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We study the integral representation of Γ-limits of p-coercive integral functionals of the calculus 
of variations in the spirit of Dal Maso and Modica (1986). We use infima of local Dirichlet 
problems to characterize the limit integrands. Applications to homogenization and relaxation 
are given.
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1. Introduction

Let m, d ≥ 1 be two integers. Let Ω ⊂ Rd be a nonempty bounded open set
with Lipschitz boundary. Let O (Ω) be the class of all open subsets of Ω. We

consider a family of functionals F := {Fε}ε∈]0,1] with Fε : W 1,p (Ω; Rm)×O (Ω) →
[0, ∞]. We set conditions in order that each functional of the family F can be 
considered as a p-coercive integral functional of the calculus of variations (see
the “global” conditions (C1), (C2), (C3) in Sect. 2). We are interested in the
integral representation of the Γ(Lp )-limit of F . This is an important problem in 
the field of Γ-convergence theory (see for instance [8]).

Our goal is to study the conditions of the integral representation of Γ(Lp )-limit
by using the infima of local Dirichlet problems associated to F as in [9, 5, 4]. More 
precisely, we consider the behavior of

mε (u;O) := inf
{
Fε (v;O) : v ∈ u+W 1,p

0 (O;Rm)
}



in order to find the conditions for the integral representation (see also [10, 11, 
15]). We propose three “local” conditions (see (H1), (H2) and (H3) in Sect. 2) 
related to the local behavior of mε which allows to prove Γ(Lp )-convergence of
the family F (·; O) with integral representation of the Γ(Lp )-limit F0 (·; O)

F0 (u;O) =

ˆ

O

L0 (x, u (x) ,∇u (x)) dx

where u ∈ MF (O) (see Definition (1) for MF (O)) and

L0 (x, u (x) ,∇u (x)) = lim
ρ→0

lim
ε→0

mε (ux; Qρ (x))

ρd

with ux (·) = u (x) +∇u (x) (· − x) .

The main difficulty is to obtain an upper bound under integral form for the
Γ(Lp)-lim. More precisely, we show, in Sect. 3 together with Sect. 4, that the
Vitali envelope (which is an envelope of Carathéodory type where the arbitrary
coverings are replaced by Vitali coverings) V+ (u; ·) of the set function O (Ω) ∋
V 7→ limε→0mε (u;V ) when u ∈ MF (O) satisfies

Γ(Lp) - lim
ε→0

Fε (u;O) ≤ V+ (u;O)

=

ˆ

O

lim
ρ→0

inf

{
lim
ε→0

mε (u; Q)

λ (Q)
: x ∈ Q ∈ Qo (O), diam (Q) ≤ρ

}
dx.

The Vitali envelope of a set function in connection with the integral represen-
tation of Γ(Lp)-limits was introduced in [5] (see also [3]). This path has the
advantage to avoid any approximations of Sobolev functions by regular ones. It
allows, when we assume p-growth conditions, to give general results for Γ(Lp)-
limit and in particular to give a general point of view in homogenization and
relaxation problems for Borel measurable integrands L (x, v, ξ) (see Sect. 5).

Plan of the paper. Sect. 2 presents the main assumptions (“global and local”
conditions) and the statement of the general results (see Theorem 2.2 and The-
orem 2.6). Theorem 2.6 is an integral representation result of Γ(Lp)-limit, it
is a consequence of local conditions ((H1), (H2) and (H3)) and Theorem 2.2.
In Sect. 3 we state and prove an integral representation for the Vitali envelope
of arbitrary nonnegative set functions. In Sect. 4 we give the proof of Theo-
rem 2.2 and some other related results. Finally in Sect. 5 we give a general
Γ(Lp)-convergence result in the p-growth case Theorem 5.1, which can be seen
as an extension in a nonconvex (an vectorial) case of Theorem IV in [9, p. 265].
In fact, we show how to verify the local conditions (H2) and (H3) when we deal
with p-growth, the technics we use are inspired by [5]. In Subsect. 5.2 as an
application of Theorem 5.1 we consider a general point of view of the homoge-
nization of functional integral of the calculus of variations. In Subsect. 5.3 we
give an extension of the Acerbi-Fusco-Dacorogna relaxation theorem when the
integrand is assumed Borel measurable only.



2. Main results

2.1. General framework

Fix α > 0 and p ∈]1,∞[. We denote by I (p, α) the set of functionals F :
W 1,p (Ω;Rm)×O (Ω) → [0,∞] satisfying:

(C1) for every O ∈ O (Ω) and every u ∈ domF (·;O) we have

F (u;O) ≥ α‖∇u‖p
Lp(O;Rm);

(C2) for every u ∈ domF (·; Ω) the set function F (u; ·) is the trace on O (Ω) of a
Borel measure absolutely continuous with respect to the Lebesgue measure
λ on Ω;

(C3) for every O ∈ O (Ω) the functional F (·;O) is local, i.e., if u = v a.e. in O
then F (u;O) = F (v;O) for all u, v ∈ domF (·;O).

Consider a family F := {Fε}ε∈]0,1] of functionals Fε : W 1,p (Ω;Rm) × O (Ω) →
[0,∞]. For each O ∈ O (Ω) and each u ∈ Lp (Ω;Rm) we set

F− (u;O) := inf

{
lim
ε→0

Fε (uε;O) : uε → u in Lp (Ω;Rm)

}
;

F+ (u;O) := inf
{
lim
ε→0

Fε (uε;O) : uε → u in Lp (Ω;Rm)
}
.

The functional F− (·;O) (resp.F+ (·;O)) is the Γ(Lp)-limε→0 (resp.Γ(L
p)-limε→0)

of the family F (·;O) = {Fε (·;O)}ε. If u ∈ W 1,p (Ω;Rm) and F+ (u;O) =
F− (u;O) then we say that F (·;O) Γ(Lp)-converges at u to the Γ(Lp)-limit
F0 (u;O) := F+ (u;O) = F− (u;O).

We associate to F = {Fε}ε∈]0,1] ⊂ I (p, α) a family of local Dirichlet problems
{mε}ε∈]0,1], mε : W

1,p (Ω;Rm)×O (Ω) → [0,∞] defined by

mε (u;O) := inf
{
Fε (v;O) :W

1,p (Ω;Rm) ∋ v = u in Ω \O
}
.

Note that we can write

mε (u;O) = inf
{
Fε (v;O) : v ∈ u+W 1,p

0 (O;Rm)
}

since u+W 1,p
0 (O;Rm) = {v ∈ W 1,p (Ω;Rm) : v − u = 0 in Ω \O} (see [2, p. 234,

Theorem 9.1.3]).

