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Résumé — The conventional approach for the identification of the work hardening properties of a
material by an indentation test usually relies on the force-displacement curve. However, finite element
modeling of the indenter-specimen system is a complex task, and the unicity of the solution to the inverse
problem of identifying material parameters using the force-displacement curve is not always guaranteed,
especially for anisotropic materials. Also, the precise measurement of the displacement of the indenter
tip is a complex task requiring the determination of the indenter frame compliance and indenter tip defor-
mation. To alleviate all of these problems, we propose in this work an approach based solely on the 3D
indentation imprint shape measured after indenter withdrawal, rather than relying on the minimization
of the pointwise discrepancy between the experimental and simulated indentation curve. We first build
a mathematical “shape space" of indentation shapes in which a lower-dimensional manifold of imprints
admissible according to a postulated material constitutive law is approximated. Then, we solve the in-
verse problem by using a predictor-corrector algorithm minimizing the distance between the estimated
solution and the experimental imprint in this shape space. Finally, we apply the proposed approach to an
indentation test using a spherical tip indenter on a C100 steel specimen.
Mots clés — Identification ; Shape manifold learning ; Indentation test ; Reduced Order Modeling

1 Introduction

The identification of material work hardening properties by an indentation test [1, 2] is considered as
non-destructive, especially when compared to the tensile test. With the help of indentation tests carried
out on different scales, a wide range of materials can be characterized : metals, alloys, ceramic, concrete
or even graded materials[3, 4, 5, 6] and the test can also be applied to an actual structure without the need
for cutting-out a specimen for tensile testing.
The force applied to the indenter is recorded against the penetration depth over a sequence of time
instants. This recorded indentation curve (P-h) curve is the primary information considered in the iden-
tification of material properties. A conventional deterministic identification approach is then applied to
minimize the discrepancy between the simulated and measured P-h curves

Jh(c) =
Nh

∑
i=1

(
hs

i (c)−he
i

he
max

)2

, (1)

where c is the vector of material parameters to be identified ; hi is the corresponding penetration depth
of indenter at the time instant i = 1,2,3 · · ·Nh ; the superscript ’s’ referring to simulation by the Finite
Element Method (FEM), while ’e’ represents ’experimental’. Mathematical programming procedures are
then used to identify material properties by solving

c∗ = Argmin
(

J1(c)
)
. (2)

However, coincident P-h curves [7, 8] may be obtained for different anisotropic materials and this can
make the solution to the inverse problem non-unique. It is reasonable to assume that the residual defor-
mation of the surface of the specimen after he indentation test would provide additional evidence since
different materials are expected to show differing plastic piling-up or elastic sink-in effects. Extensive
research has been devoted to combining the traditional indentation test with mapping the residual defor-
mation (imprint) in order to provide more reliable information for the identification of material properties
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[9, 10, 11]. In the problem of identification using the imprint shape i addition to the indentation curve,
the cost function given by Eq.(1) may be augmented by :

Ju(c) =
Nu

∑
j=1

(us
j(c)−ue

j

ue
max

)2

, (3)

where u j is the vertical coordinate of point j measured against the initial surface of specimen ; Nu is the
number of sample points chosen from the specimen surface, and this value depends on the resolution of
the imprint scanning instrument and on the density of the FE mesh.
However, it has been shown that even a small noise in input data makes difficult the accurate identification
of parameters[12]. Another factor of instability is the mesh dependency of the indentation curve and
oscillations seen in the FE simulations[13]. Moreover, the two sources of errors given by Jh(c) and Ju(c)
are impossible to compare numerically. [3] proposed to add weighting coefficients in front of each term,
calibrated to make them comparable, however this approach is ad-hoc.
In the present work, we propose an original identification protocol based solely on the imprint shape.
Following [15, 16], originally applied to the numerical assessment of spring-back for the deep drawing
process, we build a shape space and apply the concept of shape manifold to describe all the imprint shapes
admissible according to a postulated constitutive law. The shape manifold is constructed by a series of
simulated shape imprints using Design of Experiments (DOE) and Proper Orthogonal Decomposition
(POD). We then propose a family of manifold walking algorithms to determine the search direction.
Finally, we apply the protocol to an indentation test using a spherical tip indenter on C100 steel.

2 Overall concept and formulation

We apply the method of Proper Orthogonal Decomposition (POD) to the collection of imprint shapes
obtained by an indentation test. A typical finite element (FE) model and the residual deformation on the
specimen are shown in Fig.1.

