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Abstract

This work deals with the flow generated in a shock tube after the shock wave has
reflected at the end wall. For a viscous fluid, a complex unsteady interaction takes
place between the incident boundary layer and reflected shock wave. The numer-
ical simulation of this complex flow requires both robust and accurate numerical
schemes. In this work, we rely on the one step high order scheme recently proposed
in [4]. With this scheme, converged results are obtained for Reynolds numbers in
the range 200 to 1000. The interaction mechanisms are carefully analyzed as well
as the flow dynamics.

Key words: High-resolution shock capturing scheme, compressible flow, shock
tube problem, shock-wave boundary-layer interaction

1 Introduction

The interaction of a moving shock wave with a boundary layer is encountered
in many flow configurations (buffet, air intakes, over-expanded nozzles, shock
tubes). These configurations exhibit unsteady boundary layer detachment over
large spatial extents which are responsible for unsteady aerodynamic loads and
fluid mixing spoiling the system and dramatically reducing the performance.
A fine understanding of the physical mechanisms responsible for unsteadiness,
requires the development of very accurate numerical methods for the simu-
lation of these flows, with a large number of grid-points. Therefore, low cost
numerical schemes are called to obtain grid-converged solutions at an accept-
able CPU time.
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A model configuration that exhibits these phenomena corresponds to the shock
tube problem. It can be found in various real apparatus, such as in high speed
aerodynamic flow facilities used to study the chemical relaxation process in
high temperature gas mixtures or to generate high enthalpy reservoir condi-
tions. In flow facility configurations, the free piston reflected shock tunnel is
ended by a nozzle communicating with the test section. However, the prema-
ture contamination of the flow in the test section, through the production of
intense vortices by interaction of the reflected shock-wave and the end wall,
limits the usefulness of such devices.

In fact, the reflected shock wave interacts with the incident boundary layer
with modified gas properties in this end wall region as a result: a complex un-
steady interaction develops between the reflected shock wave and the boundary
layer. When the stagnation pressure within the boundary layer is lower than
that downstream of the normal reflected shock wave, the boundary layer sep-
arates and a lambda-like shock wave pattern forms. This flow configuration
has been first analyzed by Mark [13] using a crude model. Experiments were
also carried out allowing the verification of the theoretical model in [13]. Other
detailed experimental analyses of the shock-wave / boundary layer interaction
in a shock-tube were presented in [7, 14], leading to enhancements of Mark’s
model.

The numerical simulation of shock-wave boundary layer interaction in a shock-
tube was also studied numerically by several authors over the last decade.
The first computations were performed by Weber et al. [21] who analyzed
the interaction of an isolated reflected shock-wave with a laminar boundary
layer; in this work, the contact discontinuity and rarefaction waves present in
a shock-tube were disregarded. Other numerical studies focused on the flow
contamination at the end-wall of the shock-tube [1, 8]. The shock-tube config-
uration at moderate Reynolds number also served as a test-case for numerical
method validation [3, 6, 10, 11, 19]. The numerical simulation of this type
of flow requires numerical schemes which are both robust and highly accu-
rate, to simultaneously represent with high precision the smooth regions of
the flow and capture the discontinuities. In a previous study [3], we exhib-
ited the convergence issues encountered when using classical shock capturing
TVD approaches on such a test-case. Similar conclusions were also drawn by
Sjögreen and Yee [19] for ACM, TVD or MUSCL approaches. We recently
developed an original high order coupled time-space scheme (named OSMP7,
accurate up to the 7th-order, in the scalar case) which guaranties Monotonic-
ity Preserving (MP) properties [4, 5]. The OSMP7 scheme gives very accurate
results on numerous classical test cases of 2-D free supersonic flows [4], [5] and
on aeroacoustic problems [2]. Compared to more classical schemes (Runge-
Kutta time integration and ENO or WENO space discretization), the OSMP7
scheme better captures the discontinuities, for comparable order of accuracy
in the smooth regions. However, the OSMP7 scheme is six time less expensive
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than the RK3-WENO schemes in terms of CPU times.

The objective of this paper is two fold. First, we apply the higher-order accu-
rate OSMP7 scheme to the shock tube problem for several Reynolds numbers
(Re = 200, 500, 750 and 1000). We have restricted ourselves to this range of
Reynolds numbers to limit the grid size requirements. The OSMP7 scheme
allows for highly converged results, essentially grid independent, that could
not be obtained previously with other schemes [3]. The results are confronted
with those of Sjögreen and Yee [19] for comparable computational meshes.
Secondly, we provide a detailed analysis of the shock-wave / boundary-layer
interaction and flow dynamics inside the shock tube.