Remark 2.1. The functional mε (·;O) can be seen as the “quotient functional”

F̃ε (·;O) defined on the quotient space of W 1,p (Ω;Rm) by W 1,p
0 (O;Rm), i.e.,

F̃ε (·;O) : W
1,p (Ω;Rm)

W 1,p
0 (O;Rm)

→ [0,∞]

with F̃ε ([u];O) := inf
v∈[u]

Fε (v;O) = mε (u;O)

where [u] = u+W 1,p
0 (O;Rm) is the equivalent class of u.



2.2. A general Γ(Lp )-convergence theorem

We denote by λ the Lebesgue measure on Ω. For each O ∈ O (Ω) we denote by 
Aλ (O) the space of nonnegative finite Borel measures on O which are absolutely
continuous with respect to the Lebesgue measure λ⌊O on O.

Let us introduce the M-sets associated to F : for each O ∈ O (Ω) we set

MF (O) :=

{
u∈W 1,p (Ω;Rm) : ∃µu ∈ Aλ (O) sup

ε>0
mε (u; ·) ≤ µu (·) on O

}
. (1)

• We assume that all the affine maps, i.e., functions of the form u (x) = v+ζx
with (x, v, ζ) ∈ Ω× R

m ×M
m×d, belong to MF (O).

We will see in Theorem 2.6 that the M-set is the set where an integral represen-
tation of the Γ(Lp)-limit is possible.

To the family F we associate m+ : W 1,p (Ω;Rm)×O (Ω) → [0,∞] defined by

m+ (u;O) := lim
ε→0

mε (u;O) .

The following result provides bounds in integral forms of both Γ(Lp)-limε→0 and
Γ(Lp)-limε→0 of a family F = {Fε}ε∈]0,1] ⊂ I (p, α), i.e., satisfying (C1), (C2)
and (C3).

Theorem 2.2. Let F = {Fε}ε∈]0,1] ⊂ I (p, α) and let (u,O) ∈ W 1,p (Ω;Rm) ×
O (Ω).

(i) If u ∈ MF (O) then

F+ (u;O) ≤ FD

+ (u;O)

≤
ˆ

O

lim
ρ→0

inf

{
m+ (u; Q)

λ (Q)
: x ∈ Q ∈ Qo (O) , diam (Q) ≤ ρ

}
dx

where

FD

+ (u;O)

:= inf
{
lim
ε→0

Fε (vε;O) : W
1,p
0 (O;Rm) + u ∋ vε → u in Lp (Ω;Rm)

}
;

(ii) There exists {uεn}n ⊂ W 1,p (Ω;Rm) with supn Fεn (uεn;O)<∞ such that
uεn → u in Lp (Ω;Rm) as n→ ∞ and

FD

− (u;O) ≥ F− (u;O) ≥
ˆ

O

lim
ρ→0

lim
n→∞

Fεn (uεn; Qρ (x))

ρd
dx

where

FD

− (u;O)

:= inf

{
lim
ε→0

Fε (vε;O) : W
1,p
0 (O;Rm) + u ∋ vε → u in Lp (Ω;Rm)

}
.



Remark 2.3. If u ∈ MF (O) then there exists µu ∈ Aλ (O) such that
supε>0mε (u; ·) ≤ µu (·) on O. Therefore we have

m+ (u; ·) ≤ µu (·) on O.

Taking account of Theorem 2.2 (i) we deduce that F+ (u;O)<∞, which means
that

MF (O) ⊂ domFD

+ (·;O) :=
{
u ∈ W 1,p (Ω;Rm) : FD

+ (u;O)<∞
}

⊂ domF+ (·;O) .

To the family F = {Fε}ε∈]0,1] we associate m− : W 1,p (Ω;Rm)×O (Ω) → [0,∞]
defined by

m− (u;O) := lim
ε→0

mε (u;O) .

Let O ∈ O (Ω) and let u ∈ W 1,p (Ω;Rm). We denote the affine tangent map of
u at x ∈ O by

ux (·) := u (x) +∇u (x) (· − x) .

Consider the following local inequalities for u ∈ MF (O):

(H1) lim
ρ→0

m− (ux; Qρ (x))

ρd
≥ lim

ρ→0

m+ (ux; Qρ (x))

ρd
a.e. in O;

(H2) lim
ρ→0

lim
ε→0

Fε (uε; Qρ (x))

ρd
≥ lim

ρ→0

m− (ux; Qρ (x))

ρd
a.e. in O for all {uε}ε ⊂

W 1,p (Ω;Rm) such that uε → u in Lp (Ω;Rm) and supε Fε (uε;O) <∞;

(H3) lim
ρ→0

m+ (ux; Qρ (x))

ρd
≥ lim

ρ→0

m+ (u; Qρ (x))

ρd
a.e. in O.

Remark 2.4. We make some remarks on the previous inequalities.

(i) Condition (H1), related to the integral representation of the Γ(Lp)-limit
of functionals of the calculus of variations, is already known when p-
polynomial growth (and convexity conditions) is assumed see [14, p. 451].

(ii) The condition (H2) (resp. (H3)) can be seen as a “local” Γ(Lp)-lim (resp.
Γ(Lp)-lim) inequality. To verify inequality (H3) (resp. (H2)) we need to
replace u (resp. a sequence {uε}ε converging in Lp to u and satisfying
supε Fε (uε;O) < ∞) by the affine tangent map ux in the localization of
mε on “small” cubes Qρ (x). This can be performed, for instance, by using
growth conditions see Sect. 5.

The following lemma is used in the proof of Theorem 2.6 and its proof is given
in Sect. 4.

Lemma 2.5. Let F = {Fε}ε∈]0,1] ⊂ I (p, α). Let O ∈ O (Ω) and let u ∈ MF (O).

If (H1), (H2) and (H3) hold then the function O ∋ x 7→ limρ→0
m+(ux;Qρ(x))

ρd
is



measurable and satisfies

lim
ρ→0

m+ (ux; Qρ (x))

ρd
= lim

ρ→0

m− (ux; Qρ (x))

ρd
a.e. in O.

Here is the general Γ(Lp)-convergence theorem which shows that under the lo-
cal inequalities (H1), (H2) and (H3) the family F (·;O) Γ(Lp)-converges to an
integral functional of the calculus of variations at every u ∈ MF (O). In Sect. 5
we give applications to homogenization and relaxation of this result. When
FD

+ = FD
− we denote by FD

0 = FD
+ = FD

− the common value.

