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We study the integral representation of I'-limits of p-coercive integral functionals of the calculus
of variations in the spirit of Dal Maso and Modica (1986). We use infima of local Dirichlet
problems to characterize the limit integrands. Applications to homogenization and relaxation
are given.
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1. Introduction

Let m, d > 1 be two integers. Let Q C R?be a nonempty bounded open set
with Lipschitz boundary. Let O (€2) be the class of all open subsets of 2. We
consider a family of functionals F := {F.}.cjo1y with Fo.: W2 (Q; R™)x O (Q) —

[0, oo]. We set conditions in order that each functional of the family F can be
considered as a p-coercive integral functional of the calculus of variations (see

the “global” conditions (C}), (Cy), (C3) in Sect. 2). We are interested in the

integral representation of the I'( L”)-limit of . This is an important problem in
the field of I'-convergence theory (see for instance [§]).

Our goal is to study the conditions of the integral representation of I'( L? )-limit

by using the infima of local Dirichlet problems associated to F asin [9, 5, 4]. More
precisely, we consider the behavior of

me (u; O) == inf { F (v;0) : v € u+ Wy (O;R™)}



in order to find the conditions for the integral representation (see also [10, 11,
15]). We propose three “local” conditions (see (H;), (Hz) and (Hs) in Sect. 2)
related to the local behavior of m. which allows to prove I'(L?)-convergence of
the family F (-; O) with integral representation of the I'(L?)-limit Fq (+; O)

Fo (u;0) = /OLO (x,u(x),Vu(z))dx

where u € Mz (O) (see Definition (1) for Mz (O)) and

Lo (z,u(x),Vu (z)) = EE Mme (ux/;)?p (z))

with u, (1) = u (z) + Vu (z) (- — ).

The main difficulty is to obtain an upper bound under integral form for the
['(LP)-lim. More precisely, we show, in Sect. 3 together with Sect. 4, that the
Vitali envelope (which is an envelope of Carathéodory type where the arbitrary
coverings are replaced by Vitali coverings) V; (u;-) of the set function O (2) >
V = lim, o me (u; V) when u € Mz (O) satisfies

D(L7)-lim Fe (u; O) < Vi (u; 0)

= /O/l)ig(l)inf{lii%% € Qe Q,(0),diam (Q) Sp}d:p.
The Vitali envelope of a set function in connection with the integral represen-
tation of I'(LP)-limits was introduced in [5] (see also [3]). This path has the
advantage to avoid any approximations of Sobolev functions by regular ones. It
allows, when we assume p-growth conditions, to give general results for I'(L?)-
limit and in particular to give a general point of view in homogenization and
relaxation problems for Borel measurable integrands L (x, v, &) (see Sect. 5).

Plan of the paper. Sect. 2 presents the main assumptions (“global and local”
conditions) and the statement of the general results (see Theorem 2.2 and The-
orem 2.6). Theorem 2.6 is an integral representation result of I'(LP)-limit, it
is a consequence of local conditions ((H;), (Hz) and (Hj)) and Theorem 2.2.
In Sect. 3 we state and prove an integral representation for the Vitali envelope
of arbitrary nonnegative set functions. In Sect. 4 we give the proof of Theo-
rem 2.2 and some other related results. Finally in Sect. 5 we give a general
I'(LP)-convergence result in the p-growth case Theorem 5.1, which can be seen
as an extension in a nonconvex (an vectorial) case of Theorem IV in [9, p. 265].
In fact, we show how to verify the local conditions (Hs) and (H3) when we deal
with p-growth, the technics we use are inspired by [5]. In Subsect. 5.2 as an
application of Theorem 5.1 we consider a general point of view of the homoge-
nization of functional integral of the calculus of variations. In Subsect. 5.3 we
give an extension of the Acerbi-Fusco-Dacorogna relaxation theorem when the
integrand is assumed Borel measurable only.



2. Main results
2.1. General framework

Fix a > 0 and p €]1,00[. We denote by Z (p,«) the set of functionals F' :
Whe (Q;R™) x O (Q) — [0, 00| satisfying:

(C1) for every O € O () and every u € dom F'(+; O) we have

(u O) > oz||Vu||Lp O:R™)’

(Cy) for every u € dom F' (+; ) the set function F' (u;-) is the trace on O (2) of a
Borel measure absolutely continuous with respect to the Lebesgue measure

A on §;
(C3) for every O € O () the functional F'(+; O) is local, i.e., if u = v a.e. in O
then F' (u; O) = F (v; 0) for all u,v € dom F (+; O).

Consider a family F := {F.}.cjo,1 of functionals F, : W? (Q;R™) x O (Q) —
[0, 00]. For each O € O (2) and each u € L? (2; R™) we set

F_(u;0) := inf {h_m F. (us;0) s ue — win LP (Q;Rm)} :
e—0
Fi(u;0) :=inf {E F. (us;0) :ue — win LP (Q;Rm)} :
The functional F_ (-; O) (resp. Fy (+; O)) is the T'(LP)-lim_ ,, (resp. ['(LP)-lim,_,)
of the family F (-;0) = {F.(;0)}.. If u € W2 (Q;R™) and F, (u;0) =
F_ (u;0) then we say that F (-;O) I'(LP)-converges at u to the I'(LP)-limit
Fo (u;0) := Fy (u;0) = F_ (u; 0).

We associate to F = {F.}.cj01) C I (p, ) a family of local Dirichlet problems
{mYeqony, me: WP (4 R™) x O (Q) — [0, 00] defined by

m. (u; 0) == inf {F, (v;0) : WP ((;R™) > v =u in Q\ O}.
Note that we can write
m. (u; O) = inf {F. (v;O0) : v € u+ Wy” (O;R™) }

since u+Wy” (O;R™) = {v € W (;R™) : v —u =0 in Q\ O} (see [2, p. 234,
Theorem 9.1.3]).

Remark 2.1. The functional m. (-; O) can be seen as the “quotient functional”
E(-; O) defined on the quotient space of W (Q; R™) by Wy* (O; R™), i.e.,

— Wl,p (QRm)
Fe (- 3—7 )
with /F’;([u],O) = m[f]F (v;0) = me (u; O)
ve|u

where [u] = u 4+ W,” (O;R™) is the equivalent class of w.



2.2. A general I'(L?)-convergence theorem

We denote by A the Lebesgue measure on €2. For each O € O (Q2) we denote by
20, (O) the space of nonnegative finite Borel measures on O which are absolutely
continuous with respect to the Lebesgue measure \|o on O.

Let us introduce the M-sets associated to F: for each O € O (§2) we set
Mz (O) = {u e WP (Q;R™) : Fuy € Ay (O) sup me (u;-) < p1y (+) on O}. (1)
e>0

e  We assume that all the affine maps, i.e., functions of the form u () = v+(z
with (z,v,¢) € Q x R™ x M™*? belong to Mz (O).

We will see in Theorem 2.6 that the M-set is the set where an integral represen-
tation of the I'(L?)-limit is possible.

To the family F we associate m, : WP (Q; R™) x O (Q) — [0, 00] defined by
my (u; 0) == E me (u; O).
The following result provides bounds in integral forms of both I'(L?)-lim. _,, and

[(LP)-lim. of a family F = {F.}.qo1 C Z (p, ), i.e., satisfying (C1), (C)
and (C3).

Theorem 2.2. Let F = {F.}.ci01) C Z (p, @) and let (u,0) € WP (Q;R™) x
0 (9Q).

