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Abstract
In this report we review and structure the branch of molecular visualization that is concerned with the visual analysis of cavities
in macromolecular protein structures. First the necessary background, the domain terminology, and the goals of analytical
reasoning are introduced. Based on a comprehensive collection of relevant research works, we present a novel classification
for cavity detection approaches and structure them into four distinct classes: grid-based, Voronoi-based, surface-based, and
probe-based methods. The subclasses are then formed by their combinations. We match these approaches with corresponding
visualization technologies starting with direct 3D visualization, followed with non-spatial visualization techniques that for
example abstract the interactions between structures into a relational graph, straighten the cavity of interest to see its profile in
one view, or aggregate the time sequence into a single contour plot. We also discuss the current state of methods for the visual
analysis of cavities in dynamic data such as molecular dynamics simulations. Finally, we give an overview of the most common
tools that are actively developed and used in the structural biology and biochemistry research. Our report is concluded by an
outlook on future challenges in the field.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry and Object
Modeling—Boundary representations J.3 [Computer Applications]: Life and Medical Sciences—Biology and genetics

1. Introduction

The behavior of matter and the functioning of living systems is de-
termined by molecular interactions. A molecule consists of atoms,
each occupying a certain amount of space and contributing to the
molecule’s electron shell and force fields. For molecular interac-
tions the spatial setting is of great importance, as most of the var-
ious forces are short-ranged and also are shielded by other parts
of the molecule. In order to interact, molecules must come close
together. The possibilities of molecules to move, to form bonds,
and to arrange themselves to complexes are determined by spatial
and physico-chemical conditions. Molecular behavior thus is ex-
plained halfway by spatial aspects, in particular by the shapes of
the molecules.

Particularly important for understanding molecular processes are
two related aspects of molecular shapes: First, the mutual accessi-
bility of molecules, characterized by molecular surfaces, and, sec-
ond, the spatial volumes on the boundary or in the interior of a
molecule, which can be occupied by other molecules or ions, i.e.,
regions that are not filled with atoms of the molecule under con-
sideration. Depending on the context, the spatial characteristics of
these volumes, and the nomenclature used, these "empty" spatial
volumes are called cavities, pockets, indentations, clefts, grooves,

protrusions, voids, pores, channels or tunnels. In this article, we use
the term cavity as generic term for all types of such spatial volumes.

While the generation, analysis, and visualization of molecular
surfaces has been reviewed in our recent survey [KKL∗15], the
methods for detecting, analyzing, and visualizing cavities is the
subject of the present article. Brezovský et al. report in [BCG∗13]
on available tools for cavity analysis and their functionality, with-
out detailing the methodological background of the algorithms.

The importance of the cavities for the understanding of molecu-
lar phenomena can be seen from the following examples:

• A binding site is a region on a molecule to which other molecules
and/or ions may bind, or even form a chemical bond. Binding
sites exhibit chemical and spatial complementarity, often in form
of a pocket or cleft. To understand the reactivity of a protein and
to elucidate its function, binding site analysis, i.e., characteri-
zation of spatial and physico-chemical characteristics has to be
performed.

• A particular example for a binding site is the active site of an
enzyme, i.e., the region where substrate molecules bind to an en-
zyme and undergo a chemical reaction. Often this is the largest
cavity on the surface of the enzyme. Characterization of known



as well as detection of novel enzymes requires a detailed geo-
metric and physico-chemical analysis of the cavity.

• In many biochemical processes molecular recognition plays a
crucial role. The molecular specificity requires particularly pro-
nounced geometrical and physico-chemical complementarity,
i.e., specifically shaped pockets and well-defined stereochemical
arrangements.

• In pharmaceutical–medicinal chemistry one aims at finding or
constructing sites that bind drug-like molecules. Cavity analysis
therefore is an essential part of the analysis of pharmaceutical
agents, of rational drug design and of "druggability" prediction.

• Major biological processes are transport processes where
molecules or ions are transported through protein complexes that
belong to a biological membrane. Revealing potential paths for
the molecules to be transported requires a spatiotemporal anal-
ysis of cavities in such protein complexes. As many transport
processes involve long time scales that often are out of reach of
molecular dynamics (MD) simulations, supporting geometrical
cavity analyses are particularly useful.

Since the presence and the shape of cavities depend on the dy-
namics of the molecule or molecular complexes, cavity analysis
often requires tracing on basis of MD trajectories; the development
of such algorithms has started recently. When complex biochemical
phenomena are considered that are not (yet) accessible to full MD
simulations one has to resort to geometrical analysis and simplified
physical considerations.

Independent of whether full, partial, or only rudimentary MD
analysis of the process of interest is possible, a geometrical and vi-
sually supported interactive analysis of cavities is necessary. This
analysis can for example reveal if an active site within a cavity is
accessible to the specific substrate molecule under certain boundary
conditions. This procedure explains the fundamental need for fast
algorithms for detection, analysis, and visualization of cavities. Be-
cause of the practical importance of visually supported cavity anal-
ysis, a large number of methodological approaches has emerged.
To the best of our knowledge, the approaches altogether have never
been compared and classified. With the present report we provide a
formal definition of cavities, a methodological overview, a group-
ing of the different analysis methods according to methodologi-
cal criteria, and finally an overview on available practical software
tools. Such a survey seems to be necessary for further successful
development of the analysis techniques—particularly since differ-
ent research communities from separated disciplines are involved,
who often are not fully aware of the progress in neighbored disci-
plines.

The report is structured as follows. In Section 2, a formal def-
inition and a classification of various types of cavities is given.
Section 3 provides additional aspects from the application side and
mentions related areas. In Section 4, the various terms used for cav-
ities, sometimes with slightly different meaning, are further clari-
fied and the various analysis techniques are classified methodologi-
cally. In Section 5, algorithms for the extraction of cavities are pre-
sented, while Section 6 deals with their interactive visual analysis.
In Section 7, the plethora of different methods is discussed, a brief
overview on available tools is given, and directions on the compari-

son and verification of cavity extraction methods are provided. The
final section provides conclusions and an outlook.

2. Definition & Classification of Cavities

Although there are many algorithms to compute molecular cavities,
there is no clear formal definition for these structures. Often they
are defined implicitly by the developed algorithms. In this section,
we try to give a formal definition of molecular cavities based on the
definition of paths. All algorithms to compute molecular paths and
cavities that are presented in Section 5 are simplifications or restric-
tions of this formal definition. In general, the better these simplifi-
cations approximate the formal definition, the higher the accuracy
of the cavities is.

Generally, a molecular path is a path of a small molecule or ion
within a larger molecule. This could be, for example, a path of a
substrate to its binding site in a receptor protein or the path of an ion
through a channel of a membrane protein. Note that both molecules
are dynamic structures, which makes a path time-dependent. Fur-
thermore, a molecular cavity is defined as a continuous volumetric
void space that can be accessed by the small molecule. Thus, each
cavity is described by the space around connected molecular paths.
Additionally, cavities require the definition of a volumetric bound-
ary based on the large molecule. This boundary separates inside and
outside. Without this boundary, all channels and pockets would be-
long to the same cavity because they are connected by paths outside
the large molecule. In contrast to this formal, theoretical description
of paths and cavities, it is quite difficult to define this boundary in
practice, because it is not independent of the application.

2.1. Formal Definition

Let X be the current state of a molecule. It includes all properties
to describe the molecule based on the underlying physical model.
For example, for the classical physical model, the state includes the
atom positions and electrostatic potentials as well as the bonding
and non-bonding forces. If the molecule changes over time to an-
other state Y , for the following definitions, it will be assumed that
a continuous function exists that connects these two states.

Consider two molecules, a larger one, which could be a receptor
protein, and a smaller one, which could be a substrate, ligand, sol-
vent, or ion. First, we observe a static state X̂ of the large molecule.
Let SX̂ be the set of all states the smaller molecule can adopt under
the influence of the large molecule in state X̂ . A molecular path
of the small molecule is then defined as a continuous curve c in
the space of SX̂ . Furthermore, let bX̂ be a boundary function that
evaluates if a state of the small molecule lies inside or outside of
the region of the large molecule or if it lies on the boundary. The
restriction S̃X̂ ⊂ SX̂ is the set of all states X ∈ SX̂ for which bX̂ (X)
evaluates the state as being inside or on the boundary. In the non-
degenerate case, S̃X̂ consists of a network of paths with one or more
connected components.

Now consider the spatial region VX̂ ,X in R3 representing the vol-
ume of the small molecule in state X under the influence of the large
molecule in state X̂ . Note that a unique formal definition of VX̂ ,X is
not available, again it depends on the underlying physical model.



However, reasonable heuristics to approximate VX̂ ,X exist. For a
state X̂ of the large molecule, a molecular cavity is defined as the
union of all volume sets whose corresponding states are connected
by molecular paths in S̃X̂ . Note that even if two cavities intersect
each other, there still might not exist a molecular path between any
two states of the two cavities.

Consider now the case where the large molecule is dynamic, i.e.,
X̂ is a function of time X̂(t). Let X ∈ SX̂(t1) and Y ∈ SX̂(t2) be two
states of the small molecule for different times. A dynamic molecu-
lar path between X and Y is defined as a time-dependent continuous
function c, with

c : [t1, t2]⊂ R→ Sl(t) , with c(t1) = Y, c(t2) = Z.

Furthermore, a dynamic molecular cavity is defined as the union of
all Vl(t),X that are connected either by a dynamic molecular path or
by a molecular path. Thus, four possible topological events can be
distinguished for the change of a molecular cavity over time. It can
appear and disappear, or it can merge into another cavity or split
into two or more cavities.

2.2. Simplification

Since the computation of all molecular paths is similar to an infi-
nite number of physical simulations for all possible states of the
small molecule, it is not practicable to directly apply this definition
to the analysis of a potential receptor molecule (neither to a static
receptor nor to the results of molecular simulations). To create a
practical solution, the states of the molecules need to be simplified.
For this reason, the formal definition serves as theoretical ground
truth and allows to study the degree of simplification. An example
of a typical simplification is given in the following.

Often, the states of the molecules are restricted to a space with
pure geometrical properties. For the states of the large molecule,
typically the hard sphere model is applied, which means only the
atom positions and radii are used to create an imaginary hard
boundary of the molecule. In addition, the small molecule is of-
ten approximated by a single probe sphere. Thus, for a state X̂ of
the large molecule, the set SX̂ includes all probe centers, where the
probe does not intersect any atom sphere of the large molecule.
With this restriction, a molecular path is a three-dimensional con-
tinuous curve of probe centers and a cavity is the union of all points
inside all probe spheres that are connected by continuous curves in
S̃X̂ . Furthermore, a dynamic molecular path is a three-dimensional
continuous curve of the probe over time and a dynamic cavity is
the union of all cavities that are connected by dynamic molecular
paths. For most grid-based algorithms, additionally, the shape of
the molecules as well as their dynamics are discretized in R3 (see
Section 5.1). As boundary bX̂ for the large molecule, the convex
hull of the atom positions or atom spheres is often used. Other ap-
proaches use a distance threshold to the atom spheres or simply the
axis-aligned bounding box of the atom spheres. An ambient occlu-
sion threshold as boundary indicator seems to be quite promising
and is also used in several approaches.

Figure 1 shows a 2D illustration of a simplification. The states
of both molecules are restricted to the atom positions and radii and
the boundary bX̂ is the convex hull of the large molecule.

Cavity

Closed Cavity (a) Open Cavity

- Buried Cavity
- Internal Cavity
- Enclosed Cavity Single-Entry

Cavity (b)
Multiple-Entry
Cavity (c)

- Pocket
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- Pore

(a)

(b)
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Figure 1: Definition and classification of molecular cavities. The
boundary of the large molecule is shown by the yellow region and
two molecular paths are depicted.

