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Epsilon-covering: a greedy optimal algorithm for simple shapes

Tuong-Bach Nguyen ∗ Isabelle Sivignon ∗

Abstract

Unions of balls are widely used shape representations.
Given a shape, computing a union of balls that is both
accurate in some sense and of small cardinality is thus a
challenging problem. In this work, accuracy is ensured
by imposing that the union of balls, called covering, is
included in the shape and covers a parameterized core
set (namely the erosion) of the shape. For a family
of simple shapes, we propose a polynomial-time greedy
algorithm that computes a covering of minimum cardi-
nality for a given shape.

1 Introduction

Unions of balls are common shape representations, use-
ful for instance to describe molecules in biochemistry [4],
to quickly detect collisions [3] between shapes or to de-
rive higher-level representations. The ubiquity of unions
of balls is largely due to the existence of provably good
conversion algorithms that allow us to derive them from
various representations such as point clouds and polyg-
onal meshes [6]. However, the union of balls output by
the conversion process provides only an approximation
of the original shape.

In a previous work [2], we introduced a novel way,
called ε-covering, of controlling the geometric error be-
tween a given input shape and a selected union of balls.
The idea is to impose that the union of balls covers a
core set of the shape and does not cross over an outer set.
This problem falls in the family of geometric set cover
problems, where the goal is to minimize the number of
balls. We proved that, in the general case, computing
an ε-covering of minimum cardinality is an NP-complete
problem. Other approaches, related to the maximum k-
cover problem, aim at maximising the coverage for a
fixed number of balls [4], but the problem is also NP-
complete.

In this work, we consider the family of input shapes
that are themselves 2D unions of balls with a tree-like
structure. An ε-covering of such a shape is a simplified
union of balls. We present a polynomial-time algorithm
that computes an ε-covering of minimum cardinality for
this specific family. To do so, we rely on the medial axis
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structure of unions of balls, and show how to contin-
uously sweep its pencils in order to get a correct and
optimal result.

2 Statement of the result

In this paper, R2 is endowed with the Euclidean dis-
tance. For any point c and real r > 0, we denote by
b(c, r) the closed ball of center c and radius r. For any
subset S ⊆ R2, we respectively denote its closure, inte-
rior, complement, boundary, and medial axis by S, S̊,
Sc, ∂S, and MA (S). Let ε > 0 be a real number. The
erosion of S (by ε) is S	ε = {y | b(y, ε) ⊆ S}. For any
collection of balls B, we write

⋃
B = ∪b∈Bb.

Definition 1 An (inner) ε-covering of S is a collec-
tion of balls B such that S	ε ⊆

⋃
B ⊆ S.

For given S and ε, there exist many ε-coverings of S,
with different cardinalities. We say that an ε-covering
is optimal if it achieves minimum cardinality. In gen-
eral, finding such an optimal ε-covering for S is an
NP-complete problem [2], but we focus here on simple
shapes S and prove the following result:

Theorem 1 There is a polynomial-time algorithm to
compute optimal ε-coverings for finite unions of balls
whose medial axis is cycle-free.

In Section 3, we present some results on the struc-
ture of unions of balls, before describing the principle of
our algorithm in Section 4. Section 5 expands on some
practical considerations required for the algorithm, and
Section 6 is dedicated to proving that it indeed achieves
the claimed result.

3 Union of balls

3.1 Medial axis and pencils

In order to specify our algorithm, we must elaborate
on the structure of unions of balls, in particular that of
their medial axis. Recall that a ball b ⊆ S is a medial
ball if its boundary ∂b intersects ∂S at least twice. The
medial axis MA (S) is the collection of the centers of
these medial balls. Owing to the structure theorem of
the medial axis of a union of balls [1], we know that for a
finite union of balls S, MA (S) is a finite collection of line
segments. We also know that each of these line segments
coincides with a pencil of balls [4] in the following sense.
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Borrowing the terminology used in [7], an elliptic pen-
cil can be characterized by two points u, v ∈ R2: it is the
family of all balls whose boundary goes through u and
v. The collection of their centers forms a line. In this
paper, we only manipulate elliptic pencil segments, that
are subsets of elliptic pencils whose collection of centers
forms a segment instead of a line. From here on, we will
not consider any proper line pencil, and thus we refer to
these elliptic pencil segments simply as pencils. As such,
the pencils we consider always have two endpoint balls
b1 and b2. We denote the pencil they generate by [b1b2].
A basic property of a pencil is that the domain it covers,
that is the collection of all points covered by some ball
of the pencil, is the union of b1 and b2,

⋃
[b1b2] = b1∪b2.

Linking back to the previous remark, MA (S) is a col-
lection of pencils. Indeed, for each segment of the me-
dial axis, there are two points u, v ∈ ∂S, such that any
medial ball centered at a point of that segment contains
both u and v in its boundary. Thus, each segment of
MA (S) coincides with a pencil. Hence a union of balls
can always be interpreted as a union of pencil domains
(see Figure 1 for an illustration).

