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l. Note Technique: CSI estimation in massive MIMO systems
and pilot contamination forMMSE receiver architecture

JP Cances, B Sissokho, V Meghdadi, A Kora
Xlim Limoges UMR 7252

1- Context and System:

We consider L cells, where each cell contains one base station equipped with M antennas and
K single-antenna users. Assume that the L base station share the same frequency band. We
consider uplink transmission, where the Ith base station receives signals from all users in all
cells (Fig.1). Then, the M x 1 received vector at the Ith base station is given by:

L
Yi = \/p_uzri,l X +n (1)
i1

Where I'; | represents the M x K channel matrix between the Ith base station and the K users

in the ith cell, i.e., [I‘i ,] y is the channel coefficient between the mth antenna of the Ith base
4,

station and the kth user in the ith cell. \/p, X; is the K x 1 transmitted vector of K users in the

ith cell (the average power used by each user is P,) and N; contains M x 1 additive white

Gaussian noise (AWGN) samples. We assume that the elements of N, are Gaussian
distributed with zero mean and variance: fl:nl ”uH] =o2ly and f[nl"' ”u] =Mo2 -

b

I-th cell

L-th cell

Fig. 1: Uplink transmission in multicell MU-MIMO system

2- Physical Channel Model:

Here, we introduce the finite-dimensional channel model that will be used throughout this
technical note. The angular domain is divided into a large but finite number of directions P.



Pis fixed regardless of the number of base station antennas (P<M). Each direction,
corresponding to the angle: @4, €[-7/27/2],k=1.., P is associated with an M x 1 array

steering vector a(g,) which is given by:
_ 1 [ A i) i@ ]
a(g)=—~le X e )

P

Where f;(¢) is some function of 4. Typically, for a regular phased array, we have:

10) =25 5(-Dsin(9)

The channel vector from kth user in the ith cell to the Ith base station is then a linear
P

combination of the steering vectors as follows: Zg”km a(¢,), where Ji, is the propagation
m=1

coefficient from the kth user of the ith cell to the Ith base station, associated with the physical
direction m (direction of arrivald,). LetGi’IE[gm,...,g"K] be a P x K matrix with

i =[Girr»-iue | that contains the path gains from the kth user in the ith cell to the Ith

base station. The elements of G;; are assumed to be independent. Then, theM x K channel
matrix between the Ith base station and the K users in the ith cell is:

I =AG, (3

Where Az[a(@),"_,a(%ﬂ is a full rank M x Pmatrix. The propagation channel G;,
models independent fast fading, geometric attenuation, and log-normal shadow fading. Its
elements iy, are given by:

Jitm = Nikm v Bk m=12,...P  (4)

Where h"km is a fast fading coefficient assumed to be zero mean and have unit variance.

VB models the path loss and shadowing which are assumed to be independent of the
direction m and to be constant and known a priori. This assumption is reasonable since the
value Bijc changes very slowly with time. Then, we have:

G;, =H;, Dil,{z (5)

Where Hi,l is the P x K matrix of fast fading coefficients between the K users in the ith cell

and the Ith base station, the columns H;, (:,k) are independent and we have:



P P
E[HI CROHL 6RO | =F [ iy | = f{zh (m, kﬂ _ f{2|h"km|2:| -1
m=1 m=1

Furthermore within one given column we consider the elements: h, (m,k) independent, i.e.:

f[hi,km hﬁkn] =0if m#n. D;,isaK x K diagonal matrix whose diagonal elements are given

by [Di,l ]k,k = Bik - Therefore, (1) can be written as:

L L
Y =\/p_uAZGi,IXi +n, :\/p_uAZHi,lDillzxi +n, (6)
i1 =

K

In the following sections we will use the following intermediate parameters: f; = Zﬂj,k :
k=1

_ L L
P =z:Biln ,and S, :z:Bil :
i1 i1

3- Channel Estimation:

Channel estimation is performed by using training sequences received on the uplink. A part of
the coherence interval is used for the uplink training. All users in all cells simultaneously
transmit pilot sequences of length z symbols. The assumption on synchronized transmission
represents the worst case from the pilot contamination point of view, but it makes no
fundamental difference to assume unsynchronized transmission. We assume that the same set
of pilot sequences is used in all L cells. Therefore, the pilot sequences used in the Ith cell can

be represented by a K xr matrix.[p, ¢ =.[p, ¢ (> K), which satisfies ¢¢" =1, where:

P, =7 P, . From (6), the received pilot matrix at the Ith base can be written as:
L
Y, =[P, AY H,; D’'g+N, (7)
i=1

Njis the resulting noise matrix of size Mxrand of course we have: E[N,]=0,,..
E[NN/]=zcl1, and Z[N'N, |=Mo?1,.