FIGURE 1 – FE simulation of indentation test and the residual displacement on the specimen

2.1 Construction of the shape space

We begin with M numerical experiments defined by an appropriate DOE for the varying set of design
parameters c(i), i= 1,2 · · ·M. These design variables are the material parameters that need to be identified.
The different imprint shapes s(i) = s(c(i)) extracted from the simulation results are considered as imprint
snapshots. The centered snapshot matrix S is calculated using the mean snapshot s

S = [s(1)− s,s(2)− s, · · ·s(M)− s], s =
1
M

M

∑
i=1

s(i). (4)

Singular value decomposition of S gives S = ΦDVT. The diagonal matrix D contains the singular va-
lues di, i = 1,2 · · ·M ; each column of Φ= [φ(1),φ(2) · · ·φ(M)] is an eigenvector of the covariance matrix
C = SST and is called a POD mode, and the corresponding eigenvalues are λi = d2

i . Each snapshot s(i)
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FIGURE 2 – Mapping between the design and α-space.

may then be accurately reconstructed

s(i) = s+Φα(i) = s+
M

∑
j=1

α
(i)
j φ

( j), (5)

where α
(i)
j is the projection coefficient for the ith snapshot on the jth mode

α
(i)
j =

(
φ( j)

)T(
s(i)− s

)
, j = 1,2 · · ·M. (6)

The lower-dimensional approximation consists of using only the first m�M (m is chosen according to
an error threshold ε) most significant modes

s̃i = s+
m

∑
j=1

α
i
jφ j;ε = 1− ∑

m
i=1 λi

∑
M
j=1 λ j

. (7)

However, the difficulty in choosing m is to set an appropriate value for ε. In this work, rather than using
Eq.(7), we exploit the concept of the α-manifold.

2.2 Manifold M of admissible shapes

For a set of M simulated imprint shapes, Eq.(6) gives their coordinates α1, α2 · · · αM in α-space.
We make the fundamental assumption that all imprint shapes admissible according to a given material
law lie on a smooth manifold

M (α) = 0. (8)

We use a parametric representation of M

αi(c) = pT(c)a(i), i = 1,2 · · ·M, (9)

with polynomial basis p and the coefficient vectors a(i) approximated for all α
( j)
i , j = 1,2 · · ·M by mini-

mizing least-square error

a(i) = Argmin
1
2

M

∑
j=1

(
pT(c( j))a(i)−α

( j)
i

)2
. (10)

For each point in the design space defined by the constitutive parameter values, we can find a correspon-
ding point on the manifold by using Eq.(9). Also, each point on the manifold corresponds to an imprint
snapshot and consequently to a set of parameter values in design space. Thus a one-to-one relation-
ship is built up between the design space and the shape manifold in α-space (Fig.2). For the purpose of
visualization, only a 3D section of this higher-dimensional space is presented.

2.3 Identification of material properties

The goal of the identification procedure is to minimize the distance between the simulated and expe-
rimental imprint (sexp) shapes in α-space. The projection of experimental imprint s̃exp is

s̃exp = s̄+ΦΦT(sexp− s̄) = s̄+Φαexp, (11)
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and it is represented by its coordinates αexp in ”shape space”. When comparing this with te experimental
imprint, we note that the measurement noise is smoothed out by the POD modes. The projection to α-
space may be thus considered as a physics-based smoothing procedure.
In the general case, the projection αexp will not lie on M due to the experimental noise (Fig.2). Our goal
then is to find the closest point α∗ on M such that

c∗ = Argmin‖(αexp−α(c))‖,α(c) ∈M . (12)

Therefore, the identification of material properties can be carried out in an at most M-dimensional space.
We recall that M� n, where n is the dimensionality of the imprint shape vector u used in Eq.(3). The
dimensionality of the search space may be further reduced to m�M using Eq.(7). Taking into account
Eq.(5) and (11), we note that the convergence criterion in Eq.(12) is equivalent to

s∗ = s(c∗) = Argmin
s
‖s̃exp− s(c)‖. (13)

2.4 Manifold walking algorithms

Extensive off-line simulations are needed to construct a global manifold that is suficiently accurate
for identification purposes as it is always high-dimensional and nonlinear. In the present work, we pro-
pose an on-line approach that progressively constructs only the useful portion of M (local manifold)
using the predictor-corrector strategy. The design space of each iteration step is usually called a design
window, and the width and height of this window refer to the range of variation of the different parame-
ters.