The medial axis of a closed shape and its erosion al-
ways satisfy the below inclusion.

Proposition 2 MA (S	ε) ⊆ MA (S)

Proof. Consider c ∈ MA (S	ε) and b = b(c, r) ⊆ S	ε

medial in S	ε. Let b+ = b(c, r + ε). We prove that b+
is medial in S which implies that c ∈ MA (S).
First, note that b+ = ∪y∈bb(y, ε) ⊆ S, hence if ∂b+
intersects ∂S at least twice, it is medial in S. By defini-
tion of b, there are at least two points u 6= v in the in-
tersection of ∂b and ∂ (S	ε). Since u, v ∈ ∂ (S	ε), there
are u+, v+ ∈ ∂S such that ‖u− u+‖ = ε = ‖v − v+‖.
By triangular inequality we have ‖c− u+‖ ≤ ‖c− u‖+
‖u− u+‖ = r + ε, hence u+ ∈ b+. Since u+ ∈ ∂S, nec-

essarily u+ /∈ b̊ and we have ‖c− u+‖ ≥ r+ε. Therefore
‖c− u+‖ = r + ε, thus u+ ∈ ∂b+ ∩ ∂S. Also, we have
equality in a triangular equality, hence c, u and u+ are
aligned. Likewise, v+ ∈ ∂b+ ∩ ∂S, and c, v and v+ are
also aligned. Thus, if u+ 6= v+, then b+ is medial in S.
By contradiction, assume that we have u+ = v+. Then,
c, u, v and u+ must be aligned. Because u 6= v, we have
the below situation.

c uv u+

r r ε

Hence ‖v − v+‖ = ‖v − u+‖ = 2r + ε = ε. This implies
r = 0 and u = v, which is impossible. Therefore, u+ 6=
v+ and b+ is medial in S. �

Thus for unions of balls, MA (S	ε) splits MA (S) into
two finite collections of line segments: segments that are
part of both MA (S) and MA (S	ε), and segments that
are exclusively part of MA (S). We respectively refer to
them as eroded and non-eroded pencils.

3.2 Partial ordering on medial balls

MA (S) being a collection of segments, it can be viewed
as the embedding of a graph in R2. By assumption
on the class of shapes considered, MA (S) is cycle-free,
hence it is a forest. Since we can process each tree of
the forest independently, we assume without loss of gen-
erality that MA (S) is a tree. By picking any point x of
MA (S) as a root, we obtain an orientation of MA (S)
which induces a partial order on MA (S). Indeed, we
simply have to orient all the edges of MA (S) from the
leaves to the root x. We denote by T the resulting
oriented tree. The structure represented by T is at
times called anti-arborescence or in-tree, and can also
be viewed as a directed acyclic graph with a unique
sink. For any y, z ∈ MA (S), we say that y is T -smaller
than or equal to z, and note y ≤T z, if z belongs to the
unique path from y to the root x of T . We also use the
usual order symbols and notions such as being T -larger
or equal to, ≥T , or also being strictly T -smaller, <T .

Note that this T -order is valid for all points of
MA (S), and not simply vertices of T . Because points
of MA (S) are centers of medial balls of S and S	ε, this
T -order extends to medial balls. Specifically, we can T -
compare two medial balls of either S or S	ε, but also a
medial ball of S with a medial ball of S	ε.

Since T only induces a partial order, we say that two
balls that cannot be ordered by T are T -unrelated.
An additional useful notion is that of T -maximal ball
for a collection: given a collection of balls B, b ∈ B
is T -maximal in B if for all b′ ∈ B, either b′ ≤T b
or b and b′ are T -unrelated. Likewise, b is T -minimal
in B if for all b′ ∈ B, either b′ ≥T b or b and b′ are
T -unrelated. Finally, we extend the notion of degree
for any point c ∈ MA (S). By convention, if c is not a
vertex of T but an inner edge point, we say that c has
degree 2. We denote the degree by deg (c).

4 Algorithm

4.1 Principle

For our proposed algorithm, the partial ordering we in-
troduced allows the definition of clear start and end
points, as well as a measure of progress. Indeed, let
b0 = b(c0, r0) be a medial ball of S. Its center c0
splits MA (S) into deg (c0) connected components. We
denote these components by branch (c0, i), 1 ≤ i ≤
deg (c0). For our purpose, we want to express the do-
main covered by balls centered at points of these com-
ponents of MA (S), but not covered by b0. First we
define the collection of related medial balls, C (b0, i) =
{b(c, r) medial in S | c ∈ branch (c0, i)}. Then the do-
main of each C (b0, i) is C(b0, i) =

⋃
C (b0, i) \ b0.