The paper is organized as follows. After a brief review of the governing equa-
tions, we present in section (2) the different numerical approaches used in
this work: the method of lines (based on Runge-Kutta time integration cou-
pled with a WENO space discretization) and the so-called OSMP (based on
coupled time and space integration with MP constraint). The flow field con-
figuration of the shock tube problem is presented in section (3). Section (4)
is devoted to a study of the influence of the numerical parameters, grid con-
vergence assessment and the influence of the different numerical discretization
schemes. The dynamics of the shock wave / boundary layer interaction is an-
alyzed in section (5). The Reynolds number is the key parameter of the study
and its influence on the dynamics is detailed in section (6). Conclusions and
comments are summarized in section (7).

2 Numerical procedure

2.1 The set of equations

The governing equations are the compressible Navier-Stokes equations. In con-
servative form and Cartesian coordinates, they write as:

wt +∇ · (f(w)− fv(w,∇w)) = 0, (1)

where w = (ρ, ρu, ρE)t is the vector of the conservative variables, using the
classical notations, and f(w) and fv are the Euler and the viscous fluxes re-
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spectively:

f =




ρ u

ρ u⊗ u +
P

γM2
0

I

ρ u E + u
P

γM2
0




, (2)

fv =




0

σ

u · σ + Ψ




, (3)

with the strain rate tensor

σ =
µ

Re

(
∇u +∇tu− 2

3
∇ · u I

)
,

and the heat flux

Ψ =
µ

(γ − 1) Re Pr M2
0

∇T.

In addition, a perfect gas law is used:

P

γ M2
0

= (γ − 1)
[
ρ E − 1

2
ρ u · u

]
, (4)

T =
P

ρ
, (5)

with ρ the fluid density, u the velocity vector, P the static pressure, T the
static temperature, E the total energy per unit of mass and µ the dimensionless
dynamic viscosity.

These equations are written in dimensionless form by using the reference values
of the density (ρ0), the velocity (v0), and the length scale (L0). The Reynolds
number is based on the reference values: Re = ρ0v0L0/µ(T0). The Mach num-

ber is M0 = v0/
√

γRT0 with R = 287 J.Kg−1.K−1 (for air) the gas constant.

For simplicity, this study considers an ideal gas (air) with constant specific
heat ratio γ = 1.4, constant dynamic viscosity µ = 1 and constant Prandtl
number Pr = 0.73.
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2.2 Space and time integrations

The resolution of the Navier-Stokes equations (1, 2, 3) rely on a finite volume
approach. The viscous fluxes (3) are discretized by means of a second-order
accurate centered scheme, whatever coupled or decoupled time and space inte-
grations are. For the coupled time and space approach, details on this viscous-
flux discretization can be found in Daru and Tenaud [3]. To check the influence
of the viscous flux discretization order on the solution, we also performed few
simulations using a fourth-order accurate centered scheme. It was found that
the viscous scheme has negligible influence on the resulting solutions (not
shown). Therefore, all presented results correspond to the centered 2nd-order
viscous flux discretization.

Regarding the convective fluxes, two numerical approximations have been
compared in this study. The first one is the high-order coupled time and
space scheme proposed in [5, 6]. The second one, using splitted time and
space integrations, is a ”Method of lines” approach, based on a multi-stage
(Runge-Kutta) time integration. In each sub-stage of the time integration, a
high order spatial (WENO) dicretization is applied.

This study is conducted on cartesian meshes. We denote by wn
j the discrete

quantity w(x, t) estimated at a grid point xj = j δx and at time t = n δt, δt
and δx being, respectively, the time and space steps.

2.2.1 Coupled time and space approach

The unlimited One-Step scheme developed in [5] is of Lax-Wendroff
type [12]. These schemes are constructed in the scalar case by correcting the
error terms of the successive modified equations, to yield one additional order
of accuracy at each level. For stability reasons, the error term, involving highest
degree derivatives at each level, is discretized using upwind formulae for odd
derivatives and centred formulae for even derivatives. In this way, one obtains
a recurrence relation to construct schemes with arbitrary order of accuracy in
time and space.
In the non-linear system case, the accuracy order cannot be maintained easily
as a Cauchy-Kowalewski procedure is required along the derivation of the
successive modified equations. Here, a simpler procedure is used, consisting in
a local linearization on the eigenvector basis at the cells’ interfaces.

To illustrate the procedure, let us consider a 1-D system of equations wt +
∇ · f(w) = 0, and define λk and rk the eigenvalues and right eigenvectors

of the Roe-averaged jacobian matrix A =

(
df

dw

)

j+1/2

centered on the inter-
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face (j + 1/2), δαk,j+1/2 = rk ·
(
wn

j+1 − wn
j

)
the k-th Riemann invariant, and

νk,j+1/2
δt

δx
λk,j+1/2 the local CFL number.

