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Abstract—The equivalent magnetic noise spectral densities of
off-diagonal GMI based magnetometers exhibit significant low
frequency excess noise, proportional to 1/f noise. As it represents
a serious limitation to the ultimate sensing performances of high
sensitivity magnetometers, possible sources of this 1/f noise are
under investigation. Low frequency magnetization fluctuations
have been proposed as the noise source in the case of classical
GMI-based sensors. Here, we apply this model to off-diagonal
GMI-based magnetometers. This requires the inclusion of mag-
netization fluctuation noise sources, in addition to white noise
sources from electronic conditioning in the GMI effect equations.
A pessimistic scenario is presented, predicting the upper limit of
low frequency excess noise from material characteristics. The
equivalent magnetic noise level is then computed from the sensi-
tivity of each term of the sensing element impedance matrix to the
magnetization angle at the static working point (for both axial
and circumferential static magnetic field) and to conditioning
circuitry. Based on this, it appears that magnetization fluctuations
similarly affect all modes of operation of the two-port network
sensing element, inducing identical impedance fluctuations. It also
appears that this noise depends only upon the static equilibrium
condition. This condition is governed by the effective anisotropy
of the magnetic wire and by both axial and circumferential static
components of the working point.

Index Terms—magnetometer, off-diagonal GMI, magnetic
noise.

I. INTRODUCTION

In recent decades, the Giant MagnetoImpedance (GMI) ef-
fect has attracted considerable attention due to its considerable
potential in high sensitivity magnetometry [1], [2], [3]. It
describes the impedance change of a ferromagnetic conductive
material due to variation of a magnetic field, applied along
the same axis as the current flow. In such a case, the ultimate
sensing performance of the sensor is given by its equivalent
magnetic noise level, expressed in T/

√
Hz.

In most cases, the output noise spectral density can usually
be separated into a low frequency, excess, 1/f , noise, and a
white noise floor [4], [5], [6], [7]. As highlighted in previous
work [8], the white noise floor is mostly limited by the
electronic conditioning noise level. Consequently, it will be
advantageous to increase the voltage sensitivity of the sensing
element until the electronic conditioning noise and the sensor
noise become comparable. One approach to improvement of
the sensitivity is the choice of a two-port network configura-
tion, in which the GMI element is associated with a pick-up
coil (this is sometimes referred to as off-diagonal GMI [9] or

orthogonal flux-gate in the fundamental mode [10], [5]). A
white noise model and expected performance of such a sensor
have been presented in [6], [8].

In the earlier work, the low frequency excess, 1/f , noise
was not investigated even though it represents a non-negligible
part of the output equivalent magnetic noise spectral density.
We have recently proposed [11] low frequency magnetization
fluctuations as a possible source for such noise, and have de-
veloped a model for a sensor based on a classical GMI device
(without pick-up coil). Here, we extend this low frequency
excess noise model to the other possible cases of a two-port
network sensing element, including the off-diagonal case. This
extension relies upon general equations for the GMI effect,
allowing us to analyze the effect of working conditions on the
noise behavior.

The paper is organized as follows. Section II recalls the
theoretical basis of a GMI based sensor operation. Section III
is dedicated to noise sources, including both white and low-
frequency excess noise. Results and discussion are presented
in section IV, and followed by a general conclusion.

II. PRINCIPLE OF THE SENSING ELEMENT

As previously described, we consider a sensing element
consisting of a pick-up coil wound on an amorphous ferro-
magnetic wire exhibiting GMI effect [8]. In the linear regime,
this sensing element is fully described by its field-dependent
impedance matrix:(

v1
v2

)
=

[
Z11(Bz) Z12(Bz)
Z21(Bz) Z22(Bz)

](
i1
i2

)
. (1)

In Eq. (1), Bz (= µ0Hz) is the external magnetic induction
applied in the wire axis direction, and vi and ii are the ac
voltage and current appearing across or flowing through the
magnetic wire or pickup coil. The indices, i and j, are 1 for
the wire and 2 for the coil.