2.3. Classification

Besides the term cavity, many other denotations and classifications
are used in the literature, for example, voids, hollows, pockets, tun-
nels, pores, or channels. In the following, we propose a classifica-
tion based on the cavity definition above that clarifies the meaning
of these terms in this work. While void can be seen as a synonym
for cavity, all other terms usually describe a specification of a class
of cavities. To do so, we distinguish between closed and open cav-
ities. All molecular paths inside the closed cavities do not reach
the boundary, given by bX̂ . Open cavities are further separated into
cavities with a single entry or with multiple entries. An entry is a
set of states of the small molecule where all states are connected by
paths that lie completely in the boundary. We define cavities with
a single entry as pockets, tunnels, grooves, or clefts and cavities
with multiple entries as channels or pores. An illustration of this
classification is given in Figure 1. Note that subtle differences be-
tween these subcategories exist. For example, grooves are usually
shallower than pockets, which are in turn not as deep as a tunnel.
The term pores is typically used for straight channels. Since we are,
however, mostly interested in the geometric properties of cavities,
the simple categorization into single-entry cavities and multiple-
entry cavities is sufficient.

3. Differentiation from Related Areas

This section introduces related areas of research that are not dis-
cussed in detail in this report. The purpose is to position the work



discussed in our report within the greater subject of molecular visu-
alization and analysis, and to provide directions for further reading.

A large field that cannot be covered in this report is the usage
of MD simulations to investigate phenomena like binding affinities
in cavities or transport processes. In this survey, we focus on fast
geometry-based techniques to extract, analyze, and visualize po-
tential paths and cavities (cf. Section 2.2). This can be seen either
as pre-processing for simulations to detect, for example, potential
binding sites in cavities, or as post-processing to analyze the dy-
namics of cavities. A typical application of MD simulation is the
evaluation of the binding affinity of a certain ligand in a known
cavity. These methods are out of scope of this survey since they
are not designed to detect cavities in a molecule or to extract their
geometrical properties. Readers interested in this field are referred
to the following docking reviews [DdAW08, MZMC11] and some
recent works [EHB∗15, SBD∗15, YNM∗16].

Void spaces or cavities are important for molecular interactions
like enzymatic reactions, which are typically triggered by a ligand
that docks to the active site of a protein. The traditional lock-key
model of enzymatic catalysis proposed by Fischer [Fis94] was de-
signed for proteins with exposed active sites located on their sur-
face. It follows the notion that the ligand fits the respective area
on the protein geometrically like a key into a lock. For active sites
that are buried inside the protein core, Prokop et al. [PGB∗12] pro-
posed the keyhole-lock-key model, where the keyhole is a path that
leads to the active site. These models fit to most of the methods and
algorithms discussed in this survey. However, it is noteworthy that
this (keyhole-)lock-key metaphor does not apply to all proteins. For
example, intrinsically disordered proteins [UD10] do not exhibit a
stable conformation prior to the docking of a ligand. Their analysis
requires specialized visualization methods like the one proposed by
Heinrich et al. [HKOW14], which are out of scope of this survey.

Another approach to investigate molecular interactions are inter-
active systems where the user can manually dock the ligand to the
protein surface. Typically, both molecules are treated as rigid bod-
ies. The forces between them are computed interactively, which en-
ables direct feedback, e.g., using a haptic input device. A recent ex-
ample of such a system is Haptimol_RD by Iakovou et al. [IHL14].
Maciejewski et al. [MCET05] presented a molecular docking appli-
cation based on volumes, which uses a haptic transfer function that
makes soft and permable objects possible. Such interactive analy-
sis tools are, however, diametral to the approaches that this survey
focuses on, since they do not analyze the protein but rather offer
users a way to explore possible paths for a ligand.

Void space analysis is also useful in protein-protein docking,
which aims at predicting the preferred mutual orientation of two
or more molecules binding together and creating a stable complex.
However, this requires different search strategies compared to those
for protein-ligand docking. We do not cover this topic in our survey,
since a comprehensive review and evaluation of current methods
was recently presented by Huang [Hua14].

Contrary to the number of algorithms that analyze protein-
protein interactions, there are only few specialized methods for
their visualization. Existing approaches such as the one of Jin et
al. [JWF14] often combine simple 3D representation with 2D in-
teraction maps for visual analysis. Another related area of ongoing

research are protein interaction networks, which can be represented
by network diagrams called protein interaction maps. For example,
Edes et al. [EOH∗14] proposed a tool for visualizing these maps
using Kohn’s Molecular Interaction Maps [KAWP06]. Another ex-
ample is the Cytoscape platform for visualizing complex networks
by Shannon et al. [SMO∗03]. Since these visualizations do not fo-
cus on void spaces between the proteins but rather on chemical
interactions, they are out of the focus of our survey.

In many biological processes, protein-RNA and protein-DNA in-
teractions play a fundamental role. Although computational dock-
ing methods focusing on these protein-nucleic acid interactions are
less frequently found in the literature than those solving protein-
protein interactions, there are solutions like the NPDock web
server [TMJ∗15]. Since these methods also do not explicitly deal
with void spaces, they are not discussed in our survey.

To the best of our knowledge, only a few approaches explicitly
extract intermolecular voids between molecules. For example, In-
tersurf [RCPM05] extracts an interface surface and creates a cor-
responding interaction map between proteins that can be colored
by attributes such as distance to protein, in some way similar to
the earlier MolSurfer approach [GWW99]. In a similar spirit, the
approach by Lee and Varshney [LV06] computes a plane between
two docked molecules. Then, a double-height field is generated that
shows the distances from the plane to the molecules. The surface of
this double-height field is colored to show negative volumes, that
is, intersecting parts of the molecules. The visualization of the re-
sulting intermolecular voids can help to assess the fitness of the
proposed docking. In contrast, Maeda et al. [MK09] use the De-
launay complex as a basis to measure the volume of intermolecu-
lar voids. In the first step, all atoms in the region of the interface
are detected. Then, the Delaunay complex of all interface atoms is
computed. All tetrahedra between the two molecules contribute to
the interface volume. Finally, the volume is discretized on a grid to
remove the volumes of the atoms from the intersecting tetrahedra.

4. Classification of Methods to Analyze Cavities

As described in Section 2, different types of cavities can be dis-
tinguished based on their topological properties. Although these
differences might be meaningful from the perspective of biochem-
istry and structural biology, from a technical point of view, they
are often not very meaningful. In addition, the differences between
sub-classes such as grooves and pockets are formally difficult to
define. Almost all algorithms for the extraction of cavities simplify
the molecule by the hard sphere model (Section 2.2). Hence, the
extraction of cavities can be described in most cases as a geome-
try processing problem. Therefore, it is not only highly related to
visualization of these structures but even the numerical results can
highly depend on the employed computational method. For this rea-
son, we propose a classification of these approaches according to
the computational methods used for the cavity detection. All meth-
ods presented in this survey can be categorized into four main cat-
egories or a combination of two of these, as illustrated in Figure 2.

The four main categories are formed by methods based on
Voronoi diagrams, grids, molecular surfaces, and (usually spher-
ical) probes. These four categories form the corner nodes of the
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Figure 2: Classification of methods according to their algorith-
mic background. Grey rectangles represent individual categories,
each of them contains methods for cavity computation on static
molecules (blue rectangle), some are also able to handle dynamic
molecular data (marked with ocher rectangle).

classification in Figure 2. The other five categories are combina-
tions of these basic methods, which are shown as nodes between the
four corner nodes. Furthermore, the categories can contain methods
operating not only with static molecular structures but also with dy-
namic data, for example, the trajectories resulting from a molecular
dynamics (MD) simulation. Our survey is structured according to
this categorization. Therefore, the figure also contains references to
the respective sections describing the individual category and their
corresponding methods.

An indispensable part of the cavity analysis is the visual repre-
sentation of results. The output cavities detected by the algorithms
from all categories can be visualized using different approaches
which are in detail discussed in Section 6.

5. Algorithms for the Extraction of Cavities

Before discussing individual algorithms in detail, we briefly review
the historical development. The first algorithms to detect cavities
in molecules were based on grids due to simplicity. At that time,
these solutions were suitable for small- to medium-size molecules
(i.e., hundreds to a few thousands of atoms). Due to hardware
limitations, they were not applicable to larger structures without
decreasing the grid resolution substantially. One solution for this
problem was the usage of Voronoi diagrams. Voronoi diagrams
proved to be suitable for the detection of paths in molecules and
were able to process large molecules as well. A limitation was
their more complex implementation compared to grid-based algo-
rithms. Other possibilities that were developed at about the same
time were surface-based methods and probe-based ones. Molecu-
lar surfaces provide a natural way to detect cavities since they are
defined as a border between a molecule and its environment. Probe-
based methods have the advantage that the probe size approximates
a ligand that can reach the extracted cavities. Nowadays, grid-based
approaches are also popular again. This is due to the fact that cur-

rent hardware allows to use fine grids even for very large structures
and, thus, process even molecular dynamics simulations in a rea-
sonable time. In combination with other approaches, the current
solutions are very powerful and open new possibilities for the fu-
ture development discussed in Section 8.

In the following, we will detail various methods for the extrac-
tion of cavities from molecular data. We will adhere to our cavity
classification introduced in Section 2 for the naming of these in-
tramolecular voids. That is, the terms used in this survey can some-
times differ from the ones used in the original papers for the sake
of consistency and comprehensibility. The rest of this section is or-
ganized according to the algorithm-based classification of cavity
extraction methods given in Section 4 (see Figure 2). Note that not
all methods are able to extract all types of cavities. Therefore, Fig-
ure 3 shows an overview of all methods discussed in this section
with respect to types of cavities the method can extract. The addi-
tional icons indicate important features and the algorithmic proper-
ties of the individual methods. This not only applies to the cavity
extraction itself. Many methods and tools also introduce novel visu-
alizations for cavities or allow for a comprehensive visual analysis
of their properties. Thus, methods and tools that offer such capabil-
ities are also highlighted by a dedicated visual analysis icon. The
respective visualizations are discussed in detail in Section 6.

As mentioned in Section 3, the right branch of the tree in Fig-
ure 3—intermolecular voids—are out of scope of this survey and
will not be discussed. We will focus only on methods for the extrac-
tion of intramolecular voids, that is, cavities as defined in Section 2.
In accordance with most applications, we sometimes use the terms
protein and ligand to denote the large and small molecule. How-
ever, most techniques are not restricted to the specific structure of
a protein.

5.1. Grid-based Methods

Many methods extract the cavities by simplifying the protein as
hard sphere model and the possible ligand positions as discrete
points, usually using a uniform cubical grid (Section 2.2). An ad-
vantage of such grid-based methods is that they usually require only
simple data structures without numerical problems. For all follow-
ing grid-based methods, the geometrical accuracy as well as the
computation time and memory requirements depend greatly on the
resolution of this grid.

One of the first approaches to compute and visualize cavities
was POCKET [LB92] developed by Levitt and Banaszak in 1992.
The algorithm creates a three-dimensional cubical grid with a user-
defined cell width, which is typically 1 Å. For each grid point, the
distance to the closest atom center is computed. If this distance is
smaller than a predefined threshold (usually 3 Å), the grid point is
marked as a protein contact point. Then, the neighboring grid points
in the three main directions of each unmarked grid point are inves-
tigated. If such a point is bounded by protein contact points along
both sides of at least one direction, the density of the point is set
to 1. Note that the density is initialized with 0. Finally a modified
Marching Cubes [LC87] algorithm is used to extract the surface
of the cavities. Because of the small number of directions that are
investigated for each grid point, the result depends a lot on the ori-
entation of the molecule.
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Figure 3: Classification of methods based on the cavity definition. Green color denotes tools and algorithms that are dealing not only with
static molecules but are also able to process dynamic data like molecular dynamics trajectories. Note that Epock does not introduce a new
method for cavity extraction but integrates other tools to enable the processing of molecular simulations (for details, see Section 6.)

In contrast to this purely geometric technique, An et al. proposed
a more physically-based technique in 2005, which is implemented
in the tool PocketFinder [ATA05]. They also use a grid for the cav-
ity detection, but instead of geometrical properties, they compute
the Lennard-Jones potential of a carbon probe atom at each grid
position. In the next steps, they smooth the discrete potential field
and compute a threshold using the average field value and the root
mean square distance of all values. With this threshold, the cavities
are given by the isosurface of the discrete potential field. Finally,
cavities with a volume smaller than 100 Å3 are filtered out.