3.1. Minimum Mean-Square Error (MMSE) Estimation:

We assume that the base station uses here MMSE estimation. The received pilot matrix Y

is multiplied by ¢" at the right side to obtain:Y,, =Y, ¢ :



Y~p,l :Yp,l ¢H
L
= «f ppAZ H;, Dil,/|2 +N, ¢" (8)
i=1
L
= /ppAZ H, D +W,
i=1

With:W, = N, " . Since we consider here M-PSK modulation format for the transmit pilot
matrixwe can denote ¢ as:

(et it ... ol ... i
ej‘921 ej‘922 ejgZp ejﬂz,

1 : : : :
¢_f ol @it . gl . ol
engl ej9K2 engP ej‘9l<r

Jkn

. The matrix product
T T

1 1
Hence, we have: ¢(k,m)=a, | =Tejgk'm and ¢" (n.k)=hb,, =— \F

N, ¢" yields:

I\II ¢H (n1 m) = in| (n, k) ¢H (k, m) = iinl (n’ k) e_jem‘k
k=1 \/; k=1
In the same way we obtain:

¢ NIH (n1 m) = i¢(n, k) n,*(m, k) an (m k)ejenk

Tkl

The matrix product: W,W" = N, ¢"N, ¢"¢N/" is thus equal to:

N, ¢"¢ N/ (n,m) :Z N, ¢" (n, k)¢ N/ (k,m)
=g%§n(n,s)e‘j Trz_l:n "(m,r)e’%

LS ) o
:_Z n (N, s)n, (m,r)e’(ek*f %.s)
T k=1

s=1 r=

=

Taking the expectation, we obtain:



[N NS (m)]=2 S 33 [ (o ) Je

k=1 s=1 r=1
Clearly,f[n,(n,s)n,*(m,r)]=a§| if and only if: M=N and I'=S. In these conditions we
obtain:
K

f[NI PPN/ (n,n)}:EZ:TaﬁI = KcﬁI
T

k=1

We eventually obtain : £[W,W," |=E[N,¢"gN" |=Ko? 1,
Concerning the other quantityf[Wl”W,] , We can obtain directly:

f[lewl]zf[¢NlH N|¢H:|=¢T[N|H N, ]¢H = Mo-ri I

Remark : If we only consider one column (typically the nth column) of W, denoted as W, ,
we have :

E{w,wy} =021, and E{wnw,|=Mo’

We are now coming back to the channel estimation problem. Since H|,| has independent
columns, we can estimate each column of H, independently. Let ypm be the nth column of

~

Yo, - Then:
L
Yoin =~/ Pp ANy, |]|-(12+\/pp Azhiln illr/12+WIn 9)
il
Where hnn and W, are the nth column of H” and W, respectively. Denote by:

L
Ziy =P, A hy, 12 ¢+ w,,, then the MMSE estimate of hy, is given by :
il

I:llln = ﬂlllézwl pp AH (ppﬂIInAAH + Rz|n )_lypln (10)

L
with: R, =F{z,zi}=p,AA" Y B, +o2l, (11)
i=1,i=l

Reporting (11) into (10), we obtain:



-1
By L ~
hIIn :ﬂlﬂz pp AH (ppﬂllnAAH + ppAAH z ﬂiln +O_r§, IM] ypln

i=1,i=l

L -1
S N LR RN I
i=1
We can rewrite ﬁ”n in the following form :