(i)  Ifu e Mz (O) then
Fi(u;0) < ff (u;0)

< /Oll)ii%inf{%:xe(;)é Q, (0), diam (Q) §p}dx

where
F (u;0)
= inf {@FE (ve; 0) : Wy (O;R™) +u D v, — u in LP (Q;Rm)} ;
E—

(i1) There exists {uc, }, C WP (Q;R™) with sup,, F., (u.,;0) < oo such that
Ue, — w in LP (Q;R™) as n — oo and

F2(u:0) = F(1;0) > / iy T 2o (e Qo ()

1) p—0 n—oo0 P

where

F2 (u;0)

;= inf {li_mFE (ve; 0) : Wy P (O;R™) +u 3 v, — u in LP (Q;Rm)} :

e—0



Remark 2.3. If u € Mz (O) then there exists p, € 2A,(O) such that
SUP,.~o Me (u;-) < py, (+) on O. Therefore we have

my (u;+) < po (1) on O.

Taking account of Theorem 2.2 (i) we deduce that F, (u; O) < oo, which means
that

Mz (0) C dom F? (5 0) == {u e W' (Q;R™) : F7 (u; 0) <oo}
C dom F; (1 0).

To the family F = {F.}.cj0,1] we associate m_ : W (Q; R™) x O (Q) — [0, o0]
defined by
m_ (u; O) := lim m, (u; O).

e—0

Let O € O(Q) and let w € WP (Q; R™). We denote the affine tangent map of
uat z € O by
Uz (1) == u(z) + Vu(z) (- — ).

Consider the following local inequalities for u € Mz (O):

(Hy) lim m- (um;gp (x)) > Tim my (uz; Qp (%))
p—0 p p—0 pd

(H,) m]imw > lim m— (uw;de (z))
P00 P p—0 P
WP (Q; R™) such that u. — u in L? (;R™) and sup, F. (u.; O) < oo;

() Tig e Qo () ) 1 (03 Qy (7))

y > lim
p—0 P p—0 P

a.e. in O;

a.e. in O for all {u.}. C

a.e. in O.

Remark 2.4. We make some remarks on the previous inequalities.

(i)  Condition (H;), related to the integral representation of the I'(LP)-limit
of functionals of the calculus of variations, is already known when p-
polynomial growth (and convexity conditions) is assumed see [14, p. 451].

(i) The condition (Hs) (resp. (Hs3)) can be seen as a “local” I'(LP)-lim (resp.
['(LP)-lim) inequality. To verify inequality (Hs) (resp. (Hy)) we need to
replace u (resp. a sequence {u.}. converging in LP to u and satisfying
sup, F: (ue; O) < o0) by the affine tangent map u, in the localization of
m. on “small” cubes Q, (x). This can be performed, for instance, by using
growth conditions see Sect. 5.

The following lemma is used in the proof of Theorem 2.6 and its proof is given
in Sect. 4.

Lemma 2.5. Let F ={F.}.cjon) CZ (p, ). Let O € O (Q) and letu € Mx (O).

If (Hy), (Hy) and (Hj) hold then the function O > z + lim, o W is



measurable and satisfies

g T (05 Q (@) _ (1 Qy ()

y a.e. i O.
p—0 1% p—0 1Y

Here is the general I'(L?)-convergence theorem which shows that under the lo-
cal inequalities (H;), (Hz2) and (Hjs) the family F (-;O) I'(L?)-converges to an
integral functional of the calculus of variations at every u € Mz (O). In Sect. 5
we give applications to homogenization and relaxation of this result. When
F? = F? we denote by Fy = F? = F? the common value.

Theorem 2.6. Let F = {F.}.coy) C Z(p, ). Let O € O(Q) and let u €
Mz (0). If (Hy), (H2) and (Hs) hold then the family of functionals F (-;O)
[(LP)-converges at u to

Fo (u;0) = F3 (u;0) = / Tim 2+ (1423 Qp (x))dx (2)
Moreover, we have for almost all x € O

(1 Q (2)

im = lim

m (ua; Qp (2))
d d :

=0 p p—0 p

Proof. Let O € O () and let u € Mz (O). From Theorem 2.2 (i7), there exists
{u:}. € WP (Q;R™) with sup, F. (u.; O) < oo such that u. — w in L? (Q;R™)
as € — 0 and

F2 (u;0) > F_ (u;O)Z/limlim—FE (e % (2)) 4,

o p—0e—0 P

Using the local inequalities (Hy), (Hs) and (Hj), Lemma 2.5 together with
Theorem 2.2 we have

< /limlimwdx
O

Thus (2) holds. The equality (3) is a consequence of Lemma 2.5. O



2.3. The relaxation case

We examine the particular case of a constant family with respect to the param-

eter F = {F. = F}. CZ(p,a). We set for every (u,0) € WP (Q; R™) x O (Q)

Fo (u;0) := inf {li_mF (ve;0) : WEP (Q;R™) 3 v, — u in LP (Q;Rm)} :

e—0

F3 (u;0) := inf {li_mF(vE;O) WP (O;R™) 4+ u > v, — uin LP (Q;Rm)};

e—0

m (u;0) :=inf {F (v;0):v € u+ Wy (O;R™)}.

The following abstract relaxation result is a direct consequence of Theorem 2.6.

Proposition 2.7. Let O € O () and let u € Mz (O). If (Hy), (Hs) and (Hj)

hold then
Fo (1,0) = F2 (u;0) = / fig ™ (i Qe ()

dx. 4
iy S (4)

Remark 2.8. In particular (4) holds for all u € dom F' (-; O) since it is easy to
see that dom F' (-;0) C Mz (O).

2.4. Remarks on the limit integrand

We assume that the assumptions of Theorem 2.6 hold. We give descriptions of
the limit integrand Ly by considering some particular cases.

(i) If we define Lo : Q x R% x M™*? — [0, 00] by

Lo (w,0,€) = Ty my (v +¢ <'p; 7);Q, (2))

, (5)
and for each u € Mz (O)

Lo (z,u(z), Vu(z)) := lim my (uﬁde (z))

p—0 P

then the formula (2) becomes
Fo (u;0) = / Lo (z,u(x), Vu (z)) da.
o)

Indeed, we have for every = € O
Lo (2, u (2), Vu (2)) = Lo (2, u (2), Vu () (7)

In fact, we do not know whether the integrand EO is Borel measurable. Because
of the equality (7), the function O 3 x — L (z,u (x), Vu (x)) is measurable for
all u € Mz (O).



ii) Assume that { F.}. = F is given under integral form, i.e., F. : WP (; R™) x
O (©2) — [0, 0] is defined by

F. (u;0) := /OL€ (x,u(z),Vu(z))de

where L. : Q x R? x M™% — [0, oc] is Borel measurable for all ¢ €]0, 1]. Then

p—0e—0

Lo (z,0,6) = Eminf{ o )Le(y,v+§(y—x)+<P(y),§+Vso(y))dy:

p € W™ (Qp (2);R™) } (8)

If, moreover, we assume that L. does not depend of the variable v, i.e., L, :
Q x M™*4 — [0, 0o] then (7) becomes

Lo (z, Vu (2)) = Lo (z, Vu (z))

for all x € O and all u € Mz (O). Since the affine functions belong to Mz (O)
we deduce that for every x € O and every & € M™*4

Lo (2,€) = Lo (z,€).

(iii) Now, we consider the case where {F. = F'}. = F is constant with respect

toeand F: WP (Q;R™) x O () — [0, 00] is defined by
F(u;0) := / L(z,u(x),Vu(zx))dz
o)

where L : Q x R x M™*4 — [0, 00| is Borel measurable. If we define for every
(z,0v,€) € Q x RY x M™*d

Z0 (.I',’U,g) = (9)

p—0

lim inf { o )L (v, v+E (Y — 1)+ (), E+ Ve (y)dy : o €Wy (Q, (x);Rm)}

then for every u € Mz (O) and every x € O

Lo (z,u(x),Vu(z)) = Lo (z,u (z), Vu (z)).