Based on the description of the GMI effect proposed by
Ménard and Yelon [12], each term Zij of the impedance matrix
of a uniformly magnetized surface region of a ferromagnetic
microwire is given [8] by

Z11 =
l

2πa

(
ZM cos2 θM + ZN sin2 θM

)
(2a)

Z12 = Z21 = N (ZN − ZM ) sin θM cos θM (2b)

Z22 =
2πaN2

l

(
ZM sin2 θM + ZN cos2 θM

)
(2c)
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where l is the length of the sensing element, a the magnetic
wire radius and N the number of turns of the pick-up coil.
θM is the angle between the magnetization direction and the
wire axis direction. This angle is determined from the static
equilibrium position which minimizes the free energy density
of the system and depends upon the axial applied magnetic
field, Hz0, the circumferential static magnetic field, Hϕ0

(induced by a static bias current Idc such that Hϕ0 = Idc
2πa ), and

the magnitude, Hk, and direction, θk, of the anisotropy field.
The terms ZM and ZN are the magnetic and non-magnetic
component of the surface impedance tensor, respectively. They
are determined, as given in [8], by the simultaneous solution
of Maxwell’s equations and the Landau-Lifshitz equation in
the magnetic configuration given by the static equilibrium
condition. In what follows, we assume that the circumferential
excitation field (induced by the ac excitation current) is small
compared with the effective internal field, given by

Hint = Hz0 cos θM +Hϕ0 sin θM +Hk cos 2(θk − θM ). (3)

Under these circumstances the amplitude of the ac magnetiza-
tion will be small compared to the saturation magnetization,
Ms. These are the conditions for the linear regime, as specified
above.

In the usual set-up, the GMI wire is driven by a high
frequency current which induces a voltage at the wire or pick-
up coil ends, depending upon the configuration, proportional
to the impedance, and reflecting its dependence upon the
magnetic field. Assuming that the sensing element is operated
in a field closed loop, fed by a sinusoidal driving current of
amplitude Iac, the output signal after demodulation is [8] :

Vs(t) = kdIac

(
Zij0 +

∂Zij(B)

∂B

∣∣∣∣
B=Bz0

b(t)

+ znij
(t)

)
+ en(t). (4)

In Eq. (4), Bz0 is the static working point of the closed loop,
b(t), the small signal variation around it, and Zij0 = Zij(Bz0).
The term ∂Zij(B)/∂B is the intrinsic sensitivity of the
sensing element, expressed in units of Ω/T. The factor kd
is the demodulation gain which depends upon the demod-
ulation technique employed and the excitation wave forms.
The terms znij (t) and en(t) are the intrinsic noise, expressed
as an equivalent impedance fluctuation, and the output noise
from the electronic conditioning circuitry, respectively. Note
that, at this point, no assumption has been made as to the
frequency behavior of these noise sources. For what follows,
it is convenient to define a sensitivity,

S = kdIac
∂Zij(B)

∂B

∣∣∣∣
B=Bz0

, (5)

in units of (V/T). We now consider the various contributions
to noise, appearing in Eq. (4).

III. NOISE MODEL

A. White noise
As shown previously [8], the output noise level of GMI

sensors in the white noise region is dominated by the sources

due to the electronic conditioning, and one may neglect the
intrinsic noise arising from the sensing element. Thus, this
model allows us to predict the white noise component, enW

(t),
of the term en(t) in Eq. (4).

The noise sources considered were those which contribute to
the high frequency white noise level near the carrier frequency,
which are transposed to low frequency by demodulation, in
addition to those which appear directly at low frequency. Con-
sidering the off-diagonal configuration, a general expression
for this white noise spectral density is [8]

e2nW
= k2en

{
G2
c

[
(Z210)

2
i2ng

+ e2nQ

]
+ e2nf

}
+ e2nLF

. (6)

In Eq. (6), ing
is the white noise arising from the excitation

current generator, enQ
is the noise contribution due to the

resistance of the pick-up coil, enf
represents all wide band

noise sources appearing at the demodulation input and enLF

is the low frequency white noise appearing after demodulation.
Gc is the total chain gain applied before demodulation and ken
is the narrow band noise demodulation gain. We note that both
factors, ken and kd, (this last appearing in Eq. (4)) depend
upon the demodulation technique employed and excitation
wave forms as discussed in [13].