1/2 H -1
. " N/lo AT p, < N
hlln :”—sz_SZﬂilnAAH + IM] Yoin

1/2 -1
= - ﬁ [\/ pp Zﬂlln \/pp ZIBIH’] AH +1 J ypln

Gn| n| n|

n il

n, i=1 nI

= —”“ \/pp Zﬂ”nAH [\/ Py 5 Z,Bnn \/pg Z:BimAH + IMJ ypln

f Zﬂ”n nI i=1 nI n 1=
. : " H H 15 : pP \
The former equation can be written: by, =AB"(BB" +1,,)"¥,,,, with: B=|— Zﬂi.nA
O-nl i=1

1/2

and A= + Using the matrix inversion lemma, we have:
2
1,6n| ZIBiIn
i=1

P(1,+QP) " =(1,+PQ)"'P

With the following sizes for P and Q: [Q]mxn,[P]nxm . We use this lemma with: P=B",
O = B, we obtain: B (BB" + IM)_1 =(l,+ B"B)™B", so we eventually obtain:



ﬁlln = —’”;7( " AA" Zﬂlln j \/7 z:Bnn A" ypln
Zﬁlln -

by, = F el [ps AAHZL:ﬂiln+ IPJ A" Yoin (12)

Oy, i=1

L -1
hy, = ﬂlﬁz ( Py AA" Zﬂiln + O-ri IPj A" Yoin
)

L
Mp, > By - Since the uplink is
i=1

The kth diagonal element of ppAAH Zﬂ,,n in (12) equals:

i=1
typically interference-limited we have:T"ZﬂiIn >>a§|, therefore, ﬁ,,ncan be
approximated as:

-1

L
hy, = I1I:12\/ pp[ppAAH Zﬂian A" Yo (13)
i1
Thus, the MMSE estimate of H|, is:

Hy, = p,"2(A"A)TAY D'D)2  (14)

L

Where: D, =)’ D; . Then, the estimate of the physical channel matrix between the Ith base
i=1

station and the K users in the Ith cell is given by:

I, =AH, D2 = p;l/ZHA\FpJD[lD" (15)

WhereIl , = A(AH A)_lAH is the orthogonal projection onto A. We can see that since post-

multiplication of Y, with ¢" means just multiplication with the pseudo-inverse(¢¢H = IK),

Y .1 is the conventional least-squares channel estimate. The MMSE channel estimator that we

derived thus performs conventional channel estimation and then projects the estimate onto the
physical (beamspace) model for the array.

3.2. Bayesian estimator with MAP rule:

We start from equation (7):

L
Yp,l :Yp,l ¢H = «f Py AZ Hi,l Dil,/l2 +W|
i=1



Let ypm be the nth column of\pr, . Then:

L
ypln =4 Pp Ahllnﬂlllr/12 +4PpA Zhiln |1Ir/12 +w,,  (16)

i=1,i=l
Where Ny, and W, are the nth column of H;, and W, respectively. Denote by:

L
Ziy =Py AD N B + W, , We can write:

il
ypln = xé pp AhIInIBI1I:12 + ZIn (17)

Applying Bayes’ rule, the conditional distribution of the channel N, given the observed

received training signal Yy, is:

pP(hyn) p(ypln|hlln)
p(ypln)

p(hlln‘ypln) = = p(hlln) p(ypln|hlln) (18)
We use the Gaussian probability density function (PDF) of the random vector h“n and assume

its elements: Ny, (D), .., hy, (i), 1y, (P) , are mutually independent, giving the joint pdf :

exp[—hy R':.i hy,]

1In

(19)
(E)P detR

p(hy,) =

Since the elements: hy,(1),...,1,(i),....hy,,(P) are mutually independent this reduces to:

_exp[- hy, My
P

p(hy,) = i (20)
(v27)
We also have:
~ EXp[_(y In p Ahllnﬂlﬂz)H Rz_l(y In "~ p Ah”nﬂﬁ'f)]
p(ypln |hlln) = : \ﬁ - : \/:p (21)

=F det R,

Combining (20) and (21) and reporting into (18) we obtain:

exp(—f (hy,)) (22)
(\27)P 77 det R,

p(hlln‘ypln) =



with: R _f{(\/p_pAZh”nﬁ,”Z+Wm)(\/p_pAZh“n B2 4w, ) }and:

i=l i=l

f (M) = i M+ (T =Py AN B R (T 510 =[P, ANy B

The ML estimation h, of h, is given by:

ln

h,, =arg max, . €Xp(=f(hy,))

A

Ry, =argmin, .. f(h,) (23)

1In

A 1
hlln_ IIn ppAH(p /3||nAAH+R ) Yom

We have clearly:

= Z {(\EAE hilnﬂillé2 + Wln )(\/?Ag hllnﬁllr/12 + Wln :| (24)

Rz,n _O_n M + p ZﬂllnAAH

il

And we find again:
A -1
hy, = IIn P, A" [ppAAH Zﬁnn + O-ri Iy j Yom (25)

To obtain (23) and (25) we have applied (39) and (40) (see Appendix) with: R, =1,R =R
S=p,BiA.