Q-SiteFinder by Laurie and Jackson [LJ05] also does not rely
purely on the geometry of the molecule. At each grid position, the
non-bonded interaction energy is computed using the program Lig-
grid [Jac02]. Using a threshold, all grid points with a high binding
energy are marked and clustered. Finally volume calculations are
performed. The authors compared their results with the ones of the
Lennard-Jones-based PocketFinder [ATA05] and stated that the Q-
SiteFinder results have a higher success rate. SITEHOUND by Her-
nandez et al. [HGS09] also uses non-bonded interaction energies to
find potential ligand binding sites. Similar to Q-SiteFinder [LJ05],
it computes the binding affinity of either a carbon or a phosphate
atom at each position in the grid. Subsequently, only grid points
with a high binding affinity are considered and clustered to get po-
tential cavities.

In 2006 appeared a grid-based solution for the detection of tun-
nels. The tool CAVER by Petřek et al. [POB∗06] searches for paths
leading from a starting point located in the protein interior to its sur-
face. Similar to POCKET [LB92], the cells of a uniform grid are
clustered into two classes: those within an atom sphere (defined by
the van der Waals radius of the corresponding element) and those
containing an empty space. The convex hull is used to distinguish
between the inner and outer space of the protein. The nodes on the
boundary of this convex hull are potential stops of the grid-based
path search algorithm, which aims at identifying the shortest low-
cost path. The cost function is based on the length and curvature of
the detected path: long and complicated paths are more "expensive"
than short and direct ones.

To overcome the limitations that are induced by investigating
only few directions in a grid, Weisel et al. developed Pocket-
Picker [WPS07]. For each grid point that does not lie inside an atom
sphere and whose minimal distance to any atom sphere is smaller
than a user-defined threshold, a uniformly distributed set of 30 rays
is cast. The rays are computed by subdividing an octahedron. For
each ray, the surrounding atom positions are orthogonally projected
onto the ray. If the distance between an original atom position and
its projected position is smaller than 0.9 Å and the distance between
the grid point and the projected position is smaller than 10 Å, the
ray is marked as buried. For 16-26 buried rays, a grid point is de-



Figure 4: The largest pocket (blue spheres) of malate dehy-
drogenase (PDB ID 2CMD) detected by PocketPicker. Image
source: [WPS07].

fined as point inside a pocket. Grid points inside pockets are again
clustered. Additionally, the shape of a pocket is described by eval-
uating the buried values and distances of all pairs of grid points in
a single 420-dimensional vector. Figure 4 shows an example of a
pocket detected by the PocketPicker.

Phillips et al. [PGD∗10] proposed to cast parallel rays through
the molecular structure in order to determine exact intersection
points. From this information, one can analytically solve the line
integral for each ray. All rays are then summed up to obtain an ap-
proximation of the molecular volume. The quality of this approxi-
mation can be controlled by the resolution of the plane from which
the rays are cast. Naturally, all intersection points along the ray
have to be found, since there can be internal cavities. That is, the
ray-casting can be used for the extraction of cavities that are located
behind the first surface intersection point. A flood-fill segmenta-
tion is used to distinguish between the empty space surrounding
the molecule and the empty space within (i.e., the internal cavi-
ties). Furthermore, the surface area can be approximated using the
information about the intersection locations by considering the area
near each intersection point as a small quadrangle of the size of the
pixel from which the ray was cast.

A method that takes the actual geometry of the substrate into
account was proposed by Haranczyk and Sethian [HS09]. They use
a 7-dimensional space that includes translational, rotational, and
internal degrees of freedom of the substrate. For each sample in this
space, it is checked if the substrate is in a valid state with respect to
the static receptor molecule. After sampling the space, the shortest
path for the substrate is computed based on the valid samples. Due
to the sampling of the 7-dimensional space, the approach is time-
consuming and requires a lot of memory.

The abovementioned methods can only process static molecular
structures. For the analysis of dynamics data, such as the results of
a molecular dynamics simulation, these methods can only process
the individual snapshots of the simulation but will not correlate the
results between frames or compute temporal statistics. The tools
and methods that are discussed in the following take this aspect
into account.

Figure 5: Cavity detection workflow proposed in dxTuber. Image
source: [RK11].

In 2010, Raunest and Kandt [RK11] presented dxTuber, one of
the first tools that investigates internal cavities based on the dy-
namics of the protein and water inside and around the protein.
To achieve this, the protein dynamics are simulated inside a lipid
membrane (in case of a membrane protein) and surrounded by wa-
ter using the molecular dynamics (MD) simulation package GRO-
MACS [BvdSvD95]. The positions of the water molecules yield
the cavities of the protein. The authors found that short simulations
of only 100 ps are sufficient to detect all cavities reachable by wa-
ter. In order to compute the shape of the cavities, two 3D grids are
used that store the number of water atoms and protein ones per grid
cell. The cavities are detected and characterized by investigating
cells along the three main directions for each grid cell. A grid cell
is characterized as internal cavity if it is surrounded along all three
axes in positive and negative direction by the protein. If only two
of the three directions are surrounded by the protein, the grid cell
is characterized as tunnel and in case of only one direction, the cell
is defined to be inside a pocket. Finally, the grid cells will be clus-
tered and the result is filtered to get the description of the cavities.
Figure 5 clearly illustrates the workflow of the algorithm.

While the algorithm is suitable to detect cavities accessible by
water, it cannot detect empty cavities. These cavities are often
more flexible and their dynamics are often related to conforma-
tional changes in the protein. Furthermore, the algorithm results in
a static representation of the cavities, which does not allow to study
cavity dynamics. Hence, transport processes due to cavity changes
that build, for example, a dynamic channel that is built by single-
entry and closed cavities over time cannot be investigated.

In contrast to the method by Raunest and Kandt [RK11], which
uses a MD simulation to find channels and aggregates their dy-
namic behavior in one static snapshot, Krone et al. [KFR∗11] devel-
oped a method to extract enclosed cavities directly from a molec-
ular simulation trajectory. For each simulation frame, a Gaussian
density grid is computed in real time from the atom positions using
a GPU-accelerated algorithm. A semi-transparent molecular sur-
face can be extracted from the grid using direct volume rendering.
The user can interactively select an enclosed cavity by clicking on
it. This cavity is extracted from the density grid via a 3D flood-fill
segmentation. For subsequent time steps, the cavity found in the
previous one is used as a seed point, which makes it possible to



track the selected cavity over time. Additionally, the approximate
cavity volume is computed by summing up the volumes of the grid
cells (Figure 15 (a)).

TRAPP by Kokh et al. [KRH∗13] is also tailored to trajecto-
ries or ensembles of structures and factors conformational changes
into the cavity detection. Their grid-based algorithm determines the
shape and physico-chemical characteristics of the voids. Two algo-
rithms are implemented to take into account the motion: a Princi-
pal Component Analysis-(PCA-)based technique and an approach
based on the average deviation from a reference structure. The
method also offers the options to measure the fraction in which a
particular cavity is open, to compare similarity of cavities between
different structures, to trace the contribution of amino acids to a site
of interest, and to measure spatial complementarity between void
and ligand. More recently, PCA was used to follow cavity evolution
throughout MD simulations and correlate it to functional motions
in proteins [DNB15].

Paramo et al. [PEG∗14] presented a tool for MD trajectory anal-
ysis called trjcavity, which detects and characterizes cavities. It an-
alyzes the temporal evolution of cavity topology and provides dif-
ferent measurements (volume, occupancy, solvent or ligand statis-
tics, cross-section, bottleneck identification). Similar to the work of
Krone et al., time efficiency was a design focus. Thus, the method
also uses an efficient grid-based region-growing algorithm that de-
tects the type of cavity in terms of how many surrounding grid cells
belong to the cavity or the protein. Trajectories of the cavities that
show their temporal evolution can be generated for visualization.

Laurent et al. [LCC∗15] developed the tool Epock, which mea-
sures properties of cavities within a predefined maximum encom-
passing (MER) region of the investigated molecular system. The
algorithm is based on POVME [DVSA14, DdOM11] with some
improvements on accuracy. Epock was designed in the context of
extensive MD simulations, where relevant cavities have been iden-
tified previously but need to be characterized efficiently over time
to manage large, dynamic data sets. A particular issue that can be
addressed by Epock is to separate close-by or interconnected net-
works of cavities (e.g., close-by ligand binding pockets) for analy-
sis and comparison.

5.2. Voronoi-based Methods

Another group of algorithms to extract cavities is based on Voronoi
diagrams. Among other advantages, this approach overcomes the
basic limitation of the grid-based algorithms—the dependency of
the accuracy and memory requirements on the resolution of the
grid. The protein is often simplified by the atom positions or the
hard sphere model. In contrast to grid based methods, the ligand
positions are not restricted to discrete points (Section 2.2). Further-
more, the edges of Voronoi diagrams automatically provide geo-
metrically optimal molecular paths based on the restriction.

There are two approaches that use Voronoi diagrams for detec-
tion of channels, tunnels, and pores, which were presented concur-
rently in 2007. Petřek et al. [PKKO07] published their MOLE algo-
rithm, which computes the Voronoi diagram for centers of protein
atoms. Its edges are assigned positive values representing the rela-
tive cost of taking this edge along a path. The cost function is de-

Figure 6: Voronoi diagram used by the MOLE algo-
rithm [PKKO07]. Each Voronoi edge is evaluated by the cost
function. The thick line represents the optimal path from a given
point found by the Dijkstra’s algorithm. Reprinted from Structure,
15(11), Petřek et al., MOLE, Pages 1357–1363, Copyright 2007,
with permission from Elsevier.

rived from that defined by Petřek et al. in their previous grid-based
CAVER 1.0 approach [POB∗06] but also takes the edge length into
account. Then, Dijkstra’s graph search algorithm is used to find
the "cheapest" path leading from the starting point outwards. The
boundary of the structure and its environment are determined by
a convex hull. Figure 6 illustrates the procedure. When searching
for more paths, a large positive "penalty" is added to the Voronoi
edges that are parts of already detected paths. Dijkstra’s algorithm
then avoids these edges due to their high cost. Finally, the algo-
rithm performs the clustering of detected paths that do not differ
significantly.

At the same time, Medek et al. [MBS07] presented their ap-
proach to the detection of tunnels in proteins. Their method com-
putes tunnels using a Voronoi diagram and a Delaunay triangu-
lation. First, it computes the Voronoi diagram for a set of points
representing atom centers. The edges are evaluated according to
their distance to the nearest atom. The authors claim that the com-
putation is more convenient when using the dual structure of the
Voronoi diagram, the Delaunay triangulation. As in MOLE, Di-
jkstra’s algorithm is used for searching the path from the starting
point to the outside solvent. The computed tunnel can then be rep-
resented by its centerline composed of Voronoi edges but also by
a set of neighboring tetrahedra. The authors propose three modifi-
cations of the Voronoi diagram in order to detect more tunnels by
changing the weights of Voronoi edges.

One year later, Yaffe et al. [YFW∗08] presented their approach
to the detection of channels in macromolecules, called MolAxis.
This solution provides a shift in accuracy compared to the previous
approaches. Since the Voronoi diagram of the atom positions does
not take into account the different atom radii, the paths computed
by MOLE and Medek et al. are geometrically not optimal. To in-
crease the accuracy of the paths in MolAxis, the atoms are approx-



imated by sets of spheres with constant radii. While, for example,
a hydrogen atom can be approximated by a single sphere, a carbon
atom is approximated by a cluster of several spheres of the same
size. The Voronoi diagram is computed using the centers of these
newly placed spheres. In the next step, all edges that correspond to
spheres of the same cluster or that intersect the atom spheres are re-
moved from the graph. The weighting and the path detection is then
equal to the previous approaches. This algorithm accounts for the
atom radii but substantially increases the number of spheres (i.e.,
their centers) that have to be inserted into the Voronoi diagram.

In 2013, Sehnal et al. [SSVB∗13] presented MOLE 2.0, an ex-
tension of the original MOLE algorithm by Petřek et al. [PKKO07].
The speed-up of this modified algorithm for computation of chan-
nels and pores on static molecules comes from several preprocess-
ing steps. The implementation involves seven steps: computation of
Voronoi diagram, construction of the molecular surface, identifica-
tion of buried cavities, identification of possible channel start points
(binding sites) as a subset of the buried cavities and similarly for
end points, localization of channels, and filtering of the localized
channels. Furthermore, the algorithm estimates physico-chemical
properties of the identified channels, i.e., hydropathy, hydropho-
bicity, polarity, charge, and mutability. Most of the functionality
of MOLE 2.0 is exposed in the MOLEonline 2.0 tool by Berka et
al. [BHS∗12]. MOLEonline 2.0 is a web-based tool using an em-
bedded 3D graphical representation showing the detected path, its
profile accompanied by a list of lining amino acids along with their
basic physico-chemical properties.