The equivalent magnetic noise power spectral density of
the setup, expressed in T2/Hz, is obtained as the ratio of the
output voltage noise level to the sensitivity

b2nW
=
e2nW

S2
. (7)

B. Low frequency excess noise

Despite agreement with experimental measurements in the
white noise region, the previous model does not include
the 1/f low frequency excess noise usually observed in
measured spectra [4], [5], [6], [7]. Further improvement of
GMI based magnetometers requires better understanding of
the origins of this noise. As we did for the white noise
region, we might assume that the 1/f excess noise is due
to electronic conditioning circuitry (for example, from the
excitation generator or from the input of the demodulation
stage). However, cross-correlation measurements suggest that
this low frequency excess noise is intrinsic to the sensing
element and thus exhibits an intrinsic equivalent magnetic
noise [14]. This conclusion is supported by research on the
operating state of the sensing element presented in [5], [4],
showing that the 1/f noise level depends strongly upon the
parameters chosen for annealing of the magnetic wire and
upon the DC bias current applied to the wire.

As discussed above, we have recently proposed a model in
which the low frequency excess noise of GMI may be induced
by magnetization fluctuations [11]. This analysis, which relies
upon strong simplifying hypotheses, was proposed for the
classical GMI case, that is, indices i, j = 1, 1 in Eq. (4).
We did not consider other two-port network cases, such as
off-diagonal GMI. Here, we extend this analysis.

The impedance of the sensing element strongly depends
upon its magnetization direction θM . That is, any intrinsic
fluctuation of the magnetization will potentially induce fluctu-
ations, znij

(t), of the impedance, Zij , and set a fundamental
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limit to the signal-to-noise ratio of the sensor. The power
spectral density of the impedance fluctuations, in units of
Ω2/Hz, is given by

z2nij
(f) =

(
∂Zij
∂θM

)2

SθMθM (f), (8)

where SθMθM is the power spectral density of the mag-
netization direction fluctuations (in units of rad2/Hz) and
∂Zij/∂θM is the dependence of each term of the impedance
matrix upon magnetization direction.

Based on the fluctuation-dissipation theorem, as previously
described for magnetic tunnel junction sensors [15], CsNiFeF6

spin glasses [16], Flux-gate sensors [17], and giant magneto
resistance sensors [18], the spectral density of magnetization
direction fluctuations, SθMθM , is expressed by:

SθMθM (f) =
4kBT

2πfV µ0M2
s

χ”(f), (9)

where kBT is the thermal energy, V (= lπa2) is the volume
of the magnetic wire and χ”(f) is the imaginary (lossy) part
of the complex magnetic susceptibility. The spectral density
of the impedance fluctuations, znij

, may then be expressed as
an equivalent magnetic noise spectral density after dividing by
the intrinsic sensitivity, ∂Zij(B)/∂B, of the sensor.

Bertotti [19] has investigated the frequency dependence
of low frequency losses, and the physical mechanisms at
their origin, for a number of relatively soft magnetic metals,
particularly transformer steels. An illustration of his obser-
vations of the frequency dependence of χ”(f) is presented
in Figure 1. He associates the frequency independent part of
χ”(f) with the area of the irreversible part of the quasi-static
hysteresis magnetization cycle, the dependence upon f with
magnetization dynamics (so-called “classic” losses), and the
dependence upon

√
f to “excess” losses arising from domain

wall motion. From impedance measurements we find that GMI
wires usually exhibit similar behavior. Regardless of detailed
mechanisms, at very low frequency, χ”(f) is constant. From
Eq. (9) we see that the noise spectral density will vary as
1/f until other dissipation mechanisms arise with increasing
frequency.