3.3. Bayesian estimation with vectorized model:

We start from equation (8):

Yoir=Yp, & :\/ppAzHi,lDij:{2+Nl¢ :\/ppAZHi,IDil,{Z +W,
i=1 i=1

~ L
Yo, = ppAH”Dllyfz+ /ppAZH”Dﬁ{%WI

il

Starting from this equation we begin by vectorizing the received matrix Vp,, of size M xK,
we obtain the vector:



YWp,l (’l)

Vour =| Ypi (k) (26)

Yo (LK)

MKx1

With:

~ L
Yo (k) =, [AH,, D,{{Z](:,k)+\/pT,{AZHLI Dﬁ{z}(:,k)+W, (k)

il (27)
Y1 (k) =[P, [AH D] + 2, ()

With: zl(:,k)zm{AiHi,. Difﬂ(uk)wv.(:,k)

il

Clearly, we have the property:

[aH,,DH2] (k) = AH,, (k) BH2(28)

Applying Bayes’ rule, the conditional distribution of the channel H,(:,K) given the observed

received training signal ym is:

P(H, CRY (1K)

= p(H"'(:’k))p(\?p,l(:’k)‘Hl,l(:vk)) B _ v _ (29)
) (Y, (k) = p(H; (k) pOY oy K| Hy (K))

We use the Gaussian probability density function (pdf) of the random vector HH(:,k) and

assume its elements: H, | (Lk),....H;; (LK),....H,, (P,k) are mutually independent, giving the
joint pdf:

expE-H,] (:'k)R:“(:,k) HY (k)]

(v27)P detR

Hy (k)

p(H, (k)= (30)

Since the elements: H,, (LK),...,H,,(m,k),.... H,,(P,K) are mutually independent, this reduces
to:



exp[—H ) (k) Hyj (k)]

31
(2rz)P 31

p(H,, (G k)=

We also have:

P(Y o GR)H, (5K))

_ eXp[‘NpJ (k) —AH | KB R2,1(:,|<) (Y~p,l (k)= AH,, GRAO1T (32
(7)7 GetR,,

Combining (31) and (32) and reporting into (29) we obtain:

expCf(Hi, (K)))
AB

p(Hy (KO 5 :K)) = (33)

Where: A= («/Z)P , B=(7)" det R, ., this yields :

F(H, (k)

- - 34
= HJ (k) HT G+ (Y (K) = AH CR)BIE) T RZ g (Y 5 (K) = AH GK) i) 9

Using the maximum a posteriori (MAP) decision rule, the Bayesian estimator yields the most
probable value of channel estimation given the observation:Y ,, (:,k).

HIf Gk =argmax . o p(H,, G K)|Y, 1K)
H/ (k) =arg min .., f(HLGK) (35)
HY G K) = [P, B A (P, B AA™ + Ry, 1) Y, (LK)

It is straightforward to show that (see equation (24)):

L
RzI Gk = Oﬁ, Iy + ppZ:BnkAAH (36)

il

And we find again:

Hy (k) = P, B A (o Ly + P, 2 B AR Y, (LK) (37)

Reminder Appendix 1:

If we have the following equivalent model:



y=Sh+n (38)
With the following pdf :

exp(-1(h))

p(hly) = ”

Hp-1 Hp-1
I(h)=h"R "h+(y—Sh)"R“(y-Sh)  (39)
The Bayesian estimator yields the most probable value given the observation y and this yields:

h=RS"(R +R SS")"y (40

4- Uplink Data Transmission:

We consider the context of an uplink transmission where the base station uses the channel
estimates to perform signal processing techniques such as MRC (Maximum Ratio
Combining), ZF (Zero Forcing) or MMSE (Minimum Mean Square Error).

