a
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very compelling property. However, it is a very strong requirement. Moreover,
it can be proved that in the general case of games with a feasible, efficient,
and stable solution set, there is no way to split the revenue that provides with
jointly efficiency, stability and N-resource-monotonicity [21][9].

As a consequence of the previously cited impossibility result, we shall admit
a less restrictive property, which we simply call resource-monotonicity, and
only ask for a non-decrease on the revenue of that member increasing its
stock. More formally:

Resource-Monotonicity. Given two vectors of resources c and ĉ , such that
ĉn = cn ∀n ∈ N \ {k} and ĉk ≥ ck, Φ is resource-monotonic if Φk(N, ĉ, U) ≥
Φk(N, c, U).

The resource-monotonicity property means that if a member increases its
amount of resources then its revenue will as well increase or remain the same.
This property is usually referred to as resource incentive, or monotonicity in
the resources, in the context of coalitional game theory.

Another interesting property related to monotonicity is the one that eval-
uates the influence of new members entering the alliance, usually referred as
to population-monotonicity.

Population-monotonicity. Given stock vector c, a revenue sharing rule
Φ is population-monotonic if ∀S, T ⊆ N such that S ⊂ T , Φn(T, c

T , U) ≥
Φn(S, c

S , U) ∀n ∈ S.

A population-monotonic revenue sharing rule guarantees that the entrance
of a new member to the alliance does not reduce the revenue of each of the
members already there. However, we focus on the study of fixed alliances,
and not on the dynamics of how to build them. The alliance could be set in
place for reasons further to the ones captured by the revenue function, such
as business agreements and geographical coverage. Thus, we shall not consider
this property as mandatory for a sharing rule. It is rather a property that
should be checked whether it is verified or not given a particular alliance.

We shall herein seek for a revenue sharing method satisfying resource-
monotonicity, and refer to this property simply as monotonicity. Regarding
incentives, the monotonicity property still provides to a member incentives to
increase its resources towards the alliance. In the context of coalitional game
theory, N-resource-monotonicity is usually asked, so as to guarantee that no
player would have incentives to block some other player’s action towards the
increase of the revenue of the whole alliance. In particular, if we ask simply
for monotonicity and not for N-resource-monotonicity, it could happen that
some members in the alliance have no interest in the resource increase of other
members. However, even if the resource increase of one member could decrease
some other member’s revenue, we claim that this situation could act itself as
an incentive to members to remain competitive in terms of their resource
contribution towards the alliance.
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Property name Property meaning

Stability
∑

n:n∈Q

xn ≥ V (Q), ∀Q ⊆ N

Efficiency
∑

n:n∈N

xn = V (N)

Monotonicity If ĉn = cn ∀n ∈ N \ {k} and ĉk ≥ ck, then Φk(N, ĉ, U) ≥ Φk(N, c, U).
Eq. treat. of eq. if vn = vj then xn = xj

Order preserving If vn ≥ vj then xn ≥ xj

No free riders if vn = 0 then xn = 0

Table 2: Summary of the desirable properties

3.3 Fairness

There is not a general consensus in the literature regarding the notion of
fairness. Moreover, the properties enumerated before can as well be interpreted
as fairness. Indeed, the stability property states that every sub-coalition will
get an aggregate share of at least the sub-coalition’s revenue. The monotonicity
property, besides providing incentives to increase resources, can as well be
interpreted as a fairness one. Indeed, if one member makes an effort to improve
its stock, then it deserves to be rewarded adequately.

In addition to the properties stated so far, we propose some common in
the literature and intuitive rules that should be fulfilled in order to be fair. We
base our definitions on the contribution of each member, defined for member
n as vn = V (N)−V (N \{n}). The so-called order preserving property is then
defined as follows: If vn ≥ vj then xn ≥ xj . If the previous inequalities are
interpreted as strict, that is if vn = vj implies xn = xj , this has received the
name of equal treatment of equals. In addition we propose that if vn = 0 then
xn = 0, which we shall call no free-riders and can be seen as a particular case
of the so-called dummy property in the context of coalitional game theory. All
in all, we define fairness as follows.

Fairness. Φ is fair if it is order preserving, guarantees equal treatment of
equals and no free-riders.

The choice of the contribution vector to evaluate fairness is important.
Some classical rules of revenue or cost sharing propose fairness criteria based
on the resources or costs of each agent. However, in our case, we base the fair
principle in the contribution of each member in terms of revenue rather than
in terms of resources, since what is important in the alliance is not only the
resources provided by each member but as well how much value we can get
from the resources. Vector v is a measure that takes into account both relevant
components, namely the resource itself and its value.

For the reasons exposed in this section, we shall seek for a revenue shar-
ing method which fulfills stability, efficiency, fairness and monotonicity. The
meaning of these properties is summarized in Table 2.
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4 State-of-the-Art Sharing Methods

We now present existing revenue sharing techniques, which have been proposed
in the field of economics and some of them have been widely used for solving
revenue sharing problems. A detailed review of costs and revenue sharing rules
can be found in [9] and a discussion of bargaining methods in [16]. In particular,
we discuss the properties they verify, and their behavior with respect to our
desirable properties, for concluding that none of them verifies them all.

4.1 The Shapley Value

The Shapley value, proposed by Lloyd Shapley in 1953 [18], is probably the
most well known technique to perform revenue sharing in an association or
coalition. It has been widely used in the literature for its good properties,
which we shall review in the following. The Shapley value provides a closed-
form expression to compute the share of each agent in a cooperative context.
Intuitively, it can be interpreted as computing the average contribution of each
agent to the coalition.

With our notations, the Shapley value for player n ∈ N is defined as:

xsh
n =

1

|N |!

∑

Q⊆N\{n}

|Q|!(|N | − |Q| − 1)! [V (Q∪ {n})− V (Q)] . (4)

Example Consider again an NSP alliance. Consider Topology A in Fig. 1a, ca-
pacities are equal to 1 unit for all nodes. Consider as well that utility functions
U = (u1, u2) are as specified in Table 3a. The solution to Problem 1 leads to
the following revenues: V (N) = V ({2, 3}) = 10, V ({1, 3}) = 5.