The one-step scheme reads:

wn+1
j = wn

j −
δt

δx
(F p

j+1/2 − F p
j−1/2) (6)

where F p
j+1/2 is the pth-order accurate numerical flux of the scheme at the cell

interface (j + 1/2), which can be written:

F p
j+1/2 = FRoe

j+1/2 +
1

2

∑

k

(ψpr)k,j+1/2 (7)

For clarity, the superscript n has been omitted in the expression of the fluxes.
FRoe

j+1/2 is the first order Roe flux defined as follows:

FRoe
j+1/2 =

1

2
(fj + fj+1)− 1

2

∑

k

(δ|f |r)k,j+1/2, (8)

with

δ|f |k,j+1/2 = |λ|k,j+1/2δαk,j+1/2

The function ψ can be decomposed in odd, corresponding to the odd deriva-
tives in the modified equations, and even parts:

ψp
k,j+1/2 =

m∑

n=1

ψ2n
k,j+1/2 − js

m1∑

n=1

ψ2n+1
k,j+1−js/2 (9)

where m = bp/2c, m1 = b(p− 1)/2c (b c is the integer division symbol), and
jssign(λk,j+1/2). The odd and even ψ functions are given by the recurrence
formulae (valid for n ≥ 1):

ψ2n
k,j+1/2 =

2n−2∑

l=0

(−1)lCl
2n−2 · (c2nδα)k,j+1/2+n−1−l (10)

ψ2n+1
k,j+1/2 =

2n−1∑

l=0

(−1)lCl
2n−1 · (c2n+1δα)k,j+1/2+(n−1−l)·js, (11)

where Cs
r = r!/[(r−s)!s!]. The coefficients cq depend on the local CFL number,
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νk,j+1/2, and are given by:

(c2)k,j+1/2 = |λ|k,j+1/2(1− |ν|k,j+1/2)

(cq+1)k,j+1/2

|ν|k,j+1/2 + (−1)qb(q + 1)/2c
q + 1

· (cq)k,j+1/2, q > 2
. (12)

This scheme has a stencil of only nine points to get seventh order accuracy
in both time and space; it is much less than for multi-stage time integration
schemes yielding comparable order of accuracy. The unlimited One-Step high-
order scheme (called OSp for the p-th order accurate scheme) has a classical
CFL stability condition 0 ≤ |νk| ≤ 1. Note that this type of scheme yields the
exact solution for CFL number equal to 1, in the scalar case.

TVD-MP constraints: An ad hoc discontinuity-capturing feature must be
employed to limit the spurious oscillations in the vicinity of the strong gradient
regions. Total Variation Diminishing (TVD) schemes are generally considered
to be well suited for the capture of discontinuities. Nevertheless, TVD con-
straints are known to clip the extrema which appears as a serious drawback
in a shock-capturing feature. To avoid this loss of accuracy near extrema, it
is necessary to satisfy the Monotonicity-Preserving (MP) criteria introduced
by Suresh et al.[20], that enlarge the TVD intervals to provide room for the
numerical flux to maintain an accurate value. In Daru et al.[5], we derived
a Monotonicity Preserving version of our one-step p-th order scheme (named
OSMPp) that preserves accuracy near extrema. In particular, we recast the
original MP constraints of Suresh et al.[20] in the TVD framework which al-
lows us to generalize the MP conditions in terms of flux limiting, and avoid
any CFL restriction. The MP conditions that preserves accuracy can be ex-
pressed directly as constraints on the ψp function [5].
Let us define the function φp such that :

φp
k =

ψp
k

(1− |ν|k)δ|f |k (13)

for each characteristic field. The numerical flux of the OSp scheme can be
written, using φp, as:

F p
j+1/2 = FRoe

j+1/2 +
1

2

∑

k

(φp(1− |ν|)δ|f |r)k,j+1/2 (14)
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If we define :

φ1
k,j+1/2 =

2rk,j+1/2

|ν|k,j+1/2

· 1− |ν|k,j+1/2−js

1− |ν|k,j+1/2

φ2
k,j+1/2 =

2

1− |ν|k,j+1/2

(15)

the TVD conditions derived by Harten can be expressed as a constraint on
φp :

φp,TV D
k,j+1/2 = max

{
0, min

(
φ1

k,j+1/2, φ
p
k,j+1/2, φ

2
k,j+1/2

)}
(16)

with

rk,j+1/2 =
δαk,j+1/2−js

δαk,j+1/2

(17)

The MP constraints are based on the principle that the TVD conditions should
be activated only in monotone regions. The following flux variations can be
defined :





δF p
k,j+1/2 = 1

2
ψp

k,j+1/2

δful
k,j+1/2 = 1

2
φ1

k,j+1/2 · (1− |ν|k,j+1/2)δ|f |k,j+1/2

δfmd
k,j+1/2 = 1

2
δ|f |k,j+1/2 − 1

2
dk,j+1/2

δf lc
k,j+1/2 = 1

2
δful

k,j+1/2 + 1
2

1−|ν|k,j+1/2−js

|ν|k,j+1/2
dk,j+1/2−js

(18)

with dk,j+1/2 = minmod(dk,j, dk,j+1), where dk,j = (λδα)k,j+1/2 − (λδα)k,j−1/2

is a curvature term.
The TVD conditions constrain δF p

k,j+1/2 to be inside the interval

[0, δ|f |k,j+1/2]
⋂

[0, δful
k,j+1/2] (this is equivalent to the TVD constraint (16)).