4.1. MMSE Receiver:

In this case the Ith base station processes the received signal by multiplying it by matrix:

2
O

-1
{f‘{ff‘“ +—, } .From (6) and (14), we obtain:
Y

u

N -
n:(rﬁru"'p_llK] F:Ty| (41)

u

With:
Ly = Avse |:|:||| DllllszxK = pEﬂZHAVp,l DD, -

IT, isofsize M x M, Y, is of size M x K. The product fﬁ'f" can be written as:

p.l
A H .
LTy = pp'Dy (Dl_l) Yo I ILY, D'D,  (42)

Of course, we have:



ITL, =[ AGA"A) A ] AGA" A) A
=A[(A"A)T T ATAA" A) A

= A[(A" AT A" = Af (AT A) ] A

So (42) reduces to:

A ~ C\H .~ -
FITFII = pplDlll—i (D| l) Ypl_,iIHAYp,I D 1Du
1 7 R

= p_ D, Dy 1Yp|-,|IHAYp,I D, an

p

2

-1 2 -1
Ay A O, ~ ~ O
{rﬁrﬁ f |K} :{piD”DI1Yp'fIHAYpV,D,1D,,+p—”'IK}

pu p u
— 1 0-2 -1
= p_ Du D|_1Y~pF.|IHAY~p,| Dl_l Du + Du D|_1D| Du_1 p_m IK DlTl DI D|_1 Du}

P u

_ a1
- - o’
= i D, Dl_l Yp|-,||HAYp,| +D, Du_1i I DlTl b, Dl_l D, (43)
2 P,
) -1
~ af - - 10, ~ L
= pp(Dl lDll) (Ypl—,iIHAYp,I + DI Dulp_ IK DulDl J (DII D, 1)
) a1
- - o L ~
= ppDITlDI {YP&IHAYD,I +p_ D, D||1D||1D| } D, Du1

u

L
with: [D, ], =B and D, [ )_ D, . We obtain:

i=1

o’ -
[f.m+ z IK] .

o N ) y
=P, DlTl D, (Ypl_,'IHAYp,I + p_l D lel Du_lDl D, Du_l( p;UZHAYp,I D|_1 D, )
“ (44)

2 -1

~ ~ o ~
= pyz DIT1 DI [Ypﬁl 1_IAYp,I + p_m DI DITI DlTl DI DI DlTl DII DlilYpF,'I HA

) 1
- - o -
= pt;/z Dui1 D, [Ypl-,'I ILY, + p_m D, DlTl Dﬂl DY ¥ IT,

p,l

u



We deduce from (44):

R P~ S
ﬁ:{rlﬁ'ru"'p_llK:l r:hﬁ
) (45)

& o
= pt'z Dﬂl DI (Ypﬁl HAYp,I + p_l DI Dﬂl Dﬂl DI ka,'| HA Y

u

L
Let f the received K x 1 vector: f; 0 p;Y*>" B,/ B, f;, we deduce from (45) that:
i=1

1
F—|VHILY <% DD | YLy (46
=] Yo A p,|+p L Uy by oA Y (46)

u

4.2. Analysis of the Pilot Contamination effect:

2 -1

~ ~ O
We denote as Sy, the matrix: {Yp“,HAYpI +—-D, D,'D,'D, } . In this case, if we look at
' ' P

u KxK

the nth component of vectorf;, we have :

R(n) =",
= SpA,l (n, :)Y~p|—,|IHA Y

~ L
- SF/:' (n, :)Ypl-,'IHA {\HAZ Hi, Di1,12Xi +n, }
i-1

L
=P, S5 ()Y, TLAH, DX, +4/p, Sy (n!:)Ypl_,lIHAAZ H, D% + S5 (0, T,

izl

L
T T
=a; X +Zajn X+, (47)

j#l
with: o, 0/p, S\ (n,:)YAILAH, D2 and z, =S/, (n,:)Y, | IL,n, . We have:
E( ey |=E[ P, SH(MIVIILAH, DY Je,  (48)

Where e, is the nth column of the K x K identity matrix. By adding and subtracting Z‘[a,Tn]

from alTn in (47), we obtain:

=F{ay | x, + (e, —F {aq )% +ZL:aJ.Tn X, +z,  (49)

j#l

f

n

We obtain again the capacity of the nth user in the Ith cell :



(50)

2+f{|zmz}

I}t

To develop (50) we detail first the calculation of

2
O,
(s;j,) =YNILY,, +—D, D;'D,'D, , we have:

u

1 _GH O-ri 11
) _Yp,IHAYp,I +p_D| Du Du D|

u

(s

p.l

L L
=p, D) GIATAY G, +W,"A(A" A TATW + ...

i=1 i=1

L L O-s L
+ /ppW,HA;GH + /pp;Gi'] AW, +p—' D, D,'D,'D,

the

(51)

matrix:

Re-using equations of the ZF receiver we deduce that the matrix f[(s,ﬁ, )l} is a diagonal

matrixwith the nth term equal to :

E|(sh)' |-

= diag (&, &y ey

YRILY,, + “'DD,,D,,D
P, (52)

With:

2

S e

(Zﬁ-'nj (53)

M ~ n| ﬁn
gn,l = ppFﬂln_'_ariP_‘_ ﬂllln

We come back to the calculation of f[a,{,] , remember we have :



Eay |=E[ o, Sp (VLA H, DY [e,
Elay |~ 0, E[ S5 (n)|E[YIILAG,, e,

={P.E[S7 ()T (FAZG +W.J A(A”A)‘lA“AG.,.}en

=0 E[sp(n)]E \/p_piGi']AHA(AHA)lAHAGH}en
L i=1

= /P, ppf[sr’:, (n,:)}f[G,‘] A"AG,, }en

We have already found that (see ZF part):
E[[GIA"AG, |(n,n) |= MTﬂ""

We eventually obtain:

— p p Mﬂlln e
\& uMp 2 2 n
M - o, (54)
u In

— & ﬂlln e
ppB+Pa§| Pol p2 "

In + 52
Mp, Mp,p, B,

Then, we have to calculate £ {H al, HZ} we have:

Jn = n

£ |,

= p, E[ Sp (n)YAILAG, G A'TTLY, SP (n,)" ]

p,l

2}:f(a-T a’-k)

= p,E[ Sp (Y, TLAG, G A'TI}Y, S/ (n,)" ]
We have:
YIILAG, G\ A'TTYY, |

L H L
- (\/p_pAZG” +w,j AG,GHA" (\/p_pAZGmy, +W,j
i=1 m=1

And this yields:



E[ S5 (NN ILAG; G\ ALY, S (n,)" ]
[ L H L
=F sgl(n,:)( [p,AD G, +le AGJ’,G;'lAH( [p,AD G, +W,j8§|(n,:)'*}
i=1 m=1

L
=Z|p, pl(n )Z GIIAHAGJ‘,IGJH,IAHA Z Gm,|8§,|(n,:)H}+

i=l,i#j m=1,m# j

...+f[ppsgl(n,:)G A"AG; GI'A"AG, S7 ()" |+...
W+ E[ SN OWAG; G AW, SS (n,)" ]

And, we have:

L L
f{ppsg,(n,:)z G/IA"AG,G/\A"A > Gmy,S,’;l(n,:)“}
i=Li#] m=1,m#j
p L
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Concerning the quantity: f( [Sr’i, (n, :)Sr’iI (n,)" ] ) , We have:
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We use the following notation: 4 =D, D;'D;'D,, 4 is a diagonal matrix with deterministic

2 2
i ; =€—"2”. In

)

elements, A =diag(#,,,7,,,....7,;,--7,) and nth element equal to: 7, =

these conditions we have:
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We obtain eventually :
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Then, with (55) it is possible to reuse the calculations of the ZF and we obtain:
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The remaining last term is: [ S7,(n,)W," A G;,G}, A"W, S}, (n,))" |, we have:
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And, we eventually obtain:
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Considering the case where M goes towards infinity, we have:
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Concerning the last term: Z‘Uz,nﬂ = Z‘DS,’;, (n,)Y LN, ﬂ , We have
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The final expression for the uplink capacity in the case of a MMSE receiver is then equal to:
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We obtain the same expression as for the ZF.
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