The Shapley value for node 1 is given by:

xsh
1 =

1!1!

3!
[V ({1, 2})− V ({2})] +

1!1!

3!
[V ({1, 3})− V ({3})]

+
2!0!

3!
[V (N)− V ({2, 3})]

=
1

6
0 +

1

6
5 +

1

3
0 =

5

6
.

Analogously, for node 2 we obtain xsh
2 = 10

3 , and for node 3 xsh
3 = 35

6 .�
The following three properties completely characterize the Shapley value,

as proved by Shapley [18].

– Dummy player : if n is a dummy player (i.e. a player whose contribution
to the coalition is the same as the one he would achieve on his own) then
xn = V ({n}).

– Symmetry: if n and j contribute the same to any coalition then xn = xj .
– Additivity: let U (1) and U (2) be two different utility functions, if Φn(N, c, U (1) + U (2)) =

Φn(N, c, U (1)) + Φn(N, c, U (2)) ∀n ∈ N .
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(a) Topology A. The feasi-
ble set can be a region un-
der such a topology.

(b) Topology B. The
Friedman-Moulin rule pro-
vides the wrong incentives
under such a topology.

(c) Topology C. The feasi-
ble set can be empty under
such a topology.

Fig. 1: Example: NSP alliances topologies

In addition, it is efficient (it shares the total revenue), resource-monotonic
and has balanced contributions [12].

A sharing rule has balanced contributions if and only if for any two play-
ers i, j ∈ N , i’s contribution to j is equal to j’s contribution to i, that is
Φi(Q, c, U) − Φi(Q \ {j}, c, U) = Φj(Q, c, U) − Φj(Q \ {i}, c, U) ∀Q ∈ N :
|Q| ≥ 2.

Example Recalling the previous example, we can readily verify that the solu-
tion obtained is efficient, that is xsh

1 + xsh
2 + xsh

3 = 5+20+35
6 = 10 = V (N).

We can as well verify that the solution has balanced contributions according to
the previous definition. Take for instance nodes 1 and 2, and let Φsh

n (N, c, U)
be n’s Shapley value for coalition N , stock vector c and utility function
U . The revenues of the different sub-coalitions for this example are shown
in Table 3b. Then, Φsh

1 (N, c, U) − Φsh
1 (N \ {2}, c, U) = 5

6 − 5
2 = −10

6 and
Φsh
2 (N, c, U) − Φsh

2 (N \ {1}, c, U) = 10
3 − 10

2 = −10
6 . And analogously for the

other players and sub-coalitions {1,2}, {2,3}, {1,3}. �

The following theorem states that the Shapley value for revenue maximiz-
ing alliances verifies resource-monotonicity.

Theorem 1 Monotonicity of the Shapley value. Let (N, V, c) be a coalitional
game where the set N of members of the alliance are the players, c represents
the stock of resources for each and V is the revenue function defined by Problem
1. If n ∈ N increases its stock then its revenue share (i.e. Φsh

n ) will not be
decreased. That is, letting ĉ represent the stock vector where only n’s stock is
increased, Φsh

n (N, ĉ, U) ≥ Φsh
n (N, c, U), where Φsh

n (N, c, U) is the Shapley value
of n given the coalitional game (N, V, c).

Proof By definition of Shapley value Φsh
n (N, ĉ, U) = 1

|N |!

∑

Q⊆N\{n}

|Q|!(|N | −

|Q| − 1)![V (Q ∪ {n}, ĉ)− V (Q, ĉ)], where V (Q, ĉ) as defined above represents
the worth function for sub-coalition Q when the stock is given by vector ĉ.
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Φsh
n (N, ĉ, U) = 1

|N |!

∑

Q⊆N\{n}

|Q|!(|N | − |Q| − 1)![V (Q ∪ {n}, ĉ) − V (Q, c)],

holds since the revenue function of any coalition without member n is the
same, regardless the stock n has.

By subtracting n’s revenue share with and without increasing its stock we

have that Φsh
n (N, ĉ, U)−Φsh

n (N, c, U) = 1
|N |!

∑

Q⊆N\{n}

|Q|!(|N |−|Q|−1)![V (Q∪

{n}, ĉ)− V (Q ∪ {n}, c)].

We now determine if the inequality V (Q∪{n}, ĉ) ≥ V (Q∪{n}, c) ∀Q ⊆ N \
{n} holds. Indeed, V is the solution to Problem 1, which is the maximization
of a concave function with convex constraints. By increasing n’s stock we
relax such problem, thus doing so yields to greater or equal solutions, which
concludes the proof.�

In spite of fulfilling the aforementioned compelling properties, the Shapley
value is not suitable for our problem, as it does not always provide stable
solutions. That is to say, shares computed through the Shapley value do not
always fulfill (3). Nonetheless, its great popularity in previous work is due
to the fact that it is proven that for a special case of games, it provides with
stable solutions (see e.g. [19]). This special case of games are convex games,
which occur in many cases. A cooperative game with set of players N and
revenue function V is convex if for any two sub-coalitions W, Y ⊆ N , V (W )+
V (Y ) ≤ V (W

⋂

Y ) + V (W
⋃

Y ). Moreover, for convex games, the Shapley
value provides with stable, efficient and N-monotonic solutions (see e.g. [9]).

As for our problem, the cooperative game defined by the revenue maximizer
alliance with players N , stock vector c and utility functions U can be non-
convex. Solutions through Shapley value can thus lie outside the core, as shown
in the following example.

Example Consider again the previous example, given by topology A in Fig.
1a, nodes with 1 unit of capacity, and utility functions given by Table 3a.
Consider coalition N and sub-coalitions W = {1, 3} and Y = {2, 3}, whose
revenues are determined by solving Problem 1 and are given in Table 3b. We
can readily check that V (W

⋂

Y ) + V (W
⋃

Y ) = 0 + V (N) = 10, which is
smaller than V (W )+V (Y ) = 5+10 = 15. Hence, the game defined by N and
V is not a convex one.

In order to be stable, the Shapley value should verify Inequalities (3). In
particular, in this example we have, xsh

2 +xsh
3 = 20

6 + 35
6 = 55

6 < 10 = V ({2, 3}).
Hence, stability inequalities are not satisfied.