Theorem 2.6. Let F = {Fε}ε∈]0,1] ⊂ I (p, α). Let O ∈ O (Ω) and let u ∈
MF (O). If (H1), (H2) and (H3) hold then the family of functionals F (·;O)
Γ(Lp)-converges at u to

F0 (u;O) = FD

0 (u;O) =

ˆ

O

lim
ρ→0

m+ (ux; Qρ (x))

ρd
dx. (2)

Moreover, we have for almost all x ∈ O

lim
ρ→0

m+ (ux; Qρ (x))

ρd
= lim

ρ→0

m− (ux; Qρ (x))

ρd
. (3)

Proof. Let O ∈ O (Ω) and let u ∈ MF (O). From Theorem 2.2 (ii), there exists
{uε}ε ⊂ W 1,p (Ω;Rm) with supε Fε (uε;O)<∞ such that uε → u in Lp (Ω;Rm)
as ε→ 0 and

FD

− (u;O) ≥ F− (u;O) ≥
ˆ

O

lim
ρ→0

lim
ε→0

Fε (uε; Qρ (x))

ρd
dx

Using the local inequalities (H1), (H2) and (H3), Lemma 2.5 together with
Theorem 2.2 we have

F+ (u;O) ≤ FD

+ (u;O)

≤
ˆ

O

lim
ρ→0

inf

{
m+ (u; Q)

λ (Q)
: x ∈ Q ∈ Qo (O) , diam (Q) ≤ ρ

}
dx

≤
ˆ

O

lim
ρ→0

m+ (u; Qρ (x))

ρd
dx

=

ˆ

O

lim
ρ→0

m− (ux; Qρ (x))

ρd
dx

≤
ˆ

O

lim
ρ→0

lim
ε→0

Fε (uε; Qρ (x))

ρd
dx

≤ F− (u;O) ≤ FD

− (u;O) .

Thus (2) holds. The equality (3) is a consequence of Lemma 2.5.



2.3. The relaxation case

We examine the particular case of a constant family with respect to the param-
eter F = {Fε = F}ε ⊂ I (p, α). We set for every (u,O) ∈ W 1,p (Ω;Rm)×O (Ω)

F0 (u;O) := inf

{
lim
ε→0

F (vε;O) : W
1,p (Ω;Rm) ∋ vε → u in Lp (Ω;Rm)

}
;

FD

0 (u;O) := inf

{
lim
ε→0

F (vε;O) :W
1,p
0 (O;Rm) + u ∋ vε → u in Lp (Ω;Rm)

}
;

m (u;O) := inf
{
F (v;O) : v ∈ u+W 1,p

0 (O;Rm)
}
.

The following abstract relaxation result is a direct consequence of Theorem 2.6.

Proposition 2.7. Let O ∈ O (Ω) and let u ∈ MF (O). If (H1), (H2) and (H3)
hold then

F0 (u;O) = FD

0 (u;O) =

ˆ

O

lim
ρ→0

m (ux; Qρ (x))

ρd
dx. (4)

Remark 2.8. In particular (4) holds for all u ∈ domF (·;O) since it is easy to
see that domF (·;O) ⊂ MF (O).

2.4. Remarks on the limit integrand

We assume that the assumptions of Theorem 2.6 hold. We give descriptions of
the limit integrand L0 by considering some particular cases.

(i) If we define L̃0 : Ω× R
d ×M

m×d → [0,∞] by

L̃0 (x, v, ξ) := lim
ρ→0

m+ (v + ξ (· − x) ; Qρ (x))

ρd
, (5)

and for each u ∈ MF (O)

L0 (x, u (x) ,∇u (x)) := lim
ρ→0

m+ (ux; Qρ (x))

ρd
(6)

then the formula (2) becomes

F0 (u;O) =

ˆ

O

L̃0 (x, u (x) ,∇u (x)) dx.

Indeed, we have for every x ∈ O

L0 (x, u (x) ,∇u (x)) = L̃0 (x, u (x) ,∇u (x)) . (7)

In fact, we do not know whether the integrand L̃0 is Borel measurable. Because
of the equality (7), the function O ∋ x 7→ L̃0 (x, u (x) ,∇u (x)) is measurable for
all u ∈ MF (O).



(ii) Assume that {Fε}ε = F is given under integral form, i.e., Fε : W 1,p (Ω; Rm)× 
O (Ω) → [0, ∞] is defined by

Fε (u;O) :=

ˆ

O

Lε (x, u (x) ,∇u (x)) dx

where Lε : Ω× R
d ×M

m×d → [0,∞] is Borel measurable for all ε ∈]0, 1]. Then

L̃0 (x, v, ξ) = lim
ρ→0

lim
ε→0

inf

{

Qρ(x)

Lε (y, v + ξ (y − x) + ϕ (y) , ξ +∇ϕ (y)) dy :

ϕ ∈ W 1,p
0 (Qρ (x) ;R

m)

}
. (8)

If, moreover, we assume that Lε does not depend of the variable v, i.e., Lε :
Ω×M

m×d → [0,∞] then (7) becomes

L0 (x,∇u (x)) = L̃0 (x,∇u (x))

for all x ∈ O and all u ∈ MF (O). Since the affine functions belong to MF (O)
we deduce that for every x ∈ O and every ξ ∈ M

m×d

L0 (x, ξ) = L̃0 (x, ξ) .

(iii) Now, we consider the case where {Fε = F}ε = F is constant with respect
to ε and F : W 1,p (Ω;Rm)×O (Ω) → [0,∞] is defined by

F (u;O) :=

ˆ

O

L (x, u (x) ,∇u (x)) dx

where L : Ω × R
d ×M

m×d → [0,∞] is Borel measurable. If we define for every
(x, v, ξ) ∈ Ω× R

d ×M
m×d

L̃0 (x, v, ξ) = (9)

lim
ρ→0

inf

{

Qρ(x)

L (y, v+ξ (y − x)+ϕ (y) , ξ+∇ϕ (y))dy : ϕ ∈W 1,p
0 (Qρ (x);R

m)

}
.

then for every u ∈ MF (O) and every x ∈ O

L0 (x, u (x) ,∇u (x)) = L̃0 (x, u (x) ,∇u (x)) .

We will show in Proposition 5.11 that when L is Carathéodory with p-growth
and p-coercivity we recover the classical quasiconvex envelope [7, Theorem 9.8,
p. 432].



3. Integral representation of Vitali envelope and derivation of set
functions

3.1. Integral representation of Vitali envelope of set functions

For a given open set O ⊂ Ω we denote by Qo (O) the set of all open cube of O.
We denote by Qc (O) the set of all closed cube of O.