When the ac field amplitude is low enough so that the mag-
netization is in the linear regime the circumferential hysteresis
loop Mϕ − Hϕ is an ellipse described by Mϕ(t) = χHϕ(t)
with χ(f) = χ′(f)− ıχ”(f), constant for a given value of f .
The area, A, of this ellipse is given by integrating Mϕ over
Hϕ yielding

A = πχ”(f)H2
ϕa. (10)

where Hϕa is the amplitude of Hϕ(t). If the model presented
in [11] is correct, we may determine the magnitude of the
noise (Eq. (9)), from the area A.

It is important to understand that Eq. (10) is not limited
to the linear regime. In the non-linear regime, Mϕ(t) can be
expressed by its Fourier components Mn

ϕ (t) (where n is the
harmonic number). And then, only the fundamental harmonic
M1
ϕ(t) = χHϕa contributes to the surface [20].
A theoretical worst case limit corresponds to the case of

a rectangular hysteresis loop without reversible parts where

Figure 1: Illustration of the frequency dependence of the
imaginary part of the complex susceptibility due to contri-
bution of various dissipation mechanisms. The curve follows
a frequency dependence of χ”(f) = k0 + k1f + k2

√
f .

After [19].

Mϕ = ±Ms. This case can only be reached when three ideal
conditions are satisfied at the same time:

1) The anisotropy is homogeneous and the easy axis is
circumferential.

2) The applied dc field Hz0 = 0.
3) The dc circumferential field Hϕ0 = 0.

The magnetic susceptibility of the fundamental harmonic of
Mϕ(t) is then given by its real and imaginary parts: χ′ = 0
and χ” = 4

π
Ms/Hk. As Hϕa increases beyond Hk, χ′ asymp-

totically tends to 4
π
Ms/Hϕa and χ” asymptotically decreases

to zero due to magnetic saturation.
Figure 2 shows an example of comparison between a

theoretical worst case loop and a real loop measured when
conditions 2 and 3 are satisfied. The measurements are ob-
tained on a 50 μm diameter Co rich amorphous micro-wire,
where the hysteresis loop is computed from time integration
of the voltage distortions appearing accross the wire submitted
to a sine wave excitation current. Two different amplitudes of
Hϕ/Hk are shown for both real and theoretical cases: a high
Hϕ/Hk leading to major hysteresis loops and a low Hϕ/Hk

leading to minor loops.
Because of inhomogeneities of the micro-wire magnetic

structure and the ac field inside a micro-wire, the surface of the
real hysteresis major loop is smaller than its theoretical value.
Nevertheless, the two corresponding values of χ” (which is
proportional to A/H2

ϕa) are of the same order. At lower
amplitude of Hϕ/Hk, the measured curve is almost elliptical,
corresponding to the linear regime. Even in this regime, the
surface of the loop is of the order of the worst case one (about
a third of the circle surface) so the same ratio is valid for the
two corresponding values of χ”. This allows as to write:

χ”(f) .
Ms

Hk
. (11)

Equation (11) places a pessimistic upper limit upon the noise
level, discussed in what follows.
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Figure 2: Comparison between a hysteresis loop corresponding
to the ideal worst case and examples of real loops measured in
worst case conditions. The major ideal loop is rectangular, de-
limiting a maximum surface. The ideal minor loop is obtained
by keeping A/H2

ϕa ratio of the ideal loops unchanged. This
loop is plotted for the sake of comparison between the surface
of the worst case loop and the surface of the real minor loop
in the linear regime. Here, the measurements are performed at
800 Hz and Hz0 = 0.