This example also shows that the Shapley value does not fulfill the no
free riders property. Indeed, node 2’s contribution to the coalition, that is
v2 = V (N)− V (N \ {2}) = 0, while xsh

2 6= 0. �
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Us(s) = αs · log(1 + βs · as)
Service αs βs

s=1 14.427 1
s=2 7.2135 1

(a) Utility functions

Q a∗ V (Q)
N = {1,2,3} (0,1) 10
W = {1,3} (0,1) 10
Y = {2,3} (1,0) 5

(b) Revenue of the grand coalition
and two sub-coalitions

Table 3: Numerical values for topology A

4.2 The Proportional Share

One of the simplest ways to perform the revenue sharing is to split revenues
proportionally to some contribution measurement. In our case, as explained
above, vector v = {vn}n∈N where, we recall, vn = V (N)− V (N \ {n}), quan-
tifies this contribution. The proportional share is then defined as:

xpr
n =

vn
∑

n′∈N vn′

V (N). (5)

Example Consider again a NSP alliance whose topology is given by Topology
A in Fig. 1a and that the utility functions, and thus revenues, are the same as
before and are shown in Table 3. The proportional share for node 1 gives:

x
pr
1 =

V (N)− V ({2, 3})
∑

n∈N V (N)− V (N \ {n})
V (N)

=
10− 5

(10− 5) + (10− 10) + (10− 0)
10 =

10

3
.

Analogously we obtain, xpr
2 = 0 and x

pr
3 = 20

3 . �
The proportional share a priori seems to be a very attractive distribution

rule. It fulfills the properties of efficiency and fairness (see e.g. [9]) and it is
very simple to compute. However, stability is not guaranteed by this sharing
rule, as we shall show later on in Section 6.

4.3 The Aumann-Shapley Rule

The Aumann-Shapley Rule for cost sharing [5] was introduced by Shapley
and Aumann in 1974, and can be applied analogously for a revenue sharing
problem. The idea of this rule is to compute the revenue share of a member
n ∈ N as its average marginal revenue along a certain path going from a stock
equal to 0 to cn. More precisely, the share for n ∈ N according to this rule is
defined as:

xas
n =

∫ cn

0

∂nV (N,
t

cn
c)dt = cn

∫ 1

0

∂nV (N, tc)dt, (6)

where the notation ∂nV (N, c) means the first order derivative of V at c with
respect to cn. Please note that in Equation (6) we have used the alternative
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notation for V where its dependency on the sub-coalition and the available
resources are explicitly mentioned.

In our problem, the derivative of V with respect to cn is not defined for
all values of cn. In addition, this rule applied to our problem can provide with
the wrong incentives, as illustrated by the following example.

Example Consider a NSP alliance. Consider Topology B given by Fig. 1b and
that the capacity of all nodes but node 1 are equal to a value cmax, and node
1’s capacity is equal to cmin, with cmin < cmax. The revenue of the alliance,
we recall, is determined by Problem 1. Consider that utility function U1(a1)’s
derivative with respect to c1 is u1(a1). In this case the Aumann-Shapley rule
gives to node 1:

xas
1 =

∫ cmin

0

∂1V (N, (t,
t.cmax

cmin

. . . ,
t.cmax

cmin

))dt

=

∫ cmin

0

u1(t)dt = U1(cmin)− U1(0).

Analogously, we can compute the share for every node n ∈ {2 . . . |N |}.
Since V (N, tc), which is the solution to Problem 1, is always determined by
the first component of vector c (the smallest component) its derivative with
respect to cn is equal to zero ∀n ∈ {2 . . . |N |}. Hence, xas

n = 0.
In particular, this example violates resource monotonicity since we can find

a vector c and a vector ĉ such that ĉn = cn ∀n ∈ N \{k} and ĉk ≥ ck and such
that Φk(N, ĉ, U) < Φk(N, c, U). Indeed, let ĉn = cn = cmax ∀n ∈ {2 . . . |N |}.
Let c1 = cmin < cmax and ĉ1 > cmax then Φk(N, ĉ, U) < Φk(N, c, U). �

From this simple example we can readily see that this rule applied to our
scenario can provide the wrong incentives. Indeed, every node except node 1
is interested in decreasing its capacity so as to become the bottleneck, as this
would give that node a non-null share. Notice that in order to be efficient ,
U1(0) should be equal to zero, which is likely to occur.

4.4 The Friedman-Moulin Rule

This rule was proposed by Friedman and Moulin in 1999 [8]. We introduce
the operator ∧, which is defined for two vectors r and q ∈ R

|N | as q ∧ r =
min(qn, rn) n ∈ N and column vector e, which is of dimension |N | and has all
its components equal to one. This rule is similar to the Aumann-Shapley one,
in terms that it integrates marginal revenues, but in this case the integration
is done through a different path. According to the Friedman-Moulin rule, the
share for member n ∈ N is calculated as:

xfm
n =

∫ cn

0

∂nV (N, (t · e) ∧ c)dt. (7)

This rule can not be applied in our context since V might not be derivable
along the whole path, as seen in the following example.
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Example Consider again Topology B given by Fig. 1b, where the capacities of
all nodes but node 1 are equal to a value cmax, and node 1’s capacity is equal
to cmin, with cmin < cmax, as in the previous example. The Friedman-Moulin
rule applied to node 1 is as follows:

x
fm
1 =

∫ cmin

0

∂1V (N, t · e)dt,

which is not defined along the whole path, since ∂1V (N, t− · e) = u1(t) and
∂1V (N, t+ · e) = 0 .�

4.5 The Nash Bargaining Solution

Bargaining processes model classical economic problems in which players ne-
gotiate in order to collectively choose an outcome, in situations where there is
no consensus about which the best outcome is (see for instance [14]). Formal-
izing the output of this problem is not an easy task, since there is a plethora
of actions that a player could take throughout the process, and a wide vari-
ety of ways to carry out the negotiation, involving different sequential order
on which the players play and time-frames on which they take decisions or
the game ends. In particular, according to the bargaining power, preferences
and impatience of the different players, different outputs could be obtained.
Bargaining situations lie in the core of the interests of game theory, discipline
which has provided different formalizations of such problems, among which the
solution concepts derived first by Nash in 1950 [13] and then by Rubinstein in
1982 [15] are seminal ones.

