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Abstract

Cable-Driven Parallel Robots (CDPRs) are a class of parallel robots whose legs consist of cables. In most

previous studies, the positions of the cable connection points on the moving platform and on the base frame are

fixed, these positions being determined during the CDPR design. However, such fixed-configuration CDPRs are not

always suitable and some situations require reconfiguration capabilities, e.g. a cluttered environment where cable

collisions with objects in the CDPR workspace cannot be completely avoided without reconfigurations. This paper

deals with Reconfigurable Cable-Driven Parallel Robots (RCDPRs) whose cable connection points on the base frame

can be positioned at a possibly large but discrete set of possible locations. Means to select and optimize the sequence

of discrete reconfigurations allowing the RCDPR moving platform to follow a prescribed path are introduced. A

so-called feasibility map is first generated. For each possible configuration of the RCDPR, this map stores the feasible

or unfeasible character of each point of the discretized prescribed path, according to user-defined constraints which

ensure a proper functioning of the RCDPR. The feasibility map is next analyzed in order to determine minimum

sets of configurations which allow the RCDPR to follow the whole prescribed path. Finally, the corresponding

discrete reconfiguration planning problem is represented as a graph whose nodes correspond to feasible RCDPR

reconfigurations. The arcs of the graph are weighted by a user-defined cost function so that the graph can be searched

for an optimal reconfiguration strategy using Dijkstras algorithm.

Keywords: Cable-Driven Parallel Robot, Reconfigurability, Reconfiguration Strategy, Graph Based Optimization

∗Corresponding Author.
Email addresses: lorenzo.gagliardini@irt-jules-verne.fr (L. Gagliardini), Stephane.Caro@irccyn.ec-nantes.fr (S. Caro),

marc.gouttefarde@lirmm.fr (M. Gouttefarde), alexis.girin@irt-jules-verne.fr (A. Girin)

Preprint submitted to Mechanism and Machine Theory February 20, 2016



1. Introduction

Several industrial sectors, e.g. the naval and renewable energy industries, are facing the necessity to manufacture

novel products of large dimensions and having complex shapes. In order to improve such manufacturing processes,

the IRT Jules Verne promoted the investigation of new technologies. In this context, CAROCA1 project aims at

investigating the performance of Cable Driven Parallel Robots (CDPRs) to manufacture large products in cluttered

industrial environments [1]. CDPRs are a particular class of parallel robots whose moving platform is connected to

the robot fixed base frame by a number of cables as illustrated in Fig. 1. Hereafter, the connection points between

the cables and the base frame will be referred to as exit points. CDPRs have several advantages such as a high

payload-to-weight ratio, a potentially very large workspace, and reconfiguration capabilities. Therefore, they can be

used in several applications, e.g. heavy payload handling and airplane painting [2], cargo handling [3], warehouse

applications [4], and large-scale assembly operations [5]. Other possible applications include the broadcasting of

sport events, haptic devices [6, 7, 8], support structure for giant telescopes [9, 10], and search and rescue deployable

platforms [11, 12].

In the sequel, a CDPR configuration refers to the positions of the cable exit points, the positions of the cable anchor

points on the moving platform, and the cable layout between these two sets of points. In most previous studies, the

CDPR has a fixed configuration which is determined during its design, e.g. [13]. While fixed-configuration CDPRs

are relevant in many cases, some more demanding applications require reconfiguration capabilities. One notable case

is a cluttered environment where cable collisions with objects in the CDPR workspace cannot be completely avoided

so that reconfigurations are necessary. This case is dealt with in this paper where the considered applications involve

low force operations over the surface of a large (metallic) structure, e.g. painting and sandblasting. The CDPR

environment is cluttered because the structure is located into the workspace and occupies a significant part of it, as

illustrated in Fig. 1. The task to be performed is simplified to that of following a prescribed path which is defined by

the user in such a way that the entire surface of the structure is eventually treated. The platform orientation is constant.

Tools and/or active devices have to be embarked on the CDPR moving platform but the corresponding issues are out

of the scope of this paper.

Because of cable collisions, several CDPRs would need to be installed around the structure, typically one per

structure face [1]. Alternatively, to reduce the number of winches and thus the installation and maintenance costs, a

limited number of winches can be used when reconfigurations are allowed. The most efficient way of avoiding cable

collisions is to permit CDPR cable exit point reconfigurations. Exit point reconfigurations can be performed in a

continuous or in a discrete manner. The first one consists in cable exit points mounted on mobile bases, e.g. a trolley

on a rail [14] or a flying platform [15, 16, 17]. Such a Reconfigurable Cable-Driven Parallel Robot (RCDPR) has a

continuous set of possible configurations. On the contrary, the set of possible reconfigurations is discrete when the

cable exit points can be positioned at a possibly large but finite number of locations, such as those of a grid of possible

1Evaluation des CApacités de la RObotique à CÂbles dans un contexte industriel
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exit point positions. From a technical point of view, modifying a cable exit point amounts to move or change the last

pulley which directs the cable toward the moving platform, as shown in Fig. 1. A possible reconfiguration procedure

is detailed in [18].

Figure 1: Example of a Reconfigurable Cable-Driven Parallel Robot (RCDPR) design. The robot shown in the picture is a concept created in the
framework of the CAROCA project and is intended to paint tubular structures.

Preliminary studies on RCDPRs have already been performed by the NIST as a part of the NIST RoboCrane

project [19]. Izard et al. [20] also studied a family of RCDPRs, named ReelAx, in order to investigate the potentialities

of CDPRs in industrial contexts. However, no reconfiguration strategy has been proposed by the authors. More

detailed studies have been performed by Rosati et al. [21, 22], which focused on planar RCDPRs. They suggested

to use movable exit points in order to maximize a local performance index across the CDPR workspace. The

corresponding continuous reconfiguration problem is solved by means of an analytical description of the desired

optimal cable configuration which can however hardly be extended to spatial RCDPRs. In 2012, Zhou et al. [23]

suggested to increase the number of Degrees of Freedom (DOFs) of CDPRs by mounting the winches on mobile

bases, which results in a type of RCDPRs. In [24, 25], Zhou used an alternative concept for RCDPRs. A set of cables

with constant lengths are connected to linear motors. The cables are either attached to the platform [25] or pull the

platform by means of idler pulleys [24]. In both cases, a planar case study has been investigated to show the concept

advantages.

Recently, Nguyen et al. [14] proposed a reconfiguration strategy which consists in solving two sub-optimization

problems. The first problem aims at defining bounds on the reconfiguration parameter such that the CDPR reconfigu-

ration is formulated as a box-constrained optimization problem. The latter forms the second sub-optimization problem

which, for example, can be solved by means of gradient based optimization algorithms.

In these previous works, which all deal with continuous CDPR reconfigurations, two general problems are tackled.

The first problem is related to CDPR design optimization. It consists in determining reconfiguration parameter values
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allowing the RCDPR to work adequately across a prescribed workspace. The RCDPR is then only occasionally

reconfigured. The second problem is to continuously resolve the reconfiguration parameter values so as to optimize

some performance criterion along a prescribed trajectory. In the present paper, discrete reconfigurations are considered

because the use of continuous reconfigurations for industrial applications over large structures can be prohibitive since

several additional motorized DOFs must be used in order to continuously reconfigure the cable exit points. Hence,

the aforementioned second problem is not dealt with in this paper since the set of possible cable exit point positions

considered here is discrete and not continuous. The first problem is relevant to a discrete reconfiguration problem.