We will show in Proposition 5.11 that when L is Carathéodory with p-growth
and p-coercivity we recover the classical quasiconvex envelope [7, Theorem 9.8,
p. 432].



3. Integral representation of Vitali envelope and derivation of set
functions

3.1. Integral representation of Vitali envelope of set functions

For a given open set O C 2 we denote by Q, (O) the set of all open cube of O.
We denote by Q. (O) the set of all closed cube of O.

Let G : Q,(2) —] — 00, 00| be a set function. We define the Vitali envelope of
G with respect to A

O(Q) 30+ Vs (0) :=supinf {ZG(QZ) : {Qi}iel S (O)}

e>0 el

where for any € >0
Ve (0) = {{QZ}ZH C Q. () : I is countable, A (O\igl QZ) =0, Q,CO
diam (Q;) €]0, e[ and Q; NQ; = 0 for all i # j}.

Remark 3.1. If G is the trace on Q, (£2) of a positive Borel measure v on
which is absolutely continuous with respect to A then Vi (O) = v (O) for all
0Oe0().

Let G : Q,(2) —] — 00, 00] be a set function. Define the upper and the lower
derivatives at = € 2 of G with respect to A as follows

.6 =t {$8 e qe 0, dum(@) <},
D\G (7) := /l)ig(l)sup{% xeQe Q,(R), diam (Q) < p}.

We say that G is A-differentiable in O if for A-almost all z € O it holds
—00< DG () = D\G () < 0.

Remark 3.2. For every O € O (2) and every z € O we have

D,G ()= tiyint { S 2 €0 € 0,(0). (@) <}
DG (z) = /l)i_)r%sup{% xe Qe 9,(0), diam(Q) Sp}.

The proof of the following classical result can be found in Appendix.

Lemma 3.3. The functions D,G (-) and D\G (-) are \-measurable.



Remark 3.4. When G = v is a Borel finite measure absolutely continuous with
respect to A then v is A-differentiable in O and

Dyv (z) = /l)i—% W a.e. in O.

The following result establishes an integral representation for the Vitali envelope
of nonnegative set functions.

Proposition 3.5. Let H : Q,(Q2) — [0,00] be a set function. For every O €
O (92) we have

Vir (0) = /O DH (y)dy.

The following lemma was inspired by reading [6].
Lemma 3.6. Let G : Q, (2) —] — 00, 00] be a set function and O € O (Q).

(a) If D\G(z) <0 A-a.e. in O then Vg (O) < 0.
(b) If D,G () >0 A-a.e. in O then Vg (O) > 0.
(¢) If D\G(x) =0 A-a.e. in O then Vi (O) = 0.

Proof. The assertion (c) is a consequence of (a) and (b).

Proof of (a). It is enough to show that for every >0 if
D,G(x)<e Mae. in O (10)
then

inf {ZG Q) : {Qi},;, €V (0)} <eX(0).

el

Fix e>0. Let N C O with A (N) = 0 be such that O\ N = [D,G () <¢]. Using
Lemma 6.1 (i) with h = n = ¢ and S, = O\ N, there exists a countable pairwise
disjointed family {Q;}ier C Q, (O) such that

A ((O \ N) \ZLEJI Qi) =0, Viel G(Q)<eA(Q;) and diam(Q;)<e. (11)

From (11) we have A (O\Ujer Q;) = 0 since A (N) = 0. Consequently, we have
S M (Q) = i A (Qi) = A(O). Summing over i € I the first inequality (11)

we obtain

el el

inf {ZG(Qi) {Qi}i, €V (0)} <) MQ) =er(0).



Proof of (b). Let {e,}nen CJO, 1] be such that lim,, ., &, = 0. Let n € N. There
exists {Q7 }ier, € Ve, (O) such that

inf {ZG(@» {Qlev., <0>} S ffgf;A Q).  (12)

i€l i€l,

Fix z € O be such that

DG (x)>0 and z¢ | (O\ignQ?).

neN

There exists i}, € I, such that z € Qf\,. From (12) it follows that

inf {ZG Q) {Qi} € V., (0)} ¥z (13)

iel

G (Qk)

g
iz

>
r(ar)

i —G(Q)x lam n
>t { T8 e e ,(0), dim (@) <2 b A Q).

Passing to the limit n — oo in (13) we obtain

AQR)

Ve (0) > DG (2) lim A (Qj) > 0.

n—oo

The proof is complete. O

Corollary 3.7. If G = H — v where H : Q, () —] — 00, 0] is a set function,
v is a finite Borel measure on O € O (§2) absolutely continuous with respect to
Mo, and if

DG (x)=0 X-a.e. inO

then

Proof. Use Lemma 3.6(c) and remark that Vi (O) = Vi (O) — v (O). O

Proof of Proposition 3.5. Assume that D,H € L' (0), i.e.,
| Dt )y < oo
o
Define G : Q, (O) —] — 00, 00| by

G(Q) = H(Q) - /Q DH (y)dy.



If we show that D,G = 0 a.e. in O then by Corollary 3.7 we can conclude that
VH (O) =V (O) with v := Q)\H () )\LO

Fix x € O such that

D,H (z) = lim D, H (y) dy < o0; (14)
P70 Qula)
P
D,v(z) =D, H (z) < 0. (15)

We set B, , :={Q:z€ Qe Q,(0) and diam (Q) < p} for all p>0. On one
hand, we have for every p>0 and every Q € 5, ,

5(Q)  #Q

Q) ~
:M_mf{ QAH(y)dy:QG’BW)}.
Q

) —|—sup{— Q/\H(y)dy:QE%m,p}
Q

Q)

Taking the infimum over every Q € 9B, , we obtain

inf{% Qe %z,p}

in 7H(Q) }—in{ : }
< f{/\(Q) :QeB,, f QQAH(y)dy.QG’BLP :

Letting p — 0 and using (14) and (15), we have
D,G () < DyH (z) — DyH (2) = 0. (16)

On the other hand, we have for every p>0 and every Q € B, ,

GQ _HQ | . :
Vo 2 g QQAH(y)dy‘QE%“”’}
H
= % —sup{ QQ/\H(y)dy HONS %z,p}-
Taking the infimum over every Q € 98, , we obtain

inf {% Qe ’BW}

< inf{%:@é%w} —sup{

Letting p — 0 and using (14) and (15), we have

D,\H (y)dy : Q€ %LP} )
Q

D,\G (x) > Dy\H () — DyH (x) = 0. (17)



Taking account of (16) and (17), we finally obtain that D,G (x) = 0.

Now, we do not assume that D, H € L' (0O), in this case the following inequality
is always true

Vi (0) < /O D, H (y)dy.