We shall focus on the Nash Bargaining solution. Following Nash’s terms,
bargaining describes a situation where: a mutual agreement can be decided
upon, a conflict of interest exists about which agreement to adopt, and the
agreement needs the approval of all involved actors. In our revenue sharing
problem, alliance members interact in order to decide on how to split the
revenue that they achieve by the joint work.

In order to apply the Nash bargaining solution to our context, we need
to define the –compact and convex– set of all possible outcomes, model each
member’s bargaining power (weight for negotiating), their disagreement point
(outcome when there is no agreement), and define each player’s utility function,
i.e. their preferences over the set of possible outcomes. The Nash bargaining
solution needs that there exits within the set of possible outcomes an outcome
x such that xn > dn, for all n ∈ N , where dn is n’s disagreement point.

In this work we assume that all players have linear utility functions, and
that they value the revenue shared obtained in the same way. We shall leave
out of scope the modeling of each player’s utility functions.

With respect to bargaining power, we propose two alternative models. One
is to consider the members’ contribution to the alliance as the bargaining
power. That is to say, αn = vn, for all n ∈ N . Alternatively, one can consider
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a member’s stock of resource as its bargaining power. That is to say, αn = cn,
for all n ∈ N .

The disagreement point can be intuitively modeled by the stand alone
revenue of each player, i.e. dn = V ({n}), for all n ∈ N . The total amount to
share in our context is V (N), which bounds the set of possible outcomes.

We define an economically sensible alliance as an alliance whose revenue is
larger than the sum of all revenues each member would perceive on their own,

i.e V (N) >
∑

n∈N

V ({n}).

Taking the previous modeling decisions into account, and considering eco-
nomically sensible alliances the Nash bargaining solution is defined as the
solution to Problem 2.

Problem 2

max
∏

n∈N

(xnbs
n − V ({n}))αn (8)

s.t.
∑

n∈N

xnbs
n = V (N)

xnbs
n ≥ V ({n}), ∀n ∈ N

which can be proven to be given by the Equation (9).

xnbs
n =

αn
∑

j∈N αj



V (N)−
∑

j∈N

V ({j})



+ V ({n}). (9)

Please note that when considering the contribution (vn) as bargaining
power and for the case where the stand alone revenue is equal to zero (V ({n} =
0, ∀n ∈ N), the Nash bargaining solution is equal to the Proportional share,
defined in Sub-section 4.2. When modeling the bargaining power through stock
(cn), and when the stand alone revenue of all members is equal to zero, the
Nash bargaining solution splits the revenue proportional to the stock.

The Nash bargaining solution verifies interesting properties. Indeed, let
Φnbs(τ,∆) = {Φnbs

n (τ,∆)}n∈N be the outcome determined by the Nash bar-
gaining solution with set of possible outcomes τ and set of disagreement points
∆. Nash proved that for 2-person bargaining games the following four axioms
characterize the Nash bargaining solution [13], theory that was then extended
to multiple players (see e.g. [16]).

– Symmetry: if τ is symmetric, and if players are indistinguishable, then
players get the same outcome.

– Independence of irrelevant alternatives: let τ and τ ′ be such that τ ′ ⊆ τ .
If Φnbs(τ,∆) ∈ τ ′ then Φnbs(τ ′, ∆) = Φnbs(τ,∆)

– Pareto efficiency: Φnbs(τ,∆) is Pareto efficient if there is not t ∈ τ such
that t ≥ Φnbs(τ,∆) and tn > Φnbs

n (τ,∆) for some n ∈ N .
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– Invariance to equivalent utility representations: a transformation of the
utility functions that maintains the same ordering over preferences (e.g.
a linear transformation), should not change the outcome of a bargaining
process.

In addition, when modeling each member n’s bargaining power by its stock
cn, monotonicity is verified for an economically sensible alliance, as we show
in Theorem 2. For convenience, we shall from know on admit the notation
Φnbs(N, c, U) to refer to the Nash bargaining solution applied to our context,
as well as the short notation xnbs.

Theorem 2 Incentive for improving stock of the Nash bargaining solution. Let
the revenue maximizing alliance (N,U, c) denote a bargaining problem where:
the space of solutions is given by X = {(x1 . . . x|N |) :

∑

n∈N xn = V (N), xn ≥
V ({n})∀n ∈ N}, V is the revenue function defined by Problem 1, the set of
disagreement points is given by ∆ = {V ({n}), ∀n ∈ N} and the bargaining
powers are given by the stocks c. Let the alliance be economically sensible,
that is to say V (N) >

∑

n∈N V ({n}). If n ∈ N increases its stock, then its

revenue share (i.e. Φnbs
n ) will be not decreased. That is, letting ĉ represent the

stock vector where n’s stock is increased, Φnbs
n (N, ĉ, U) ≥ Φnbs

n (N, c, U), where
Φnbs
n (N, c, U) is the Nash bargaining solution for member n.

Proof Without loss of generality we assume that the only member increasing
its stock is n ∈ N . The share of n through the Nash bargaining solution is
given by:

xnbs
n =

cn
∑

j∈N cj



V (N)−
∑

j∈N

V ({j})



+ V ({n}), (10)

we want to prove that
∂xnbs

n

∂cn
≥ 0.