With these notations, b0 also splits S into the different

C(b0, i)’s, and S \ b0 = ∪deg(c0)i=1 C(b0, i). Unless c0 is the
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Figure 1: T -large and T -small components of a medial ball. x is
the root of T . Red segments are points T -smaller than c0, blue
ones are points T -larger, black ones are T -unrelated.

root of T , one of these domains corresponds to balls T -
larger than or T -unrelated to b0. The other deg (c0)− 1
domains corresponds to balls T -smaller than b0. To pro-
mote clarity, we refer to the former domain simply as
the T -large component, and denote it by C(b0,+)
(see Figure 1). As for the later domains, we refer to their
union as the T -small component and note C(b0,−).
Hence, we have S \ b0 = C(b0,+) ∪ C(b0,−). From the
definition, we also deduce the following:

Proposition 3 If b1 ≤T b2, then C(b1,−) ⊆ C(b2,−)
and C(b1,+) ⊇ C(b2,+).

Now assume we want to traverse and sweep S with
a medial ball, starting from a leaf of T , toward its
root. When we reach a medial ball b0, then at that
moment, C(b0,−) ∪ b0 corresponds to the domain of
S that was swept by our medial ball, and C(b0,+) to
the domain of S that was not swept by it. Our ap-
proach is based on this particular decomposition of S.
We want to use a greedy approach to iteratively com-
pute an ε-covering of the T -small component C(b0,−).
Because T may have several leaves, it is necessary to ex-
tend the above definitions of T -small and T -large com-
ponents to collections B of medial balls, while preserv-
ing the interpretation that C(B,−) ∪ (

⋃
B) is the do-

main of S already processed, and C(B,+) is the do-
main of S that has not been processed yet. The do-
main already processed for a collection of balls should
thus be the union of the domains already processed by
some b ∈ B. Hence the T -small component of B is
C(B,−) = ∪b∈BC(b,−). Likewise, the domain that
still needs to be processed for B should be the inter-
section, over all b ∈ B, of the domains to be pro-
cessed for b. Hence the T -large component of B is
C(B,+) = ∩b∈BC(b,+). Owing to Proposition 3, these
definitions emphasize the importance of the T -maximal
balls of B. Let T -max (B) be the collection of these
T -maximal balls. Then C(B,+) = C(T -max (B) ,+)
and likewise C(B,−) = C(T -max (B) ,−).

To formalize the procedure presented above, we re-
quire two more definitions.

Definition 2 Let B be a collection of medial balls in
S. We say that B is a T -small ε-covering of S if it
covers S	ε in its T -small component C(B,−), that is if
C(B,−) ∩ S	ε ⊆

⋃
B.

Note that every ε-covering is also a T -small ε-covering
of S. As such, we employ the term partial T -small
ε-covering if we need to distinguish from complete ε-
coverings.

Definition 3 Let B be a partial T -small ε-covering of
S, and b0 be medial in S. We say that b0 is a candidate
ball with respect to B, if B0 = B∪{b0} is also a T -small
ε-covering of S, and S	ε \

⋃
B0 ( S	ε \

⋃
B.

The strict inclusion S	ε \
⋃

B0 ( S	ε \
⋃

B ensures
that B0 is closer to being a complete ε-covering than
B. Hence, for any partial T -small ε-covering, iteratively
adding a candidate to the collection ensure that at some
point we will obtain a complete ε-covering. Because
any partial T -small ε-covering always have an infinity of
candidates, we elect to add only T -maximal candidates,
that is T -maximal among the collection of candidates.

4.2 Specification

Our algorithm is based on a loop over the collection
of all eroded and non-eroded pencils of MA (S) in a
topological order. Since MA (S	ε) ⊆ MA (S), we can
simultaneously sweep S and S	ε. With our partial
ordering on MA (S), a topological order of its ver-
tices (v1, . . . , vn+1) is such that for i ≤ j, then either
vi ≤T vj , or vi and vj are T -unrelated. Besides the
root, each vertex is incident to exactly one pencil com-
posed of T -larger points of MA (S), hence any topolog-
ical ordering of vertices induces an ordering of pencils
([v1v̂1], . . . , [vnv̂n]), where v̂i ∈ {v1, . . . , vn}. This order-
ing of pencils thus satisfies that for i < j, then either
vi <T v̂i ≤T vj <T v̂j , or v̂i and vj are T -unrelated.

As we loop over the pencils, we maintain a collec-
tion of medial balls B which is a T -small ε-covering,
while looking for T -maximal candidates to add to said
collection. When we process a pencil, we compute a
collection of constraints to pass on to the next incident
pencil. A constraint is a point or circular arc that any
ball T -larger than the pencil (that is T -larger than any
ball of that pencil) must contain in order to be a candi-
date for B. Hence, if no T -maximal candidate is found
in the currently processed pencil, the set of constraints
it will pass on to its incident T -larger pencil is the col-
lection of all constraints it itself inherited from incident
T -smaller pencils, plus new constraints specific to the
current pencil. Then, we can compute the T -maximal
ball that contains all these constraints. If it is not the
T -large endpoint of the pencil, we call it critical. We
claim that for well chosen constraints, critical balls are
T -maximal candidates. The overall approach is summed
up in Algorithm 1.
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Algorithm 1 Greedy ε-covering