1) Noise from magnetization fluctuations in classical GMI:
An analytical expression of the term ∂Zij/∂θM , appearing in
Eq. (8) was derived for the classical GMI setup, from the ex-
pression for Z11 in Eq. (1), and proposed, by Melo et al. [21],
to be

∂Z11

∂θM
=

l

2πa
ZN

{
− ξ

2Ms

√
µ3
t

[
3Hk

2
sin (2θk − 2θM )

−Hint cot θM

]
cos2 θM

− ξ (µt − 1) sin(2θM )

}
. (12)

In Eq. (12), the parameter ξ is a function of the wave vectors in
the magnetic material appearing in the expression for ZM [21],
and µt ≈Ms/Hint for excitation frequencies well below that
of ferromagnetic resonance. We recall here that Hint is given
by Eq. (3).

2) Extension to the off-diagonal configuration: Extending
the previous noise source to the off-diagonal configuration re-
lies only upon the sensitivity of the term Z21 of the impedance
matrix to the magnetization direction. In our case, the quantity
of interest is the equivalent magnetic noise spectral density, in
units of T/

√
Hz, induced by the magnetization fluctuations,

given by

bnI
(f) = znij

(f)/

(
∂Zij
∂B

)
. (13)

As discussed in [21], the intrinsic sensitivity of the sensing
element may be expressed as

∂Zij
∂B

=
∂Zij
∂θM

∂θM
∂B

= −∂Zij
∂θM

sin θM
µ0Hint

. (14)

Combining Eqs. (8), (9), (13) and (14) leads to an expression
for the equivalent magnetic noise power spectral density
induced by magnetization fluctuations

b2nI
(f) =

µ0

sin2 θM

4kBT

2πfV

H2
int

M2
s

χ”(f). (15)

We see that Eq. (15) does not depend upon the specific
term of the impedance matrix for which it was calculated.
This highlights the fact that the intrinsic noise behaves like
a magnetic signal sensed by the sensor, with no dependence
upon its sensitivity. In other words, magnetic voltage noise
scales with sensitivity, leading to a sensitivity independent
equivalent magnetic noise. Nevertheless, we must recall here
that this noise will be measurable only in the operating mode
(off-diagonal GMI) for which the sensitivity is high enough
for this noise to rise above the equivalent magnetic white noise
floor due to electronic conditioning circuitry.

It is also notable that this noise level depends only upon
the magnetization direction angle, θM , defined by the static
equilibrium condition. That is, we are then able to perform
numerical simulations, based on general equations of the GMI
effect, which determine the intrinsic low frequency excess
noise level as a function of the static working point (both
axial and circumferential magnetic field) and the effective
anisotropy.

As an example, assuming a wire with a circumferential
anisotropy and a zero static bias current (Hϕ0 = 0), the
magnetization as a function of field is given by M/Ms =
cos θM = Hz0/Hk and the internal stiffness field by Hint =
(H2

k −H2
z0)/Hk. Considering a static working point approxi-

mately equal to Hz0 = Hk/2 which maximizes the sensitivity,
Eq. (15) yields

b2nI
(f) .

3µ0kBT

πfV

Hk

Ms
. (16)

IV. RESULTS AND DISCUSSION

Based upon the model described here, we have studied
the low frequency excess noise behavior of a working GMI
magnetometer, taking into account the white noise induced by
the electronic conditioning circuitry and the sensing element
sensitivity. Now, we consider the conditioning circuitry de-
scribed in [8] based on sine wave current excitation and peak
detector demodulation. The sensing element itself consists of a
GMI wire referred to as c3 in [22] associated with a 600 turn
pick-up coil. For such a wire, the following parameters are
considered: Hk = 40 A/m, Ms = 560 kA/m, l = 3 cm, and
a = 50 µm.

The predicted noise is a function of the applied magnetic
field. Generally, the sensor is operated under a field locked
loop in its most sensitive range, which roughly matches the
range of maximum slope in the low field region (|Bz0| .
50 µT in our case), leading to sensitivity values such as ∂Z11

∂B ≈
400 kΩ/T and ∂Z21

∂B ≈ 1.77 MΩ/T. Here, it is important to
note that the sensitivity outside the central low field region is
clearly overestimated by the model, as compared to measured
impedance variations.