All previously discussed methods were focusing on the analysis
of static molecules. But similar to the grid-based methods discussed
above, the Voronoi diagram approach can be used for processing of
molecular dynamics trajectories as well. Thus, for the rest of this
section, we will focus on algorithms that are able to deal also with
dynamic data.

In 2012, Chovancová et al. introduced the new version of the
CAVER software first published in [POB∗06] which extends the
solution presented by Medek et al. [MBS07] based on Voronoi
diagrams. The new extension, CAVER 3.0 [CPB∗12], allows the
user to analyze tunnels and channels in large ensembles of pro-
tein conformations. It detects individual paths in each time step
and then clusters these paths in order to reveal their time evolu-
tion. The principles of the CAVER 3.0 algorithm were described
in detail by Pavelka et al. [PvK∗15]. In addition, the authors im-
proved the clustering method for finding the correspondence be-
tween tunnels from different time steps of the molecular dynam-
ics trajectory. They modified the average link hierarchical cluster-
ing approach used in CAVER 3.0. To avoid an expensive cluster-
cluster similarity matrix, the distance between clusters is computed
on the fly. For very large data sets, Pavelka et al. introduced two
techniques to reduce the data size—subsampling and precluster-
ing. These modifications enable processing larger sets of tunnels
much faster. Both implementations are distributed as standalone
command-line tools as well as PyMOL plugins. They were also
integrated in the CAVER Analyst 1.0 tool [Kvv∗14].

Kingsley and Lill [KL14] focused on the combination of results
by studying the variability of detected voids for different MD-based
structural ensembles. Using the Cytochrome P450 enzyme fam-

ily as example, CAVER 3.0 [CPB∗12] and MolAxis [YFW∗08]
results on potential ligand paths were compared for a variety of
structural ensembles derived from MD simulations. The ensembles
comprised a collection of MD time steps, an RMSD-based cluster-
ing, a pairwise-distance clustering, and a hydrogen-bond network-
based clustering. The main purpose was to provide guidelines on
how the flexibility should be taken into account to be the most ef-
ficient, for example, how to generate a structural ensemble, how
big it should be, and whether it should comprise apo- and/or holo-
structural snapshots. The flexibility was revealed to be important
to capture a maximum of paths and the authors proposed a general
strategy to generate a representative ensemble of small size.

5.3. Grid-Voronoi Methods

Methods that combine Voronoi diagrams and grid-based extrac-
tions of cavities usually try to combine the benefits of both meth-
ods: the accuracy of the Voronoi diagram and the fast and simple
handling of a grid.

Kim et al. [KLKK16] proposed a GPU-accelerated algorithm
that extracts cavities using a grid-based Voronoi diagram. Their
method first computes a voxelized approximate convex hull. Next,
each convex hull voxel that is not within an atom is classified
whether it belongs to a Voronoi diagram edge. This results in a dis-
cretized grid representation of the edges of the Voronoi diagram,
which are then clustered and subsequently used to find paths.

Schmidtke et al. [SBCLB11] presented the tool MDpocket,
which uses fpocket [LGST09] (see Section 5.5) to compute the
Voronoi diagram of the atom positions for each time step of a MD
trajectory. Then a grid is created on which a discrete density is com-
puted based on the size of the α-sphere at the Voronoi vertices. By
selecting only a section of the whole MD trajectory, the specific
dynamic processes of the cavities can be analyzed. The cavities
are visualized using an isosurface of the discrete density function.
However, similar to dxTuber [RK11], it is difficult to analyze the
detailed dynamic behavior of the cavities.

5.4. Probe-based Methods

In this section, we discuss methods to compute molecular paths and
cavities that utilize the spatial extension of the ligand. For these
methods and combinations with other techniques, the following
simplifications are often applied to the ligand (Section 2.2). Most
of the techniques approximate the ligand by a single hard sphere,
called a probe. Few methods consider the full hard sphere model
of the ligand, sometimes even with dynamics information. Further-
more, the positions of the ligand can be discretized. As for most of
the previous techniques, the protein is often approximated by the
atom positions or the hard sphere model. The probe-based methods
presented in this section are only applicable to static data of the
protein (e.g., individual snapshots of a simulation).

Smart et al. [SGW93] presented a method that enables to char-
acterize and display pores of ion channel proteins. This method
was later included in the HOLE software [SNW∗96]. The goal is
to provide quantitative data to understand the biological ion perme-
ation function of these channels by measuring properties relevant



Figure 7: Trajectory of a ligand aiming to access the active
site [CSA∗05].

for ion conduction, pore dimensions, and constrictions. HOLE is
one of the earliest tools to compute a possible molecular path. The
tool computes a path from a user-defined start point inside a cavity
to the outside of the molecule. The path direction is steered by a
given direction vector ~v of the cavity. The start point is moved to
the position where the distance to the atom spheres becomes lo-
cally maximal using a Monte Carlo simulated annealing approach.
During this process, the point stays in the plane that includes the
original start point and is orthogonal to ~v. Afterwards, the point
and the plane move a step into the direction of~v and the simulated
annealing approach starts again. This is repeated until the outside
of the molecule is reached. Note that the approach cannot guaran-
tee to detect the optimal point with the local maximal distance to
the atom spheres. Furthermore, the algorithm fails to detect paths
in cavities where the medial axis is more complex (i.e., it cannot
be described by a single direction). Smart et al. [SBSS97] later pre-
sented an extension that predicts the conductance of an ion chan-
nel from its three-dimensional structure. The method combines the
pore dimensions of the channel as measured in the HOLE program
with an Ohmic model of conductance.

Laskowski presented the tool SURFNET [Las95], which fills
cavities in a molecule with gap spheres that do not penetrate the
atom spheres. In more detail, between each pair of atoms a gap
sphere is placed in the middle, touching the two atom spheres. The
radius of the gap sphere is reduced in case of a penetration with an-
other atom sphere. If the radius falls below a user-defined threshold,
the sphere is completely rejected. Finally all gap spheres are sam-
pled into a three-dimensional grid using Gaussian density kernels.
From this grid a surface of the cavities can be easily generated. The
main shortcomings of this method are the time complexity, which
is cubic and the geometric accuracy, which is not optimal due to the
fixed position of the gap sphere.

One of the few methods that take the geometry and dynamics
of a ligand into account was developed by Cortés et al. [CSA∗05].
They use rapidly-exploring random trees (RRTs) [Lav98] to com-
pute a possible molecular path of a specific ligand to a binding site.
That is, the method does not use a spherical probe but the actual

Figure 8: Illustration of the α-shape used in CAST. Left: Voronoi
diagram of atoms of the same radii. Right: convex hull triangulated
into Delaunay triangles, the dual complex is defined by the shaded
triangles and the black lines. Image source: [WPS07].

geometry of the ligand molecule to probe the protein for possi-
ble paths. RRTs were originally developed for fast path planning
in robotics. A tree is incrementally constructed by adding random
valid robot configurations as tree nodes until a node reaches a point
or area of interest (see Figure 7). For molecular path detection, the
ligand is considered as the robot and the protein is the labyrinth
for which a path should be detected from a user-defined start po-
sition to the outside of the protein. The start position is the root of
the tree and a valid configuration is a position and orientation of
the ligand such that it does not penetrate the protein. Furthermore,
the configuration has to be reachable from the closest node in the
current tree. This means that the ligand must be close enough to
an existing node in the tree such that it is guaranteed to move the
ligand from the tree node to the new configuration without pene-
trating the protein. Depending on the number of free variables for
the configuration of the ligand, the algorithm can be slow. Further-
more, it is difficult to setup a stop criterion for the tree construction.
The authors further extended their approach to better visualize and
analyze the results of the RRT [CBES11]. To do so, they generate
a 3D volume on which the RRT is mapped. The three variables of
the volume can encode any user-selected ligand property of inter-
est such as three selected bond torsions. The mapping algorithm
is straightforward and simple visualization techniques for 3D vol-
umes are applied. The implementation of the approach is part of the
BioMove3D software package.

5.5. Voronoi-Probe Methods

This section covers approaches combining the Voronoi diagram
method with the usage of a probe. Edelsbrunner and Liang pre-
sented a series of papers dealing with cavity detection and cav-
ity analysis based on α-shapes and α-complexes. Ultimately, these
works led to the development of a tool called CAST [LEW98]. The
algorithm calculates the Voronoi diagram consisting of Voronoi
cells (Figure 8 left). The Voronoi diagram is mathematically eqiva-
lent to the Delaunay triangulation of the complex hull drawn around
the protein atom centers. The α-complex is then defined as a subset
of the Delaunay complex (Figure 8 right). Each Delaunay element
whose dual Voronoi element has a closer minimal distance to the
atom positions than α∈R is also an element of the α-complex. The
probe radius is included in the α value.



In 1995, Edelsbrunner et al. [EFFL95] described the detection
of internal cavities and the analytical computation of their volumes.
These cavities can be easily extracted from the α-shape. In a subse-
quent work, they extended the cavity computation to pocket detec-
tion [EFL96]. The approach uses the discrete flow of the Delaunay
triangles to define and identify the cavities. Later, they presented
the VOLBL tool to measure properties such as volume and area for
internal cavities and pockets [LEF∗98a, LEF∗98b]. As mentioned
above, they integrated the detection and measurements into the tool
CAST [LEW98]. The minor drawbacks of the approach are the lim-
ited cavity visualizations and the problem that shallow pockets can-
not be detected by the algorithm.

Similar to the CAST algorithm, fpocket by Le Guilloux et
al. [LGST09] first computes the Voronoi diagram of the atom po-
sitions and assigns a maximal α-sphere that does not intersect the
atom spheres to each Voronoi vertex. In the next step, all α-spheres
with a radius smaller than a minimal threshold or larger than a max-
imal threshold are removed. Afterwards, the remaining spheres are
labeled as apolar or polar, depending on the neighboring atoms. A
three-step clustering method is applied to the spheres. In the first
step, α-spheres are clustered if they are connected by a Voronoi
edge and if their distance is smaller than a given threshold. In
the second step, clusters are aggregated based on the distance of
their centers of mass. Finally, the pairwise distances between α-
spheres of clusters are investigated. If a certain number of distances
is smaller than the threshold, the two clusters are aggregated. Af-
ter clustering, small and hydrophobic cavities are removed and the
remaining cavities are ranked.

A combination of a Voronoi diagram and probes was also used
by Olechnovič et al. [OMV11] in 2011 when they presented Voro-
prot, which is an interactive tool for the analysis and visualization
of cavities. Voroprot was one of the first tools using the additively
weighted Voronoi diagram—also called Apollonius diagram—of
the atom spheres instead of the atom positions (similar to Lindow
et al. [LBH11]). It computes the diagram to analyze interatomic
contact surfaces but also to study cavities using the Voronoi ver-
tices. For each vertex, an empty sphere that is tangent to four atom
spheres exists. Such a sphere corresponds to an internal cavity if it
is larger than a given probe sphere and if it is not accessible by the
probe sphere from outside the molecule. Large probe sizes can be
used to detect pockets. However, the authors do neither give a clear
definition nor a visualization concept for molecular cavities.

At the same time, Lindow et al. [LBH11] presented another ap-
proch based on the Voronoi diagram of the atom spheres. It com-
putes and visualizes molecular paths and cavities. By consider-
ing the different atom radii, the paths are geometrically optimal
for probe spheres in contrast to previous approaches. Additionally,
the paths can be filtered to get an overview of the most signifi-
cant paths of the whole molecule. Besides path computation, the
corresponding cavities can be extracted and visualized as a skin
surface [Ede99, LBPH10]. Furthermore, the paper describes sev-
eral possibilities to visualize the paths and cavities in combination
with the surrounding molecule (see Figure 16, refer to Section 6 for
more details). The temporal evolution of cavities was also studied
by Lindow et al. [LBBH13]. In this extended version of their previ-
ous paper [LBBH12], they describe a visualization tool to analyze

time

Figure 9: Cavities computed by the algorithm by Lindow et al. Left:
cavities in one time step of the MD trajectory. Right: 3D shape of
the dynamic cavity traced from the selected cavity (purple, left) and
colored according to time [LBBH12].

molecular dynamics trajectories. To do so, the paths and cavities
are precomputed for each time step (see Figure 9 left) and corre-
lated over time to keep track of their evolution. Afterwards, the user
can interactively trace them over time while topological events like
splits and merges of cavities are illustrated in plots. The tracing
is computed by approximating the overlap of cavities of consecu-
tive time steps. For an in-depth visual analysis, the cavities and the
molecular structure are visualized accordingly. Furthermore, cav-
ities related to each other over several time steps can be aggre-
gated to visualize the 3D shape of dynamic channels or pockets
in a static 3D visualization (see Figure 9 right). Additionally, the
volume of cavities can be computed and the probability of cavities
for the whole trajectory can be visualized in a single image.