Input: A finite union of balls S
Output: An ε-covering B of S
1: Compute a topological ordering of MA (S)
2: B ← ∅
3: Loop over all pencils in topological order
4: Retrieve incident constraints
5: Search for a critical ball in the pencil
6: If a critical ball b is found then
7: B ← B ∪ {b}
8: end If
9: Compute the constraints to pass on

10: end Loop
11: Return B

(a)

x S	ε

ε

c0

b0

C(b0,−)

b1

b2

C(B,−)

(b)

x
c0

x
c0

A \X

v

Figure 2: A is the dark shaded area, with B = {b1, b2} and
X = b0 ∪ b1 ∪ b2. In (a) b0 is a candidate to B, but in (b) vertex
v does not satisfy condition (ii) and A \X (in red) is non empty.

All that remains is to explicit constraints which guar-
antee that critical balls are indeed T -maximal candi-
dates. Consider a candidate b0 to the collection B. We
can ignore balls which are T -unrelated to b0, thus let
B′ = {b ∈ B, b ≤T b0}. By definition, B′0 = B′ ∪ {b0}
is a T -small ε-covering. The domain of S	ε covered by
C(B′0,−)∪ (

⋃
B′0) but not by C(B′,−) is contained in

(
⋃

B′0) \ C(B′,−). Let that former domain be

A =
ÄÄ
C(B′0,−) ∪

Ä⋃
B′0
ää
\ C (B′,−)

ä
∩ S	ε

= ((C(b0,−) ∪ b0) \ C(B′,−)) ∩ S	ε

and the latter be

X =
Ä⋃

B′0
ä
\ C(B′,−) = b0 ∪

Ä⋃
T -max (B′)

ä
.

See Figure 2a. A and X both vary depending on B and
b0, and in light of the previous remark, b0 is a candidate

to B if and only if A ⊆ X. Explicitly ensuring and
verifying that we indeed have the inclusion A ⊆ X is
non trivial. Instead, we claim that it is sufficient to
ensure the two conditions:

(i) ∂A ⊆ X,

(ii) ∀ vertex v ∈ ∂X, ∃Nv an open neighbourhood of
v, such that Nv ∩A ⊆ X.

Note that both ∂A and ∂X are finite collections of cir-
cular arcs, whose intersections we call vertices of the
boundary. Since these boundaries have a finite combi-
natorial structure, (i) and (ii) are more readily verifiable
and can be enforced. Also, as illustrated in Figure 2b,
condition (i) by itself is insufficient to ensure that b0
is a valid candidate. We take as constraints for Algo-
rithm 1 any arc of ∂A not in

⋃
B′, as well as any vertex

of ∂ (
⋃
T -max (B′)) whose neighbourhood in A is not

fully contained in
⋃

B′. This ensures that critical balls
can be computed as per Section 5 and fulfill conditions
(i) and (ii). Both conditions are necessary to have the
inclusion A ⊆ X. We prove in Section 6 that they are
also sufficient.

5 Computation of critical balls

As stated previously, each pencil inherits a collection of
constraints that are either a singleton point or a circu-
lar arc. Because of Proposition 4, which will be stated
and explained in detail later, when we sweep a pencil
from an endpoint to the other, a point that exited the
sweep ball will never re-enter it, and a point that entered
the sweep ball will never exit it. Thus, to each con-
straint corresponds a single-constraint critical ball
bcrit: any ball strictly T -larger than bcrit cannot fully
contain the constraint, hence cannot be a candidate,
while any ball T -smaller than or equal to bcrit will al-
ways contain the constraint and may be a candidate.
Therefore, the critical ball for the overall collection of
constraints is the T -maximal ball that is T -smaller than
all single-constraint critical balls, that is the unique T -
minimal ball amongst all single-constraint critical balls.
From here on, we omit the qualifier “single-constraint”.
Also, because we parameterize balls of a pencil by an
interpolation value λ, we call critical λ an interpolation
value which corresponds to a critical ball.

The next sections present how to compute a critical
ball given a single constraint. Section 5.1 presents a
very useful property of pencils and how to handle point
constraints, while Section 5.2 deals with arc constraints.

5.1 Point inclusion

Given a ball b = b(c, r) and a point y, there are many
ways to test whether y belongs to b or not. By definition,
we can compare the distance from y to c, to the radius
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of b. Here, we rely on the power of y with respect to
ball b, which by definition is pow(y, b) = ‖y − c‖2−r2.
Hence, y belongs to ball b if and only if pow (y, b) ≤ 0.

Consider now a pencil of balls [b1b2], with bi =
b(ci, ri). For λ ∈ [0, 1], we denote by bλ = b(cλ, rλ)
the ball of pencil [b1b2] that is centered at cλ = λc1 +
(1 − λ)c2. We argue that then, for any point y, the
power of y with respect to bλ is the linear interpolation
of its power with respect to b1 and b2.