The MP conditions provide an enlargement of these intervals : the TVD con-
straint (16) is activated only when δF p

k,j+1/2 is outside the intervals

[0, δ|f |k,j+1/2, δf
md
k,j+1/2]

⋂
[0, δful

k,j+1/2, δf
lc
k,j+1/2], where we noted by [f 1, f 2, ..., fk]

the interval [min(f 1, f 2, ..., fk),max(f 1, f 2, ..., fk)]. In practice, as was done
in [20], the criteria is strengthened by choosing the following definition for the
curvature measurement dk,j+1/2:

dk,j+1/2 = dM4
k,j+1/2 = minmod (4dk,j − dk,j+1, 4dk,j+1 − dk,j, dk,j, dk,j+1)(19)

The resulting scheme (OSMPp) will be pth-order accurate almost everywhere,
except around discontinuities where it becomes first order accurate as is the
case of all TVD schemes.
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The multidimensional extension is even more delicate than in the case
of separate time-space discretization (which is straightforward when treated
dimension by dimension [20]), since we have to consider cross derivative terms
that appear in the second and higher order terms, which are left uncontrolled
if one applies a direction by direction MP correction to a Lax-Wendroff un-
split scheme. A Locally Extremum Diminishing scheme can be obtained if the
mixed terms are discretized by using upwind formulae, but is very difficult to
implement. The simplest way to avoid this problem of cross derivatives and
to recover good properties of the one-dimensional scheme is to use a Strang
directional splitting strategy [5], which is only second order accurate. In two
dimensions, the system of equations is written:

∂w

∂t
+

∂f(w)

∂x
+

∂g(w)

∂y
= 0 (20)

where f and g are the fluxes in each direction. We implement the splitting as
follows:

wn+2
j = LδxLδyLδyLδxw

n
j (21)

Lδx (resp. Lδy) being a discrete approximation of Lx(w) = −f(w)x (resp.
Ly(w) = −g(w)y). In such a way, the second order accuracy is recovered every
two time steps.

While reducing the order of accuracy of the original scheme, this simple exten-
sion to multidimensional non-linear systems, proposed here, provides a scheme
that can compete very well with high order WENO schemes at low cost, as
we will see hereafter.

2.2.2 Method of lines

Besides the high-order coupled approach, a separate time and space integra-
tions has also been used to solve the governing equations (1, 2).

Temporal integration The time integration is performed by means of a
third order Runge-Kutta method [18]:

w0 = wn

w1 = w0 + δtL (w0)

w2 =
3

4
w0 +

1

4
w1 +

1

4
δtL (w1) (22)

w(n+1) =
1

3
w0 +

2

3
w2 +

2

3
δtL (w2)
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where L(w) is a discrete approximation of L(w) = −∇· (f(w)− fv(w,∇w)) .
This time integration has been chosen since it does not increase the Total
Variation of L(w).

Space discretization The integration of the viscous fluxes is performed by
means of a second order centered approximation.

The convective terms are treated following a WENO procedure based on Roe’s
approximate Riemann solver [15]. The WENO scheme is based on a weighted
(convex) combination of the p stencil candidates of the original ENO scheme
[16], [17], to increase the order of accuracy of the latter. The weights [9] depend
on the degree of regularity of the solution; i.e. in regular regions, the weight
coefficients allow one to achieve a (2p−1)th-order of accuracy while in regions
where discontinuities occur, they are set to zero leading to a standard ENO
scheme. The WENO fluxes are estimated by:

FWENO
j+1/2 =

∑

k




p−1∑

l=0

ω
(p)
l qp

l (fj+l−p+1, ...., fj+l) rk


 (23)

where qp
l is the ENO reconstruction on the lth stencil, using the coefficients

(ζp
l,k) given in Table 1:

qp
l (fj+l−p+1, ..., fj+l) =

p−1∑

k=0

ζp
l,kfk, (24)

and ω
(p)
l are the weights defined by:

p−1∑

l=0

ω
(p)
l = 1. (25)

ωl =
βl∑p−1

k=0 βk

(26)

βl =
Cp

l

(ε + ISl)
2 . (27)

ε is a small positive number to avoid denominator to be zero (hereafter we set
ε = 10−6) and ISl is a regularity measurement of the flux on the lth stencil
candidate. The evaluation of the smoothness measurement (ISl) is based on
the undivided-differences [9].