It remains to prove the opposite inequality. For every n € N we set H, :

Qo (2) — [0, oo[ defined by

It is easy to see that

VQE Q(Q) Ho(Q <H(Q) < <H,(Q) < <supH,(Q) <H(Q);
YneN D,H, <n. (18)

So {D,H,}nen C L' (O), we apply the first part of the proof to have
VneN Vg, (0)= / D, H, (y)dy < Vg (0).
0

Using (18) and monotone convergence theorem we have

sup Vir, (0) = / sup DyH, (y) dy < Vir (0) (19)

neN neN

Fix n € Nand z € [D,H < n|. Then for every p>0 we have

< n. (20)

For each n € N and each p>0 we set 4, :=={Q € B,,: H(Q) <nA(Q)} and
B, :=%8,,\ A,. Then

B . H,(Q)
DyHy () = sup il =)

) (.. H(Q) .. H.(Q)
=supmin { int S anf Vi )

~pmin{ gt i)
dCHY

> supmin < inf ——=
p>0 {Qe%w Q)




Using (20) we find

D,H, (x) >sup inf 7Q) =D,H ().

p>0 Q€EBz A (Q)

It follows that sup,,cy D\H, () = Dy H (z) for all z € O and thus (19) becomes

/OQ/\H (y)dy < Vi (O).

The proof is complete. 0

4. Proof of main results
4.1. Proof of Lemma 2.5

Fix O € O(Q) and u € M (0). By Theorem 2.2 (i7) there exists {u., }., with
sup,, Fz, (ue, ;) <oo such that u., — u in LP (Q;R™) as n — oo and

n

00> F? (u;0) > F_ (w;0) > / lim Lim F., (usn;de (x))dx

19) p—0 n—o0 P
since Remark 2.3. It follows that for almost all x € O

lim L?”(x)) > lim lim 25 <“€n3de ()

p—0 P p—0n—o0 P

(21)

Using the local inequalities (H;), (Hs), (H3), (21) and Theorem 2.2 (i) we have
for almost all x € O

(22)



From the last inequality (22) we have the following inequalities

i 2050 0) P50, 0) _ e P (50, 0)
p—0 P p—0 P p—0 p
and h_mL(dgp(x))gm —( 7Qp(x))§F./—'.+(u,Qp(:L‘))
p—0 P p—0 P p—0 e
i P Q@) PR 0,0) P2 (6, )
p—0 p? p—0 P p—0 e
and Jim 7= Q@) ) PR @)y 72 Q)
p—0 pd p—0 pd p—0 pd
R )
p—0 pd

for all z € O. It follows that for almost all x € O

Fy (1;Qp (7))

lim L?p(x)) — lim
p—0 P p—0 p
= lim ]:? (1; Qp () — lim == (u; Qo (2))
p—0 pd p—0 pd
= Dymy (1) (2) = lim "2 (0 ()
p—0 1%
e (0 Qp (@) e (4 Qp (7))
p—0 pd pTO pd

So, the proof is complete since O > = +— D,m; (u;-) (z) is measurable by
Lemma 3.3. U

4.2. Proof of Theorem 2.2

Proof of Theorem 2.2 (ii). Let (u,0) € W' (Q;R™) x O () be such that
F_ (u;0)<oo. There exists a sequence {uc, }, C W (Q; R™) such that

ue, — win LP (Q;R™) | lim F., (u.,;0)=F_(u;0)
n—oo
23
and sup F;, (u.,;0)<o0. (23)

By (Cs), for each £ >0 we consider the Borel measure v, whose the trace on O (2)
is F. (uc;-). From the last inequality of (23) we can rewrite that the sequence
of Borel measures {u, := ., |0}, satisfies sup,, i, (O) < o0. So, there exists a
Borel measure p on O such that (up to a subsequence) j, — . By Lebesgue

decomposition theorem, we have y = p, + ps where p, and pg are nonnegative
Borel measures such that u, < A|p and ps L Ao, and from Radon-Nikodym



theorem we deduce that there exists f € L' (O;R™), given by

pa(Q (@) | #(Q, (1)

im————~22 ae.in O
p—0 pd p—0 P

with Q, () := z + pY/, such that
o (A) = / f (xz)dx for all measurable sets A C O.
A

By Alexandrov theorem we see that

F_(u;0) = lim F,, (u.,;0)

n—oo

— lim 1 (0) > 1(0) = 12 (O) + 11, (0) > 1o (O) = /Of<x> dr,

n—oo
and
n Fz—: Ens .
f(x) =lim lim Hn on \2)) (QZ (z)) = lim lim —= (u "de (z)) a.e. in O. O
p—0n—o0 P p—0n—oc0 P

Proof of Theorem 2.2 (i). For each u € W? (Q; R™) we denote by V, (u;-) :
O (2) — [0, 00] the Vitali envelope of m, (u;-), i.e.,

Vi (u;0) := Vi, () (O).

The proof consists to show that for every O € O (§2) and every u € Mz (O) the
following inequality holds

F? (1;0) < Vi (1;0). (24)
Indeed, using Proposition 3.5 we obtain
Fo(0i0) < P (:0) < Ve :0) = [ Dyme (1) (o)
o
Let us prove (24) now. Fix O € O(Q) and u € Mz (O). Note that by Re-
marks 3.1 we have for some pu, € A, (O)
Vi (u;0) < 1y (O) < 00. (25)
Fix ¢ €]0, 1[. Choose {Qi}iel € V. (O) such that
> m (u; Q) € VE W 0) + 2 < Vi (w,0) + . (26)
el

Fix 6 €]0,1[. Given any ¢ € I, by definition of ms (u; Q;), there exists v; €
w+ Wy? (Qi; R™) such that

Fs (vi; Qi) < my (u; Q) + = (27)



Define us. € u+ Wy " (O;R™) by
Use ‘= sz‘ﬂQi + u]lQ\ UQ
iel ier
Using (C3) and (C3) we have from (27)

Fs (use; 0) = ZFa (vi; Qi) + Fs (U; O\ iLEJI Qi)

el

Since u € Mz (O) there exists p,, € 2y (O) such that sup;eo 1) ms (u; U) < gy, (U)
for all open set U C O. For every n > 0 there exists a finite set I, C I such
that g, (O \ UignQZ-) < n. It follows that Zie[\l,, ms (u; Q;) < n. Hence, for
any 7>0

T > s (s Q) < Tim > -y (s Q) + T > mg (:Qr)(28)

iel . iel\I,,

< Zer (u; Qi) + 1.

i€l
Therefore collecting (26), (28), and passing to the limit € — 0, we have

HHF(; (U&E; O) < VJr (U; O) . (29)

e—=035—0

From the p-coercivity (C1), (29) and (25), we deduce

Timn Tim / Vs [Pz < oo, (30)
o]

e—00—0

By Poincaré inequality there exists K >0 depending only on p and d such that
for each v; € u+ W, ? (Q;; R™)

lv; — ulPdr < Kep/ |Vv; — VulPdx
Qi Qi

since diam (Q;) <e. Summing over ¢ € I we obtain

/ |use — ulPdr < P[P (/ |Vuse|Pdx +/ |Vu\pdx)
o o o



which shows, by using (30), that

mm/ g — upPdz = 0. (31)
Q

e—06—0

A simultaneous diagonalization of (29) and (31) gives a sequence {us :=us(5)}s C
u+ W (O; R™) such that us — w in L? (Q; R™) and

F (u4;0) < ﬁFa (us; 0) < Vi (u;0)
—
by the definition of 77 (u; O). The proof is complete. O

5. Applications
5.1. General ['(L?)-convergence result in the p-growth case

For each € €]0,1] we consider a family of functionals F := {F.}.c0,1, F: :
WP (Q;R™) x O () — [0, 00].