2.4.1 Panning

In this algorithm, the design window pans in the design space while the window size remains un-
changed. For the first iteration step, we calculate a prediction with the initial design window. If the new
prediction lies outside the window, we limit it to the window boundary and the next iteration window
will be centered around this new prediction. We repeat this process until the prediction is located inside
the current window and the convergence criterion in Eq.(12) is satisfied.

2.4.2 Zooming

In this algorithm, the first design of experiments covers the entire design space, after which the
window size is halved with each successive iteration. In this algorithm, the new prediction always lies
within the current window, and we center the new smaller design window around this new estimation
value.

2.4.3 Panning & Zooming

The panning & zooming method combines both approaches. The idea of this algorithm is to use
panning searching at the beginning until the estimation for the next iteration lies inside the current design
window rather on the boundary, then we switch search schemes to zooming to improve the accuracy of
the local manifold.

3 Numerical example

3.1 Problem description

The methodology is verified on an axisymmetric indentation test on C100 steel using a spherical tip
indenter, the radius of which is 0.5 mm. The specimen was carefully sectioned and polished using fine
emery papers (up to 1200 grit) and diamond suspensions (6 and 3 lm) to limit noise due to roughness.
The simulation of the indenter test is carried out within ABAQUS using a FE model (Fig.1).
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TABLE 1 – Iteration results using panning approach.

Iter σy n ∆σy ∆n ‖αexp−α∗‖ ε1 ε2

1 205.0 0.225 30 0.05 0.0629 8.01% 8.78%
2 190.1 0.226 30 0.05 0.0327 4.15% 5.56%
3 175.1 0.239 30 0.05 0.0292 3.71% 5.16%
4 160.1 0.260 30 0.05 0.0219 2.79% 4.57%
5 145.1 0.275 30 0.05 0.0171 2.18% 4.20%
6 130.2 0.294 30 0.05 0.0118 1.50% 3.88%
7 115.4 0.312 30 0.05 0.0052 0.66% 3.58%
8 104.0 0.330 30 0.05 0.0030 0.38% 3.53%

Hollomon’s power law is employed for the plastic properties [14] while the elastic portion is assumed to
follow Hooke’s law. The continuity at the elastic limit is enforced, resulting in

σ = σy

(
E
σy

)n

ε
n, (14)

where σ is the equivalent stress, ε refers to the total strain. The behavior law of material is thus described
by three parameters : yield stress σy, strain hardening exponent n and Young’s modulus E. E is fixed
at 21000MPa, while σy and n will be identified. The parameters are identified in a rather large design
space (n ∈ [0.1,0.5], σy ∈ [50,400]) in order to verify the robustness of the methodology. The error in
identification by comparing the imprint shapes is calculated by

ε1 =
‖s̃exp− s(σy,n)‖

‖s̃exp‖
. (15)

In order to demonstrate the advantage of using this adaptive mathematical shape manifold, we also com-
pute the error between the imprint shape derived by identified parameters and real experimental data

ε2 =
‖sexp− s(σy,n)‖

‖sexp‖
(16)

3.2 Results and discussion

3.2.1 panning

The iteration history of identification using the panning algorithm is shown in Table.1. The designs
of experiments are centered around successive sets of σy and n. ∆σy and ∆n are the size of design space.
ε1 and ε2 are identification errors of each iteration, namely the error between the simulated imprint shape
computed by σy and n and real experimental imprint (Eq.(15)) or its projection in shape space (Eq.(16)).

Successive design spaces and corresponding local manifolds are shown in Fig.3-5. The green dia-
mond, referring to the projection of experiment imprint in α-space, converges to the center of the local
coordinate system, which also implies that the estimated imprint converges to sexp. The black dot in
the design space represents the current estimation parameters corresponding to the point on M closest

Shape manifold (iteration 1)

0.2000 0.2125 0.2250 0.2375 0.2500

190.0021

197.5021

205.0021

212.5021

220.0021

1

2

3

4

5

6

7

Window in design space (iteration 1)

(1)

exp

*

exp

*
= 0.0629

1

2

3

s
(1)

,

c*(1)

*(1)

exp

FIGURE 3 – Identification in design space and corresponding local manifold (step 1).

5



0.2870 0.2995 0.3120 0.3245 0.3370

100.3726

107.8726

115.3726

122.8726

130.3726

1

2

3

4

5

6

7

(7)

exp

*
= 0.0052

1

2

3

Window in design space (iteration 7) Shape manifold (iteration 7)

s
(7)

,

c*(7)

*(7)

FIGURE 4 – Identification in design space and corresponding local manifold (step 7).