However, because of the cluttered environment considered in the present paper, one configuration can hardly allow the

RCDPR mobile platform to follow the whole prescribed path without cable collisions so that several reconfigurations

are generally required. To the best of our knowledge, in the case of a discrete set of possible configurations, the issue

of optimizing the sequence of reconfigurations which allow the RCDPR mobile platform to follow a prescribed path

has never been dealt with before.

Therefore, in the context of a cluttered environment which precludes the use of a fixed-configuration CDPR,

this paper introduces means to select and optimize the sequence of discrete reconfigurations permitting the mobile

platform of a RCDPR to follow a prescribed path. Quasi-static working conditions are considered. The prescribed

path is discretized into a finite set of points. The cable exit points of the RCDPRs under study can be positioned

at the points of a user-defined grid of possible locations. The user also defines a set of constraint functions which

ensure a proper functioning of the RCDPR. The prescribed path is deemed to be successfully followed if all these

constraints are satisfied at all points of the discretized path. As typical examples, this paper considers cable collision,

wrench-feasibility and pose error constraint functions.

The paper contribution can then be summarized as follows. A so-called feasibility map is firstly generated. For

each possible RCDPR configuration, this map stores the feasibility of the points of the prescribed path. A point is

feasible if the corresponding platform pose satisfies all constraint functions, it is unfeasible otherwise. From this map,

feasibility transitions are then defined. These transitions represent the reconfigurations that can be possibly performed

along the prescribed path. The feasibility map is next analyzed in order to find so-called dominant configurations and

then to determine minimum sets of configurations which allow the RCDPR platform to follow the whole prescribed

path while satisfying all constraint functions, resulting in a reduced feasibility map. This analysis aims at reducing

the number of configurations to be considered in the next step. This next step uses the feasibility transitions to build

a graph whose nodes represent the feasible RCDPR reconfigurations along the prescribed path and whose arcs are

weighted by means of a user-defined cost function. Some possible cost functions are presented, a relevant example

being the number of cable exit point changes required for a given reconfiguration. Finally, the graph is searched using

Dijkstra’s algorithm which eventually determines the optimal reconfiguration strategy, i.e., the sequence of feasible

reconfigurations that permit to follow the whole prescribed path while optimizing a cost function.

Preliminary results of this work have been presented by the authors in the conference publication [18]. Compared

to it, the present paper contains a spatial case study (Section 4), while the conference presentation only contained a
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planar one. It also provides more detailed discussions of the proposed discrete reconfiguration strategy (Section 3).

Moreover, the feasibility map analysis aiming at reducing the number of configurations used in building the graph is

new (Section 3.7).

The paper is organized as follows. Section 2 describes the CDPR kinematics and elasto-static models used in

this work. Section 3 describes the main steps of the proposed discrete reconfiguration planning method, detailing the

feasibility map computation, its analysis to reduce the number of considered configurations, the graph building, and

the graph search for an optimal discrete reconfiguration strategy. Section 4 presents a spatial case study corresponding

to the painting and/or sandblasting of a tubular structure. Some conclusions and future works are finally given in

Section 5.

2. Kinematics and Elasto-Static Model

2.1. Notations and Inverse Kinematics

Figure 2 depicts a RCDPR. The moving platform is actuated by m cables. The i-th cable connection point on the

platform is denoted by Bi. The cables are actuated by winches, fixed on the base of the robot. The cables are routed

to exit points by means of pulleys. The i-th exit point, for a given configuration C, is defined as Ai,c. Fb, of origin Ob

and axes xb, yb, zb denotes a fixed reference frame. Vector bp
i denotes the position vector of point Bi expressed in the

moving platform frame Fp of origin Op and axes xp, yp and zp. Vector ab
i,c denotes the position vector of point Ai,c

expressed in the base frame Fb.

The Inverse Kinematics (IK) of the RCDPR provides the lengths li,ci = 1, . . . ,m of the cables, for a given

configuration of the CDPR and a given pose p =
[
t,φ

]T of its platform. t is the position vector of the platform

center of mass (CoM) in Fb and φ contains angles, α, β and γ, which define the platform orientation with respect to

Fb. Here, the cable weight is neglected and the cables are thus considered to be straight line segments. The length

of the i-th cable is then given by li,c = ‖ab
i,c − t − Rbp

i ‖2 where R = R(φ) the rotation matrix defining the platform

orientation.

2.2. Static Model

During the task, an external wrench we is exerted on the platform. This wrench includes the weight of the

platform, the weight of the embarked tools and the force and moments produced by the manufacturing process.

The external wrench we is a 6-dimensional vector expressed in frame Fb and takes the form we =
[
fT
e ,mT

e

]T
=[

fx, fy, fz,mx,my,mz

]T
where fx, fy and fz are the x, y and z components of the external force vector fe. mx, my and

mz are the x, y and z components of the external moment vector me. The components of the external wrench we are

assumed to be bounded as follows:

f ≤ fx, fy, fz ≤ f (1)

m ≤ mx,my,mz ≤ m (2)
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Figure 2: Schematic of a RCDPR. The red points represent the possible locations of the cable exit points, where the pulleys can be fixed.

In order to balance the external wrench, each cable generates on the platform a wrench, proportional to its tension

τi = 1, . . . ,m. Hereafter, according to the required operations and assuming that the dynamic forces transmitted to

the platform by the embarked tools are negligible, the motion of the CDPR platform is considered quasi-static. The

cables balance the external wrench we, according to the following equation [26]:

Wτ + we = 0 (3)

where τ = [τ1, . . . , τm] is the vector whose components are the cable tensions τi and W is the wrench matrix.

The RCDPRs considered in this paper are redundantly actuated, i.e., the number of cables is greater than the

number of DOFs of the moving platform. Then, the direct static problem (determination of τ in (3)) generally leads to

an infinite number of solutions. In this paper, we used the solution which minimizes the 2-norm of the cable tension

vector τ.

2.3. Elasto-Static Model

In order to quantify the stiffness of the RCDPR, an elasto-static model is used:

δwe = Kδp (4)

where the matrix K, whose expression is given in [27], defines the relation between an infinitesimal change in the ex-

ternal wrench, δwe, and the corresponding infinitesimal change in the pose of the RCDPR platform, δp =
[
δtT, δφT

]T
.
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3. Reconfiguration Planning Method

The user provides a grid of possible exit point locations where the cables can be attached to the base frame. The

task to be performed can be realized by combining several configurations, disconnecting one or more cable(s) from

their exit points and connecting them to new locations. Accordingly, in order to determine the optimal reconfiguration

scheme of a RCDPR based on some user defined criteria, a 10-step algorithm, shown in Fig. 3, is explained in the

following sub-sections.

Figure 3: Scheme of the optimal reconfiguration planning method.

3.1. Step I: Constant Design Parameters

The user defines the constant design parameters of the RCDPR model, including:

• The number of cables, m.

• The cable properties, namely, the Young Modulus, E, the diameter, φc, and the linear stiffness coefficient, k.