Let G : Qo (Ω) →]−∞,∞] be a set function. We define the Vitali envelope of
G with respect to λ

O (Ω) ∋ O 7→ VG (O) := sup
ε>0

inf

{
∑

i∈I

G (Qi) :
{
Qi

}
i∈I

∈ Vε (O)

}

where for any ε>0

Vε (O) :=

{{
Qi

}
i∈I

⊂ Qc (Ω) : I is countable, λ

(
O \ ∪

i∈I
Qi

)
= 0, Qi ⊂ O

diam (Qi) ∈]0, ε[ and Qi ∩Qj = ∅ for all i 6= j

}
.

Remark 3.1. If G is the trace on Qo (Ω) of a positive Borel measure ν on Ω
which is absolutely continuous with respect to λ then VG (O) = ν (O) for all
O ∈ O (Ω).

Let G : Qo (Ω) →] −∞,∞] be a set function. Define the upper and the lower
derivatives at x ∈ Ω of G with respect to λ as follows

DλG (x) := lim
ρ→0

inf

{
G (Q)

λ (Q)
: x ∈ Q ∈ Qo (Ω) , diam (Q) ≤ ρ

}
;

DλG (x) := lim
ρ→0

sup

{
G (Q)

λ (Q)
: x ∈ Q ∈ Qo (Ω) , diam (Q) ≤ ρ

}
.

We say that G is λ-differentiable in O if for λ-almost all x ∈ O it holds

−∞<DλG (x) = DλG (x)<∞.

Remark 3.2. For every O ∈ O (Ω) and every x ∈ O we have

DλG (x) := lim
ρ→0

inf

{
G (Q)

λ (Q)
: x ∈ Q ∈ Qo (O) , diam (Q) ≤ ρ

}
;

DλG (x) := lim
ρ→0

sup

{
G (Q)

λ (Q)
: x ∈ Q ∈ Qo (O) , diam (Q) ≤ ρ

}
.

The proof of the following classical result can be found in Appendix.

Lemma 3.3. The functions DλG (·) and DλG (·) are λ-measurable.



Remark 3.4. When G = ν is a Borel finite measure absolutely continuous with 
respect to λ then ν is λ-differentiable in O and

Dλν (x) = lim
ρ→0

ν (Qρ (x))

ρd
a.e. in O.

The following result establishes an integral representation for the Vitali envelope
of nonnegative set functions.

Proposition 3.5. Let H : Qo (Ω) → [0,∞] be a set function. For every O ∈
O (Ω) we have

VH (O) =

ˆ

O

DλH (y) dy.

The following lemma was inspired by reading [6].

Lemma 3.6. Let G : Qo (Ω) →]−∞,∞] be a set function and O ∈ O (Ω).

(a) If DλG (x) ≤ 0 λ-a.e. in O then VG (O) ≤ 0.

(b) If DλG (x) ≥ 0 λ-a.e. in O then VG (O) ≥ 0.

(c) If DλG (x) = 0 λ-a.e. in O then VG (O) = 0.

Proof. The assertion (c) is a consequence of (a) and (b).

Proof of (a). It is enough to show that for every ε>0 if

DλG (x)<ε λ-a.e. in O (10)

then

inf

{
∑

i∈I

G (Qi) :
{
Qi

}
i∈I

∈ Vε (O)

}
<ελ (O) .

Fix ε>0. Let N ⊂ O with λ (N) = 0 be such that O \N = [DλG (·)<ε]. Using
Lemma 6.1 (i) with h = η = ε and Sh = O \N , there exists a countable pairwise
disjointed family {Qi}i∈I ⊂ Qo (O) such that

λ

(
(O \N) \ ∪

i∈I
Qi

)
= 0, ∀i ∈ I G (Qi)<ελ (Qi) and diam (Qi)<ε. (11)

From (11) we have λ
(
O\∪i∈I Qi

)
= 0 since λ (N) = 0. Consequently, we have∑

i∈I λ
(
Qi

)
=
∑

i∈I λ (Qi) = λ (O). Summing over i ∈ I the first inequality (11)
we obtain

inf

{
∑

i∈I

G (Qi) :
{
Qi

}
i∈I

∈ Vε (O)

}
<ε
∑

i∈I

λ (Qi) = ελ (O) .



Proof of (b). Let {εn}n∈N ⊂]0, 1[ be such that limn→∞ εn = 0. Let n ∈ N. There
exists {Qn

i }i∈In ∈ Vεn (O) such that

inf

{
∑

i∈I

G (Qi) : {Qi} ∈ Vεn (O)

}
+

1

n
≥
∑

i∈In

G (Qn
i )

λ (Qn
i )
λ (Qn

i ) . (12)

Fix x ∈ O be such that

DλG (x) ≥ 0 and x /∈
⋃

n∈N

(
O \ ∪

i∈In
Qn

i

)
.

There exists inx ∈ In such that x ∈ Qn
inx
. From (12) it follows that

inf

{
∑

i∈I

G (Qi) : {Qi} ∈ Vεn (O)

}
+

1

n
(13)

≥
G
(
Qn

inx

)

λ
(
Qn

inx

)λ
(
Qn

inx

)

≥ inf

{
G (Q)

λ (Q)
: x ∈ Q ∈ Qo (O) , diam (Q) ≤ εn

}
λ
(
Qn

inx

)
.

Passing to the limit n→ ∞ in (13) we obtain

VG (O) ≥ DλG (x) lim
n→∞

λ
(
Qn

inx

)
≥ 0.

The proof is complete.

Corollary 3.7. If G = H − ν where H : Qo (Ω) →]−∞,∞] is a set function,
ν is a finite Borel measure on O ∈ O (Ω) absolutely continuous with respect to
λ⌊O, and if

DλG (x) = 0 λ-a.e. in O

then
VH (O) = ν (O) .

Proof. Use Lemma 3.6(c) and remark that VG (O) = VH (O)− ν (O).

Proof of Proposition 3.5. Assume that DλH ∈ L1 (O), i.e.,

ˆ

O

DλH (y) dy <∞.

Define G : Qo (O) →]−∞,∞] by

G (Q) := H (Q)−
ˆ

Q

DλH (y) dy.



If we show that DλG = 0 a.e. in O then by Corollary 3.7 we can conclude that

VH (O) = ν (O) with ν := DλH (·) λ⌊O.