Consider the following condition:

(Py) there exist § > 0 and v a nonnegative finite Borel measure on 2 abso-
lutely continuous with respect to the Lebesgue measure such that for every

(V,u,e) € O () x WP (Q; R™) x]0, 1] we have

e (U, V) V(V) P P
T Sﬁ( V] + V|u| d:c+]{/|Vu\ dx)

The following result can be seen as a nonconvex extension of Theorem IV of [9,
p. 265]. Indeed, if for each ¢ >0 we set F. : WP ((;R™) x O (2) — [0, o0]
defined by

F. (u;0) := /OL€ (x,u(z),Vu(z))dx

where L. : QxR xM™* ¢ — [0, oo is a Borel measurable function with p-growth
and p-coercivity, i.e.,

Ja>0 3>0 Jac L' (Q) V(z,v,8) € QxR x M™*¢ Ve>0

alé]” < Le (z,v,€) < Bla(z) + v’ + [€°)

then (P;) holds with v = a (-) A and F = {F.}. C Z (p, @).

Theorem 5.1. Assume that F C I (p,«). Let u € WP (Q;R™) and O €
O (). If (H1) and (Py) hold then the family F (-; O) I'(L?)-converges at u to

Fo(u,0) = /OLO (2,0 (), Vu () da

where Lo (-, u(-), Vu(+)) is given by (6).



Proof. Since (P;) we see that

Mz (0O) = WhP (Q; R™) .

Fix u € WP (Q;R™). Following Theorem 2.6 it is enough to show that (Hs)

and (H3) hold.

We begin by showing (Hj). Fix x € O such that

lim |ulPdy = |u (x) |P < oo;
r—0 Qr(x)
lim |VulPdy = |Vu (x) [P <oo;
r—0
Qr(2)
1
lim — luy — ulPdy = 0;

(32)
(33)
(34)

(35)

Fix £>0,5 €]0,1[ and p>0. Let ¢ € Wy (Q, (z);[0,1]) be a cut-off function

between Q,, () and Q, (z) (e, ¢ =1 on Q,, () and ¢ = 0 on O\ Qs (x))

such that
4

p(l—s)
Let v. € u, + Wy? (Qs, () ;R™) be such that

IVl 2o (Qu(a)) <

Fz—: (Us; Qsp (.’L’)) S € (Sp)d + me (ul“; QSP (.’L’)) .
Set w 1= ¢v. + (1 — ¢) u, we have w € u + W, ? (Q, (z); R™) and

Vuw = VUE in QSP (l‘)
‘ oVu(x)+(1—9)Vu+Vo® (u, —u) in X, ()

where 3, (2) :== Q, () \ Q, (z). We have

me (u; Q, (7)) = me (w; Q, ()
< me (w; Qsp (7)) + me (w3 Xy (2))
< Fe (03 Qsp (@) + me (w3 5, (2))

< e (sp)" + me (ug; Qsp (7)) + me (w3 X, (2))

since Lemma 6.2 and (36). It follows that

me (u; Q, () < esd 1 g me (uz; Qsp (7)) I m. (w; X, (x))
ol > (sp)° P

(36)

(37)



We claim that (Hj) is proved if

Y (up>
T T T 72 (4 2% ()
s—1 p—0e—0 P

= 0. (38)

Indeed, passing to the limits ¢ — 0, p — 0, s — 1 in (37) we have

my (ug; Qsp (7))

my (u; Q, (7))
d

lim < lim lim ; (39)
p—0 P 51— p—=0 (sp)
< Tm my (ug; Q,p (x))
p—0 pd

So, it remains to prove (38). Using (P;) we have for some C' >0 dependent on
p only

me (w; 5, (x))

pd
< % +%/ |6V (z) + (1 — ¢) Vu+ Vo @ (u, —U>|”dy>
Ep(z)

3
i N _ P4
+pd /Ep(x)lcbu + (1 —¢)ul’ dy

DY
< Cp Md(x)) + (1= |Vu(z) P+ ][ |Vu|Pdy — sd][ |Vu|pdy>
P Qp() Qsp(z)

op VL ey T
+ — Uy — U QY — — ][ Uy — Ul ay
(I—s)" pp Qp(z) (sp)” Qsp(2)
gd+p

1
w0 (5w aldy— o fu Py
P7 Qula) (s0)" Jau, ()

+ 0B |u|p—sd][ may
Qp() Qsp(z)

Taking (32), (33), (34) and (35) into account and passing to the limits ¢ — 0
then p — 0 we obtain

Tom Lm me (w; 2y (7))
p—0e—0 pd

< OB (1 %) (Dav () + Ju () [P+ [Vu () ).

Letting s — 1 we obtain (38).

Let us prove (Hs) now. Consider a sequence {¢.}. C WP (€;R™) such that
w. — 0in LP (;R™) as ¢ — 0 and satisfying sup,. F: (u + ¢.;§2) < co. Set



pe (+) :== F. (u+ pg; ) for any €>0. There exists a subsequence (not relabeled)
and a nonnegative Radon measure i such that

*

fte = Ho- (40)
Fix e>0,s €]1,2[ and p>0. Fix € O such that (32), (33), (34) and (35) hold
and
Do () == limwg(x))<oo. (41)
r—0 r

Let ¢ € Wy (Qs, () ;]0,1]) be a cut-off function between Q, (x) and Q, (2)
such that

4
Vol Lo (Qup@)) < ——=-
IVl Lo (Qupta)) < PYTE)
Let v. € (u+ ¢.) + Wy (Q, (z) ; R™) be such that
F.(vQ, (2)) < ep 4+ me (u+ 95 Q, (1)) (42)
Set w = pv. + (1 — ¢) u,, we have w € u, + W, (Qs, () ; R™) and
U V. in Q, (x)
e (Vut Vo) + (1= ¢) Vu(a) + Vo @ (ut ¢ — ua) in 3, (2)

where 3, (2) := Qs () \ Q, (). We have

5 M (U Qsp (7)) _ m, (w; Qsp (7))
(sp)” (sp)"
me (w10, () | me (w35, (1)
p* p*
F(5Q, () | me(wiS, (2)
p* p*
‘I’ me (U + (Zja Qp (l‘)) ‘I’ e (w7p§ﬁ’ (l‘))
<e4 F(u+ 902? Q, () n m. (w; X, (7))
p p
since Lemma 6.2 and (42). We claim that (H,) is proved if

(43)

IN

——m. (w; %
e i e (035, (2)
s—1 p—0e—0 pd

~0. (44)

Indeed, passing to the limits ¢ — 0, p — 0, s — 1 in (43) we have
—. L ; —— o (uy; Qs
lim lim —= (u+ ¢ Qy (7)) > lim lim m-(u de (z))
p—0 .50 P s—1p—0 (Sp)

s i "0 )
p—0 P

(45)




So, it remains to prove (44). Using (P;) we have for some C' >0 dependent on
p only

 (w; 2,
1
< B~ ¢ (u+ @) + (1 — @) u, " dy
P s, (@)
+Cp ((sd — 1) |Vu (z)|? + %)
1 p 1 p
+Cp F/zp(m) |IVu+ V| +E/Zp(m)|v¢®(u+g0€—uz)| dy)

<o () Wu)p+ L2 2Lk i, )

23p—1 1 1
+ OBy §P ][ lu, —ul’ dy — — luy — ul” dy
Qsp() (z)

(s —1)F (sp)? P oq,
93p—1 1 1
+ C— sd*”—][ pel” dy — — - |” dy
(s —1)° (50)" JQup(a) P Qua)

1 8d+p
+CBp" | — luy — ulPdy — —p][ luy — u|Pdy
P Qu(x) (sp) Qsp()

1
+CpB IUIp—Sd][ IUI”> +Cﬁ—d/ =" dy.
Qp(l’) QSP(J?) P Zp(l’)

Using (40) and Alexandrov theorem we have

lim EFE (u+ e X, (2)) = lim

< lim

<

Sdruo (QSP (x)) Mo (Qp (x))

<
B (sp)° P

Letting p — 0 we deduce by using (41)

——1 d
ll)l_)I% ll_)I% EFE (u+ ¢ 8, (2) < (s = 1) Dapo (2). (47)

Taking (32), (33), (34), (35) and (47) into account and passing to the limits



e — 0 then p — 0 in (46) we obtain

Tim T m (w; ?p (7))
p—0e—0 P
< CB(s* = 1) (Dav (x) + |u(2) [P+ [Vu (2) [” + Dapo ()

since ¢, — 0 in LP (;R™) as ¢ — 0. Passing to the limit s — 1 we finally
proved (44). O

As an illustration of Theorem 5.1 we give two elementary examples.