Sridharamurthy et al. [SDP∗13] also used the α-complex to iden-
tify robust voids and pockets, which are stable with respect to
small perturbations in the atomic radii. The notion of robust voids
is based on the stability and the topological persistence with re-
spect to the α-complex. First, the weighted Delaunay triangulation
is computed on the set of atom centers. Second, the α-shape spec-
trum is constructed, which represents the filtration of the weighted
Delaunay triangulation. Via the modification of filtration a set of
stable voids is acquired. The implementation of this algorithm, Ro-
bustVoids, allows to visualize the results for different values of α.

In 2013, Kim et al. [KCKS13] presented a generalization of the
CAST algorithm [LEW98]. The algorithm, focusing on the detec-
tion of tunnels and voids via Voronoi diagrams and β-complexes,
considers the correct atom radii by using the β-shape. The idea
of the algorithm is to compute the Voronoi complement that cor-
responds to the skeleton of the molecular complement. Then, the
tunnels and voids are recognized by analyzing the Voronoi comple-
ment. The algorithm was integrated to the software tools BetaTun-
nel and BetaVoid.

One of the most recent tools for automated characterization of
open voids is ChExVis, presented by Masood et al. [MSCN15].
The paper introduces their α-complex based method and a web-



server, treating a large range of biological use cases with a focus
on transmembrane channels. The method stores the occupied vol-
ume and centerlines of identified voids and can handle multiple ob-
jects simultaneously. The visualization and visual analysis is quite
feature-rich, also mixing in physico-chemical descriptors such as
hydrophobicity and conservation in a representation the authors
call channel profiles (see Figure 18 (c) and Section 6). Handling of
transmembrane pores seems to be a strong point of their approach.

5.6. Grid-Probe Methods

Another category of methods detecting cavities discussed in this
survey combines the grid-based approach with the usage of a probe.
A pioneering work that belongs to this category was presented by
Voorintholt et al. [VKV∗89], who developed a fast grid-based visu-
alization of the Solvent Accessible Surface (SAS). In detail, each
grid point inside the van der Waals sphere is assigned the value 100.
Grid points with a larger distance than the van der Waals radius
plus the radius of the probe are assigned the value 0. All grid points
in between are assigned the value (100 · ((Rv +Rp)

2−d2)/((Rv +
Rp)

2−R2
v), where Rv is the radius of the closest atom, Rp is the

radius of the probe, and d is the distance to the closest atom posi-
tion. Although this method does not explicitly extract cavities but
only visualizes them as contours of the SAS derived from the grid
data, it can be seen as a precursor for subsequent methods such as
LIGSITE by Hendlich et al. [HRB97].

LIGSITE is a tool for direction-based cavity detection that also
maps the SAS into a three-dimensional grid. Afterwards, for each
grid point outside the SAS, all neighboring grid points along the
three main axes and the four cubic diagonal axes are investigated
within 12 Å. If a grid point lies inside the SAS in both directions
on one axis, this axis is marked as protein, solvent, protein (PSP).
All grid points with at least two PSP directions are marked as cav-
ity grid points and will be clustered. The surface of the cavities
is obtained by sampling the solvent probe sphere at each cavity
grid point. An improved version of LIGSITE, called LIGSITECSC,
was published by Huang and Schroeder [HS06]. Additionally, the
conservation of the neighboring residues of the three main pock-
ets is analyzed to rate the availability of the pockets. The authors
also compared the results with other tools—LIGSITE [HRB97],
PASS [BJS00], SURFNET [Las95], and CAST [LEW98].

Another approach is implemented in the tool HOLLOW by Ho
and Gruswitz [HG08]. Instead of placing a sphere between each
pair of atoms as in SURFNET [Las95], they place them directly
on a grid with a fixed sphere size. Afterwards, all spheres that
penetrate the atom spheres or that lie outside the envelope of the
molecule are removed from the grid. The remaining spheres of the
grid are used as dummy atoms whose molecular surface represents
the surface of the cavities.

In 2010, Kawabata proposed an algorithm to detect shallow and
deep multiscale protein pockets [Kaw10]. The algorithm exploits
a 3D grid representation and morphological operators. The grid is
defined as an approximation of spheres representing the atoms. Af-
terwards, morphological operators are applied, where the structural
element is defined by probe spheres of different sizes. The final
formula, enabling to extract the protein pockets, is defined by a

Figure 10: Multiscale pockets detected by the approach by Kawa-
bata. Image source: [Kaw10].

combination of opening and closing operators (see Figure 10). For
each pocket, a measure of its shallowness is computed as the mini-
mum inaccessible radius. The algorithm was implemented in a tool
called GHECOM.

Recently, a technique for extracting cavities called PrinCCes
was presented by Czirják [Czi15]. It is essentially a multistage
grid-based algorithm that uses flood-fill to iteratively mark the
space with particular numerical encoding. Initially, two levels of
probes—a large probe and a small probe—are placed to the center
of each atom and sampled to a grid. The large probe separates the
entire structure from the outer space. Then the space between the
atoms and within the large probe space is defined as cavity can-
didate and finally the exact radii of the cavity extents at each grid
point are calculated. The final void space is then segmented into
separate structures based on the connectivity and intersection of
the void space spheres. The technique was showcased on several
examples from single proteins up to large protein complexes such
as virus capsids.

5.7. Surface-based Methods

In contrast to most of the previous approaches, the protein is not
purely restricted to the hard sphere model, but to a molecular sur-
face model (Section 2.2). Molecular surfaces define an interface
of the molecule and its environment. Therefore, they can be used
to define cavities as well. Surfaces like the Solvent Excluded Sur-
face (SES), the Solvent Accessible Surface (SAS), or the Lig-
and Excluded Surface (LES) have the additional benefit that they
define the interface with respect to a specific solvent or ligand.
That is, cavities derived from these surfaces are also accessible
by a solvent or ligand molecule of this size. For more information
about molecular surfaces, please refer to the survey of Kozlíková et
al. [KKL∗15].

Sanner et al. [SOS96] introduced the Reduced Surface, which
is similar to α-shapes [EM94]. Based on the Reduced Surface of
a molecule, its Solvent Excluded Surface can be computed. San-
ner et al. also decribe how to compute the SES for internal voids,
that is, enclosed cavities. The surface area and enclosed volume
of the SES can be computed analytically for further analyses. The



Figure 11: Illustration of the approach to the detection of cavities
used by Parulek et al. Image source: [PTRV13].

same idea—constructing the SES of internal voids to detect closed
cavities—was recently also applied by Jurčík et al. [JPSK16]. Their
method is an extension of the GPU-accelerated SES computation
by Krone et al. [KGE11], which is based on the Contour-buildup
algorithm [TA95]. In contrast to Sanner et al., Jurčík et al. use an
approximation of the surface area to describe the cavities.

A technique to compute all channels in a protein was developed
by Coleman and Sharp [CS09]. Their tool CHUNNEL uses a tri-
angulation of the SES provided by the GRASP tool as an input.
Afterwards, all topological loops on the surface are detected as tri-
angle strips. These strips characterize the channels in the molecule.
In the final step, the topological paths through the channels and the
corresponding loops are computed such that their distance to the
surface becomes maximal. While the approach is among the first
that automatically detect all channels, the algorithm is very slow
and geometrically invalid channels can be detected due to circular
singularities of the SES.

Parulek et al. [PTRV12,PTRV13] introduced an implicit distance
function that can be used to extract the SES. This distance function
can also be used to detect the cavities of a protein. The approach in-
volves a sampling strategy, where random but uniformly distributed
samples are placed around the molecular surface. For each sam-
ple that is within a certain threshold, a ray is cast in the direction
of the gradient of the distance field. If the ray hits the molecular
surface, the sample is within a cavity (see Figure 11). For all sam-
ples that are within a cavity, a minimum spanning tree is computed,
which can be used for substrate path analysis. Additionally, prop-
erties related to amino acids surrounding the cavity are computed
to improve the parameter set describing each cavity. Although their
method only considers one individual time step of a simulation tra-
jectory, they propose the use of a scatterplot of the results for all
time steps to assist users with the visual analysis of dynamic data.

Krone et al. [KRS∗13] developed a method that extracts all types
of cavities in real-time on the GPU. For each frame, a Gaussian
density surface mesh is computed [KSES12], which approximates
the SES. For each triangle of this mesh, the Ambient Occlusion
(AO) factor is computed (using the particle-based AO method of
Grottel et al. [GKSE12]). If the AO is higher than a certain thresh-
old, this part of the surface is classified as belonging to a cavity.
Adjacent cavity triangles are collected into sub-meshes that repre-
sent the individual cavities. The evolution of the cavities is tracked
over time by matching their centroids and additional properties
such as the surface area of the cavities are computed. Krone et al.

Figure 12: Result of a reimplementation of the tool 3V [VG10].
The difference between two solvent excluded surfaces with different
probe radii results in the cavity structure in 3V.

later extended their work to compute additional metrics of the cav-
ities and to classify them into channels, pockets, and enclosed cav-
ities [KKRE14]. Additionally, the length and width of a channel or
pocket is computed based on the centerline.

5.8. Grid-Surface Methods

Methods combining surface-based and grid-based methods are also
commonly used for cavity detection. This section reviews methods
that fall into this category.

In 1994, Kleywegt and Jones [KJ94] developed the tool
VOIDOO to detect closed cavities in molecules. VOIDOO com-
putes the Solvent Accessible Surface for a given probe on a dis-
crete grid. Afterwards, all grid points that can be reached from
the boundary of the grid are removed. Consequently, all remaining
grid points outside the SAS are points inside closed cavities. These
points can be used to create a surface of the cavities or to mea-
sure their volumes. The procedure is repeated several times with
increasing scaling values for the atomic radii. The scale factor that
creates the most cavities is finally used for further analyzes. How-
ever, the detection of this factor is not trivial and small variations
can change the results a lot. Due to the nature of the algorithm, only
closed cavities can be detected but not channels or pockets.

Similar to LIGSITE [HRB97] presented in Section 5.6, Exner et
al. [EKMB98] proposed a method that maps the SES into a discrete
grid representation. For each grid point outside the SES, the grid
points in the three main directions are investigated within a given
neighborhood radius. If at least two directions contain grid points
that lie inside the molecular surface in either direction, the investi-
gated grid point is marked as belonging to a cavity. All cavity grid
points are combined in clusters on which contraction and expansion
operations are performed. The final clusters represent the cavities.
The main shortcoming of this method is the limited detection di-
rections. Depending on the neighborhood radius, this can lead to
missing cavities whose medial shape axis is aligned diagonal to the
main directions.

Yu et al. [YZTY10] presented the Roll algorithm for cavity de-
tection, which is also based on the SES. Here, the volume of the



Figure 13: Three main cavities of hexameric insulin (PDB ID
3MTH) computed with the LES algorithm [LBH14].

cavities is defined as the difference of the volume enclosed by the
SES and the volume enclosed by the van der Waals surface. To
compute the difference efficiently, they sample the van der Waals
surface to a 3D grid. Then, the SES is sampled by rolling the probe
sphere along the grid without intersecting the atom spheres. The
grid points between the SES and the van der Waals surface lie in-
side cavities. All cavities that are completely surrounded by the
van der Waals surface are specified as closed cavities. On the other
hand, cavities that are partially surrounded by the SES are denoted
as pockets. By computing the volume depths of the cavities, a rank-
ing is achieved to easily detect potential binding sites. The Roll
algorithm is used by the tool POCASA.