Fix x ∈ O such that

DλH (x) = lim
ρ→0 Qρ(x)

DλH (y)dy <∞; (14)

Dλν (x) = DλH (x)<∞. (15)

We set Bx,ρ := {Q : x ∈ Q ∈ Qo (O) and diam (Q) ≤ ρ} for all ρ > 0. On one
hand, we have for every ρ>0 and every Q ∈ Bx,ρ

G (Q)

λ (Q)
≤ H (Q)

λ (Q)
+ sup

{
−

Q

DλH (y)dy : Q ∈ Bx,ρ

}

=
H (Q)

λ (Q)
− inf

{

Q

DλH (y) dy : Q ∈ Bx,ρ

}
.

Taking the infimum over every Q ∈ Bx,ρ we obtain

inf

{
G (Q)

λ (Q)
: Q ∈ Bx,ρ

}

≤ inf

{
H (Q)

λ (Q)
: Q ∈ Bx,ρ

}
− inf

{

Q

DλH (y) dy : Q ∈ Bx,ρ

}
.

Letting ρ→ 0 and using (14) and (15), we have

DλG (x) ≤ DλH (x)−DλH (x) = 0. (16)

On the other hand, we have for every ρ>0 and every Q ∈ Bx,ρ

G (Q)

λ (Q)
≥ H (Q)

λ (Q)
+ inf

{
−

Q

DλH (y) dy : Q ∈ Bx,ρ

}

=
H (Q)

λ (Q)
− sup

{

Q

DλH (y) dy : Q ∈ Bx,ρ

}
.

Taking the infimum over every Q ∈ Bx,ρ we obtain

inf

{
G (Q)

λ (Q)
: Q ∈ Bx,ρ

}

≤ inf

{
H (Q)

λ (Q)
: Q ∈ Bx,ρ

}
− sup

{

Q

DλH (y) dy : Q ∈ Bx,ρ

}
.

Letting ρ→ 0 and using (14) and (15), we have

DλG (x) ≥ DλH (x)−DλH (x) = 0. (17)



 Taking account of (16) and (17), we finally obtain that DλG (x) = 0.

Now, we do not assume that DλH ∈ L1 (O), in this case the following inequality
is always true

VH (O) ≤
ˆ

O

DλH (y)dy.

It remains to prove the opposite inequality. For every n ∈ N we set Hn :
Q0 (Ω) → [0,∞[ defined by

Hn (Q) :=

{
H (Q) if H (Q) ≤ nλ (Q)

nλ (Q) if H (Q)>nλ (Q) .

It is easy to see that

∀Q ∈ Q0 (Ω) H0 (Q) ≤ H1 (Q) ≤ · · · ≤ Hn (Q) ≤ · · · ≤ sup
n∈N

Hn (Q) ≤ H (Q) ;

∀n ∈ N DλHn ≤ n. (18)

So {DλHn}n∈N ⊂ L1 (O), we apply the first part of the proof to have

∀n ∈ N VHn (O) =

ˆ

O

DλHn (y) dy ≤ VH (O) .

Using (18) and monotone convergence theorem we have

sup
n∈N

VHn (O) =

ˆ

O

sup
n∈N

DλHn (y) dy ≤ VH (O) . (19)

Fix n ∈ N and x ∈ [DλH ≤ n]. Then for every ρ>0 we have

inf
Q∈Bx,ρ

H (Q)

λ (Q)
≤ n. (20)

For each n ∈ N and each ρ>0 we set An := {Q ∈ Bx,ρ : H (Q) ≤ nλ (Q)} and
Bn := Bx,ρ \ An. Then

DλHn (x) = sup
ρ>0

inf
Q∈Bx,ρ

Hn (Q)

λ (Q)

= sup
ρ>0

min

{
inf

Q∈An

Hn (Q)

λ (Q)
, inf
Q∈Bn

Hn (Q)

λ (Q)

}

= sup
ρ>0

min

{
inf

Q∈An

H (Q)

λ (Q)
, n

}

≥ sup
ρ>0

min

{
inf

Q∈Bx,ρ

H (Q)

λ (Q)
, n

}
.



Using (20) we find

DλHn (x) ≥ sup
ρ>0

inf
Q∈Bx,ρ

H (Q)

λ (Q)
= DλH (x) .

It follows that supn∈NDλHn (x) = DλH (x) for all x ∈ O and thus (19) becomes

ˆ

O

DλH (y) dy ≤ VH (O) .

The proof is complete.

4. Proof of main results

4.1. Proof of Lemma 2.5

Fix O ∈ O (Ω) and u ∈ MF (O). By Theorem 2.2 (ii) there exists {uεn}εn with
supn Fεn (uεn; Ω)<∞ such that uεn → u in Lp (Ω;Rm) as n→ ∞ and

∞>FD

− (u;O) ≥ F− (u;O) ≥
ˆ

O

lim
ρ→0

lim
n→∞

Fεn (uεn; Qρ (x))

ρd
dx.

since Remark 2.3. It follows that for almost all x ∈ O

lim
ρ→0

F− (u; Qρ (x))

ρd
≥ lim

ρ→0
lim
n→∞

Fεn (uεn; Qρ (x))

ρd
. (21)

Using the local inequalities (H1), (H2), (H3), (21) and Theorem 2.2 (i) we have
for almost all x ∈ O

lim
ρ→0

F+ (u; Qρ (x))

ρd
≤ lim

ρ→0

FD

+ (u; Qρ (x))

ρd

≤ Dλm+ (u; ·) (x)

≤ lim
ρ→0

m+ (u; Qρ (x))

ρd

≤ lim
ρ→0

m+ (ux; Qρ (x))

ρd

≤ lim
ρ→0

m− (ux; Qρ (x))

ρd

≤ lim
ρ→0

lim
n→∞

Fεn (uεn; Qρ (x))

ρd

≤ lim
ρ→0

F− (u; Qρ (x))

ρd
. (22)



From the last inequality (22) we have the following inequalities

lim
ρ→0

F− (u; Qρ (x))

ρd
≤ lim

ρ→0

F+ (u; Qρ (x))

ρd
≤ lim

ρ→0

F+ (u; Qρ (x))

ρd

and lim
ρ→0

F− (u; Qρ (x))

ρd
≤ lim

ρ→0

F− (u; Qρ (x))

ρd
≤ lim

ρ→0

F+ (u; Qρ (x))

ρd

and lim
ρ→0

F− (u; Qρ (x))

ρd
≤ lim

ρ→0

FD

+ (u; Qρ (x))

ρd
≤ lim

ρ→0

FD

+ (u; Qρ (x))

ρd

and lim
ρ→0

F− (u; Qρ (x))

ρd
≤ lim

ρ→0

FD

− (u; Qρ (x))

ρd
≤ lim

ρ→0

FD

− (u; Qρ (x))

ρd

≤ lim
ρ→0

FD

+ (u; Qρ (x))

ρd

for all x ∈ O. It follows that for almost all x ∈ O

lim
ρ→0

F− (u; Qρ (x))

ρd
= lim

ρ→0

F+ (u; Qρ (x))

ρd

= lim
ρ→0

FD

+ (u; Qρ (x))

ρd
= lim

ρ→0

FD

− (u; Qρ (x))

ρd

= Dλm+ (u; ·) (x) = lim
ρ→0

m+ (u; Qρ (x))

ρd

= lim
ρ→0

m+ (ux; Qρ (x))

ρd
= lim

ρ→0

m− (ux; Qρ (x))

ρd
.