Hereafter, the calculations were performed by using p = 5 that gives a theo-
retical 9th-order of accuracy in space. The corresponding ENO coefficients are
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p l k = 0 k = 1 k = 2 k = 3 k = 4

5 4 1/5 -21/20 137/60 -163/60 137/60

3 -1/20 17/60 -43/60 77/60 1/5

2 1/30 -13/60 47/60 9/20 -1/20

1 -1/20 9/20 47/60 -13/60 1/30

0 1/5 77/60 -43/60 17/60 -1/20

-1 137/60 -163/60 137/60 -21/20 1/5

Table 1
ENO coefficients (ζp

l,k) for p=5 on a regular mesh.

ω
(p)
l l = 0 l = 1 l = 2 l = 3 l = 4

p = 5 1/126 10/63 10/21 20/63 5/126

Table 2
Weights (ω(p)

l ) for the WENO (p=5) procedure

reported in Table (1) while the weights are given in Table (2).

2.3 Boundary conditions

On the solid wall boundaries, a no-slip condition is prescribed on the velocity
components. The density is calculated through the use of the continuity equa-
tion written on the wall points. An adiabatic condition is prescribed on the
wall temperature. A standard fourth order upwind formula is used to estimate
the normal to the wall derivatives.

3 Flow field configuration

We consider a square shock tube with a unit side length and insulated walls.
The diaphragm is initially located at the middle of the tube (x = 0.5). The
initial states, in terms of dimensionless quantities, are on the left-side of the di-
aphragm: ρL = 120, PL = ρL/γ, uL = vL = 0, and on the right-side: ρR = 1.2,
PR = ρR/γ, uR = vR = 0. The reference velocity is based on the initial speed
of sound, corresponding to a reference Mach number M0 = 1. The Prandtl
number is assumed constant (Pr = 0.73, for air). Four Reynolds numbers have
been considered: Re = 200, 500, 750, 1000. At the initial time, the diaphragm
is broken. The 1-D inviscid solution is presented in Fig. 1, showing the evolu-
tion of the density (left) and the velocity (right) in the x − t plane. A shock
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wave, followed by a contact discontinuity, moves toward the low-pressure re-
gion (i.e. to the right, in the present case), while a sonic rarefaction wave
moves toward the high-pressure region at the left. The shock Mach number is
equal to 2.37. The rarefaction wave reflects on the left wall at a dimensionless
time t = 0.5. The incident shock wave is weak, and reflects at the right wall
at time t ≈ 0.21. After reflection, it interacts with the contact discontinuity.
Complex interactions then occur leading to transmitted and reflected waves
as one can see in figure 1. For later times, the contact discontinuity stays
stationary, close to the right wall. On the contrary, the reflected shock wave
moves on and begins to interact with the rarefaction wave at time t = 0.4, and
later with the reflected rarefaction wave. During the interaction the reflected
shock has an approximately constant velocity, but the fluid velocity decreases
continuously after its interaction with the incident rarefaction wave (Fig. 1
right).

X

t

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Fig. 1. x− t diagram of the density (left), velocity (right).

In the 2D viscous case, the propagating incident shock wave and contact dis-
continuity interact with the horizontal wall, creating a thin boundary layer.
After its reflection on the right wall, the shock wave interacts with this bound-
ary layer. As the stagnation pressure in the boundary layer is lower than the
one within the outflow region, a separation region (named “bubble”) appears
over a large extent within the boundary layer, resulting in a major modification
of the flow pattern and the formation of “a lambda-shape like shock pattern”,
as one can see in figure 6. The triple point emerging from the lambda-shape
like shock pattern generates a slip line that rolls up in the right end corner.
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4 Grid convergence study and influence of the schemes

The simulations have been carried out for four Reynolds numbers: Re =
200, 500, 750 and 1000. Simulations with increasing grid resolutions have been
performed to verify grid-independency of the solutions. All meshes use equally
spaced points with cell aspect ratio equal to unity. The grid convergence is
shown for the density distribution along the bottom wall at t = 1 (Fig. 2).
To make sure that other quantities are well converged, we also provide the

(a) (b)
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Fig. 2. Density distributions along the bottom wall of the shock tube, obtained
at t = 1 on several fine grids by using the OSMP7 scheme (solid lines) and the
RK3-WENO5 scheme (dashed lines), for four Reynolds numbers: (a) Re = 200, (b)
Re = 500, (c) Re = 750 and (d) Re = 1000.

distributions of the skin friction coefficient along the bottom-wall for the four
Reynolds numbers (Fig. 3). Furthermore, for Re = 1000, we plot the den-
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Fig. 3. Distributions of the skin friction coefficient along the bottom wall of the
shock tube, obtained at t = 1 on several fine grids by using the OSMP7 scheme (solid
lines) and the RK3-WENO5 scheme (dashed lines), for four Reynolds numbers: (a)
Re = 200, (b) Re = 500, (c) Re = 750 and (d) Re = 1000.

sity (Fig. 4-a) and the vorticity (Fig. 4-b) along the horizontal line crossing
the separation bubble and the vortices, located at y = 0.05. Simulations for
RK3-WENO5 scheme on the finest grid (4000× 2000) at Re = 1000 were not
performed due to prohibitive computational cost.