Proposition 4

pow (y, bλ) = λ pow (y, b1) + (1− λ) pow (y, b2)

The power of a point with respect to balls of the pencil
is thus linear in λ and may only change sign once. This
justifies our earlier claim that when sweeping a pencil,
a point can exit or enter the sweep ball only once.

Proof. By definition, all the balls of a pencil [b1b2]
share exactly two points {u, v} = ∂b1 ∩ ∂b2 on their

boundary. We have r2λ = ‖u− cλ‖2. Hence:

pow (y, bλ) = ‖y − cλ‖2 − ‖u− cλ‖2

= ‖y‖2 − 2 〈cλ, y〉+ ‖cλ‖2

−
Ä
‖u‖2 − 2 〈cλ, u〉+ ‖cλ‖2

ä
= 2 〈cλ, u− y〉+ ‖y‖2 − ‖u‖2

Note that this identity also holds for b1 and b2 since
they coincide with bλ, for λ ∈ {0, 1}.

pow (y, bλ) = 2 〈λc1 + (1− λ) c2, u− y〉+ ‖y‖2 − ‖u‖2

=λ
Ä
2 〈c1, u− y〉+ ‖y‖2 − ‖u‖2

ä
+ (1− λ)

Ä
2 〈c2, u− y〉+ ‖y‖2 − ‖u‖2

ä
=λ pow (y, b1) + (1− λ) pow (y, b2)

�

This proof actually extends to all balls of the complete
line pencil. From there, given two endpoint balls of a
segment pencil and a single constraint point, we can
easily compute the value λcrit for which bλcrit will be
critical. From the design of Algorithm 1, and assuming
that b1 ≤T b2, we will always have λcrit ≥ 0. If we
happen to have λcrit > 1, then the segment pencil does
not contain any critical ball for that constraint point,
since all balls of the pencil contain that constraint point.

5.2 Arc inclusion

For arc constraints, we use the same approach of com-
puting a critical value for λ. If all of these critical λ’s
are strictly larger than 1, then the pencil does not con-
tain any T -maximal candidate. If any are less than or

equal to 1, then the minimum value yields a T -maximal
candidate. All that remains is thus being able to com-
pute such a critical λ for arc constraints. To do so, we
first need to compute this critical value for a ball.

5.2.1 Critical λ for balls

Consider a constraint ball b = b(c, r). We want to com-
pute the critical values of λ for which b is fully contained
in bλ. Hence:

b ⊆ bλ ⇐⇒ rλ ≥ ‖c− cλ‖+ r

⇐⇒ r2λ ≥ ‖c− cλ‖
2

+ r2 + 2r‖c− cλ‖

⇐⇒ −
Ä
‖c− cλ‖2 − r2λ

ä
− r2 ≥ 2r‖c− cλ‖

⇐⇒ − pow (c, bλ)− r2 ≥ 2r‖c− cλ‖

⇐⇒
(
− pow (c, bλ)− r2

)2 ≥ 4r2‖c− cλ‖2

& − pow (c, bλ)− r2 ≥ 0

Since pow (c0, bλ) is linear in λ as per Proposition 4, we
introduce two constants A and B such that Aλ + B =
pow (c, bλ) + r2 to simplify notations. We have

A = pow (c, b1)− pow (c, b2)

B = pow (c, b2) + r2.

We focus on the first inequality, (Aλ+B)
2 ≥

4r2‖c− cλ‖2. For the right hand side, the factor

‖c− cλ‖2 can be developed as follows

‖cλ − c‖2

= ‖λ (c1 − c2) + c2 − c‖2

= λ2‖c1 − c2‖2 + 2λ 〈c1 − c2, c2 − c〉+ ‖c2 − c‖2

and thus, it is quadratic in λ. Therefore

b ⊆ bλ ⇐⇒ Cλ2 +Dλ+ E ≥ 0 & Aλ+B ≤ 0

where

C = A2 − 4r2‖c1 − c2‖2

D = 2AB − 8r2 〈c1 − c2, c2 − c〉

E = B2 − 4r2‖c2 − c‖2

A, B, C, D and E are constant with respect to λ and
thus the inclusion test can be reduced to a sign analysis
of polynomials of degree 2 and 1. From the roots of these
polynomials, we can thus derive the critical values of λ.