So, the proof is complete since O ∋ x 7→ Dλm+ (u; ·) (x) is measurable by
Lemma 3.3.

4.2. Proof of Theorem 2.2

Proof of Theorem 2.2 (ii). Let (u,O) ∈ W 1,p (Ω;Rm) × O (Ω) be such that
F− (u;O)<∞. There exists a sequence {uεn}n ⊂ W 1,p (Ω;Rm) such that

uεn → u in Lp (Ω;Rm) , lim
n→∞

Fεn (uεn;O) = F− (u;O)

and sup
n

Fεn (uεn;O)<∞.
(23)

By (C2), for each ε>0 we consider the Borel measure νε whose the trace onO (Ω)
is Fε (uε; ·). From the last inequality of (23) we can rewrite that the sequence
of Borel measures {µn := νεn⌊O}n satisfies supn µn (O)<∞. So, there exists a

Borel measure µ on O such that (up to a subsequence) µn
∗
⇀ µ. By Lebesgue

decomposition theorem, we have µ = µa + µs where µa and µs are nonnegative
Borel measures such that µa ≪ λ⌊O and µs ⊥ λ⌊O, and from Radon-Nikodym



theorem we deduce that there exists f ∈ L1 (O; R+), given by

f (x) = lim
ρ→0

µa (Qρ (x))

ρd
= lim

ρ→0

µ (Qρ (x))

ρd
a.e. in O

with Qρ (x) := x+ ρY , such that

µa (A) =

ˆ

A

f (x) dx for all measurable sets A ⊂ O.

By Alexandrov theorem we see that

F− (u;O) = lim
n→∞

Fεn (uεn;O)

= lim
n→∞

µn (O) ≥ µ (O) = µa (O) + µs (O) ≥ µa (O) =

ˆ

O

f (x) dx,

and

f (x) = lim
ρ→0

lim
n→∞

µn (Qρ (x))

ρd
= lim

ρ→0
lim
n→∞

Fεn (uεn; Qρ (x))

ρd
a.e. in O.

Proof of Theorem 2.2 (i). For each u ∈ W 1,p (Ω;Rm) we denote by V+ (u; ·) :
O (Ω) → [0,∞] the Vitali envelope of m+ (u; ·), i.e.,

V+ (u;O) := Vm+(u;·) (O) .

The proof consists to show that for every O ∈ O (Ω) and every u ∈ MF (O) the
following inequality holds

FD

+ (u;O) ≤ V+ (u;O) . (24)

Indeed, using Proposition 3.5 we obtain

F+ (u;O) ≤ FD

+ (u;O) ≤ V+ (u;O) =

ˆ

O

Dλm+ (u; ·) (x) dx.

Let us prove (24) now. Fix O ∈ O (Ω) and u ∈ MF (O). Note that by Re-
marks 3.1 we have for some µu ∈ Aλ (O)

V+ (u;O) ≤ µu (O)<∞. (25)

Fix ε ∈]0, 1[. Choose
{
Qi

}
i∈I

∈ Vε (O) such that

∑

i∈I

m+ (u; Qi) ≤ V ε
+ (u;O) +

ε

2
≤ V+ (u;O) +

ε

2
. (26)

Fix δ ∈]0, 1[. Given any i ∈ I, by definition of mδ (u; Qi), there exists vi ∈
u+W 1,p

0 (Qi;R
m) such that

Fδ (vi; Qi) ≤ mδ (u; Qi) +
δ

2

λ (Qi)

λ (O)
. (27)



Define uδ,ε ∈ u+W 1,p
0 (O;Rm) by

uδ,ε :=
∑

i∈I

vi1Qi
+ u1Ω \ ∪

i∈I
Qi
.

Using (C2) and (C3) we have from (27)

Fδ (uδ,ε;O) =
∑

i∈I

Fδ (vi; Qi) + Fδ

(
u;O \ ∪

i∈I
Qi

)

=
∑

i∈I

Fδ (vi; Qi)

≤
∑

i∈I

mδ (u; Qi) +
δ

2
.

Since u ∈ MF (O) there exists µu ∈ Aλ (O) such that supδ∈]0,1] mδ (u;U) ≤ µu (U)
for all open set U ⊂ O. For every η > 0 there exists a finite set Iη ⊂ I such
that µu

(
O \ ∪i∈IηQi

)
≤ η. It follows that

∑
i∈I\Iη

mδ (u; Qi) ≤ η. Hence, for
any η>0

lim
δ→0

∑

i∈I

mδ (u; Qi) ≤ lim
δ→0

∑

i∈Iη

mδ (u; Qi) + lim
δ→0

∑

i∈I\Iη

mδ (u; Qi) (28)

≤
∑

i∈I

m+ (u; Qi) + η.

Therefore collecting (26), (28), and passing to the limit ε→ 0, we have

lim
ε→0

lim
δ→0

Fδ (uδ,ε;O) ≤ V+ (u;O) . (29)

From the p-coercivity (C1), (29) and (25), we deduce

lim
ε→0

lim
δ→0

ˆ

O

|∇uδ,ε|pdx<∞. (30)

By Poincaré inequality there exists K>0 depending only on p and d such that
for each vi ∈ u+W 1,p

0 (Qi;R
m)

ˆ

Qi

|vi − u|pdx ≤ Kεp
ˆ

Qi

|∇vi −∇u|pdx

since diam (Qi)<ε. Summing over i ∈ I we obtain

ˆ

O

|uδ,ε − u|pdx ≤ 2p−1Kεp
(
ˆ

O

|∇uδ,ε|pdx+
ˆ

O

|∇u|pdx
)



which shows, by using (30), that

lim
ε→0

lim
δ→0

ˆ

Ω

|uδ,ε − u|pdx = 0. (31)

A simultaneous diagonalization of (29) and (31) gives a sequence {uδ := uδ,ε(δ)}δ ⊂
u+W 1,p (O;Rm) such that uδ → u in Lp (Ω;Rm) and

FD

+ (u;O) ≤ lim
δ→0

Fδ (uδ;O) ≤ V+ (u;O)

by the definition of FD

+ (u;O). The proof is complete.