Example 5.2 (Integrands “almost” nondecreasing). For each ¢ > 0 we
consider L, : M™*? — [0, o[ a Borel measurable function such that

(P) 3y >0 36>0 Ve>0 ¥n €0, V(z,v,£) € QxR x M™*4
L. (€) < Ly (&) +7le —nl’.
Note that if v = 0 then & — L. (-) is nondecreasing when ¢ is decreasing.

We define F. : LP (Q;R™) x O (Q2) — [0, 00| by

F(w:0) = /O L. (Vu () de.

Then it is easy to see that (H;) holds. If we assume (32) then (P;) holds.

Example 5.3 (Constant integrands with perturbation). Let W : QxR x
M™*4 — [0, 00[ be a Borel measurable integrand satisfying p-growth and p-
coercivity (32) and (H;). Let {®.}. C L' (€;R") such that

(i)  there exists g € L' () such that @, (z) < g (z) for all z € Q and all &> 0;
(ii)  there exists a nonnegative Borel measure @, such that

D, (YA 2Dy ase— 0. (48)
For each £>0 we set L. : Q x R? x M™*? — [0, oo defined by
Le (z,0,8) = W (z,v,8) + @ (2) .

Then for each O € O (Q) the family F (-; O) I'(L?)-converges to
Fo(u;0) = / Wo (z,u(z), Vu (x)) + D@ (2) dx.
o

Indeed, we have that (P;) holds because of the p-growth of W and (i). Now, we
have for almost all x € Q

lim lim O, (y)dy = Dy® (x)

p—)O e—0 Qp(x)



since (48). We can see that for every x € (), every € >0, every p>0 and every
u e WhHr (Q; R™)

inf{ W (y,w(y), Vw (y)) dy : w € up + W™ (Q, (:v);Rm)}
Qp(x)
+ o (y) dy.
Qp(x)
It means that () holds and Theorem 5.5 applies with
Ly (z,u(x),Vu(z)) =Wy (x,u(z), Vu(z)) + Dr\®o ().

We give a concrete example. Assume that Q = By (0) C R? the euclidean open
ball with center 0 and radius 1. Let g : Q — [0, o] be defined by

—2_ ifzeQ\{0
g(x)::{ € 0\ {0}

lll

00 itz =0.
where || - || is the euclidean norm. Then g € L' (Q). For each £ >0 we set for
every x € €
1
O, (z) = — (z) + h(x)

1
\/E B:(0)

where h € L' (Q) and satisfies i (z) < 1g(z) for all z € Q. Then (i) and (ii)
hold with
D (VAN 2Dy =0y +h) ase —0

where dy is the dirac measure at 0. It follows that

D ®g (z) = h(z) ae. in Q.

5.2. Homogenization

Let L : RYx M™*? — [0, oo[ be a Borel measurable function which is p-coercive,
i.e., there exists a>0 such that

al¢lP < L(z,¢€)

for all (z,&) € QxM™ 4. For each € >0 we consider F. : WP ((Q;R™)x O (Q) —
[0, 00] given by

F.(1;0) = /OL <§,Vu (x)) dz.

The family F = {F.}. C Z (p, ). For each £ € M™% we define S; : O (Q) —
[0, 0] a set function by

stO)=ut{ [ L+ Vears o e w7 0w ).



Definition 5.4. We say that L is an H-integrand (H stands for “homogeniz-
able”) if
__ SEF(tQ, (x SE(tQ, (x
p—0t—o0 A (tQp (z)) p0i—oo A (tQp (7))

In this case we denote the common value by Lyom (2, €).

a.e. in ).

We see that () implies (H;), indeed, for every u € Mz (O) we have

A (%Qp (x)) p?
for all e>0 and all x € O. So, we can deduce from Theorem 5.1 the following
result.

Theorem 5.5. If (P)) holds and L is an H-integrand, i.e., (7€) holds. Then for
each O € O (Q) the family F (-;0) T'(LP)-converges at every u € WP (;R™)
to

Fo(u,0) = /OLhom (z,Vu(x))dx

where

— — S¢(1Q, (2))
Lyom (2,§) = Lo (z,§) = lim, Tim N, (1)

for all z € O and & € M™*4,

Theorem 5.5 becomes a “classical” homogenization result when L., does not
depend on x. For instance, when L is 1-periodic or almost periodic with respect
to the first variable then by subadditive theorems [13, Theorem 2.1 and Theorem
3.1] the condition () holds, i.e., L is an H-integrand, and we have

SL(nY)

PR -
Liom (§) = %1611{] — T (periodic case) (49)

. SE(nY) .
Lipom (§) = nlggo — (almost-periodic case). (50)

Example 5.6 (Periodic integrand with perturbation). Consider W : R?x
M™*d — [0, 0o[ be a Borel measurable function 1-periodic with respect to the
first variable, i.e.,

Ve e RY Vz e Z? VE e M™ Y W (x+2,6) =W (2,8),
and satisfying p-growth and p-coercivity, i.e, there exist «, >0 such that
V(z,€) € R x M™ alglr < W (x,6) < B(1+[EF).
Let ® € Lj,, (R%R") such that

loc



(i)  there exists g € Li,, (R?) such that ® (£) < g(x) for all z € Q and all
e>0;
(ii) there exists a nonnegative Borel measure @y such that

q)<g>)\4q)0 as € — 0. (51)

Let L : R? x M™*? — [0, co[ be defined by
L(z,8) =W (z,8) + P (x).

Note that L is not periodic with respect to the first variable, because of the
“perturbation” .

We consider the family F = {F.}. C Z (p, «) given by
T
F. (u1;0) = /OL (E,Vu (x)) dz
for all (u,0) € W (Q;R™) x O (Q). Then F (-; O) T'(LP)-converges to
Fo(u;0) = / Whom (Vu (z)) + D\®q (z) dz
o

for all u € WP (Q; R™) x O (Q2), and where Wy (€) is given by the formula (49)
with S£W in place of SgL. Indeed, (P;) holds because of the p-growth of W and ().
Now, we have for almost all x € Q

p—0e—0

lim lim o (g) dy = Dy&y (z)
Q@) €

since (51). Using [13, Theorem 2.1] we have for every £ € M™*4

gL x Sk x
Whom (§) + Da®o (z) = iﬂ%%% - %t%%

since we can see that for every x € (), every t>0 and every p>0

S¢ (tQp (x))
A(tQp (2))

a.e. in {2,

= inf{ o )W(y,§+Vso(y))dy L € W&’p(tQp(x);Rm)}

+ ® (y) dy.
tQp ()

It means that L is an H-integrand and Theorem 5.5 apply with
Liom (%, 8§) = Whom (§) + Da®o () .

Remark 5.7. An interesting problem in the field of deterministic homogeniza-
tion (see [16]) is the characterization of all H-integrands L : R% x M™*4 — [0, oo
Borel measurable with p-growth and p-coercivity, i.e., satisfying

Ja>0 IB>0 V(2,8) € Q x M™4 a|¢P < L(x,€) < B(1+[€F).