• The data of the motorization, including the nominal torque, τM , the nominal speed, ωM , the gearbox transmis-

sion ratio, ρR, and the winch diameter, φW .
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• The positions of the cable connection points on the platform, Bi, expressed in the local reference frame Fp by

the Cartesian coordinate vectors bp
i .

3.2. Step II: RCDPR Layout Parametrization

The user provides a point grid where the RCDPR exit points can be located. While placing the exit points at

the points of this grid, a huge number of CDPR configurations can be generated. In order to limit the complexity

of the problem, the user can parametrize the cable layouts, correlating the relative position of the cable exit points,

Ai,c, i = 1, . . . ,m, with respect to each other and with respect to the reference frame Fb. For instance, the cable exit

points can be disposed at the vertices of a parallelepiped, as shown in Fig. 4. The Cartesian coordinates vectors

ab
i,c, i = 1, . . . ,m, are described by means of nv design parameters, uv, v = 1 . . . , nv. In the previous example, three

design parameters, x1, x2, and x3 are sufficient to describe the exit point locations.

Once the exit point locations are parametrized, a set of discrete values, [u]v, is assigned to each design parameter.

The number of values contained in the v-th set is equal to εv. The discrete values [u]v, v = 1, . . . , nv are defined

according to the grid where the cable exit points can be located.

Figure 4: Location and parametrization of the exit points of a RCDPR, disposed on a parallelepiped layout.

3.3. Step III: RCDPR Configuration Set

The algorithm combines the discrete values [u]v provided at Step II. Hence, nC =
∏nv

v=1 εv configurations of CDPRs

are generated. Each j-th configuration, C j, is described by a design parameter vector, x j, containing the design

parameters uv, v = 1 . . . , nv associated to this specific configuration. The configurations are analyzed in the subsequent

steps of the algorithm.
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3.4. Step IV: Task and Environment

The user provides the data related to the task to be performed and the robot environment, namely:

• The platform weight wg and the bounds on the external wrench applied on the platform, f , f , m, m.

• The working environment, modeled by means of simple geometric shapes or approximated by means of polyg-

onal meshes.

• A set of nvp via points. The via points are connected with each other by segments. All the segments should

be followed by the RCDPR moving platform CoM. The minimization of the length of the corresponding path

is a routing inspection problem [28]. The via points and the segments connecting them are represented as a

graph. The graph is modified in such a way to contain at least one Eulerian path (a trail which crosses every

edge exactly once) or an Eulerian cycle (an Eulerian path starting and ending at the same vertex). The graph

is solved by means of Fleury’s algorithm [28]. The user can select one of the solutions, representing the path

that the platform of the RCDPR must follow during the task. The chosen path is discretized into nP points,

P = {Pi, i = 1, . . . , nP}, where Pi, i = 1, . . . , nP, are the moving platform poses associated to these points. The

platform orientation associated to each pose is defined by the user. Figure 5 presents an example of such a path

generation in a case where the moving platform has to follow 8 segments starting from the via point N1.

Figure 5: Computation of one of the possible optimal paths covering the whole set of prescribed segments. In this example, the segments to
be followed do not represent an Eulerian graph. To transform it into an Eulerian graph, minimizing the cost of the corresponding Eulerian
cycles, it is necessary to add three segments (supplementary segments). An optimal path consists in visiting the via points in the following order:
N1N5N2N3N5N4N3N4N1N5N2N1

3.5. Step V: Constraint Functions

The user specifies a set of nφ constraint functions that the RCDPR should satisfy during the task. Some constraints

are presented hereafter.

3.5.1. Wrench Feasibility

Since cables can only pull on the platform, the tensions in the cables must always be non-negative. Moreover,

cable tensions must be lower than an upper bound, τmax, which corresponds either to the maximum tension τmax1 the

cables (or other mechanical parts) can bare, or to the maximum tension τmax2 the motors can provide.
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The cable tension bounds can thus be written as:

0 ≤ τi ≤ τmax, ∀i = 1, . . . , 8 (5)

where τmax = min {τmax1, τmax2}.

Due to the cable tension bounds, RCDPRs can balance only a bounded set of external wrenches. This set of

wrenches is a convex polytope defined hereafter as the available wrench set, [we]a. In order to remain in static

equilibrium, the robot should be configured in such a way that the prescribed path is included into the Wrench Feasible

Workspace (WFW). The WFW is the set of the wrench feasible poses of the RCDPR. A pose is wrench feasible when

the robot is able to balance any external wrench we whose components satisfy (1) and (2) [29]. These wrenches

compose the so-called required wrench set, which is here an hyper-rectangle [we]r. Wrench feasibility amounts to the

inclusion of the hyper-rectangle [we]r into the polytope [we]a. This condition can be expressed by the following set

of inequalities:

Cwe ≤ d, ∀we ∈ [we]r (6)

where matrix C and vector d can be computed as detailed in [29] and [30].

3.5.2. Cable Interferences

A second constraint is related to the possible collisions between cables. If two or more cables collide, the geometric

and static models of the CDPR are not valid anymore and the cables can be damaged or their life time severely reduced.

In order to verify that cables do not interfere, it is sufficient to determine the distances between them. Modeling the

cables as linear segments, the distance dcc
i, j between the i-th cable and the j-th cable can be computed, e.g. by means

of the method presented in [31]. There is no interference if the distance is larger than the diameter of the cables, φc:

dcc
i, j ≥ φc ∀i, j = 1, . . . ,m, i , j (7)

The number of possible cable interferences to be verified is equal to Cm
2 = m!

2!(m−2)! . Note that, depending on the way

the cables are routed from the winches to the moving platform, possible interferences of the cable segments between

the winches and the pulleys may have to be considered.

3.5.3. Collisions between the Cables and the Environment

Industrial environments may be cluttered. Collisions between the environment and cables of the RCDPR should

be avoided. For fast collision detection, the environment objects are modeled with basic shapes such as spheres and

cylinders. When more complex shapes have to be considered, their surfaces are approximated with polygonal meshes.

Thus, the collision analysis is performed by computing the distances between the edges of those polygons and the

cables, e.g. by using [31].
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3.5.4. Pose Error

Cables are not perfectly rigid body. Consequently, the cables are subjected to some deformations that may induce

some moving platform pose errors. δt =
[
δtx, δty, δtz

]T
and δφ =

[
δγ, δβ, δα

]T characterize the positioning and

orientation errors of the moving platform, respectively (Section 2.3).

The pose error must remain bounded according to a positioning error threshold vector, δtc =
[
δtx,c, δty,c, δtz,c

]
,

where δtx,c, δty,c and δtz,c are bounds on the positioning errors along the axes xb, yb and xb, and an orientation error

threshold vector, δφ =
[
δγc, δβc, δαc

]
, where δγc, δβc and δαc are bounds on the platform orientation errors about the

axes xb, yb and zb, i.e.:

−
[
δtx,c, δty,c, δtz,c

]
≤

[
δtx, δty, δtz

]
≤

[
δtx,c, δty,c, δtz,c

]
(8)

−
[
δγc, δβc, δαc

]
≤

[
δγ, δβ, δα

]
≤

[
δγc, δβc, δαc

]
(9)

3.6. Step VI: Feasibility Map

This step aims at identifying the RCDPR configurations C j, j = 1, . . . , nC which, at a given point Pi ∈P , satisfies

all the constraints defined at Step V. In particular, any pose associated to the i-th point, Pi, and the j-th configuration,

C j, is said to be feasible if it satisfies all the nφ user-defined constraints, φl(i, j), l = 1, . . . , nφ. The information

associated to the pose feasibility is stored in the variables Fi, j, i = 1, . . . , np, j = 1, . . . , nC where i and j represent the

index of the analyzed point and the index of the analyzed configuration, respectively.