5. Applications

5.1. General Γ(Lp)-convergence result in the p-growth case

For each ε ∈]0, 1] we consider a family of functionals F := {Fε}ε∈]0,1], Fε :
W 1,p (Ω;Rm)×O (Ω) → [0,∞].

Consider the following condition:

(P1) there exist β > 0 and ν a nonnegative finite Borel measure on Ω abso-
lutely continuous with respect to the Lebesgue measure such that for every
(V, u, ε) ∈ O (Ω)×W 1,p (Ω;Rm)×]0, 1] we have

mε (u;V )

|V | ≤ β

(
ν (V )

|V | +
V

|u|pdx+
 

V

|∇u|pdx
)

The following result can be seen as a nonconvex extension of Theorem IV of [9,
p. 265]. Indeed, if for each ε > 0 we set Fε : W 1,p (Ω;Rm) × O (Ω) → [0,∞]
defined by

Fε (u;O) :=

ˆ

O

Lε (x, u (x) ,∇u (x)) dx

where Lε : Ω×R
d×M

m×d → [0,∞[ is a Borel measurable function with p-growth
and p-coercivity, i.e.,

∃α>0 ∃β>0 ∃a ∈ L1 (Ω) ∀ (x, v, ξ) ∈ Ω× R
d ×M

m×d ∀ε>0

α|ξ|p ≤ Lε (x, v, ξ) ≤ β (a (x) + |v|p + |ξ|p)

then (P1) holds with ν = a (·)λ and F = {Fε}ε ⊂ I (p, α).

Theorem 5.1. Assume that F ⊂ I (p, α). Let u ∈ W 1,p (Ω;Rm) and O ∈
O (Ω). If (H1) and (P1) hold then the family F (·;O) Γ(Lp)-converges at u to

F0 (u,O) :=

ˆ

O

L0 (x, u (x) ,∇u (x)) dx

where L0 (·, u (·) ,∇u (·)) is given by (6).



Proof. Since (P1) we see that

MF (O) =W 1,p (Ω;Rm) .

Fix u ∈ W 1,p (Ω;Rm). Following Theorem 2.6 it is enough to show that (H2)
and (H3) hold.

We begin by showing (H3). Fix x ∈ O such that

lim
r→0 Qr(x)

|u|pdy = |u (x) |p<∞; (32)

lim
r→0 Qr(x)

|∇u|pdy = |∇u (x) |p<∞; (33)

lim
r→0

1

rp Qr(x)

|ux − u|pdy = 0; (34)

lim
r→0

ν (Qr (x))

rd
= Dλν (x)<∞. (35)

Fix ε>0, s ∈]0, 1[ and ρ>0. Let φ ∈ W 1,∞
0 (Qρ (x) ; [0, 1]) be a cut-off function

between Qsρ (x) and Qρ (x) (i.e., φ = 1 on Qsρ (x) and φ = 0 on O \ Qsρ (x))
such that

‖∇φ‖L∞(Qρ(x)) ≤
4

ρ (1− s)
.

Let vε ∈ ux +W 1,p
0 (Qsρ (x) ;R

m) be such that

Fε (vε; Qsρ (x)) ≤ ε (sρ)d +mε (ux; Qsρ (x)) . (36)

Set w := φvε + (1− φ)u, we have w ∈ u+W 1,p
0 (Qρ (x) ;R

m) and

∇w :=

{
∇vε in Qsρ (x)

φ∇u (x) + (1− φ)∇u+∇φ⊗ (ux − u) in Σρ (x)

where Σρ (x) := Qρ (x) \Qsρ (x). We have

mε (u; Qρ (x)) = mε (w; Qρ (x))

≤ mε (w; Qsρ (x)) +mε (w; Σρ (x))

≤ Fε (vε; Qsρ (x)) +mε (w; Σρ (x))

≤ ε (sρ)d +mε (ux; Qsρ (x)) +mε (w; Σρ (x))

since Lemma 6.2 and (36). It follows that

mε (u; Qρ (x))

ρd
≤ εsd + sd

mε (ux; Qsρ (x))

(sρ)d
+

mε (w; Σρ (x))

ρd
. (37)



We claim that (H3) is proved if

lim
s→1

lim
ρ→0

lim
ε→0

mε (w; Σρ (x))

ρd
= 0. (38)

Indeed, passing to the limits ε → 0, ρ→ 0, s→ 1 in (37) we have

lim
ρ→0

m+ (u; Qρ (x))

ρd
≤ lim

s→1−
lim
ρ→0

m+ (ux; Qsρ (x))

(sρ)d
(39)

≤ lim
ρ→0

m+ (ux; Qρ (x))

ρd
.

So, it remains to prove (38). Using (P1) we have for some C > 0 dependent on
p only

mε (w; Σρ (x))

ρd

≤ β
ν (Σρ (x))

ρd
+

1

ρd

ˆ

Σρ(x)

|φ∇u (x) + (1− φ)∇u+∇φ⊗ (ux − u)|p dy
)

+
β

ρd

ˆ

Σρ(x)

|φux + (1− φ) u|p dy

≤ Cβ
ν (Σρ (x))

ρd
+
(
1− sd

)
|∇u (x) |p +

 

Qρ(x)

|∇u|pdy − sd
 

Qsρ(x)

|∇u|pdy
)

+ Cβ
4p

(1− s)p
1

ρp Qρ(x)

|ux − u|pdy − sd+p

(sρ)p

 

Qsρ(x)

|ux − u|pdy
))

+ Cβρp

(
1

ρp Qρ(x)

|ux − u|pdy − sd+p

(sρ)p

 

Qsρ(x)

|ux − u|pdy
)

+ Cβ
Qρ(x)

|u|p − sd
 

Qsρ(x)

|u|p
)
.

Taking (32), (33), (34) and (35) into account and passing to the limits ε → 0
then ρ→ 0 we obtain

lim
ρ→0

lim
ε→0

mε (w; Σρ (x))

ρd
≤ Cβ

(
1− sd

)
(Dλν (x) + |u (x) |p + |∇u (x) |p) .

Letting s→ 1 we obtain (38).