5.3. Relaxation

The following result is an extension of Acerbi-Fusco-Dacorogna relaxation the-
orem (see [7, Theorem 9.8, p. 432] and [1, Statement II1.7, p. 144]) in the case
where the integrand is assumed Borel measurable only.

Theorem 5.8. If L : Q2 x R™ x M™% — [0, oo[ is Borel measurable and satis-
fies (Hy) and (32) then for every O € O ()

Fo(u:0) = /O Lo (2, (x) , Vu (2)) da

where for a.a. x € O

Lo (z,u(z),Vu(x))

p—0

= lim inf {][ L(y,w(y),Vw (y)) dy : w € uy + Wy (Q, (2) ;Rm)} .
Qp(@)

Moreover, if L is Carathéodory, i.e.,

(i) foreach (v,&) € R™xM™ the function Q > x — L (x,v,§) is measurable;
(11)  for a.a. x € Q the function R™ x M™*4¢ 5 (v, &) — L (x,v,£) is continuous,

then for almost every x € Q and for every (v,£) € R% x M™*d
Lo (z,v,&) = inf {/ L(z,0,6+Vo@))dy:pe W™ (Y;Rm)} . (52)
Y

Proof. The formula (52) follows from Proposition 5.11. O

Remark 5.9. Under the same assumptions of Theorem 5.8 and using Proposi-
tion 2.7 we also have

Fo(u;0) = F3 (u;0) = /OLO (z,u(z),Vu(z))dx

for all (u,0) € W (Q;R™) x O (Q).

We can give an extension of W1P-quasiconvexity as follows.

Definition 5.10. We say that a Borel measurable integrand L : Q x R? x
M™*d — [0, oo is WP-quasiconvex if for every (z,v,£) € Q x RY x M™*4

ZO (r,v,€) = L(x,v,§).

However, when the integrand is dependent on (x,v) this generalization of qua-
siconvexity is more difficult to handle. When the integrand L is Carathéodory
the variables x and v can be frozen and we recover the classical concept of
quasiconvexity.



Proposition 5.11. If L is Carathéodory and satisfies p-growth (32) then for
a.a. x € Q and for every (v,&) € R™ x M™*? we have

Lo (x,v,€) = inf {/YL (z,v,6 + Vo (y))dy: p € Wy (Y;Rm)} . (53)

Proof. For each (z,v,¢&) € QxR™xM™* 4 we denote by Q4L (z,v, £) the right
hand side of (53). For each p €]0, 1] we define A,, L, : @ x R™ x M™*¢ — [0, oo
by

Al 9) = i { [ Lo o p (e 0 0) €+ Vo) dy
bW (iR |

Ly (z,v,8) = inf{/YL(x+py,v+p(§y+so(y)),£+V90(y))dy:
oW (viRm |

It is easy to see, by a change of variables, that for a.a. x € Q and for every
(v,€) € R™ x M™*4 we have

lim L, (2,0, €) = Lo (z,v,6). (54)

It is enough to show that for a.a. x € Q, for every (v,£) € R™ x M™*? and every
p €]0,1[ it hold

QL (r,0,6) = lim A, (,0,) (5)
A, (z,v,6) =L, (x,v,¢). (56)

Indeed, combining (54), (55) and (56) we obtain (53).

Proof of (55). Let § >0. By Scorza-Dragoni theorem, there exists a compact
set K5 C Y such that A (Y \ Kj) <¢ and LLK(;x(Rmede) is continuous. Fix

(2,v,€) € Q x R™ x M™*4 such that

= li dy = 1i + py) dy < 0. 57
a(z) = lim mea(y) y=limy | ale+py)dy<oo (57)

We show first that lim, ,o A, (z,v,&) < QYL (z,v,£). Note that

QL (w,v,€) < L(2,v,8) < B(a(x) + o’ +[¢]F) <oo.



Let £>0. There exists ¢» € W™ (Y;R™) such that

[ Lo Tow)dy <+ QL 0.9, (58)
Y

Fix p €]0,1[. Set g, (y) := L (z + py, v+ p(Ey+ ¢ (y)), £+ Vi (y)) and go (y) :=
L(z,v,&+ V¢ (y)) for all y € Y. Using (58) we have

A, (z,v,€) (59)
S/Kgp(y)dyﬂL/ 9 (y) dy

Y\Ks

:/Kgp@)—go(y)dw/y\K 90 =0 )y + [ o)y

< 19, (y) — g0 (y)| dy + / 19, (¥) — g0 ()| dy + € + QL (z, v, &) .
Ks Y\Ks

By using the p-growth (32) it easy to see that there exists C' depending on
and p only such that

max {go (¥) , 95 (y)} (60)
< Cla(@+py)+ P+ 1EP+ @) 7+ VY (y)[)) ae inY.
By continuity of LLK(;x(]Rmede) we have g, (y) — go (y) = 0 a.e. in Kj as p —

0. Using the domination (60) we obtain by applying the Lebesgue dominated
convergence theorem

tim [ lgp (5) = a0 ()] dy = . (61)
By (60) we have
/ 56 =0y (62)

<2 ( [ ) dy 6o )+ bl +l€P + ol + vauzo)) |

\Ks
Note that {Y > y — a(x + py)},ejoq] is uniformly integrable since (57). So,
taking the supremum over p and passing to the limit 6 | 0 in (62) we find that

lim sup / 19, () — go ()] dy = 0. (63)
340 pejoa] Jy\ K

Taking (61) and (63) into account in (59) we find

o dac
lim A, (2,0,€) <e+Q™L(z,v,£).



Now, we want to show that lim, A, (z,v,§) > Q®L(z,v,€). Consider a

sequence {py, }nen CJ0, 1] such that

im A, (z,v,8) = lim A, (2,0,§) < f(a(x)+ |vf” +[¢[") <oo
pg)o n—oo

since p-growth conditions (32). Fix n € N. We can choose 1, € W™ (Y;R™)
such that

/an (y)dy < pn + Ay, (2,0,8)

where g, (y) = L (2 + ppy, v+ pn (§Y + ¥y, (¥)) . § + Viy, (y)) for all y € Y.
Since p-coercivity, we can choose a subsequence (not relabelled) such that

U = s in LP (V;R™); (64)
Vi, = Vipoo in LP (Y; M™*%) . (65)

Fix § > 0 and choose a compact set K5 C Y such that A (Y \ K;) < § and

L| Ky (Rm <) is continuous. We have by Eisen convergence theorem [12, p.

75] that
gn (y) — L (z,v,£ + Vi, (y)) — 0 in measure in Kj. (66)

We have

/an(y)dyZ/ In (y) — L (2,v,§ + Vb, (y)) dy

Ks

4 / 0n (4) — L (2,0,€ + Vi (4)) dy + QL (2,0, €)
Y\ K5

Using growth conditions we have for a.a. y € Y

gn (y) — L (2,v,& + Vb, (y))] (67)
<20 (a(z + pay) +a (@) + [0P + €7 + [tn (y) [P+ [Voa (y) [P) -

By taking (66), (67), (64) and (65) into account we have

im [ [gn(y) — L(z,0,§+ Vi, ()| dy =0

n—oo K5

since Vitali convergence theorem. Using (67) and reasoning similarly as in the
first part of the proof we have

lim sup /Y 19 0) L0 4 Vo )y =0

It follows that

lim A, 2,0,€) = lim A, (2,0, > lim [ g0 () dy = Q%L (z.0,6).
Y

p—0 n—o00 n—00



Proof of (56). Fix (z,v,&) € Q x R™ x M™*? and p €]0,1[. We only need to
prove that
Ly (z,v,8) =2 Ay (z,0,8). (68)
Let £>0. There exists p. € W, 7? (Y;R™) such that
Ly(z,0,8) +e> / L(z+py,v+p(Ey+ e (y)),§+ Ve (y) dy.