Till and Ullmann [TU10] presented another approach to extract
cavities, called McVol. The approach computes the SAS of the pro-
tein as a discrete set of points using the method by Eisenhaber et
al. [ELA∗95]. Internal cavities are detected by connecting neigh-
boring points of the SAS, followed by a connected components
search on the resulting graph. Typically, the largest connected com-
ponent represents the outer part of the SAS, while the other com-
ponents represent the internal cavities. In addition, a second pos-
sibility to extract the internal cavities is proposed. To do so, fur-
ther points are sampled inside the bounding box of the protein. If a
point lies inside the SES it is marked as protein point otherwise it
is marked as solvent point. Then, a grid is constructed, where each
cell is marked as a solvent cell if at least one sample point in the
cell is a solvent point, otherwise the cell is defined as a protein cell.
Neighboring solvent cells are connected and again all connected
components are detected, which results in the exterior of the pro-
tein as well as all internal cavities. Since this method does not de-
tect pockets, the authors proposed a modification to extract them in
a separate pass. For each solvent cell, all surrounding cells within
a given cube are investigated. If the ratio of protein cells and sol-
vent cells is larger than a user-defined threshold, the cell is marked
as a pocket cell. Note that the accuracy of the algorithm depends
on the number and quality of the point samplings. Furthermore, the
definition of internal cavities and pockets is rather heuristic.
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Figure 14: Three main categories of methods focusing on visual-
ization and visual analysis of molecular cavities.

The 3V tool was introduced by Voss and Gerstein [VG10] in
2010 as a generalization of the Roll algorithm [YZTY10]. 3V com-
putes the Solvent Excluded Surface for two probe spheres with dif-
ferent radius. The first probe approximates the substrate of interest.
The second probe is larger and is used to extract the so-called shell
surface that closes all outer pockets of the molecule. The volume
of all cavities is defined as the difference of the volume enclosed
by the shell and the volume enclosed by the SES of the substrate
(Figur 12). The SES for both probe spheres are computed using
a discrete grid. In 2014, the same method was proposed again by
Oliveira et al. [OFH∗14] in their tool KVFinder. In addition, Des-
douits et al. [DNB15] extract cavities in the same manner to study
their evolution throughout MD simulations.

In 2014, Lindow et al. [LBH14] proposed a method enabling the
detection of all cavities based on the actual ligand geometry (Fig-
ure 13). It is based on an extension of the SES called Ligand Ex-
cluded Surface, which shows the accessibility for a specific ligand
instead of an approximating single probe sphere. The grid-based
algorithm to compute the surface computes intersection tests of the
ligand with the receptor for each grid point, for a number of dis-
crete ligand orientations and conformations. Grid points where the
ligand can be placed are clustered according to the valid orienta-
tions and conformations that results in cores of cavities. An ambi-
ent occlusion technique is used to decide whether a grid point is
inside or outside the boundary of the receptor. Only grid points in-
side the boundary are clustered. From these cores, the surface of
the cavities is computed by sampling all valid ligand orientations
and conformations into a discrete scalar field, which is visualized
using Marching Cubes or direct volume ray casting.

5.9. Probe-Surface Methods

The last category includes combinations of surface-based and
probe-based approaches. The only method that falls into this cat-
egory is the PASS tool by Brady and Stouten [BJS00]. PASS (Pu-
tative Active Sites with Spheres) enables the detection and mea-
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Figure 15: Visualizations of cavities in combination with the secondary structure and molecular surface. (a) Illustration of cavities as
spheres on a uniform grid by Krone et al. [KFR∗11], (b) Visualization of cavities as surface segments (combined with Cartoon rendering) in
MegaMol [KKRE14, GKM∗15], (c) Visualization of cavities as spheres of Voronoi vertices in CAVER Analyst [Kvv∗14].

surement of buried cavities inside the proteins, which also helps to
identify the active site of the molecule. The algorithm uses layers
of probe spheres to fill the cavities. Only exposed spheres that are
surrounded by at least a certain number of atoms are kept. The first
layer of spheres are placed tangent to the atom spheres by loop-
ing over all unique triplets of atoms. The next layers are placed
in the same way, tangent to the previous layers. These spheres are
then utilized to evaluate the size, shape, the extent of such cavities
and the prediction of active sites. For a sphere, the active site is
estimated by a number of neighboring spheres and the parameter
describing the extent to which it is buried. Additionally, the system
allows to visualize the residues close to the cavities as well as the
cavities themselves.

6. Interactive Visual Analysis of Molecular Cavities

This section reviews the state of the art concerning the visualization
of results produced by the previously described methods to extract
cavities. The appropriate presentation of these results is an essential
part for their analysis. This aspect is also visible in Figure 3, where
cavity analysis methods that also introduced special methods for
the visual analysis of these cavities are marked. The visual analysis
of cavities is closely related to general methods for the visualization
and visual analysis of molecular shape. This allows expert users a
comprehensive visual analysis of cavities, binding sites, and related
phenomena.

There are basically three main categories, spatial and non-spatial
visualizations and enhanced visualization and analysis of molecu-
lar shape. The organization of papers in this section is illustrated
in Figure 14, which shows their categorization. The image clearly
shows high overlaps between these categories, which denotes that
many of the papers are conveying the information about cavities by
combining visualization techniques of more than one category.

6.1. Spatial Visualizations

In many cases, the methods described in Section 5 do not intro-
duce specific visualizations. Typically, well-established and com-
monly used molecular visualization tools like VMD [HDS96], Py-

MOL [DeL02, Sch16], or UCSF Chimera [PGH∗04] are used to
present the results. In these cases, the methods are either imple-
mented as a plugin for these tools or the results are stored to a file
that can be read by the respective tool (e.g., in the PDB file for-
mat [BWF∗00] or as a PyMOL script file). While these molecular
visualization tools offer a wide range of general-purpose visualiza-
tions for molecular data, they are not tailored to the visualization of
cavities.

Most commonly, cavities are simply rendered as a set of spheres
(Figure 15 (a), (c)), or can be represented by a molecular surface
based on these spheres. For grid-based methods, isosurfaces de-
rived from the grid are commonly used as a surface-based repre-
sentation of the cavities. Many tools use polygonal isosurface ex-
traction (e.g., Marching Cubes). In contrast, Krone et al. [KFR∗11]
used isosurfaces obtained by direct volume rendering, which can
be beneficial in term of image quality, especially when rendering
semi-transparent surfaces. Phillips et al. [PGD∗10] also applied di-
rect volume rendering to visualize internal cavities. Another op-
tion that is often used to highlight a cavity is to color the atoms or
amino acids of the protein that surround this cavity. For methods
that extract a possible path through a pore or a tunnel, the tools will
usually depict this path by a simple line strip. Paths can also be
visualized as a set of spheres positioned on each node of the path.
Here, the radius of each sphere is typically equal to the maximal
radius of a hypothetical spherical probe that touches the surround-
ing atoms. In this case, the cavity extraction method has to provide
the positions and radii of the spheres. Recent examples for such
visualizations can be found in the works of Czirják [Czi15] who
used only spheres, or Kim et al. [KLKK16] who used spheres as
well as centerlines. Especially in combination with cutting planes
or transparency, these simple sphere-, surface-, or line-based repre-
sentations already convey a lot of information about the cavities to
the user.

Many methods described in Section 5 are accessible as a
web service (see Section 7.2 for more details). Most of these
web services use web-based molecular visualizations based on
Jmol [Jmo09] or JSmol [Han13] to offer simple cavity visualiza-
tions similar to the ones described above (e.g., fpocket [LGST09]



Figure 16: Visualization of Voronoi-based cavities [LBH11]. Left:
Cavities as skin surface in combination with the secondary struc-
ture. Right: Solvent Excluded Surface clipped by the cavities to
show the corresponding paths.

or ChExVis [MSCN15]). An exception is PoreWalker [PCMT09],
which presents only still images of the results that are pre-rendered
on the server. The visualizations in these images are, however, sim-
ilar to the simple visualizations described above (e.g., spheres that
represent the path through the extracted pore).

Epock offers visualizations of cavity computation re-
sults through a plugin for the molecular visualization tool
VMD [HDS96]. It also includes Python scripts for plotting the
results, for example, the evolution of cavity volume or the pore
profile. The focus is on the visualization and analysis of the time
evolution. Trajectories of the cavities can also be generated for
visual analysis.

A stand-alone molecular visualization tool that focuses on
cavities is CAVER Analyst [Kvv∗14], which uses the CAVER
method [CPB∗12]. Besides the most common representations for
proteins like ball-and-stick, cartoon, and surfaces, CAVER Ana-
lyst also offers sphere- or surface-based representations of tun-
nels that show their path and width. Clipping planes and trans-
parency further help users to see the interior of the proteins. The
visual analysis tool for dynamic cavities presented by Krone et
al. [KKRE14] is integrated in the molecular visualization frame-
work MegaMol [GKM∗15]. To convey the results of their cavity
extraction, they either render only the surfaces of the cavities or
use semi-transparent molecular surfaces for the exterior parts of the
molecule to provide the context, whereas the parts of the molecu-
lar surface that demarcate cavities are rendered opaque (Figure 15
(b)). Similarly, Jurčík et al. [JPSK16] improved the visualization
of transparent Solvent Excluded Surface to enable users to see the
internal cavities in the context of the molecular surface without the
need to slice through it. All these tools offer the usual coloring
schemes that show physico-chemical properties of the proteins to
support the analysis (e.g., by amino acid or hydrophobicity).

Lindow et al. [LBH11, LBBH12, LBBH13] proposed a set of
methods to highlight the paths in proteins that are extracted by their
Voronoi diagram-based cavity extraction method. They filter the
paths to show only the most relevant ones. Afterwards, they place
many point light sources along the paths. Consequently, the molec-
ular surface around the path is brightly lit. The paths themselves are

Figure 17: Illumination of cavities by placing many small point
lights along potential molecular paths [LBH11].

rendered as tubes that follow a NURBS curve. Screen Space Ambi-
ent Occlusion is used to illustrate the general shape of the protein.
Furthermore, they offer a view-dependent clipping to remove parts
of the exterior surface that occlude user-selected cavities. Examples
of the resulting visualization can be seen in Figures 16 and 17.

Parulek et al. [PTRV12] presented an interactive visual analysis
approach to explore the space of cavities, i.e., their parameters, by
means of a system linked views. This technique is a typical repre-
sentative of combining spatial visualizations with non-spatial ones,
which are discussed in the subsequent part. Parulek et al. use sev-
eral types of scatterplots which allow users to interactively select
the desired cavity parameters. Each point in the scatterplot rep-
resents a single cavity instance, where the user can opt between
displaying two different parameters against each other or a sin-
gle parameter over time. By brushing points in the scatterplot, all
the linked views are automatically updated. In the accompanying
3D view, a focus-and-context visualization is utilized, where the
molecular surface becomes more saturated around the cavity than
the regions further away. Additionally, the user has the possibil-
ity to slice through the molecule while the visualization preserves
the focus-and-context visualization style. In the follow-up study,
Parulek et al. [PTRV13] enhanced the cavity parameter set by prop-
erties of the amino acids. The user can select cavities by specifica-
tion of amino acids names in addition to their geometric character-
istics. Chemical properties of the amino acids are color-coded near
the selected cavities in the 3D visualization. Moreover, the user
is provided with a dedicated linked view that shows evolution of
chemical properties of selected cavities over time.

6.2. Non-spatial Visualizations

Another possibility is to present cavities and their properties us-
ing non-spatial visualizations. These methods can convey addi-
tional information and statistics about the cavities that are not easily
discernible when using typical three-dimensional representations.
Consequently, non-spatial visualizations are often used in concert
with spatial ones to provide complementary information. This is
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Figure 18: (a) Relational graph (top) showing splits and merges of cavites and evolution graph (bottom) illustrating the position and spatial
extent of the cavities over time. (b) TunProfile (top) depicts the tunnel width and length for each time step. AAExplorer (bottom) shows the
amino acids that surround the tunnel. (c) Combination of channel profile plot (left) and the classical three-dimensional representation of a
channel (right) in the tool CHEXVIS. Image source: [LBBH13, BMG∗16, MSCN15]

especially helpful when analyzing dynamic data, where a spatial
visualization would require either an animation or a temporal ag-
gregation.