Definition 1.

Fi, j = 1 ⇐⇒

nφ∑
l=1

φl(i, j) = 0 (10)

where φl(i, j), l = 1, . . . , nφ is defined as :


φl(i, j) = 0 ⇐⇒ the l−th constraint is satisfied for the j−th robot configuration at point Pi

φl(i, j) = 1 ⇐⇒ the l−th constraint is not satisfied for the j−th robot configuration at point Pi

A feasibility map is created according to the values of Fi, j, i = 1, . . . , nP, j = 1, . . . , nC. A simple feasibility map is

shown in Fig. 6. The horizontal axis represents the points Pi, i = 1, . . . , nP of the discretized prescribed path. The

vertical axis shows the values of Fi, j computed for four configurations C1, C2, C3 and C4. At a given point Pi, Fi, j = 1

if the pose assumed by configuration C j is feasible and Fi, j = 0 if the pose assumed by configuration C j is infeasible.

From the feasibility map, it is apparent that, for a given configuration, several changes in the feasibility conditions are

possible between two consecutive points Pi and Pi+1. These feasibility changes are named Feasibility Transitions (FT).

Hereafter, Fi, j is said to be a Positive Feasibility Transition (PFT) when a transition from an infeasible condition to a

feasible one occurs at point Pi for configuration C j.
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Definition 2.

Fi, j is a PFT if


Fi, j = 1

Fi−1, j = 0

Fi+1, j = 1

(11)

On the contrary, Fi, j is said to be a Negative Feasibility Transition (NFT) when a transition from a feasible condition

to an infeasible one occurs.

Definition 3.

Fi, j is a NFT if


Fi, j = 1

Fi+1, j = 0

Fi−1, j = 1

(12)

For instance, observing the example of Fig. 6, F6,3 is a PFT since F5,3 = 0 and F6,3 = F7,3 = 1. Moreover, F2,3 is a

NFT since F1,3 = F2,3 = 1 and F3,3 = 0. In the following sections, the possible reconfigurations of the RCDPR will

be generated only in presence of a PFT or a NFT. In Fig. 6, a so-called isolated feasible transition can be seen at F9,1

since the surrounding poses are not feasible, i.e., F8,1 = 0 and F10,1 = 0. Obviously, isolated feasible transitions need

not be taken into account during the computation of the optimal reconfiguration strategy.

Figure 6: A feasibility map: The green arrows represent the possible reconfigurations, the red dots show the Positive Feasibility Transitions (PFTs),
and the blue dots show the Negative Feasibility Transition (NFTs).

3.7. Step VII: Configuration Selection

Some feasibility maps may be composed of a large number nC of configurations. The present step aims at reducing

the number of configurations of the feasibility map to be used in the following optimization by analyzing the minimum
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number of configurations, nm, that can be used to follow the whole prescribed path P . Figure 7 illustrates this

configuration selection procedure.

a. Feasibility Map Modification (Fig. 7a). The algorithm simplifies the data stored in the feasibility map. A config-

uration may present isolated feasible transitions (as illustrated in Sec. 3.6) or isolated clusters of few adjacent

feasible poses. In both cases, it is not convenient to use these feasible poses. Isolated feasible poses imply

that the RCDPR should be reconfigured to cover only a small portion of the prescribed path of the mobile

platform. This situation does not facilitate the achievement of practical goals such as the minimization of the

number of reconfigurations to be performed to follow the whole prescribed path. Each isolated feasible transition,

Fi, j = 1, s.t. Fi−1, j = 0, Fi+1, j = 0 is transformed directly into an infeasible pose, Fi, j = 0. Regarding the clusters

composed of a few feasible poses, they are detected by analyzing each configuration C j, j = 1, . . . , nC by means

of a clustering algorithm: If the detected cluster contains a number of feasible poses lower than a user defined

threshold, h1, the poses belonging to this cluster are transformed into infeasible ones.

b. Filtering (Fig. 7b). The algorithm computes the percentage of feasible poses, p j, associated to each configuration

C j:

p j =

∑nP
i=1 Fi, j

nP
(13)

The configurations with a number of feasible poses lower than a user defined threshold, h2, are eliminated from

the feasibility map. As a result, nC′ configurations remain in the feasibility map after this filtering process.

c. Dominant Solution Computation (Fig. 7c). The algorithm analyzes the nC′ configurations at disposal and identifies

the so-called dominated and dominant configurations.

Definition 4.

A dominated configuration is a configuration C j such that its feasible poses are all included in the set of

feasible poses of another configuration Ck and whose percentage of feasible poses, p j is strictly lower than pk

C j is a dominated configuration if ∃ Ck, k , j s.t.


∀Fi, j, i = 1, . . . , nP : Fi, j = 1 =⇒ Fi, k = 1

p j < pk

Consequently, the dominant configurations can be defined as follows.

Corollary 1.

A dominant configuration is a configuration such that its feasible poses are not all included in the set

of feasible poses of another configuration.

13



(a) Feasibility map modification.

(b) Filtering.

(c) Dominant solution computation.

(d) Computation of the minimum number of configurations.

Figure 7: Example of a feasibility map and minimum set of configurations to be used during the graph building.
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d. Computation of the Minimum Number of Configurations (Fig. 7d). Given nd dominant configurations, the algo-

rithm computes the minimum number of configurations, nm, that allow the moving platform to follow the whole

prescribed path while satisfying all constraint functions. The computation is performed by analyzing the possible

dominant configuration combinations of dimension η. The analysis starts at η = 1. The value of η is increased till

at least one combination covers all the points of the prescribed path. For a given η, the number of combinations to

be tested is equal to Cnd
η =

nd!
η!(nd−η) . In the best case, only one configuration is sufficient, nm = η = 1. In the worst

case, all dominant configurations are required to follow the complete path, i.e., nm = η = nd.

e. Definition of the Configurations to Build the Graph. Among all the Cnd
nm =

nd!
nm!(nd−nm) combinations of nm configura-

tions, all the ones which proved to belong to a combination which covers entirely the prescribed path are retained

and will be used to build the graph of the reconfigurations (Step VIII). When the prescribed path cannot be fully

covered, due to an extremely cluttered environment or other external constraints, the algorithm selects the set of

configurations that let cover the largest number of points of the prescribed path.

An example of the configuration selection procedure, based on a 4-configurations feasibility map, is illustrated in

Fig. 7. C1 contains an isolated feasibility transition at P9 and configuration C3 has a cluster of two feasible points

at P1 and P2. With the threshold h1 = 3, the feasibility map is modified in such a way that F9,1 = 0, F1,3 = 0

and F2,3 = 0 (Fig. 7a). According to the number of feasible points of the four configurations, and with a threshold

h2 = 0.4, configuration C4 has been eliminated, since p4 = 0.3 (Fig. 7b). The analysis performed over the remaining

configurations shows that configuration C1 is dominated by configuration C2 (Fig. 7c). Configuration C3 is also a

dominant configuration. Therefore, C2 and C3 are the two dominant configurations of the problem at hand that can be

used to complete the task (Fig. 7d).