As expected, greater Reynolds numbers require finer grids to achieve conver-
gence. From this numerical experiment, we found that sufficient grid resolu-
tions for the different Reynolds numbers are: 1000×500 for Re = 200 (Fig. 2-a
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Fig. 4. Distributions of density (a) and the vorticity (b) along the line y = 0.05,
obtained at t = 1 on several fine grids by using the OSMP7 scheme (solid lines) and
the RK3-WENO5 scheme (dashed lines), for Re = 1000.

and 3-a), 1500×750 for Re = 500 (Fig. 2-b and 3-b), 2000×1000 for Re = 750
(Fig. 2-c and 3-c) and 4000× 2000 for Re = 1000 (Fig. 2-d, 3-d and 4).

In a previous study [3], we have shown convergence issues when using classical
shock capturing TVD approaches for this test-case, especially at Re = 1000.
Subsequently, Sjögreen and Yee [19] have unsuccessfully attempted to ob-
tain converged solutions by using several separate time and space schemes
(MUSCL-RK2, WENO5-RK4 and high order filtered difference methods). For
instance, the solution for high order filtered difference methods is notably dif-
ferent than the solution for MUSCL-RK2 method. Also, for Re = 1000, they
obtained solutions significantly different than ours. They mentioned that one
cannot conclude on the respective accuracy of the various schemes and that
the stability of the flow is questionable. In our simulations, converge solutions
are clearly obtained as seen in previous figures and also in figure 5 where
plotted are the density fields at t = 1 for several grids. Again, results for
RK3-WENO5 scheme on the finest grid (4000 × 2000) are lacking in figure 5
because of the prohibitively large CPU time required, but it is obvious that
the two numerical methods tend to converge to the same solution.

Computations were performed on a NEC-SX8, at the CNRS’s National Com-
puting Center (IDRIS). The OSMP7 scheme takes about 3.10−7 s.CPU per
time step and grid point, at a flow-rate of 7 Giga Flops. The CPU time re-
quired by the RK3-WENO5, at a flow-rate of 6 Giga Flops, is 2.10−6 s.CPU
per time step and grid point ie six to seven times greater than the OSMP7
scheme.
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Fig. 5. Contours of ρ obtained on the finest grid at t = 1 for Re = 1000: (a) OSMP7
(4000 × 2000); (b) RK3-WENO5 (3000 × 1500); (c) OSMP7 (3000 × 1500); (d)
RK3-WENO5 (2000× 1000); (e) OSMP7 (2000× 1000). (21 contour levels between
20 and 120).

We can observe that the OSMP7 scheme exhibits a faster grid convergence
than the RK3-WENO5 scheme on the vortical structure in the bottom-right
corner due to the roll-up of the contact discontinuity. This can mainly be
attributed to the poor behavior of the WENO scheme for contact discontinu-
ities. However, the convergence of the main vortical structure (downstream of
the lambda-like shock pattern) seems to be rather identical for both schemes.
Though very small differences are seen between the 3000×1500 and 4000×2000
mesh solutions, we can consider that the solutions on the 3000×1500 grid are
almost converged for the two schemes. This support the claim of a converged
solution for the 4000×2000 mesh and OSMP7 scheme, for the highest consid-
ered Reynolds number (Re = 1000). We suggest that our converged solutions
could be used as a reference in future work.
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5 Dynamic flow analysis of a shock wave / boundary layer inter-
action.