Conformational changes of a protein during a simulation can
lead to interaction of cavities. For example, a cleft can merge
with an internal cavity so that a pocket is formed. Lindow et
al. [LBBH13] used a relational graph to show the evolution and
interaction of cavities over time (e.g., splits or merges between cav-
ities). A second graph shows the evolution of the cavities—that is,
their position and spatial extent—over time (Figure 18 (a)). Krone
et al. [KRS∗13,KKRE14] also used relational graph to show cavity
evolution. Additional properties like the channel width or surface
can be encoded in this graph.

In addition to the relational graph, Krone et al. employed sev-
eral 2D line plots to show the profiles of the extracted cavity and
to illustrate the temporal evolution of cavity properties like channel
diameter or surface area in molecular simulation trajectories. This
for example allows users to detect the narrowest sites of a tunnel
(i.e., its bottlenecks). Similar 2D line plots that show the properties
for dynamic data over time were used by Byška et al. [BMG∗16]
(see Figure 18 (b)). For each time step, they plot one line that shows
the tunnel profile, which reveals the most stable and unstable parts
of the tunnel over time. Below this profile plot, the amino acids that
surround the tunnel are plotted. Each amino acid is represented by
a colored strip consisting of individual lines. The number of these
lines corresponds to the total number of time steps and their length
depicts the extent of influence of the tunnel by this amino acid. Us-
ing this representation, users can detect amino acids that have a sub-
stantial contribution to a bottleneck, which might be candidates for
protein mutations that influence the protein reactivity. The coloring
can be changed according to different physico-chemical properties
of the amino acids. A combination of non-spatial visualizations and
spatial ones can, however, also be useful to provide additional infor-
mation for static data. An example for this is ChExVis [MSCN15],
which uses JSmol to show the geometry of cavities, as mentioned
above. An additional 2D plot is used to show the profile of the cur-
rently selected channel, that is, its length and width in Ångströms,
as well as the hydrophobicity profile along the channel (see Fig-

ure 18 (c)). Similar to the work of Byška et al., the visualization
also shows the amino acids that are in contact with the channel.

In another work, Byška et al. [BJG∗15] proposed further meth-
ods to explore the shape as well as the properties of a selected tun-
nel in dynamics molecular data using 2D visualizations and plots.
Heat map plots are either used to show the width of all tunnels or
the evolution over time for one specific tunnel. The temporal evo-
lution of the bottleneck of a single tunnel can also be explored in
detail in one static image called the MoleCollar representation (see
Figure 19). This view is enriched with abstract depictions of dif-
ferent physico-chemical properties of the amino acids surrounding
the bottleneck. The idea of these methods is to show the most bio-
chemically relevant tunnels and evaluate their throughput without
tedious observation of all steps of the simulation trajectory.

6.3. Enhanced Visualization and Analysis of Molecular Shape

Rendering methods that highlight the shape of a molecule can be
beneficial for the visual analysis of cavities. Tarini et al. [TCM06]
proposed a set of techniques to enhance the perception of molec-

Figure 19: The MoleCollar representation by Byška et al. shows
the bottleneck of a channel or tunnel over time. All time steps are
superimposed and the surrounding glyphs denote the amino acids
that are bodering the bottleneck. Image source: [BJG∗15].



Figure 20: Comparison between CASTp (left) and the Ambient Oc-
clusion Opacity Mapping (AOOM) proposed by Borland (right).
AOOM also highlights the entrances to the channel (black circles).
Image source: [Bor11].

ular data, including contour lines and ambient occlusion. Bor-
land [Bor11] proposed Ambient Occlusion Opacity Mapping,
which modulates the transparency of the molecular surface based
on the ambient occlusion in order to emphasize the internal
structure—that is, the cavities—of a molecule (see Figure 20).
Grottel et al. [GKSE12] presented an interactive ambient occlusion
method for large, dynamic molecular data. Most recently, Skånberg
et al. [SVGR16] proposed a combination of ambient occlusion and
diffuse interreflections to highlight the entrance of the ligand to the
active site located on the molecular surface. They use this tech-
nique also for the visualization of the interaction strength between
a ligand and a receptor molecule. A recent review of methods for
molecular visualization was given by Kozlíková et al. [KKL∗15].

Besides methods that focus mainly on the visual appearance of
the shape of a molecular surface, algorithms aiming to analyze the
shape have been proposed as well. Visualizing the results of such
shape descriptors cannot only assist the visual analysis of cavities
but also provides a means to analyze and compare the shape of
cavities. Cipriano et al. [CPJG09] proposed a multi-scale shape de-
scriptor and applied it to molecular surface analysis. The descriptor
estimates the degree of non-planarity and the anisotropy in a cir-
cular area around a given surface point. They showcased descrip-
tor properties on a set of proteins while varying the value of the
descriptor radius giving it a biological relevance. In a follow-up
work [CPG12], they showed how their shape descriptor can also
be applied to surface matching, that is, to finding similar surface
points among different proteins, which can be used to identify po-
tential ligand binding sites. In their visualizations, Cipriano et al.
use color to show the results of their surface descriptor together
with ambient occlusion, which emphasizes the general shape of the
molecule (see Figure 21 left).

Coleman and Sharp [CS06] introduced a shape descriptor called
travel depth, which is defined as the shortest path for a small
molecule from the convex hull to the molecular surface (see Fig-
ure 21 right). The small molecule can be represented by a probe
sphere. This shape descriptor can be used to illustrate cavities on
protein surfaces. Coleman and Sharp proposed a grid-based im-
plementation to compute the travel depth. Subsequently, Giard et
al. [GRAGM11] presented an algorithm for fast estimation of the

Figure 21: Different shape descriptors. Left: Multi-scale surface
descriptor by Cipriano et al. [CPG12]. Right: Reimplementation
of travel depth by Coleman and Sharp [CS06].

travel depth based on a molecular surface mesh. The travel depth
can be visualized by coloring the molecular surface according to
the corresponding path length. Paths inside internal cavities are ig-
nored in this approach.

Natarajan et al. [NWB∗06] segment the molecular surface into
grooves and pockets by means of a Morse-Smale complex. This in-
cludes the extraction of critical points on the surface and finding the
appropriate edges of the Morse-Smale cells. The authors applied
their method to correspondence matching of proteins in different
conformations. Another application is the calculation of the atomic
density function from the topological description. According to this
density function, the authors are able to segment the molecular sur-
face according to its protrusions and grooves and thus detect and
visualize the protein pockets.

Scharnowski et al. [SKR∗14] presented an algorithm for the pair-
wise comparison of local and global differences of molecular sur-
faces. After aligning the surfaces, one of them is deformed until
it matches the second one. Local differences are derived from the
deformation (geometric difference) as well as from the difference
of the physico-chemical properties between the matched surfaces.
The global difference is measured by integrating over the local dif-
ferences. Local differences are visualized using color and trans-
parency, whereas global pairwise differences within an ensemble
of proteins can be shown in a matrix plot. Similar to the methods of
Cipriano et al. [CPG12] or Natarajan et al. [NWB∗06], this method
can be used to analyze differences in the vicinity of a cavity. This
can support users in drawing conclusions about accessibility and
ligand binding.

Another visualization that focuses on the shape of a protein is
the molecular surface abstraction proposed by Cipriano and Gle-
icher [CG07]. The method is based on geometric simplification
of a meshed Solvent Excluded Surface. First, the mesh is simpli-
fied with a Taubin filter so that details that are smaller than an
amino acid but bigger than an atom are smoothed. Afterwards, mid-
sized features—indentations and protrusions—are removed based
on their Gaussian curvature. Texture decals that represent the re-
moved mid-sized feature (such as small and shallow pockets) are
placed in the corresponding location on the mesh surface. That is,
high-frequency details of the surface are completely removed, but
the overall shape is conserved. Consequently, the visibility of shape
details is increased since the occlusion from mid-sized features has
been resolved by the glyph replacement. The representation also al-



Figure 22: Left: Molecular surface of a protein colored by elec-
trostatic potential with a ligand (yellow). Right: Molecular surface
abstraction. Removed indentations and protrusions are illustrated
by texture decals ( o© and +©). Putative ligand binding sites are
highlighted in yellow on the surface. © 2007 IEEE. Reprinted, with
permission, from [CG07].

lows for a clear representation of interaction sites. Interaction areas
like binding sites are also projected onto the abstracted molecular
surface using textures (see Figure 22).

7. Discussion

As shown in Section 5, there is a plethora of different methods to
extract cavities from molecular data. Although the general goal of
these methods is similar, they also use very different approaches to
reach this goal. The methods are not only algorithmically different,
but sometimes also in the way they define cavities. Consequently,
the results are often also different. Apart from that, many of the
tools that implement these methods offer additional analyses that
provide users with more information about the cavities. This infor-
mation can be an important factor for drawing conclusions about
possible biological function of cavities. Individual tools might be
optimal for a specific analysis task, even though they can have de-
ficiencies compared to other tools. That is, users have to choose
carefully from the available methods depending on their research
question or task. This of course also applies to visualization devel-
opers that devise new visual analysis methods for molecular cav-
ities. They have to be aware that their choice of cavity extraction
algorithm can influence the quality and utility of the results and,
consequently, of their visual analysis tool.

One important aspect that we want to focus on is the analysis
of dynamic data. The constant improvement of the capabilities of
modern molecular simulations—resulting from improved hardware
as well as improved simulation codes—leads not only to more ac-
curate results for complex molecular systems, but also to longer
simulation trajectories with large numbers of time steps. Today,
molecular dynamics simulation has advanced to a point where it
can be used to run virtual experiments that can provide novel in-
sights into the characteristics and properties of molecular systems.
Getting these insights, however, also requires analysis methods that
are tailored to dynamic data. Additionally, conveying the analysis
results to the user requires tailored visualization methods. The re-
sulting visual analysis tools that provide information about the tem-
poral evolution of features like cavities are important for users to
understand the data and benefit from it. As observable in Figure 3,
the number of methods and tools for the extraction of cavities that
can deal with dynamic data is relatively small (green references).
However, the figure also shows that in recent years, a trend towards

dynamics data is emerging. This is also reflected in the increasing
availability of visualization methods and visual analysis tools for
cavities in dynamic data, which is described in Section 6. As men-
tioned above, visualization is crucial for the analysis of previously
extracted cavities and their properties as well as secondary infor-
mation. This is even more important for dynamic data, since the
complexity rises with the number of time steps. As described in
Section 6, modern visualization tools take different approaches to
convey the evolution of the cavities to users. In general, one popu-
lar approach for visualizing dynamic data is to present the temporal
information in one static representation. In case of visualizing cav-
ities, this approach is often found in the non-spatial depictions de-
scribed in Section 6.2. Spatial visualizations that show results for a
whole trajectory in one static image often use aggregation to show
the average cavity extent over time. However, the straightforward
approach of visualizing temporal development as an animation is
also found in cavity analysis and also has its benefits. Animation
supports a more exploratory analysis of the data, where the user di-
rectly sees the changes over time. Even subtle changes are visible,
in contrast to static depictions where detailed information might be
lost due to aggregation or summarization. Furthermore, for in-situ
visualization of interactively steered simulations, direct visualiza-
tion of the results is the only possibility. Such scenarios of course
pose the additional challenge that the cavity extraction algorithms
as well as the visualizations have to be fast enough to be applicable
in real time. In order to provide users with the benefits of both vi-
sualization approaches, a trend for the visual analysis that is appar-
ent from Section 6 is the combination of spatial visualizations and
non-spatial ones using multiple views. Such visual analysis tools
can concurrently give an overview of the data and provide detailed
views, as well as provide quantitative measurements.

A property that is currently taken into account by only few meth-
ods is the actual shape and orientation of a ligand within a cavity.
Obvious reasons for that are the algorithmic complexity as well as
the necessary computational power, which only recently became
more widely available due to improvements in computing hard-
ware. Available methods include the Ligand Excluded Surface by
Lindow et al. [LBH14] and TRAPP by Kokh et al. [KRH∗13]. We
think that this is an important challenge, especially for dynamic
data, since a method that considers detailed information about a
ligand would be able to provide a more accurate estimation of
the reachability of a binding site. An example for a tool that goes
into this direction is the MoMA-LigPath web server [DBV∗13],
which simulates protein-ligand docking by calculating the lig-
and unbinding trajectory based on a simplified model consider-
ing mechanistic representation with partial flexibility. The protein-
ligand complex serves as an input for the Manhattan-like Rapidly-
exploring Random Tree (ML-RRT) that iteratively expands the
search space of possible paths (similar to the work of Cortés et
al. [CSA∗05, CBES11]). This approach is borrowed from robotics,
where it is used for path planning in mechanistic system.