3.8. Step VIII: Graph Building

A graph is generated from the reduced feasibility map obtained at Step VII. The nodes of the graph, denoted

as Ni, j,k, represent the possible reconfigurations the robot can perform at point Pi to switch from the actual feasible

configuration C j to another feasible configuration Ck. The nodes are connected by oriented arcs representing the

possible sequences of reconfigurations to be followed in order to follow the whole prescribed path. In fact, two nodes

Ni, j,k and Ni′, j′,k′ are adjacent when i′ > i, k = j′ and all the poses between Pi,k and Pi′,k are feasible:
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Definition 5.

Ni, j,k and Ni′, j′,k′ are adjacent if


i′ > i

j′ = k

Fi′′,k = 1, ∀ i′′ s.t. i ≤ i′′ ≤ i′

(14)

The graph building algorithm is illustrated in Fig. 8. It consists of the following steps.

a. The first node, N0, is a virtual node. This node represents the starting point of the graph. It is associated to a virtual

point of the prescribed path, P0, and it is not assigned to any configuration. Its adjacent nodes, N1,0,k, are associated

to the point P1 and they are created only when a configuration Ck is feasible at point P1, i.e., F1, k = 1.

b. The intermediate nodes, Ni, j,k, are generated by analyzing each feasibility transition of the feasibility map, from

point P2 to point Pnp−1. Nodes are generated in correspondence to NFTs and PFTs. Given a NFT, a node Ni, j,k is

generated if configuration Ck is feasible at points Pi and Pi+1.

Definition 6.

Ni, j,k is generated if


Fi, j is a NFT

Fi, k = 1

Fi+1, k = 1

(15)

Given a PFT, a node Ni,k, j is generated if configuration Ck is feasible at points Pi and Pi−1. Thus:

Definition 7.

Ni,k, j is generated if


Fi, j is a PFT

Fi, k = 1

Fi−1, k = 1

(16)

Thus, the following corollary is verified:

Corollary 2.

According to Definitions 6 and 7, a node Ni, j,k exists only if both configurations C j and Ck are

feasible at point Pi : Fi, j = 1 and Fi, k = 1
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c. The ending node, Ne, is a virtual node. This node is associated to point Pnp and it is not assigned to any configu-

ration. Its adjacent nodes, NnP, j,e, are associated to point PnP and they are created only when a configuration C j is

feasible at point PnP , e.g., FnP, j = 1.

Finally, the adjacent nodes are connected to each other, according to Definition 5, and a cost is assigned to each

arc. Some relevant cost functions are discussed in Sec. 3.9. Figure 9 shows the graph associated to the feasibility map

given in Fig. 6.

3.9. Step IX: Cost Functions

The user defines a set of nµ cost functions, µt, t = 1, . . . , nµ. The cost functions are used to compute the cost of

each arc of the graph. The cost functions to be used depend on the task to be performed by the RCDPR or on the user

preferences. Nevertheless, five relevant cost functions are presented thereafter.

1. Number of reconfigurations. The first cost function, µ1, bounded between 0 and 1, aims at minimizing the

number of reconfigurations, nr, defined as the number of exit point changes to be performed in order to switch

from configuration C j to configuration Ck:

µ1 = nr (17)

Note that µ1 is equal to m if all the cables have to be reconfigured. This cost function can be considered in order

to reduce the number of cable attaching/detaching operations.

2. Capacity margin. The second cost function, µ2, aims at maximizing the capacity margin of the RCDPR [32].

The capacity margin quantifies how ”close” the RCDPR is to a non static equilibrium configuration, with respect

to the required wrench set, [w]e. Given two adjacent nodes, Ni, j,k and Ni′,k,k′ , µ2 is defined as the inverse of the

average of the capacity margin between points Pi and Pi′ of the prescribed path. The evaluation is performed

with respect to configuration Ck:

µ2 =

∑i′
i′′=i S i′′,k

(i′ − i)
(i′ − i)

np
=

∑i′
i′′=i S i′′,k

np
(18)

where the capacity margin S i′′,k, measured at points Pi′′ , i′′ = i, . . . , i′ for configuration Ck, is defined as follows:

S i′′,k = min
j=1,...,n j

( min
l=1,...,nl

(si′′, j,l)) (19)

si′′, j,l being the signed distance from the j-th vertex of [we]r to the l-th face of [we]a. n j and nl are equal to the

number of vertices of [we]r and the number of faces of [we]a, respectively.

It has to be noted that vector we and matrix W in (3) are not homogeneous. In order to compute the capacity
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Figure 8: Flowchart of the graph building algorithm.
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Figure 9: Graph associated to the feasibility map shown in Fig. 6.

margin, they are normalized as follows:

Wn =


I3 03

03
1
rg
I3

 W (20)

we, n =


I3 03

03
1
rg
I3

 we (21)

with rg
2 = (1/m)

∑m
i=1 ‖bb

i ‖
2
2 is the radius of gyration of the moving-platform. I3 and 03 are the [3x3] identity

and null matrices, respectively.

3. Positioning error. The third cost function, µ3, aims at minimizing the norm of the positioning error of the

RCDPR moving platform. Given two adjacent nodes, Ni, j,k and Ni′,k,k′ , this cost function is expressed as the

weighted mean of the 2-norm of the positioning error, ‖δt‖2, of the moving platform between points Pi and Pi′

of the prescribed path. The evaluation is performed with respect to configuration Ck:

µ3 = ‖δt‖2
(i′ − i)

np
=

∑i′
i′′=i ‖δti′′,k‖2

i′ − i
(i′ − i)

np
=

∑i′
i′′=i ‖δti′′,k‖2

nP
(22)

where ‖δti′′,k‖2 is the 2-norm of the positioning error vector at point Pi′′ for configuration Ck.

4. Cable tensions. The fourth cost function, µ4, aims at minimizing the cable tensions. Given two adjacent nodes,

Ni, j,k and Ni′,k,k′ , µ4 is equal to the weighted mean of the norm of the cable tension vector, ‖τ‖2, between points

Pi and Pi′ along the prescribed path. As mentioned in Sec. 2.2, the minimal 2-norm cable tension vector is
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chosen as the solution to (3). The evaluation is performed with respect to configuration Ck:

µ4 = ‖τ‖2
(i′ − i)

np
=

∑i′
i′′=i ‖τi′′,k‖2

i′ − i
(i′ − i)

np
=

∑i′
i′′=i ‖τi′′,k‖2

np
(23)

where ‖τi′′,k‖2 is the 2-norm of the cable tension vector at point Pi′′ for configuration Ck.