∂xnbs
n

∂cn
=

∑

j∈N cj − cn

(
∑

j∈N cj)2



V (N)−
∑

j∈N

V ({j})





+
∂V ({n})

∂cn

(

1−
cn

∑

j∈N cj

)

+
∂V (N)

∂cn

(

cn
∑

j∈N cj

)

, (11)

which is easy to see has all terms equal to or greater than zero. Indeed,
function V is defined after a maximization problem –Problem 1– with non
decreasing objective function. Increasing cn implies relaxing one of that prob-
lem’s linear constraints, thus, increasing the functional value of V . Hence,
∂V (N)
∂cn

is positive or zero and analogously for ∂V ({n})
∂cn

. In addition, since by
hypothesis the alliance makes economic sense, the alliance’s revenue is at least
as large as the sum of all revenues each member would perceive on their own,
i.e. V (N) ≥

∑

j∈N V ({j}).�
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Method
Discussed properties

Fulfilled Not Fulfilled

Shapley value
Dummy player, Symmetry

Stability
Additivity, Monotonicity, Efficiency

No free riders
Balanced Contributions

Proportional
Efficiency

Stability
Fairness

Aumann-Shapley Efficiency Monotonicity
Friedman-Moulin Not applicable Not applicable

Nash Bargaining
Symmetry, Monotonicity, Pareto efficiency

Stability
Solution

Independence of irrelevant alternatives
Fairness

Invariance to equivalent representations

Table 4: Summary of discussed properties for existing methods

In spite of the good properties of the Nash bargaining solution, modeling
the bargaining power after the member’s resources can provide with quite
unfair results. For instance, consider an alliance where the stand alone revenue
of all members are equal to zero, and where the contribution of the member
with the greatest amount of resources is equal to zero. The Nash bargaining
solution would give the greatest share to the member contributing the less.
In addition, the Nash Bargaining solution applied to our problem can provide
with unstable solutions, as we shall see through simulations in Section 6.

As a conclusion to this section, Table 4 summarizes the different existing
revenue sharing methods we have introduced, and the discussed properties
regarding each of them.

5 The Proposed Revenue Sharing Method

Having seen that existing techniques are not suitable for our problem, we shall
now propose a new method to perform the revenue sharing in the specific
scenario of revenue functions given by utility maximization problems. We seek
for a method fulfilling stability, efficiency, fairness and monotonicity. We
first study the set of feasible solutions, defined as those who are stable and
efficient. Subsequently, we focus on how to choose a point belonging to that set.
Finally, we evaluate the different ways of choosing a point regarding fairness
and monotonicity.

5.1 The Feasible Solutions Set

In order to have stability in the coalitions Inequalities (3) must hold, that is
∑

n:n∈Q xn ≥ V (Q), ∀Q ⊆ N . Let us enumerate all the possible sub-coalitions

Q ∈ N and index them using index j = 1 . . . 2|N |. We rewrite Inequality (3)
as a linear system as:

Qx ≥ v̂, (12)



Revenue Sharing in Network Utility Maximization Problems 19

where Q = {Qj,n} is a 2|N |×|N | matrix that indicates which members belong
to each sub-coalition (i.e. Qj,n = 1 if member n belongs to sub-coalition j and
0 otherwise) and v̂ = {V (Qj)}j=1...2|N| is the vector that indicates in the j-th
component the revenue of sub-coalition j.

We must consider at the same time the efficiency property, which we write
as the vector representation of Equation (2):

eTx = V (N). (13)

We refer to the set of points verifying Equation (12) and Equation (13) as to
the feasible set. Depending on the alliance resources and the utility functions,
the feasible set might determine a unique point, a non empty set included in
R
|N |, or an empty set. The following examples show two cases where the two

latter situations occur.

Example, an empty feasible set Consider Topology C shown in Fig. 1c. The
three services illustrated in the figure are offered. Nodes’ capacities and
utility functions are such that the revenue of the sub-coalitions are V (N) =
V ({1, 2}) = 5, V ({2, 3}) = 4 and V ({1, 3}) = 2. In order to achieve stability
the total revenue (5 monetary units) must be split in such a way that every
route receives at least what they would receive alone. It is not difficult to see
that this is not possible at the same time for all routes, since the following
inequalities must hold: x1+x2 ≥ 5, x1+x3 ≥ 2, x2+x3 ≥ 4 and x1+x2+x3 = 5.
Hence, the feasible set is empty.

It is interesting to remark that for different values of the utility functions,
and the same topology, the feasible set could be non-empty. �

Example, a feasible region Consider now Topology A shown in Fig. 1a. Util-
ity functions and node capacities are such that V (N) = V ({2, 3}) = 5 and
V ({1, 3}) = 2. A feasible solution must fulfill x1 + x3 ≥ 2, x2 + x3 ≥ 5 and
x1+x2+x3 = 5. The vectors x that satisfy all equations are {x = (0, 3−ǫ, 2+ǫ) :
ǫ ∈ R, 0 ≤ ǫ ≤ 3}, which corresponds to a segment in R

2. �

5.2 The Choice of a Point within the Feasible Solutions Set

For configurations with no solution, i.e. with empty feasible region, we claim
that the coalition for those utility functions should not exist as such, since
there is no revenue sharing method that can make it stable. Therefore, we
focus our attention on the case where constraints (12) and (13) determine a
non-empty region. In order to choose a point from such region we formulate
the following Optimization Problem:

Problem 3

min
x

f(x)

s.t. Qx ≥ v̂, eTx = V (N),
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where f(x) is a convex function. Please note that we can dispense with the
restriction of non negative revenue shares, since it is already considered by the
stability property. Indeed, the constraints Qx ≥ v̂ include constraints of the
form xn ≥ V ({n}), ∀n ∈ N and by definition V ({n}) is non negative.

Problem 3 constitutes a family of methods which can be tuned to cover
additional properties by considering different objective functions. We shall
explore the additional properties they provide –or not provide– in the follow-
ing subsection, through simulations. Let us first introduce different objective
functions.

5.2.1 Projections

One possible natural approach is to consider either the Shapley value, The
Nash bargaining solution or the Proportional share and project either of these
vectors onto the feasible set. The method would inherit the good properties
of the Shapley value, the Nash bargaining solution or the Proportional share
as appropriate, when the share is already in the feasible set, and otherwise
it would return the closest value. In those cases the objective functions of
Problem 3 would be f(x) = ||x − xsh||2, f(x) = ||x − xnbs||2 or f(x) =
||x − xpr ||2, where the square of the norm is considered in order to have a
quadratic programming optimization problem.

Another possibility is to project the contributions vector v onto the fea-
sible set. Intuitively this would behave well as a sharing rule, since we are
choosing the point the closest to the contributions vector. Please note that
the proportional share is actually a linear transformation of the contributions
vector. However, the projection onto a polytope is not a linear transformation
so the results of projecting contributions vector v and the Proportional share
need not to be the same. In this case, the objective function takes the form
f(x) = ||x− v||2.