5.2.2 Critical λ for arcs

In order to compute the critical λ value for an arc con-
straint e, we first require the critical value for the ball
b supporting that arc, that is the ball such that e ⊆ ∂b.
Let λ′ be the critical value for that supporting ball.
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With λ′, we can then compute the tangency point y be-
tween b and bλ′ . This particular point, in addition with
the endpoints of arc e, are sufficient to compute the crit-
ical value of e. Indeed, for λ ≤ λ′, the whole ball b is
contained in bλ, hence we also have e ⊆ bλ. For λ > λ′,
two cases arise. Either y ∈ e or y /∈ e. In the former, we
have y ∈ e\bλ hence the critical value for the arc e is In
the former, we have y ∈ e and y /∈ bλ hence the critical
value for the arc e is λ′ itself. In the latter, note that bλ
splits ∂b into two connected components, one which is
inside bλ, and the other outside. By Proposition 4, the
outside component will always contain y. For λ > λcrit,
any point of e not in bλ must be path-connected in ∂b
to y. Therefore, some endpoint of e also belongs to the
outside connected component. It immediately follows
that if both endpoints of e actually belong to bλ, then
the whole arc e is also contained in bλ. Therefore, the
critical value for e is in this case equal to the smallest
critical value of its endpoints.

6 Correctness of the algorithm

6.1 Convergence to an ε-covering

Lemma 5 Let b0 and B such that b0 fulfills both con-
ditions (i) and (ii). Then b0 is a candidate for B.

Proof. Let A and X be defined from b0 and B. Con-
sider H = A \ X = A ∩ Xc. By contradiction assume
that H 6= ∅. First, notice that ∂H ⊆ ∂X. Indeed,
∂H = ∂(A ∩Xc) ⊆

(
∂A ∩Xc

)
∪
(
∂ (Xc) ∩A

)
. By con-

dition (i), ∂A ⊆ X and we have ∂A ∩Xc ⊆ ∂X. Also,
∂ (Xc) = ∂X. Hence ∂H ⊆ ∂X. Let Hi be a connected
component of H. Since ∂Hi ⊆ ∂H, hence ∂Hi ⊆ ∂X.
We have Hi ⊆ Xc connected, with ∂Hi ⊆ ∂X. Thus,
Hi is actually a connected component of Xc. Hi being
bounded, it is commonly called a hole of X. As a hole
of X, any vertex of ∂Hi is also a vertex of ∂X. Let v
be a vertex of ∂Hi. For all open neighbourhood Nv of
v, we have Nv ∩H 6= ∅. Since H = A ∩Xc, we deduce
∅ 6= Nv ∩ A * X. This contradicts (ii) and is impos-
sible. Therefore, H = ∅, A ⊆ X, and b0 is indeed a
candidate for B. �

From the above lemma, Algorithm 1 indeed finds can-
didates and eventually converges to an ε-covering. We
now show that it converges in polynomial time.

Lemma 6 Algorithm 1 converges to an ε-covering in

O
Ä
|MA (S)|2

ä
.

Proof. Let n = |MA (S)|. First, we show that Algo-
rithm 1 outputs a collection Balgo with size at most 2n,
and then that the complexity is at most quadratic.

For any partial T -small ε-covering B, let b ∈
T -max (B). There is a unique pencil incident to b that

contains balls T -larger than b. Let b0 >T b be the T -
large endpoint of that pencil. We show that b0 is always
a candidate to B. Though b0 may not be a T -maximal
candidate, this still implies that there can be at most
two medial balls from the same pencil in Balgo.
Let B0 = B∪{b0}. Because b and b0 belong to the same
pencil, C(B0,−) and C(B,−) only differ in the domain
of S covered by the pencil [bb0]. This implies the equal-
ities C(B0,−) \ C(B,−) = C(b0,−) \ C(b,−) = b \ b0.
Hence, we obtain

A = ((b \ b0) ∪ b0) ∩ S	ε ⊆ b ∪ b0,

thus b0 is a candidate for B. Therefore, |Balgo| ≤ 2n.
We now analyse the complexity. Computing a topo-

logical ordering [5] is linear in n. Enforcing a single
constraint takes constant time (see Section 5), hence
the time expanded to search for a critical ball depends
on the number of constraints. This number cannot ex-
ceed the combinatorial complexity of the boundaries of
S	ε and

⋃
Balgo. The former is linear in n. As for the

latter, it is linear in the size of Balgo, which is itself
linear in n. Thus, Algorithm 1 is quadratic in n. �

6.2 Convergence to an optimal solution

In order to prove that our algorithm reaches an optimal,
we rely on several intermediate results. We introduce a
sequence of three lemmas, the last of which we reformu-
late, through two corollaries, in terms of candidate ball
to a partial T -small ε-covering. Then, we finally prove
Proposition 12.

Lemma 7 Consider a finite union of balls S, and a ball
b such that b * S. Let S′ = S ∪ b. Then, S̊′ = S̊ ∪ b̊.

Lemma 8 Consider a finite union of balls S such that
MA (S) is a tree. Then Sc is path-connected.

Proof. Let S be the collection of medial balls in S
which are centered at a vertex of MA (S). S has fi-
nite cardinality and we have

⋃
S = S. We proceed by

induction on n = |S |, and henceforth use the notation
Sn =

⋃
Sn for collection of balls with cardinality n. For

n = 1, S1 is only a ball, the property is verified. Now
consider a collection Sn+1, and let b ∈ Sn+1 such that b
is centered on a leaf of MA (Sn+1). Let Sn = Sn+1\{b}
and Sn =

⋃
Sn.