Y

There exists a sequence {t¢,}neny C Wy™ (Y;R™) such that 4, — ¢, in
WP (Y:R™), 4, — . a.e. in Y and Vb, — Vi, a.e. in Y as n — oo. Using
growth conditions we have for some C' depending on  and p only, for a.a. y € Y
and for all n € N

L(z+py,v+pEy+n(y). &+ Vi (y)
< Cla(x+py) + [P + [EF + [vn (y) [P+ [V, () ) -

Since L is Carathéodory we have
Tim L (z + py, v+ p (€Y + ¥a (9)) . €+ Vb (y))

=L(z+py,v+pEy+e-(v), £+ Ve (y) ae inY.

Applying Vitali convergence theorem we obtain

Ay (z,0,8) < lim [ L(z+py,v+pEy+tn (), €+ Vb (v)) dy

n—o0 Y

= /)/L(x+py,v+p(§y+<ps(y)),€+Vsoe(y))dy

S LP (.I',’U,f) + €.
Letting € — 0 we finally obtain (68). O

6. Appendix
6.1. Usage of Vitali covering theorem

Let A C O € O(Q) be a set which is not necessarily measurable. For each
x € A we consider a family of closed balls I, containing = of O satisfying

inf {diam (Q) : Q € K} = 0 and A C Ugex Q with K := U,ea ;. We say that

K is a fine cover of A.

Then there exists a countable pairwise disjointed family of balls {QZ-}Z.>1 C K
such that B

A (A\;le QZ-) —0.

It follows that for any p € 2, (O), i.e. p <K Ao, we have p(A\ U;>1 Q;) = 0.
Moreover, if A (A) < oo then for any 6 > 0 we can choose a finite subfamily

{Qz}jil C K satisfying

p (A\Zﬁ1 Qi) <.



6.2. Level sets of derivative of set functions
Let G- Q) =] —o00, t functi t0ecO0(Q). F heR
cgnsider%?lé s%rict] su%?e\(f)gl] (b gs% Sgupg?l%\}g IS %‘(Ehe lower Eresp Sgsgcyder%atlv\zg
of G

Sp:={x €0:D,G(x)<h} (resp. S":={z € O:D\G(z)>h})

The following lemma give consequences of sublevel (resp. superlevel) sets of
derivative of set functions.

Lemma 6.1. Let h € R and n>0. Then

(i)  there erxists a countable pairwise disjointed family {Q;}ier C Qo (O) such
that

A (Sh \ igj QZ> =0, Viel G(Q;)<h\A(Q;) and diam (Q;) €]0,n[ (69)

(resp. A (S"\ Uier Qi) =0, Vi € I G(Q;)>hA(Q;) and diam (Q;) €]0, 5[);
(i)  for every 0 >0 there exists a finite pairwise disjointed family {Q;}icr C
Q, (0) such that

A (Sh \ ‘LGJI Qi) <6, Viel G(Q)<hA(Q;) and diam (Q;) €]0,n]

(resp. A (S"\ Uier Qi) <6, Vi € I G (Q;)>hA(Q;) and diam (Q;) €]0,7][).

Proof. Let h € R and n > 0. We only give the proof for S}, since similar
arguments apply for S™. Note that (i) is a direct consequence of (i), so, we only
show (7).

If z € S}, then for some £>0

Vp €]0,n] inf {%

where B, ,(0) :={Q:z € Q€ Q,(0) and diam (Q) < p}. For each p €]0,n|
there exists Q,,, € B, (0) such that

:Qe%m,p(())}m—g

GQu) __. [CQ .
Q) e < f{/\(Q).QG’BW(O)}<h €. (70)

Consider the family I, := {Q—W)}ze S]] of closed cubes such that (70) holds.

The family K, is a fine cover of Sy, i.e.,

Sp, C QeU/C Q and VreS, inf{diam(Q):QekK,.}=0

where K, == {Q.,} C K,. By Vitali covering theorem we conclude (69).

O

pE€JOM|



6.3. Proof of Lemma 3.3
Fix ¢ € R. We have to prove that

M.:={x€0:D,G(z) <c}

is measurable. Fix > 0. Set h := ¢+ 7. By Lemma 6.1 (i) there exists a
countable pairwise disjointed family {Q;}ie;r C Q, (O) such that

A (Sh \ ‘LEJI Qi) =0, Viel G(Q;)<hA(Q;) and diam (Q;) €]0,n|.

Since S};, O M, we have
(1) =o

If we show that the Borel set Q> := U;c; Q; C M, then M, will be the reunion
of a Borel set and a A-negligible set and so measurable since A is complete. Let
z € Q. Then there exists ¢, € [ such that z € Q;.. It follows that

i @z 1am
1nf{/\(Q). €cQe9,(),d (Q)Sn}

_ G(Qw)

S3Qu) SOt

Passing to the limit 7 — 0 we obtain D,G (2) < ¢ which means that z € M..
The proof is complete. O

6.4. Properties of the family of set functions {m. (u;-)}.

Lemma 6.2. Let (u,0) € WP (Q;R™) x O (Q). Then the family {m. (u;-)}.,
me (u;-) : O (0) — [0, 00] satisfies

(i)  for every e >0 and every (U,V) € O(0) x O (0)
UNnV=0 = m (v;UUV) <m, (u;U)+m.(u;V);
(i)  for every e>0, every U,V € O (0) withU C V
AV\U)=0 = m.(w;U) =m. (u;V);

(#i) in particular, for every U € O(0) and V € O (O) satisfying U C V' we
have for every >0

AOU) =0 = m. (w;V) <m (w;U) + m. (w; V\T).
Proof. We recall that for A € O (Q2) we have

Wo? (AR™) = {u € W' (QR™) :u=01in 0\ A}.



IfU, V € O(0) satisty UNV = () then for every ; € LP (; R™) withi € {0,1,2}
we have

o1 € WiP(U;R™) and ¢, € WyP (V;R™)
— QDl]lU + (,02]1\/ - Wol’p (U U V; Rm) .

Let € >0. To verify (i) it suffices to write for every ¢; € Wy ? (U;R™) and ¢, €
Wyt (V;R™)
F.(u+ e U)+ F.(u+ 23 V) = F. (u+ @11y + oaly; UU V)
> My (u; Uy V) )

taking the infimum over ¢; and ¢, we obtain

m. (u; U) + me (u; V) > me (u; UU V) .

Consider U,V € O(0O) satisfying U € V and A(V\U) = 0. Since U C V
we have Wy ? (U;R™) € WP (V;R™), thus m. (u;U) > m. (u; V). Assume
that m. (u; V) < co. For every > 0 there exists ¢ € W,? (V;R™) such that
co>me (u; V) +n > F.(u+¢; V). By using (Cs) we have

me (w;V)+n>F.(u+¢;V)=F. (u+ ¢ly;U)+ F. (u+o; V\U)
st(u;U>‘

Note that ¢ly = ¢ ae. in V and so ¢ly € Wy* (U;R™). Therefore (i) is
satisfied.

To prove (iii) it is sufficient to use the properties (ii), (i) together with the
fact that we can write V' \ (UU (V\U)) = U for all U,V € O (O) satisfying
ucv. 0
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