5. Cable tension variations. The fifth cost function, µ5, aims at minimizing the cable tension variations along the

prescribed path. This function is defined by the weighted standard deviation στ of the norm of the cable tension

vector, between points Pi and Pi′ . The evaluation is performed with respect to configuration Ck:

µ5 = στ
(i′ − i)

np
=

√√∑i′
i′′=i

(
||τi′′,k ||2 − ||τ||2

)2

i′ − i
(i′ − i)

np
(24)

3.10. Step X: Dijkstra’s Algorithm

A Dijkstra’s algorithm [33], [34], [35] is used to select the optimal reconfiguration strategy. It searches for the

graph in order to compute the shortest path connecting nodes N0 and Ne. The optimal sequence of nodes to be crossed

corresponds to the optimal sequence of reconfigurations to be performed to allow the moving platform to follow the

whole prescribed path. The optimization can be performed by analyzing different criteria, and consequently different

costs associated to the arcs of the graph. The cost of the optimal reconfiguration strategy, Φt, is equal to the sum of

the costs of the arcs connecting the nodes belonging to the shortest path.

4. Case Study

The reconfiguration planning method introduced in Section 3 is implemented in the following case study which

aims at painting and sandblasting the yellow tubular structure shown in Fig. 10. This structure is 5 m long, 2 m wide

at its extremities and 1.5 m wide at its center and lies on the ground. The tubes have a diameter φt equal to 10 cm.

The RCDPR should paint and sandblast both the inner and the outer faces of the structure. A robotic arm, embarked

on the moving platform, aims at manipulating the sandblasting and painting tools. Therefore, the orientation of the

moving platform can be kept constant and the xp, yp and zp axes of the moving platform frame Fp are supposed to be

parallel to the xb, yb and zb axes of the base frame Fb.

4.1. Problem Description

4.1.1. Constant Design Parameters (Step I)

The RCDPR consists of a moving platform connected to the base by m = 8 cables, as shown in Fig. 10. The

characteristics of the cables of the RCDPR are the following: The Young Modulus E is equal to 100 GPa, the cable

diameter φc is equal to 4 mm, the stiffness coefficient ki is equal to 252 KN/m, and the structural maximum cable
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Figure 10: Case study: The yellow tubular structure should be sandblasted and painted by the RCDPR. The RCDPR consists of a moving platform,
eight cables and a base with some sliding bars.

tension is equal to 34.95 KN. A tension safety coefficient, ks1 = 5, has been applied in this case study so that

τmax1 = 6.99 KN.

The base length, ls, is equal to 7 m, the base width, ws, is equal to 4.5 m and the base height, hs, is equal to 4 m.

The cables are connected to the base frame through some pulleys. The pulleys can be installed on a predefined grid of

locations which are located on ten sliding bars. The sliding bars are installed on the lateral and top sides of the base.

Their motion is discretized with a constant step of 25 cm.

The cables are coiled and uncoiled on winches, which are actuated by electric motors. The characteristics of

the power system are the following: The nominal torque of the motor, τM , is equal to 45 Nm, the nominal speed,

ωM , is equal to 3000 rpm, the gearbox transmission ratio, ρR, is equal to 10, the diameter of the winches, ρW , is

equal to 15 cm. The cable tension limit τmax is equal to τmax = min {τmax1, τmax2} = 6000 N. Considering that

τmax2 =
2
φw
ρR τM = 6000 N, τmax = τmax2 since the tension that can be provided to the cables is lower than τmax1.

The moving platform is represented in Fig. 11. Its width, wp, is equal to 20 cm, its length, lp, is equal to 20 cm

and its height is equal to 25 cm. The Cartesian coordinates of points Bi, i = 1, . . . , 8, are expressed in frame Fp as

21



follows:

bp
1 =

[
−wp/2 − c0,−lp/2,−hp/2

]
(25)

bp
2 =

[
−wp/2,−lp/2 − c0, hp/2

]
(26)

bp
3 =

[
−wp/2 − c0, lp/2,−hp/2

]
(27)

bp
4 =

[
−wp/2, lp/2 + c0, hp/2

]
(28)

bp
5 =

[
wp/2 + c0, lp/2,−hp/2

]
(29)

bp
6 =

[
wp/2, lp/2 + c0, hp/2

]
(30)

bp
7 =

[
wp/2 + c0,−lp/2,−hp/2

]
(31)

bp
8 =

[
wp/2,−lp/2 − c0, hp/2

]
(32)

where c0 is an offset used to avoid both the collisions between the cables and the parallel singularities of the RCDPR

(the wrench matrix W has not full rank). The offset helps to prevent this situation by introducing an asymmetry

between the layout of the cable exit points and the layout of the cable connection points on the platform. In this case

study, the offset is equal to 3.5 cm.

Figure 11: Moving platform.

4.1.2. RCDPR Layout Parametrization and Configuration Set (Steps II and III)

Two different layouts and parametrizations of the RCDPR are used in order to cover the inner and the outer areas

of the tubular structure. In the layout chosen for the outer faces of the structure, the exit points, Ai, i = 1, . . . , 8, are

located at the vertices of a parallelepiped. The Cartesian coordinates of points Ai, i = 1, . . . , 8 are parametrized by
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means of four parameters v1, v2, v3 and v4 as shown in Fig. 12:

ab
1 = [v1 − ls/2 v4]T ab

2 = [v1 − ls/2 v2]T (33)

ab
3 = [v1 ls/2 v4]T ab

4 = [v1 ls/2 v2]T (34)

ab
5 = [v3 ls/2 v4]T ab

6 = [v3 ls/2 v2]T (35)

ab
7 = [v3 − ls/2 v4]T ab

8 = [v3 − ls/2 v2]T (36)

The four parameters can take the following values:

[v]1 = {−2.10,−1.85,−1.60,−1.35,−1.10, 1.10, 1.35, 1.60, 1.85, 2.10} (37)

[v]2 = {0.10, 0.35, 0.60, 0.85, 1.10, 1.90, 2.15, 2.40, 2.65, 2.90, 3.15, 3.40} (38)

[v]3 = {−2.10,−1.85,−1.60,−1.35,−1.10, 1.10, 1.35, 1.60, 1.85, 2.10} (39)

[v]4 = {0.10, 0.35, 0.60, 0.85, 1.10, 1.90, 2.15, 2.40, 2.65, 2.90, 3.15, 3.40} (40)

Those values for parameters v1, v2, v3 and v4 lead to nC = 14400 possible configurations of the RCDPR.

Figure 12: Parametrization of the RCDPR while operating on the outer faces of the tubular structure.

The exit point layout used to cover the inner faces of the structure is a parallelepiped too, as shown in Fig. 13.

However, considering the symmetry of the task, the exit points Ai, i = 1, . . . , 8 are located symmetrically with respect

to plane ybOzb. As a consequence, the three parameters w1, w2 and w3 are considered to be sufficient to define the
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Figure 13: Parametrization of the RCDPR while operating on the inner faces of the tubular structure.

Cartesian coordinates of points Ai:

ab
1 = [−w1 − ls/2 w2]T ab

2 = [−w1 − ls/2 w3]T (41)

ab
3 = [−w1 ls/2 w2]T ab

4 = [−w1 ls/2 w3]T (42)

ab
5 = [w1 ls/2 w2]T ab

6 = [w1 ls/2 w3]T (43)

ab
7 = [w1 − ls/2 w2]T ab

8 = [w1 − ls/2 w3]T (44)

Parameters w1, w2 and w3 can take the following values:

[w]1 = {0, 0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0, 2.25} (45)

[w]2 = {0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0, 2.25} (46)

[w]3 = {0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0, 2.25} (47)

Those values for parameters w1, w2 and w3 lead to nC = 810 possible configurations of the RCDPR.