Using Lemma 7, we deduce that Sc
n+1 = Sc

n ∩ bc.
Consider y, z ∈ Sc

n+1. By induction assumption, we

know that Sc
n is path-connected, hence there is a path

γ ⊆ Sc
n connecting y and z. We build from γ another

path γ′ ⊆ Sc
n+1 that connects y and z. If γ ⊆ bc we

already have γ ⊆ Sc
n+1. Otherwise let πy, πz ∈ γ ∩ ∂b

such that γ does not meet b between y and πy, and
likewise between z and πz. Because πy, πz ∈ Sc

n, they

cannot be in S̊n. Let e = ∂b \ S̊n. e is a path-connected
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circular arc, and is the contribution of ∂b to ∂Sn+1. We
have πy, πz ∈ e. Since e is path-connected and contained
in Sc

n+1, we can complete γ′ by following e to go from

πy to πz, showing that Sc
n+1 is path-connected. �

Lemma 9 Consider b0 a medial ball of S. C(b0,+) and
C(b0,−) are interior disjoint.

Proof. By contradiction, assume that C̊(b0,+) and
C̊(b0,−) are not disjoint. From there, we exhibit two
paths γ ⊆ S̊ and δ ⊆ Sc with non empty intersection,
which is impossible.

Let y ∈ C̊(b0,+)∩ C̊(b0,−). Without loss of general-
ity, we assume that y /∈ MA (S). Necessarily, there are
two medial balls of S, b+ and b−, such that:

b+ ⊆ C(b0,+) ∪ b0
b− ⊆ C(b0,−) ∪ b0
y ∈
Ä̊
b+ ∩ b̊−

ä
\ b0.

Let c+ and c− be the respective centers of b+ and
b−. We have segment [c+y] ⊆ S̊ and likewise segment
[c−y] ⊆ S̊. There is also a path in MA (S) ⊆ S̊ con-
necting c+ and c−. Hence there exists a Jordan curve
γ ⊆ MA (S)∪ [c+y]∪ [c−y] ⊆ S̊. By the Jordan-Brouwer
separation theorem, γ has a well defined interior and
exterior. Consider now e = ∂b0 ∩C(b0,+). It is a path-
connected circular arc. Its two endpoints are vertices
of ∂S, hence we have ∂e ⊆ Sc. Moreover, one of those
endpoints lies in the interior of γ, while the other lies
in the exterior of γ. See Figure 3 for a schematic repre-
sentation. However by Lemma 8, Sc is path-connected.
Therefore, let δ ⊆ Sc be a path connecting the end-
points of e. Since the interior and exterior of γ are
separated, necessarily ∅ 6= γ ∩ δ ⊆ S̊ ∩ Sc = ∅, hence
the contradiction. �

y

c+

c−

c0

γ

b0

e

interior
of γ

exterior
of γ

S

Figure 3: Schematic representation for Lemma 9.

Though Lemmas 7 and 8 are quite remote from the re-
sult we want to prove, in essence Lemma 9 implies that
whatever medial ball we chose in C(b0,+), it cannot
contribute to cover S	ε in C(b0,−). That is why we
can process each of these components separately in a
greedy way and still achieve a global optimal solution.
Formally, we rely on the following corollaries.

Corollary 10 Let b0 be a medial ball in S. Then we
have the three identities:

(C(b0,−) ∪ b0)
c ∩ S	ε = C(b0,+) ∩ S	ε

(C(b0,+) ∪ b0)
c ∩ S	ε = C(b0,−) ∩ S	ε

(C(b0,+) ∪ C(b0,−))
c ∩ S	ε = b0 ∩ S	ε

Corollary 10 simply states that when restricted to S	ε,
the complement of C(b0,+), C(b0,−), and b0, is the
union of the other two subsets.

Proof. We only prove the first equality. We have
S	ε ⊆ S̊. Additionally by Lemma 9, S̊ is the disjoint
union of C(b0,−) ∩ S̊, b0 ∩ S̊, and C(b0,+) ∩ S̊. Hence,

S	ε ∩ (C(b0,−) ∪ b0)
c

= S	ε ∩ S̊ ∩ (C(b0,−) ∪ b0)
c

= S	ε ∩ S̊ ∩ C(b0,+)

= S	ε ∩ C(b0,+).

�

Corollary 11 Consider an ε-covering B. Let B− ( B
be a partial T -small ε-covering, and let b0 be any T -
maximal candidate to B−. Then B \ B− contains a
candidate to B− that is T -smaller than or equal to b0.

Proof. Let B+ = B \ B−. First we prove that B+

always contains candidates to B−, and then that one of
these candidates is T -smaller than or equal to b0.