7.1. Directions on the Comparison and Verification of Cavity
Extraction Methods

A fundamental question concerns appropriate ways to compare and
assess different methods, either on an individual basis or at a global



Figure 23: Example of volume measurement error assessment
based on a sphere cavity trajectory of precisely controlled volume.
The true sphere volume increases regularly (blue line). Three pro-
gram settings are compared with percentual error indicated as in-
set. The smallest and largest spherical cavities are depicted. Data
kindly provided by Dr. Benoist Laurent.

scale. Here we want to provide a few directions and ideas for the
verification and comparison of results and raise questions such as
how to monitor the accuracy of measurements. As an example,
we observed discrepancies in volume measurements among sev-
eral tools, in some cases up to 200%. Currently no guidelines for a
quantitative numerical comparison exist. More generally speaking,
very few tools provide the option to measure inherent errors. This
shortage makes it difficult to identify systematic errors, possibly
induced by a chosen method or algorithm.

For the comparison of two methods, both the overall detected
cavities and the related measurements should be taken into account.
The detection could be handled by comparing the number of cav-
ities found and assessing their similarity. Several studies provide
ad hoc assessments, see for example [MSCN15] for a visual com-
parison of results from ChExVis, MOLE, CAVER, MolAxis, and
PoreWalker for selected enzymes and transmembrane proteins. The
detailed comparison of cavity characterization results by two meth-
ods could involve the identified surrounding amino acids, the cavity
volume measurement, and, in the case of tunnels or pores—the path
profile (e.g., width along centerline) measurement. A challenge is
to move from qualitative to quantitative descriptors.

Rather than comparing methods individually, it would be de-
sirable to have a gold standard for verification. In other fields,
such as docking, dedicated benchmark data sets are used. For
cavities, no commonly admitted reference data set currently ex-
ists. A database of biologically relevant cavities might be partic-
ularly useful in that respect. Some existing databases may form
the basis for such a benchmark, for example free ones such as
the pocketome one [KIA12], or commercial ones such as, e.g.,
CavBase [KWHK07]. Specific use cases have been employed as
a benchmark in several studies. For instance, the heat-shock pro-
tein HSP90 crystal structure collection was characterized through

MDpocket, TRAPP, and Epock tools. A benchmark set includ-
ing HSP90 can actually be downloaded from http://epock.
bitbucket.org/docs/epock_benchmarks.html. A major limi-
tation for these biological data sets is that measurements cannot be
verified, e.g., the "real" volume of a cavity is an unknown entity.
For numerical and quantitative assessment, it may thus be better to
resort to synthetic controlled data sets with known properties. One
possibility is to generate artificial cavities of known shape and size,
for example a sphere. We did so and Figure 23 provides an exam-
ple assessment for illustration. A systematic underestimation of the
volume is observed, with up to -40% for very small cavities. Chang-
ing program settings such as the grid spacing in this case can sig-
nificantly reduce the error. Therefore, it has to be noted that the ac-
curacy of results may be intimately linked to the choice of program
options and parameters, with a likely tradeoff between accuracy
and efficiency. When program authors provide recommended set-
tings, those should be used for assessment. We provide the sphere
trajectory as example benchmark system along with a brief dis-
cussion of errors: http://epock.bitbucket.org/docs/epock_
error.html. Of course, a spherical shape may only represent cer-
tain types of cavities, hence other shapes should be tested as well,
e.g., ellipsoids, cylinders, and more complex forms. In summary,
comparison and verification of cavity extraction methods are issues
that the community has to work on. Common guidelines for evalu-
ation and assessment of methods and results need to be elaborated.

7.2. A Brief Overview of Available Tools

In addition to the technical descriptions, we want to provide an
overview of the current availability of the tools discussed in the
previous sections. Table 1 presents this information as a compre-
hensible overview, which gives the current status of these tools, the
accessibility of their source code, and their availability on the three
most often used platforms.

Note that this overview only includes freely available tools.
However, there are also several commercial tools available which
can be used for the computation and visualization of cavi-
ties. Among such tools belongs Molsoft’s ICM-Pro (http:
//www.molsoft.com/), which uses the method of An et
al. [ATA05]. One of the most used software for cavity detec-
tion is SiteMap [Hal09, Hal07] which enables to detect the bind-
ing sites and to classify the druggability of proteins. Another ex-
ample is the YASARA software tool by YASARA Biosciences
whose YASARA View version [KV14] is freely available for PC
as well as Android platforms. YASARA enables to locate cav-
ities and calculate their volume. Other tools, such as SeeSAR
by BioSolveIT (http://www.biosolveit.de/SeeSAR/)
or MakeReceptor by OpenEye (https://docs.eyesopen.
com/oedocking/make_receptor_gui.html), announce
that they are able to compute cavities. However, no information
about the algorithms used by these tools is available.

To complete the overview of the existing tools, we have to men-
tion also solutions which do not come with their own algorithm
for computation of cavities. These tools can be divided into two
groups. The first group is formed by the general-purpose visual-
ization tools, such as PyMOL or VMD, which are able to visu-
alize the results of the computational tools by enabling the users

http://epock.bitbucket.org/docs/epock_benchmarks.html
http://epock.bitbucket.org/docs/epock_benchmarks.html
http://epock.bitbucket.org/docs/epock_error.html
http://epock.bitbucket.org/docs/epock_error.html
http://www.molsoft.com/
http://www.molsoft.com/
http://www.biosolveit.de/SeeSAR/
https://docs.eyesopen.com/oedocking/make_receptor_gui.html
https://docs.eyesopen.com/oedocking/make_receptor_gui.html


Table 1: List of tools along with the availability of their source code
(Src), availability for individual platforms (Lin: Linux, Mac: Apple
OS X, Win: Microsoft Windows, Web: Web-based), current status
(Stat, i.e., whether we were able to successfully run the tool on a
small data set; + available, − not available, ? we were unable to
verify), and visualization options (Vis, i.e., if the tool uses its own
or an external visualization software or it just outputs the results
to a file; V has its own visualization, E uses external visualization
software, F writes results to file).

Tool Availability Stat Vis

Sr
c

L
in

M
ac

W
in

W
eb

3V [VG10] + ? ? ? + + E
BetaCavityWeb [KCL∗15] – – – – + + E
BioMOVE3D [CBES11] + ? ? ? – + E
CAST [LEW98] – – – – – – E
CAVER 3 [CPB∗12] + + + + + + E
CAVER Analyst 1 [Kvv∗14] – + + + – + V
ChExVis [MSCN15] – – – – + + E,V
ConCavity [CLT∗09] + ? ? ? + + ?
dxTuber [RK11] – – – – – – E
Epock [LCC∗15] + + + + – + E
FPocket [Hua09] + + + + + + E
GHECOM [Kaw10] + ? ? ? + + E
HOLLOW [HG08] + + + + – + E
HotSpot Wizard [PCD09] – – – – + + E
LIGSITE [HRB97] – – – – – – F
LIGSITECSC [HS06] + + – – + + E
McVol [TU10] – + – – – + ?
MDPocket [SBCLB11] + + + + + + E
MegaMol [KKRE14] + + – + – + V
metaPocket [Hua09] – – – – + + E
MolAxis [YFW∗08] – + – – + + E
Mole 2 [SSVB∗13] + + + + + + V
MoMALigPath [DBV∗13] – + + – + + E
PASS [BJS00] – + – – – – F
POCASA [YZTY10] – – – – + + E
POCKET [LB92] – – – – – – ?
PocketFinder [ATA05] – ? ? ? ? ? ?
PocketPicker [WPS07] + + – + – + E
PoreWalker [PCMT09] – – – – + + E
PrinCCes [Czi15] – + – + – + E
Q-SiteFinder [LJ05] – – – – – – ?
RobustVoids [SDP∗13] – ? ? ? ? ? ?
SITEHOUND [HGS09] + + + + + ? E
SURFNET [Las95] – + + + – + F
TRAPP [KRH∗13] – – – – + ? E
VOIDOO [KJ94] – + + – – + F
Voroprot [OMV11] + + + + + + V

to write their own plugins. The second group is represented by
solutions that combine more tools in order to provide the users
with more features at once, such as prediction of protein bind-
ing site and cavity detection. One such tool is ConCavity [CS07].
It enables to predict protein ligand binding sites by combining
evolutionary sequence conservation with 3D structure. ConCavity
makes use of LIGSITE [HRB97], SURFNET [Las95], and Pocket-
Finder [ATA05] for the geometrical cavity detection. These algo-

rithms are extended by a ‘voting’ of the cavities, which is based on
the sequence conservation of the surrounding residues. To do so,
the authors used the Jensen-Shannon divergence.

MetaPocket by Huang [Hua09] is another tool that does not
introduce a new cavity detection method but combines multi-
ple other methods. It uses the results of LIGSITECSC [HS06],
PASS [BJS00], SURFNET [Las95], and Q-SiteFinder [LJ05] to im-
prove the identification of possible binding sites. More recently,
Zhang et al. [ZLL∗11] presented MetaPocket 2.0, which takes
into account four further tools, namely fpocket [LGST09], GHE-
COM [Kaw10], ConCavity [CS07], and POCASA [YZTY10].

HotSpot Wizard [PCD09] is a web server for automatic iden-
tification of "hot spots" in proteins and for annotation of protein
structures. It integrates the structural, functional, and evolution-
ary information from different databases and tools. HotSpot Wiz-
ard searches for the amino acids located around buried cavities
and pockets containing the active site and around the access tun-
nels to them. It utilizes CASTp [DOT∗06] and CAVER [POB∗06]
tools. The output of HotSpot Wizard consists of the list of anno-
tated amino acids and is visualized in the web browser using Jmol.
The tool is useful in the design of mutations in site-directed muta-
genesis and focused directed evolution experiments.

8. Conclusions and Outlook

In this report we have reviewed and organized research work on
molecular cavity detection, analysis, and visualization. The focus
of the computer science research has been primarily targeted at
protein-ligand binding. We can see that the algorithms on cavity de-
tection have been maturing throughout the last years and now offer
a variety of approaches that can be either based on discretization
of the space, or topological analysis, negative surface extraction,
or on probing that simulates the interaction of the ligand with the
host macromolecule directly. The analytical methods are predom-
inantly visualization-centric, although until recently, mostly direct
3D visualization techniques have been used for structural biology
research workflows. While the availability of 3D visualization is
essential, we can nowadays witness the emergence of tailored vi-
sualization methods that abstract the rich and overwhelming struc-
tural detail to simpler representations, which are tightly related to
specific questions of the analyst and are also more quantitative.
Moreover, by simplifying the complex spatio-temporal structure
into simpler form, visualization estate is freed up for additional
chemical and physical properties, as these should be considered
together with the geometrical characteristics. We foresee that the
trend of research in design studies that are tailored to specific ana-
lytical reasoning will continue in the context of ligand-protein in-
teraction in the coming years.

With increasing simulation detail, more and more simulations
are performed with the ligand contained in the simulated solution,
and its interaction characteristics with the host macromolecule will
be important to study. Visualization methodology will play here a
central role. We can also foresee that visualization can in future al-
low for a semi-automatic protein engineering, where the parameter
space of an entire ensemble of simulated mutations can be visually
explored, and the iterative trial-error process can be significantly
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shortened. From the reviewed literature we can also deduce that
the analytical methods for ligand-protein interaction are well de-
veloped and reach the stage of maturation. This is, however, not the
case for the accompanying visualization technology. In the context
of protein-protein interactions several analytical methods have been
developed to date, but this technology is still emerging. The accom-
panying visualization technology that would align to typical ques-
tions of an analyst is practically non-existent. We see this subfield
of structural biology as a large opportunity where the molecular
visualization community can move to and as enabling technology
that assists new discoveries. The protein-protein interactions can be
the key for understanding large set of complex molecular machiner-
ies, which can have a strong impact on the advances in medicine,
biology, and nanotechnology.
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