5.2.2 Equalization of the shares

Yet another candidate to the objective function is the square of the Euclidean
norm of the revenue share vector, that is f(x) = ||x||2. This objective function
would intuitively provide with more even shares among members. On the other
hand, this function does not keep any record of members’ contributions to the
revenue, thus monotonicity and fairness are likely not to be fulfilled.

5.2.3 Weighted sums

Another intuitive candidate for the objective function is one that shares pro-
portional to either the stock or the contributions vector. We shall consider thus
the sum of the shares weighted by either, the stock or the contribution of each
node. This comes to a linear objective function and in order to have a convex
function we consider the opposite of the weighted sum, that is f(x) = −cTx
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or f(x) = −vTx. Intuitively this criterion would give more share to highest
weights.

6 Numerical Evaluation

.
Simulations were performed with two different objectives, namely to fur-

ther show the need of a new revenue sharing method for revenue maximizing
alliances, and to evaluate the proposed method. The simulations presented in
this work were performed on a regular computer with an intel i7 prof 3.5 GHz
processor and 8 GB of RAM memory running Debian Jessie. The optimization
problems were solved using solver MINOS through AMPL. In all simulations
we shall consider logarithmic utility functions.

Throughout the following subsections we shall illustrate the problem stud-
ied and the proposed solution with the concrete application of the alliance
of NSPs, introduced in Section 2.1. This application is a particular case of a
revenue maximizing alliance. Counterexamples in that setting prove that some
methods are not appropriate for revenue maximizing alliances. Moreover, we
evaluate the behavior of our method through extensive simulations, which
constitute great evidence of the good behavior of the proposed solution.

6.1 The need of a new revenue sharing method

In this section we compute the revenue share for different topologies, using
the Shapley value, defined by Equation (4), the proportional share, defined
by Equation (5) and the Nash bargaining solution (Equation (9)). We then
compare the results against the projection of those values into the feasible
set. In order to calculate the projection, Problem 3 is solved setting f(x) =
||x− xsh||2, f(x) = ||x− xpr ||2 and f(x) = ||x− xnbs||2.

Consider Topology D, shown in Fig. 2a. Consider that all nodes have
capacity equal to 1, and the utility function for service s is of the form Us(as) =
αs·log(1+βs·as). The values of the parameters for this example, along with the
solution of the revenue maximizing allocation problem (Problem 1), are show
in Table 2b. Revenue sharing using the existing methods and their projection
into the feasible set are shown in Table 2c (where notation x∗

⊥ stands for the
projection of * into the feasible set), along with the value of the contribution
vn of each node.

Results in Table 2c show that the Shapley value and the Nash bargaining
solution with nodes capacity as bargaining power do not lie in the feasible set.
We can easily verify this by noting that projections are different to the original
vectors. Consequently, as aforementioned, such methods are not suitable for
our problem. Please note that since the stand alone revenue of all nodes in
the topology is zero, the Nash bargaining solution with nodes contribution as
bargaining power (xnbsv ) coincides with the Proportional share.
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(a) Topology D

Us(s) = αs · log(1 + βs · as)

Service αs βs a∗
s Us(a∗

s )

s=1 1 2 0.8889 0.2007
s=2 2 3 0.1111 2.5986

(b) Utility functions, and solution of the
revenue maximizing problem.

Revenue Share (%)

xsv
⊥

xsv xpr
⊥

xpr xnbsv xnbsc
⊥

xnbsc vn
0 0.173 0 0 0 0 2.426 0

2.773 2.715 2.737 2.737 2.737 3.235 2.426 7.625
3.466 3.408 3.4834 3.484 3.484 3.235 2.426 9.704
3.466 3.408 3.4834 3.484 3.4834 3.235 2.426 9.704

(c) Revenue sharing using existing methods, and their projection into the
feasible set. Shapley Value and Nash bargaining solution may not lie in
the feasible region for such a topology.
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(d) Revenue sharing using the proposed method and different objective functions. Linear ob-
jectives functions are not fair ; they might not respect the equal treatment of equals property.

Fig. 2: NSPs Alliance Example. Illustration of the need of a new sharing
method and evaluation of the proposed method.

We now turn our attention to Topology E shown in Fig. 3a. Capacities are
equal to one unit, utility functions and the solution to the allocation problem
are show in Table 3b. Revenue shares using the different existing methods and
their projection into the feasible set are shown in Table 3c. Results show that
the Proportional share and Nash bargaining solutions do not lie to the feasible
set. Such methods are thus not suitable in our case.
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(a) Topology E

Us(s) = αs · log(1 + βs · as)

Service αs βs a∗
s Us(a∗

s )

s=1 4 1 0.2916 1.0235
s=2 1 3 0.2397 0.5418
s=3 3 2 0.4687 1.9840
s=4 1 2 0.2397 0.3917

(b) Utility functions, and solution of the
revenue maximizing problem.

Revenue Share (%)

xsv
⊥

xsv xpr
⊥

xpr xnbsv xnbsc
⊥

xnbsc vn
1.207 1.207 1.374 1.464 1.464 1.374 1.511 2.749
2.162 2.162 2.202 2.112 2.112 1.648 1.511 3.965
1.469 1.469 1.094 1.004 1.004 1.648 1.511 1.886
1.207 1.207 1.374 1.464 1.464 1.374 1.511 2.749

(c) Revenue sharing using existing methods, and their projection into
the feasible set. Proportional share and Nash bargaining solution may
not lie in the feasible region for such a topology.
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(d) Revenue sharing the proposed method and different objective functions. Linear
objectives functions are not fair ; they might not respect the equal treatment of

equals property.

Fig. 3: NSPs Alliance Example. Illustration of the need of a new sharing
method and evaluation of the proposed method.

Finally, consider Topology F, shown in Fig. 4a, utility functions and the
solution to Problem 1 are shown in Table 4b. Results in Table 4c show that
Nash bargaining solution with capacity as bargaining power, and the Shapley
value do not lie into the feasible region. Once again, this can be verified by
comparing the values with their projection. In addition, those methods do not
verify the no free riders property, as node 7 has a null contribution to the
coalition (v7 = 0), while its revenue share according to the Shapley value is
greater than zero (xsv

7 = 0.093) and the same occurs with the Nash bargaining
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solution (xnbsc = 4.268). So, once again, those solutions are not suitable to
our problem.