*(8)

0.3047 0.3172 0.3297 0.3422 0.3547

88.9795

96.4795

103.9795

111.4795

118.9795

1

2

3

4

5

6

7

(8)

exp

*
= 0.0030

1

2

3

c*(8)

s
(8)

,

Window in design space (iteration 8) Shape manifold (iteration 8)

FIGURE 5 – Identification in design space and corresponding local manifold (step 8).

to the projection of experimental imprint. The local manifolds in this panning method are not accurate
estimations simply because we are only using a quadric surface to approximate M in a relatively wide
range(∆σy = 30,∆n = 0.05). With the panning method, we can only obtain a general estimation for the
material parameters. The accuracy may be improved either by increasing the degree of polynomial basis
or by shrinking the size of window.

3.2.2 zooming

For this algorithm,the convergence of the material properties is shown in Table.2, where σy stabilized
around 105 and n around 0.326. Clearly, the error ε2 stabilized at 3.6% after only 3 iteration steps, while
the error ε1 drops to around 1% using the projected imprint in shape space. Even though the error ε1 in
the 4th iteration is smaller than the last one, we still prefer the material identified in the last step for the
reason that the local manifold is more accurate so as to obtain the projection of the experimental imprint.
The last manifold is considered accurate since the identification is carried out in a small window size and
the material parameters vary only in a small range : 2.5 for σy and 0.002 for n. Several steps of imprint
snapshots and the experimental imprint are compared (Fig.6). It is clear that the simulated imprint shapes
will concentrate around the experimental one when the local manifold patch size decreases.

3.2.3 panning & zooming

Finally, a combined algorithm of panning and zooming is applied. A similar estimation of material
properties is obtained( Table.3). In the first four steps, the panning method is introduced to iteratively
locate the most promising zone, and during these steps the design window remains the same size. Next,

TABLE 2 – Iteration results using regular zooming approach.

Iter σy n ∆σy ∆n ‖αexp−α∗‖ ε1 ε2

1 250.0 0.250 320 0.3 0.2512 31.97% 32.16%
2 99.79 0.394 160 0.15 0.0155 1.97% 4.25%
3 98.32 0.336 80 0.08 0.0150 1.90% 3.89%
4 98.65 0.331 40 0.04 0.0056 0.71% 3.59%
5 112.44 0.327 20 0.02 0.0147 1.87% 3.57%
6 105.80 0.326 10 0.01 0.0092 1.16% 3.54%
7 105.46 0.326 5 0.005 0.0079 1.01% 3.57%
8 105.79 0.326 2.5 0.002 0.0069 0.87% 3.57%
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FIGURE 6 – Experimental imprint and numerical snapshots (zooming algorithm).

the zooming algorithm is adopted in order to improve the accuracy of the local manifold for better
identification. The first searching algorithm is automatically switched with the second one as soon as the
estimate for the next iteration is located inside the current design space rather than on the boundary.

TABLE 3 – Iteration results using panning & zooming.

Iter σy n ∆σy ∆n ‖αexp−α∗‖ ε1 ε2

1 175.0 0.300 40 0.04 0.1989 25.31% 25.56%
2 155.0 0.280 40 0.04 0.0697 8.87% 9.62%
3 135.2 0.287 40 0.04 0.0175 2.22% 3.98 %
4 120.5 0.307 40 0.04 0.0083 1.05% 3.68%
5 107.0 0.326 20 0.02 0.0059 0.75% 3.54%
6 108.0 0.323 10 0.01 0.0121 1.53% 3.57%
7 106.7 0.323 5 0.005 0.0089 1.13% 3.56%
8 107.0 0.324 2.5 0.002 0.0096 1.22% 3.57%

It may be concluded from the iteration histories of all the convergence algorithms that the combined
zooming & panning approach better convergence of both parameters. In addition, the robustness of the
identification procedure in lower-dimensional α−space is confirmed by using different initial points for
the three algorithms which lead to identical material parameters. The different searching patterns are
shown in Fig.7.
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4 Conclusion and perspectives

In this paper, the authors have proposed a complete protocol for the identification of material work
hardening properties, using only the imprint shape of an instrumented indentation test. By adopting the
concept of the shape manifold, satisfactory results were obtained using a variety of algorithms. Almost
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identical power law work hardening parameter sets (σy,n) are obtained with different convergence algo-
rithms even when starting from very different initial points. The error between the experimental imprint
and simulated imprint with identified parameters can be controlled to a considerably low level, around
1%.
That being said, our protocol can and should be improved in order to reuse the imprints in the current
iteration if they are also situated in the design space of next iteration, as this will yield a significant re-
duction in computation time.
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