4.1.3. Task and Environment (Step IV)

The weight of the moving platform and the embarked tools is equal to 31 Kg. The forces transmitted by the

painting and sandblasting tools to the moving platform are bounded as follows:

−30 N ≤ fx, fy ≤ 30 N (48)

fz = −310 N (49)

The moments mx, my and mz about axes xb, yb and zb are neglected: mx,my,mz = 0.
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In order to complete the operations, the CoM of the moving platform should follow the profile of the tubular

structure with an offset dt = 80 cm with respect to the central axes of the tubes. Figure 14 shows the red segments

and the green via points that the path prescribed to the moving platform should follow. According to the procedure

described in Sec. 3.4, an Eulerian path, Pout, and an Eulerian cycle, Pin, covering the outer and inner faces of the

tubular structure, respectively, can be defined. Pout is discretized into 450 points and Pin is discretized into 500

points. The Eulerian path, Pout, is illustrated in Fig. 15. The moving-platform should go through the green via points

while respecting a prescribed order. For instance, the moving-platform should follow the Eulerian path, Pout, while

passing through 23 points in sequence, namely from point P1 to point P23, as shown in Fig. 15. Note that points P1,

P5, P11 and P23 are coincident and are named P1,5,11,23.

Figure 14: Sets of red segments and green via points to be covered by the platform CoM.
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Figure 15: Eulerian path Pout to be followed by the platform CoM when moving on the outer faces of the tubular structure.
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4.2. Results for the Outer Faces of the Tubular Structure

4.2.1. Feasibility Map and Configuration Selection (Steps VI and VII)

The nC = 14400 possible configurations of the RCDPR obtained in the previous section are analyzed in order to

identify the segments of Pout that can be covered by each configuration. Then, the constraints introduced in Sec. 3.5

are considered leading to trace a feasibility map composed of 14400 lines, each line corresponding to one RCDPR

configuration.

The problem turns out to be fairly complex because of the large number of lines in the feasibility map. In order

to reduce the problem complexity, the configuration selection approach explained in Sec. 3.7 is used to reduce the

number of configurations to be considered with the following thresholds: h1 = 20 and h2 = 0.25. As a result, nd = 76

dominant configurations are obtained among nC′ = 1186 filtered configurations. It is noteworthy that the minimum

number of configurations required to complete the task among the 76 dominant configurations is equal to nm = 3.

Moreover, 784 triplets of dominant configurations can be used to cover the prescribed path Pout completely. Note

that 57 configurations can be considered among the 76 dominant ones to generate the 784 triplets. The 19 remaining

dominant configurations necessarily lead to a combination of more than three dominant configurations to cover the

whole prescribed path.

4.2.2. Graph Building and Cost Functions (Steps VIII and IX)

Figure 16 illustrates the graph obtained from the selected 57 dominant configurations. The graph is composed of

452 nodes and 10752 arcs. Due to the size of this graph, only a partial representation has been provided in Fig. 16.

The corresponding reconfiguration planning problem has been solved using a Dijkstra’s algorithm with respect to

each cost function, µi = i = 1, . . . , 5, proposed in Sec. 3.9.

The optimal solutions associated to each of the five cost functions are represented on the feasibility map shown

in Fig. 17. For the sake of clarity, only the 10 configurations, C∗i , i = 1, . . . , 10, composing the five different

optimal solutions are displayed on the feasibility map. Table 1 gives the design parameters corresponding to those

10 configurations.

4.2.3. Results Analysis

From Fig. 17, it is apparent that configurations C∗[1−4] have the same feasibility map, as well as configurations

C∗[6−10]. Indeed, from Def. 4, two dominant configurations, generated by different design parameters, can share the

same feasibility map. Note that, different configurations can present the same feasibility map but generally provide

different performances. For instance, configuration C∗10 is better in terms of cable tensions than configurations C∗[6−9].

While using µ1 as the cost function (arc cost in Dijkstra’s algorithm), the number of required reconfigurations to

complete the task is minimized. Five reconfigurations turn out to be sufficient to complete the task. C∗10 is the starting

configuration.
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Figure 16: Partial representation of the reconfiguration graph for the case study. The graph is composed of 452 nodes and 10752 arcs.

Table 1: Optimal configurations for the spatial RCDPR.

Configuration v1 v2 v3 v4

C∗1 -2.1 0.1 -1.1 3.4
C∗2 -1.85 0.1 -1.1 3.4
C∗3 -1.85 0.35 -1.1 3.4
C∗4 -1.85 0.85 -1.1 3.4
C∗5 -1.85 2.4 1.85 3.4
C∗6 1.1 0.1 1.85 2.65
C∗7 1.1 0.1 1.85 3.4
C∗8 1.1 0.1 2.1 3.4
C∗9 1.1 0.6 1.85 3.4
C∗10 1.1 0.85 1.85 3.4
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Figure 17: Feasibility map and optimal solutions for the spatial RCDPR.
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Table 2: Optimal reconfiguration planning and the associated cost functions for the outer faces of the tubular structure. For each reconfiguration
strategy, the optimized cost function is surrounded by a red box.

Optimal Reconfiguration Planning Cost of the reconfiguration strategy
µ1 [] µ2 [N] µ3 [mm] µ4 [N] µ5 [N]

Optimal planning w.r.t. µ1 30 234.8 0.208 578.1 233.9
Optimal planning w.r.t. µ2 34 281.3 0.217 615.0 232.8
Optimal planning w.r.t. µ3 56 260.4 0.132 751.2 504.5
Optimal planning w.r.t. µ4 42 238.9 0.205 542.3 203.5
Optimal planning w.r.t. µ5 60 135.0 0.227 561.8 158.5

At the 11th point, P11, of the discretized path Pout, all the constraints of the optimization problem at hand are

not satisfied anymore for configuration C∗10. As a consequence, the RCDPR switches from configuration C∗10 to

configuration C∗5. During the reconfiguration, all the exit points have to be displaced, except points A5 and A7. A NFT

is then encountered at P155 and the RCDPR switches to configuration C∗9. During this reconfiguration, exit points A5

and A7 are not displaced. The RCDPR meets another NFT at P209 and six of the exit points are displaced. Between

points P209 and P294, the RCDPR remains in configuration C∗5. Two other reconfigurations are necessary to reach the

end of Pout, as shown in Fig. 17. Table 2 gives the optimal value of each cost function µi = i = 1, . . . , 5, obtained

with Dijkstra’s algorithm.

The optimization performed with respect to µ2 leads to five reconfigurations, as well, while maximizing the

capacity margin of the RCDPR. C∗7 is the starting configuration. The first reconfiguration occurs at point P80, in

presence of a PFT. The RCDPR switches to configuration C∗5. The portions of Pout between P80 and P148 and

between P204 and P294 cover the upper face of the tubular structure. Configuration C∗5 is assigned to these portions

of Pout since it improves the capacity margin. In fact, it should be noted that C∗5 is a suspended configuration and

suspended configurations usually provide a higher capacity margin than fully constrained ones. The fully constrained

configurations C∗6 and C∗2 are used on the lateral faces of the tubular structure. The RCDPR switches to these

configuration when a PFT or a NFT is encountered.