This section is devoted to the analysis of the flow dynamics during the in-
teraction of the reflected shock-wave with the laminar boundary layer. The
interaction begins at the bottom-right corner right after the incident shock
wave has reflected on the right wall. When the reflected shock interacts with
the bottom wall boundary layer, the stagnation pressure within the boundary
layer is lower than downstream of the normal shock. After the shock reflection,
the hotter fluid in contact with the right wall moves suddenly down to the
bottom wall, creating a hot countercurrent jet close in the corner. A recircu-
lating flow is then generated that initiates the boundary layer detachment to
form a ”bubble”. The deviation of the cold flow over the slip line (supersonic
shear layer) delimiting the hot fluid ”bubble” then induces a lambda-shape
like shock pattern. This early stage of the reflected shock/boundary interac-
tion can be seen at a dimensionless time t = 0.4, on figure (6) where the static
temperature contours are plotted for the solution at Re = 200 obtained on the
finest grid. A short time later, the shock interacts with the incident contact
discontinuity. The incident flow in between the lambda-shock and the wall jet,
rolls up around the bubble and forms a high-speed cold jet. After this jet has
impinged on the bottom wall (around t = 0.5 as we can see in figure (6)), no
more hot shocked fluid enters the bubble, which is isolated from the hot right
wall region. The countercurrent part of the jet then alternatively hits and
reflects between the bottom wall and the supersonic shear layer originating
from the separation point (Fig. 6), thus creating a series of counter-rotating
vortices. Each vortex is made up of three ”layers” of fluid : at the center the
hottest shocked fluid, next a layer of colder fluid originating from the bound-
ary layer, and finally the coldest layer of fluid from the external flow at the
periphery (see Fig. 6). The jet flow is very energetic with supersonic velocities
at several places. Each impact of the jet, either on the solid wall or on the
oblique slip line, creates a relatively high pressure region. This leads to the
deformation of the slip line and to the generation of secondary shock waves
above it.

6 Influence of Reynolds number on the flow dynamics.

The analysis of the flow dynamics within the separation region has pointed out
that the speed of the counter flow jet increases with the Reynolds number.
Consequently, during a fixed period of time, the number of jet alternated
reflections between the bottom wall and the slip line increases with Re. Also,
the number of counter rotating vortices produced in this interaction region
increases too. This can be seen from the density gradient and temperature
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(a) (b)

(c) (d)

Fig. 6. Contours of T obtained on the finest grid for Re = 200 at (a) t = 0.4, (b)
t = 0.6, (c) t = 0.7, (d) t = 0.8. Hot fluid in dark, cold fluid in light. 41 niveaux
entre 0.4 et 1.2

fields in Fig. 7 and 8, where the solutions for the four Reynolds numbers are
presented at t = 0.6 and t = 1 respectively. Shocklets in the vicinity of the
vortices as well as Kelvin-Helmholtz instabilities in the supersonic shear layer
originating at the triple point are visible on the contours of density gradients
(Fig. 7-left and 8-left). The temperature fields (on Fig. 7-right and 8-right)
give additional information on the flow, notably on the location of hot and
cold streams and the flow coming from the initial boundary layer.

The Reynolds number also affects the location of the triple point of the
lambda-shape like shock pattern. One can observe, in figures 7 and 8, that
the height of the triple point increases with Re. To better appreciate the mo-
tion of the triple point, its coordinates are plotted as a function of time in
Fig. 9 for the four Reynolds numbers. Its horizontal velocity is constant and
nearly independent of Re (Fig. 9-left). This velocity is slightly greater than
that of the normal shock along the tube centerline (y = 0.5). On the contrary,
the triple point motion along the vertical direction depends on the Reynolds
number (Fig. 9-right). Time evolutions of the triple point distance to the bot-
tom wall, are in agreement with theoretical predictions (e.g. see [7], [13] and
[14]). Similarly to Matsuo et al. [14], we found two periods before and after
t = 0.53 where the Re dependency changes. Surprisingly, at t = 0.53 all the
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curves cross each other. In the first period (before t = 0.53), the triple point
height is lower for higher Re due to the thinner boundary layer. We found that
t = 0.53 corresponds to the time when the bubble is “closed”, i.e. when the
heated vertical jet, coming from the fluid flowing in between the lambda-shock
and rolling up around the bubble, impinges on the bottom wall and separates
the right wall hot region from the bubble. We have no explanation to propose
for the Re independency of the closing time of the bubble. Anyway, before
t = 0.53, the separated bubble is fed by both the incoming boundary layer
and the heated vertical jet. On the contrary, after that time, the detachment
is only fed by a portion of the boundary layer, the bubble being “closed”. In
accordance with [7], [13] and [14], we verified in our results that the pressure
downstream the leading oblique shock wave (under the lambda-shock) is the
same than the pressure at the beginning of the detachment which is equal to
the stagnation pressure in the incoming boundary layer. In a crude theory,
Mark [13] showed that the stagnation pressure in the boundary layer is only
related to the Mach number of the reflected shock wave and is independent of
the Reynolds number. In the flow condition of our test-case, Marks’s theory
was corroborated by more sophisticated developments undertaken by Davies
et al. [7] and Matsuo et al. [14]. The ratio between the boundary layer stagna-
tion pressure and the static pressure (above the boundary layer) upstream of
the leading reflected shock can be determined using the Mach number of the
reflected shock wave [13] (in the present case Ms = 2.37). This Mach number
being independent of Re, it explains the constant angle of the leading oblique
shock wave for all Re found in the simulations. However, the velocity of the jet
increases with Re leading to increasing bubble size, as predicted by Mark [13].
Since the angle of the leading oblique shock is constant, it is shifted to the left
with increasing distance from the bottom wall of the triple point for increasing
Re (Fig. 9-right).