Figure 3a shows the white noise level behavior for a given
static working point for classical GMI and for off-diagonal
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Figure 3: Equivalent magnetic noise level, expressed as T/
√

Hz, versus applied magnetic field, assuming the following
parameters: Hk = 40 A/m, θk = 85°, MS = 560 kA/m, l = 3 cm, a = 50 µm, excitation frequency fp = 1 MHz, coil
turns, N = 600 turns, and considering the operating setup conditions presented in [8]. The curve in (a) are the white noise
levels induced by electronic conditioning circuitry in classical and off-diagonal GMI configurations, assuming a DC bias current
of Idc = 6 mA, calculated from Eq. (7). The curves in (b) represent the low-frequency intrinsic excess noise level at 1 Hz,
for several DC bias currents, calculated from Eq. (15) assuming the pessimistic upper limit for χ”(f) = Ms/Hk = 14000.
Square dots represent the measured values of the equivalent magnetic noise in the white noise region (a) and at 1 Hz (b) in
the off-diagonal configuration from [6].

GMI. These predicted performances are in fair agreement
with those measured in the central low field area of about
1 pT/

√
Hz as presented in [6]. Nevertheless, the noise level

should be higher in the external area, due to the overestimation
of the sensitivity.

The excess noise level at 1 Hz is evaluated by fixing f =
1 Hz in Eq. (15), which predicts a 1/f behavior, and using our
pessimistic upper limit for χ”(f). The solid lines in Fig. 3b
show the noise level at 1 Hz as a function of the static working
point Bz0, for several DC bias currents. We recall here that
this noise level is the same for all configurations of the sensing
two-port network. Nevertheless, the choice of configuration
will determine the sensor sensitivity, given by Eq. (5) as well
as the noise level arising from electronic conditioning which
may be much larger than the intrinsic noise level, shown in
Fig. 3. This predicted result is in fair agreement with that
measured [6] of about 30 pT/

√
Hz at 1 Hz. This experimental

value could be fitted by Eq. (15) using a value of χ”(f) ≈
1500 to be compared to the one obtained from the worst case
scenario χ”(f) = Ms/Hk = 14000.

V. CONCLUSION

We have proposed an extension of the low frequency excess
noise model which takes into account the off-diagonal two-port
configuration. The model clearly yields the 1/f behavior of
the measured noise spectrum as long as the imaginary part
of the complex magnetic susceptibility is independent of the
frequency, which is the case for the low frequency range in
which dissipation is governed by quasi-static hysteretic losses.
We find, notably, that, regardless of the element of the two-port
network sensor which is measured, magnetization fluctuations

induce a similar level of equivalent magnetic noise. Thus,
the low-frequency excess noise will be measurable only for
the operating mode which minimizes the equivalent magnetic
white noise level. Further, magnetic noise depends strongly
upon the static equilibrium condition, which is governed by the
effective anisotropy of the magnetic wire and both axial and
circumferential static working point. That is, it could be used
to deduce the optimized working conditions for the sensing
element.

The general approach of magnetization fluctuations should
be applicable in principle to other GMI sensing element such
as electroplated tube or multilayers. However, while similar
general conclusions should be reached for such elements, a
quantitative noise predictions would require models to estimate
the sensitivity.

Furthermore, effects of both axial and circumferential static
working point on the values of χ”(f) have not been considered
here. Despite this, we may expect that the static working
condition, that is dc axial magnetic field and dc bias cur-
rent, should affect fluctuations of the magnetization direction.
Indeed, in order to minimize the magnitude of the excess
noise at 1 Hz, it is necessary to obtain low values of the
imaginary part of the complex magnetic susceptibility. This
factor depends upon several working condition parameters
such as the excitation frequency and the ratio between static
and excitation current amplitude, and is the subject of current
investigation [5], [4]. Thus, a more complete model, which
should also include non-linear aspects of the GMI effect as
presented in [23], would be of great interest.
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