The optimization performed while considering µ3 minimizes the use of the suspended configuration C∗5. In order to

maintain a static equilibrium, a fully constrained configuration usually requires higher cable tensions than a suspended

configuration. Larger cable tensions allow us to increase the RCDPR stiffness, reducing the positioning errors. The

positioning error optimization leads to configuration C∗8 at the beginning of Pout. When a NFT is encountered,

at P111, the RCDPR switches to configuration C∗5, coming back to configuration C∗8 when a PFT is encountered at

P148. Following the same principle, the RCDPR uses configuration C∗5 only when the fully constrained configurations

become infeasible. It goes back to configurations C∗1 or C∗8, as soon as possible, when following configuration C∗5 a

PFT is encountered. It is noteworthy that, despite the high number of reconfigurations, only three configurations (C∗1,

C∗5 and C∗8) are required to complete the task. The fully constrained ones, C∗1 and C∗8, are symmetric with respect to
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Figure 18: Configurations C∗1, C∗5 and C∗8, composing the optimal reconfiguration planning with respect to cost function µ3.
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the plane ybOzb, as shown in Fig. 18. Furthermore, it has to be noticed that, despite an improvement of the platform

positioning error, the optimal reconfiguration planning increases the cable tension average to 751.2 N and the average

of the cable tension variations to 504.5 N.

The optimizations performed while considering µ4 and µ5 as cost functions are similar: The two solutions assign

the same configurations to a large portion of Pout. In both the optimization problems, the configurations taking part to

the optimal solutions are C∗4, C∗5 and C∗10. The optimal reconfiguration planning with respect to µ4 requires the RCDPR

to perform seven reconfigurations and displaces 42 exit points. The number of reconfigurations is equal to ten when

the cable tension variation (represented by µ5) is optimized, and the number of exit point displacements is equal to 60.

Figure 19 illustrates the optimal reconfiguration scheme of the RCDPR obtained for cost function µ5.

Figure 19: Configurations C∗4, C∗5 and C∗10, composing the optimal reconfiguration planning with respect to cost function µ5.
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Table 3: Optimal configurations and the associated cost functions for the inner faces of the tubular structure. For each configuration, the optimal
cost functions are surrounded by red boxes.

Optimal Configurations µ2 [N] µ3 [µm] µ4 [N] µ5 [N]

w1 =0.75 m, w2 =2 m, w3 =1.25 m (See Fig. 20) 526.31 157 841.99 365.67
w1 =0.75 m, w2 =2 m, w3 =0.25 m (See Fig. 21) 166.67 331 625.81 205.69

4.3. Results for the Inner Faces of the Tubular Structure

According to Sec. 4.1.2, mixing the design parameters in [w]1, [w]2 and [w]3, nC = 810 configurations are

obtained. Performing the constraint analysis, a feasibility map has been built and simplified according to the con-

figuration selection procedure described in Sec. 3.7. The thresholds h1 and h2 have been initialized with the same

values used to compute the optimal reconfiguration strategy for the outer faces of the tubular structure.

The analysis of the feasibility map leads to nd = 14 dominant configurations. Each of these configurations allows

the moving platform to cover entirely the path Pin without any reconfiguration of the robot. Hence, the task can be

performed by selecting only one of the dominant configurations. Among those configurations, two of them lead to

some optimal solutions.

The configuration whose design parameters w1, w2 and w3 are equal to 0.75 m, 2 m and 0.25 m, respectively,

minimizes the cost functions µ2 and µ3, according to the values given in Tab. 3. According to this configuration, the

RCDPR is fully constrained, as shown in Fig. 20. The cables of the RCDPR are crossing (but without any cable-cable

collision), improving the RCDPR precision and stiffness.

The configuration whose design parameters w1, w2 and w3 are equal to 0.75 m, 2 m and 1.25 m, respectively, is

shown in Fig. 21. The RCDPR is suspended above the prescribed trajectory. Being suspended, the cable tensions are

minimized. This configuration optimizes the cost functions µ4 and µ5. The optimal values are collected in Tab. 3.

4.4. Computational Time

The simulation has been performed on an Intel(R) Core(TM) i7-3630QM CPU @ 2.40 Ghz, with 8 GB of RAM.

The results collected in Tab. 4 show that Step III (RCDPR Configuration Set) and Step X (Dijkstra’s Algorithm),

presented in Sec. 3, are performed in less than 0.02 s. On the contrary, Step VI (Feasibility Map), which involves the

constraint analysis of a large number of configurations, required 39 hours of computations. Step VII (Configuration

Selection) and Step VIII (Graph Building) required 10.1 s and 8.2 minutes of computation, respectively. The low

computational effort required to perform Step VIII is due to the configuration selection performed at Step VII. Building

the graph using the full set of configurations generated at Step III would require several days of intensive computations.

The result would lead to a wide graph whose analysis may be prohibitive.
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Figure 20: RCDPR configuration, with w1 = 0.75 m, w2 = 2 m and w3 = 0.25 m, which optimizes µ2 and µ3 for the inner prescribed path Pin

Table 4: Analysis of the computational time and number of operations for the case study of Sec. 4.

Algorithm Step Computational Time [s] Nb of Operations Complexity of Operations

Step III (RCDPR Configuration Set) 0.019
∏nv

v=1 εv Low
Step VI (Feasibility Map) 142335

∏nv
v=1 εvnp High

Step VII (Configuration Selection) 10.61 Non Predictable Medium
Step VIII (Graph Building) 492.64 npnφ High
Step X (Dijkstra’s Algorithm) 0.018 Non Predictable Low
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Figure 21: RCDPR configuration, with w1 = 0.75 m, w2 = 2 m and w3 = 1.25 m, which optimizes µ4 and µ5 for the inner prescribed path Pin
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5. Conclusions

This paper dealt with RCDPRs discrete reconfiguration planning. The considered task consists of low force

operations, such as sandblasting and painting, in cluttered industrial environments and the RCDPR reconfigurability

results from movable cable exit points. These exit points can be positioned at a possibly large but discrete set of

possible locations. Means to select and optimize the sequence of discrete reconfigurations allowing the RCDPR

moving platform to follow a prescribed path were introduced. A so-called feasibility map was first defined and

generated. This map reflects the feasibility of all possible RCDPR configurations at all points of the discretized

prescribed path, with respect to a set of constraints. In this paper, the latter set included wrench-feasibility, cable

collision, and pose error constraints. Then, the feasibility map is analyzed and filtered in order to determine minimum

sets of configurations which allow the RCDPR to follow the whole prescribed path. Based on these minimum

sets, a graph-based approach was proposed to solve the discrete reconfiguration planning problem by providing a

reconfiguration sequence which is optimal with respect to one of several possible user-defined cost functions. A

case study which consists in following a path covering the whole inner and outer parts a tubular structure was finally

presented. The results notably show that an optimal solution, which minimizes the number of required RCDPR

reconfigurations, can be found.

The proposed discrete reconfiguration planning method may require further improvements, notably in order to

reduce the computational time of the constraint analysis (feasibility map). As part of our future works, heuristic

approaches will be considered. Indeed, with such approaches, it is presumably possible to obtain solutions to the

discrete reconfiguration problem without analyzing all the constraints of all the possible configurations. Such solutions

would not be optimal as the ones considered in this paper but should be much faster to compute.
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