The Reynolds number effects also impacts the vortices created within the
lambda shock pattern, i.e. at t = 0.6 (Fig. 7): three vortices are created at
Re = 200 and six at Re = 1000. When the number of vortices increases, addi-
tional shocks are created inside the lambda shock pattern. To further analyze
the dynamical process, we have also plotted, in a coordinate reference frame
attached to the reflected normal shock, the vorticity field with some stream-
lines superimposed. These plots are presented at several dimensionless times
and for the four Re studied (Fig. 10, 11, 12, 13). For the lowest Reynolds
numbers, Re = 200 and Re = 500, Fig. 10 and 11 show a regular arrangement
of the vortices inside the bubble. This regular arrangement disappears for
Re ≥ 750 (Fig. 12 and 13). Detailed examination of the dynamics of the flow
reveals the following process : eddy structures are created close to the bottom
wall, with an increasing enstrophy for increasing Re (Fig. 14). Similar to the
vortex/boundary layer interaction, when the enstrophy of the eddy structures
is large enough, they are ejected out of the boundary layer. Hence, the struc-
tures (mainly the second one from the right as indicated on figures 12-b and
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(a) Re = 200

(b) Re = 500

(c) Re = 750

(d) Re = 1000

Fig. 7. Contours of |∇ρ| (left) and T (right, 41 levels entre 0.4 et 1.2) obtained at
t = 0.6 on the finest grid for several Reynolds numbers: (a) Re = 200; (b) Re = 500;
(c) Re750; (d) Re = 1000.

13-b) are stretched and distorted into an intense vortex filament (shown on
figures 12-b and 13-b). This filament is then ejected out of the boundary layer
and trapped, through a pairing process, with the largest vortical structure
(especially, the first structure from the right, as indicated on figures 12-b and
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(a) Re = 200

(b) Re = 500

(c) Re = 750

(d) Re = 1000

Fig. 8. Contours of |∇ρ| (left) and T (right, 41 levels entre 0.4 et 1.2) obtained at
t = 1 on the finest grid for several Reynolds numbers: (a) Re = 200; (b) Re = 500;
(c) Re750; (d) Re = 1000.

13-b). Due to the shear stress of the outflow, the filament is elongated to the
point where it breaks up. After that, the enstrophy intensity decreases close
to the wall, resulting in the retraction of the structure with a “spring back
effect”. This in turn affects the vortex arrangement which becomes irregu-
lar, with flattened structures. Neighboring co-rotating structures eventually
merge.
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Fig. 9. x (left) and y (right) coordinates of the triple point versus time

7 Conclusion

This study demonstrates that the calculation of such a complex flow requires
numerical schemes which are both robust and very accurate. The OSMP7
scheme allows to reach fully converged solutions for Reynolds numbers as
high as 1000. Simulations with sufficiently refined grids to obtain converged
solutions could not be performed using the classical WENO scheme because
of the excessive CPU cost. Using converged solutions, the flow dynamics and
its evolution with the Reynolds number were analyzed in detail. The present
analysis is only valid for 2-D laminar configurations. For larger Re, 3-D insta-
bilities will change the present flow dynamics. Nevertheless, by considering the
Re range we studied, this 2D shock tube problem is an appropriate test-case
for validation of high-resolution schemes, and the presented grid-converged
results may serve as reference solutions for that purpose.
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(a)

(b)

(c)

Fig. 10. Contours of the vorticity field with streamlines superimposed obtained, in a
coordinate referential attached to the reflected normal shock, for Re = 200 at time
(a) t = 0.6, (b) t = 0.9 and (c) t = 1.
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(c)

Fig. 11. Contours of the vorticity field with streamlines superimposed obtained, in
a coordinate frame attached to the reflected normal shock, for Re = 500 at time (a)
t = 0.6, (b) t = 0.9, (c) t = 1.
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Fig. 12. Contours of the vorticity field with streamlines superimposed obtained, in
a coordinate frame attached to the reflected normal shock, for Re = 750 at time (a)
t = 0.6, (b) t = 0.9, (c) t = 1.
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Fig. 13. Contours of the vorticity field with streamlines superimposed obtained, in
a coordinate frame attached to the reflected normal shock, for Re = 1000 at time
(a) t = 0.6, (b) t = 0.9, (c) t = 1.
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(d)

Fig. 14. Contours of enstrophy density (1
2 |w2|) obtained at time = 0.9 for (a)

Re = 200, (b) Re = 500, (c) Re = 750 and (d) Re = 1000.
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