By contradiction, assume that B+ is void of candi-
date to B−. Consider b′ ∈ B+, T -minimal in B+. By
T -minimality of b′, for all b ∈ B+, b ⊆ b′ ∪ C(b′,+).
Thus

⋃
B+ ⊆ b′∪C(b′,+). By Corollary 10, we deduce

that S	ε ∩ C(b′,−) ⊆ S	ε ∩ (
⋃

B+)
c

= S	ε \
⋃

B+.
By assumption, b′ cannot be a candidate to B−, hence
by Definitions 2 and 3 (S	ε ∩ C(b′,−)) \ (b′ ∪ (

⋃
B−))

is non empty. With the previous inclusion, we get the
following development.(

S	ε ∩ C(b′,−)
)
\
Ä
b′ ∪
Ä⋃

B−
ää

=
(
S	ε ∩ C(b′,−)

)
\
Ä
b′ ∪
Ä⋃

B−
ä
∪
Ä⋃

B+

ää
=
(
S	ε ∩ C(b′,−)

)
\
⋃

B

⊆ S	ε \
⋃

B

Hence, S	ε \
⋃

B 6= ∅ which is impossible since B is
an ε-covering. Thus, B+ contains a candidate to B−.

Because B− may have several distinct T -maximal
candidates, B+ may only contain candidates T -
unrelated to b0. By contradiction assume B+ is void of
candidate to B− T -smaller than or equal to b0. Since
B+ contains at least one candidate to B−, b0 cannot be
centered at the root of T . By Proposition 3, any ball T -
smaller than or equal to b0 is a candidate to B−. Hence
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B+ only contains balls that are either strictly T -larger
than b0, or T -unrelated to b0. Therefore, there exists a
medial ball b′ >T b0, with b′ also strictly T -smaller or
T -unrelated to balls in B+. By T -maximality of b0, b′

cannot be a candidate to B−. Once again, we have a
ball b′, T -minimal in B′+ = B+ ∪ {b′} which is not a
candidate. The same development as above using Corol-
lary 10 yields S	ε \

⋃
B 6= ∅, which is still impossible.

Therefore, B+ must contain a candidate to B− that is
T -smaller than or equal to b0. �

Proposition 12 Algorithm 1 converges to an optimal
ε-covering.

Proof. We denote by Balgo the ε-covering found by
Algorithm 1. We number the balls of Balgo by b1, . . . , bk,
such that for i ≤ j, bi was found before bj . Consider
any optimal ε-covering Bopt. We assume without loss of
generality that Bopt only contains medial balls. Indeed,
S is a finite union of balls, hence any ball b ∈ Bopt is
wholly contained in a medial ball. Using consecutive
substitutions, we want to build a finite sequence of ε-
coverings B0, . . . ,Bk that satisfies the properties:

(a) B0 = Bopt,

(b) |Bi+1| = |Bi|, ∀i ∈ J0, k − 1K,

(c) {b1, . . . , bi} ⊆ Bi, ∀i ∈ J1, kK,

If such a sequence exists, we immediately deduce that
|Balgo| = |Bopt|, and Balgo is also optimal.

We proceed by induction. Assume that for 0 ≤ i < k,
we have built B0, . . . ,Bi with the above properties.
Consider bi+1. Let B− = {b1, . . . , bi}. By construc-
tion, B− ( Bi. Let B+ = Bi \ B−. Algorithm 1
guarantees that B− is a partial T -small ε-covering and
that bi+1 is a T -maximal candidate for B−. Hence
we can apply Corollary 11 and there is a candidate
b to B−, such that b ∈ B+ and b ≤T bi+1. Then,
let Bi+1 = (Bi ∪ {bi+1}) \ {b}. Bi+1 satisfies both
properties (b) and (c), we must prove that it is also
an ε-covering. To do so, it suffices to prove that both
C(bi+1,−) ∩ S	ε and C(bi+1,+) ∩ S	ε are contained
in
⋃

Bi+1. Because bi+1 is a candidate to B−, we
have C(bi+1,−) ∩ S	ε ⊆ bi+1 ∪ (

⋃
B−) ⊆

⋃
Bi+1.

Also, b ≤T bi+1, hence by Proposition 3 we have
C(bi+1,+) ⊆ C(b,+). This implies C(bi+1,+) ∩ S	ε ⊆
C (b,+) ∩ S	ε ⊆ (

⋃
Bi) \ b ⊆

⋃
Bi+1. Thus, Bi+1 is

an ε-covering, and Balgo is an optimal ε-covering. �

7 Discussion

Consider the following more general covering definition,
where S⊕ε

′
= ∪y∈Sb(y, ε′) is the dilation of S (by ε′):

Definition 4 An ε′ε-covering of S is a collection of
balls B such that S	ε ⊆

⋃
B ⊆ S⊕ε′ .

The algorithm presented computes in polynomial time
an optimal ε′ε-covering of any union of balls S such that
MA (S) is a forest and MA (S	ε) ⊆ MA(S	ε

′
).

An interesting perspective is to build on this work to
design a heuristic algorithm where both conditions on
the medial axis are relaxed.
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