6.2 Behavior of the Proposed Revenue Sharing Method

We now evaluate the proposed method through simulations, and explore the
impact of using the different objective functions introduced in Subsection 5.2.
By construction, all solutions verify the efficiency and stability properties.
Hence, we are interested in evaluating their behavior regarding fairness and
monotonicity. We shall thus divide the simulation studies into those two cases,
as presented in the following. Subsequently, we provide a summary of the
simulation studies.

6.2.1 Fairness evaluation

We consider again the example in Fig. 2. Results using the proposed method
with the different objective functions are shown in Fig. 2d.

Fig. 2d should be read as follows. On the right-hand side of the figure
nodes’ contributions are shown as reference values to ease the interpretation
of the results. These values are normalized, thus the Proportional share co-
incides with the contributions vector. Nodes’ contributions are stacked up
in descending order, bottom-up from the highest contribution to the lowest.
This same order is respected in all bars and in the legend. On the left-hand
side of the figure each bar corresponds to the stacked shares computed with
the proposed method and with different objective functions. Shares are as well
stacked up following the order imposed by the contributions.

Fig. 2d shows that considering the weighted sums as objective functions
does not provide fairness . Indeed, the equal treatment of equals property is
not verified. We can readily see that, while the contributions of nodes 3 and
4 are the same, their shares differ significantly since node 3 is getting all the
revenue and node 4 receives no revenue. Moreover, with a linear objective
function Problem 3 does not necessarily have a unique solution, which is the
case in this example. Indeed, since the criterion is linear, it can be proved that
the minimum is found at a vertex of the feasible set. Any vertex minimizing
−
∑

(x1 + x2 + x3 + x4) or −
∑

(x1 · v1 + x2 · v2 + x3 · v3 + x·v4) for the cases
weighted by the capacities and by the contributions respectively, is a solution
to the revenue sharing problem (i.e. a solution to Problem 3). We discard the
use of linear functions since they neither provide with a unique solution nor
they provide fairness.

Consider Topology E, shown in Fig. 3d, and objective function f(x) =
||x||2. While, for instance, node 1’s contribution is greater than node 4’s con-
tribution, they all receive the same share. Order preserving is then verified
according to its definition (see Table 2) in a loose sense, that is accepting If
vn > vj then xn = xj . In addition, as commented above, considering this
objective function tends to equalize the shares.
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Results for Topology F are shown in Fig. 4d, and show that the no free
riders property is verified by all the considered functions.

In addition, results with all three topologies show that projecting the Shap-
ley value, the Proportional share, the contributions vector and the Nash bar-
gaining solutions, behave well with respect to our definition of fairness . In
all cases order preserving, no free riding and equal treatment of equals are
fulfilled.

As a consequence of the previous simulations we discard the use of weighted
sums as objective functions, since as shown above they provide neither a unique
solution nor fairness. Following simulations focus on the objective functions
that involve the projection of the Shapley value, the Proportional share, the
Nash bargaining solutions or the contributions vector.

6.2.2 Monotonicity Evaluation

We consider Topology A, where nodes capacities are equal to one unit and
utility functions are those shown in Table 5a. Fig. 5b shows the revenue share
of node 3 computed using the proposed method, as a function of the capacity
of node 3.

This simple example shows that f(x) = ||x − xpr||2, f(x) = ||x − xsh||2,
f(x) = ||x||2, f(x) = ||x − xnbsv ||2 and f(x) = ||x − xnbsc ||2 do not provide
monotonicity. Indeed, as long as node 3 is the bottleneck of both services,
its share increases when its capacity increases. Once node 3 is no longer the
bottleneck, the increase in its capacity produces, of course, an increase in the
total revenue, but however a decrease in its own share for all the objective
functions but f(x) = ||x− v||2. The revenue shares for all nodes according to
the proposed method with f(x) = ||x− v||2 are shown in Fig. 5c. Just below,
in Fig. 5d, the contribution vector for the different values of node 3’s capacity
is shown. These two figures allow as to check that fairness is as well verified.

6.3 The best-behaved objective function

In order to further evaluate the usage of the projection of the contribution
vector as objective function, network topologies were generated using the au-
tomatic Internet topology generator BRITE [1], which automatically generates
a graph with directed links and randomly assigns capacities, and receives as
input the number of nodes and certain parameters for the algorithms running
inside. Two of the evaluated network topologies are shown in Fig. 6a and Fig.
6b. Over each topology, we have defined an alliance where services are defined
between every couple of nodes, provided a path in the topology between those
nodes exists. For those services, the second shortest path between ingress and
egress node has been chosen. For each service, we have defined utility functions
of the form Us(as) = αslog(1 + βsas). The parameters defining the alliance
are shown in Table 6c.
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Property
Objective function f(x)

||x||2 ||x− xsh||2 ||x− xpr||2 ||x− v||2
−vT x ||x− xnbsv ||2

−cTx ||x− xnbsc ||2

Stability � � � � � �

Efficiency � � � � � �

Eq. treat. of eq. × ∼̌ ∼̌ ∼̌ × ∼̌
Order preserving × ∼̌ ∼̌ ∼̌ × ∼̌
No free riders ∼̌ ∼̌ ∼̌ ∼̌ ∼̌ ∼̌
Monotonicity × × × ∼̌ ∼̌ ×

Table 5: Summary of the properties provided by the proposed method accord-
ing to the objective function. (�) fulfillment, (×) no fulfillment, (∼̌) no counter
example found. The projection of the contributions vector fulfills all desirable
properties.

For each alliance, we have built a number of 100 different scenarios, by
randomly sampling parameters αs and βs, for each service s. For each scenario,
nodes capacities were varied one node at a time, from a value of cn = 0 till
50% more of their nominal capacity. With each value of capacity, revenue
sharing was computed using the proposed method. Monotonicity was verified
for all the evaluated scenarios, along all the evaluated values of capacities. In
addition, fairness (i.e. order preserving accepting the loose definitions, no free
riders and equal treatment of equals) was verified along all the tested scenarios
and values of c. For Topology G and H, the mean computation time was 0.09
and 0.18 seconds, respectively.

All in all, we have shown that the objective function of the proposed rev-
enue sharing problem, that is of (Problem 3), has a great influence in the
properties fulfilled by the revenue shares obtained by the proposed method.
Table 5 summarizes the evaluated functions and the obtained results.

Results allow to conclude that the projection of the contributions vector,
that is considering f(x) = ||x− v||2, presents the desirable properties. Indeed,
stability and efficiency are verified by construction, andmonotonicity and fair-
ness were verified in all simulations. Please note that the exhibited properties
were verified by the proposed method in all of the several scenarios tested by
the authors, further than those showed in this paper. Interested readers can
refer to [3] for further simulation results.

7 Implementation Considerations

Two distinct steps are part of our approach. A first step is resource allocation.
We shall refer to this stage as to the selling phase. Resource allocation can
be solved in a distributed, iterative manner, exactly as has been proposed by
Kelly [10]. That is, with a dual-based distributed algorithm, where Lagrangian
multipliers and resources allocated are iteratively updated, and where each
buyer and the network solve, at each iteration, a local utility maximization
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problem. The second step, once the revenue of the alliance is calculated, is
to compute the revenue shares. We shall refer to this step as to the revenue
sharing phase.

Our proposed method for revenue sharing necessitates having a centralized
entity, trusted by the alliance, in order to compute the shares. This centralized
entity must be aware of the resources provided by each member of the alliance,
the services that are offered, and the utilities of each of these services. With
this information, the centralized entity is able to compute all the information
necessary for solving Problem 3. In particular, this implies solving Problem 1
for all possible subcoalitions.

In order to alleviate computation complexity, the centralized entity can,
instead of computing the revenue share immediately after each selling phase,
compute the revenue share after a given number of selling phases, for instance
after all the selling phases that occur over one month. In that case, the rev-
enue to be shared corresponds to the cumulated revenue during that period.
During the considered period, the resources are assumed to remain constant.
In addition, statistics must be considered with respect to the utility functions.
For instance, considering the mean utilities during that period. The reader is
referred to our previous paper [4] for a deeper discussion about this approach.

8 Conclusion

We have addressed the problem of revenue sharing in the context of revenue
maximizing alliances, where resources are allocated according to the Network
Utility Maximization problem (NUM). We have illustrated the pertinence of
such a revenue maximizing allocation rule in several environments. We have
defined and discussed the desirable properties for a revenue sharing method for
such an alliance. We have then presented a comprehensible review of existing
revenue sharing methods, and discussed their properties. We have shown that
none of them verifies at the same time the desirable properties, i.e. efficiency,
stability, monotonicity and fairness.

As a consequence, we have proposed a new revenue sharing method for
revenue maximizing alliances, based on projecting members’ contributions to
the alliance onto a feasible set, conceived for providing economic stability and
efficiency. In addition, the proposed method has shown, through extensive
simulation studies, to behave well with respect to fairness and monotonicity,
i.e. to provide incentives to the members of the alliance to increase their stock
of resources provided to the alliance.

In this work we have not considered the dynamics of alliance formation,
which constitutes an interesting research line we would like to address in future
work.
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(a) Topology F

Us(s) = αs · log(1 + βs · as)

Service αs βs a∗
s Us(a∗

s )

s=1 8 3 5.3922 22.7483
s=2 2 2 0.9314 2.1036
s=3 5 1 2.5784 6.3746
s=4 1 1 0 0
s=5 2 3 1.0980 2.9145

(b) Utility functions, and solution of the
revenue maximizing problem.

Revenue Share (%)

xsv
⊥

xsv xpr

⊥
xpr xnbsv xnbsc

⊥
xnbsc vn

10.026 9.910 10.345 10.345 10.345 9.488 4.268 27.273
6.853 6.738 6.540 6.540 6.540 9.488 4.268 17.243
1.226 1.470 0.930 0.930 0.930 1.226 4.268 2.453
1.226 1.470 0.930 0.930 0.930 1.226 4.2678 2.453
1.246 1.131 1.223 1.223 1.223 1.612 4.268 3.224
1.246 1.131 1.223 1.223 1.223 1.612 4.268 3.224
0 0.093 0 0 0 0 4.268 0

12.315 12.199 12.950 12.950 12.950 9.488 4.268 34.141

(c) Revenue sharing using existing methods, and their projections into the
feasible set. Nash bargaining solutions with capacity as bargaining power and
Shapley value might not fulfil the no free riders property.
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(d) Revenue sharing using the proposed method with different objective functions.
Linear objectives functions are not fair ; they might not respect the equal treatment

of equals property.

Fig. 4: NSPs Alliance Example. Illustration of the need of a new sharing
method and evaluation of the proposed method.
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Us(as) = αs · log(1 + βs · as)
Service αs βs

s=1 2 1.1
s=2 1.5 2

(a) Utility functions, and solution of the revenue maximizing problem for Topology A.
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(b) Revenue share of node 3 using the proposed method with different objective functions
for an increasing capacity of node 3. Monotonicity is verified only when f(x) = ||x− v||2.
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(c) Revenue share of all nodes using the proposed method with f(x) = ||x − v||2, as a
function of node 3’s capacity.
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(d) Contribution vector as a function of node 3’s capacity.

Fig. 5: Revenue sharing with the proposed method, results for Topology A.
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(a) Topology G. (b) Topology H.

Topology
Nominal

Services
Utility functions

capacity Us(as) = αslog(1 + βsas)

G
c=(340,426,200

(3, 2, 1)
αs ∼ exp(4)

522,365)
(4, 3, 1)

βs ∼ exp(6)
(5, 2, 1)

H

(1, 4, 2)
(5, 4, 3, 1)

c=(718,586,866
(3, 1, 2)

αs ∼ exp(4)
482,416,831)

(4, 3, 2))
βs ∼ exp(6)

(5, 4, 2)
(6, 3, 2)

(5, 1, 4, 3)
(5, 1, 4)

(c) Parameters defining the tested alliances.

Fig. 6: Two of the automatically generated network topologies used on sim-
ulations. The proposed method with f(x) = ||x − v||2 verified monotonicity,
and fairness.
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