Let us prove (H2) now. Consider a sequence {ϕε}ε ⊂ W 1,p (Ω;Rm) such that
ϕε → 0 in Lp (Ω;Rm) as ε → 0 and satisfying supε>0 Fε (u+ ϕε; Ω) <∞. Set



µε (·) := Fε (u+ ϕε; ·) for any ε>0. There exists a subsequence (not relabeled)
and a nonnegative Radon measure µ0 such that

µε
∗
⇀ µ0. (40)

Fix ε>0, s ∈]1, 2[ and ρ>0. Fix x ∈ O such that (32), (33), (34) and (35) hold
and

Dλµ0 (x) := lim
r→0

µ0 (Qr (x))

rd
<∞. (41)

Let φ ∈ W 1,∞
0 (Qsρ (x) ; [0, 1]) be a cut-off function between Qρ (x) and Qsρ (x)

such that

‖∇φ‖L∞(Qsρ(x)) ≤
4

ρ (s− 1)
.

Let vε ∈ (u+ ϕε) +W 1,p
0 (Qρ (x) ;R

m) be such that

Fε (vε; Qρ (x)) ≤ ερd +mε (u+ ϕε; Qρ (x)) . (42)

Set w := φvε + (1− φ)ux, we have w ∈ ux +W 1,p
0 (Qsρ (x) ;R

m) and

∇w :=

{
∇vε in Qρ (x)

φ (∇u+∇ϕε) + (1− φ)∇u (x) +∇φ⊗ (u+ ϕε − ux) in Σρ (x)

where Σρ (x) := Qsρ (x) \Qρ (x). We have

sd
mε (ux; Qsρ (x))

(sρ)d
= sd

mε (w; Qsρ (x))

(sρ)d
(43)

≤ mε (w; Qρ (x))

ρd
+

mε (w; Σρ (x))

ρd

≤ Fε (vε; Qρ (x))

ρd
+

mε (w; Σρ (x))

ρd

≤ ε+
mε (u+ ϕε; Qρ (x))

ρd
+

mε (w; Σρ (x))

ρd

≤ ε+
Fε (u+ ϕε; Qρ (x))

ρd
+

mε (w; Σρ (x))

ρd

since Lemma 6.2 and (42). We claim that (H2) is proved if

lim
s→1

lim
ρ→0

lim
ε→0

mε (w; Σρ (x))

ρd
= 0. (44)

Indeed, passing to the limits ε → 0, ρ→ 0, s→ 1 in (43) we have

lim
ρ→0

lim
ε→0

Fε (u+ ϕε; Qρ (x))

ρd
≥ lim

s→1
lim
ρ→0

m− (ux; Qsρ (x))

(sρ)d
(45)

≥ lim
ρ→0

m− (ux; Qρ (x))

ρd
.



So, it remains to prove (44). Using (P1) we have for some C > 0 dependent on 
p only

mε (w; Σρ (x))

ρd
(46)

≤ β
1

ρd

ˆ

Σρ(x)

|φ (u+ ϕε) + (1− φ)ux|p dy

+ Cβ

((
sd − 1

)
|∇u (x) |p + ν (Σρ (x))

ρd

)

+ Cβ
1

ρd

ˆ

Σρ(x)

|∇u+∇ϕε|p +
1

ρd

ˆ

Σρ(x)

|∇φ⊗ (u+ ϕε − ux)|p dy
)

≤ Cβ

((
sd − 1

)
|∇u (x) |p + ν (Σρ (x))

ρd
+

1

α

1

ρd
Fε (u+ ϕε; Σρ (x))

)

+ Cβ
23p−1

(s− 1)p
sd+p 1

(sρ)p

 

Qsρ(x)

|ux − u|p dy − 1

ρp Qρ(x)

|ux − u|p dy
)

+ Cβ
23p−1

(s− 1)p
sd+p 1

(sρ)p

 

Qsρ(x)

|ϕε|p dy −
1

ρp Qρ(x)

|ϕε|p dy
)

+ Cβρp

(
1

ρp Qρ(x)

|ux − u|pdy − sd+p

(sρ)p

 

Qsρ(x)

|ux − u|pdy
)

+ Cβ
Qρ(x)

|u|p − sd
 

Qsρ(x)

|u|p
)

+ Cβ
1

ρd

ˆ

Σρ(x)

|ϕε|p dy.

Using (40) and Alexandrov theorem we have

lim
ε→0

1

ρd
Fε (u+ ϕε; Σρ (x)) = lim

ε→0

µε (Σρ (x))

ρd

≤ lim
ε→0

µε

(
Σρ (x)

)

ρd

≤ µ0

(
Σρ (x)

)

ρd

≤ sd
µ0

(
Qsρ (x)

)

(sρ)d
− µ0 (Qρ (x))

ρd
.

Letting ρ→ 0 we deduce by using (41)

lim
ρ→0

lim
ε→0

1

ρd
Fε (u+ ϕε; Σρ (x)) ≤

(
sd − 1

)
Dλµ0 (x) . (47)

Taking (32), (33), (34), (35) and (47) into account and passing to the limits



ε→ 0 then ρ→ 0 in (46) we obtain

lim
ρ→0

lim
ε→0

mε (w; Σρ (x))

ρd

≤ Cβ
(
sd − 1

)
(Dλν (x) + |u (x) |p + |∇u (x) |p +Dλµ0 (x))

since ϕε → 0 in Lp (Ω;Rm) as ε → 0. Passing to the limit s → 1 we finally
proved (44).

As an illustration of Theorem 5.1 we give two elementary examples.

Example 5.2 (Integrands “almost” nondecreasing). For each ε > 0 we
consider Lε : M

m×d → [0,∞[ a Borel measurable function such that

(P2) ∃γ ≥ 0 ∃δ>0 ∀ε>0 ∀η ∈]0, ε[ ∀ (x, v, ξ) ∈ Ω× R
d ×M

m×d

Lε (ξ) ≤ Lη (ξ) + γ|ε− η|δ.

Note that if γ = 0 then ε 7→ Lε (·) is nondecreasing when ε is decreasing.

We define Fε : L
p (Ω;Rm)×O (Ω) → [0,∞] by

Fε (u;O) :=

ˆ

O

Lε (∇u (x)) dx.

Then it is easy to see that (H1) holds. If we assume (32) then (P1) holds.

Example 5.3 (Constant integrands with perturbation). LetW : Ω×R
d×

M
m×d → [0,∞[ be a Borel measurable integrand satisfying p-growth and p-

coercivity (32) and (H1). Let {Φε}ε ⊂ L1 (Ω;R+) such that

(i) there exists g ∈ L1 (Ω) such that Φε (x) ≤ g (x) for all x ∈ Ω and all ε>0;

(ii) there exists a nonnegative Borel measure Φ0 such that

Φε (·)λ ∗
⇀ Φ0 as ε→ 0. (48)

For each ε>0 we set Lε : Ω× R
d ×M

m×d → [0,∞[ defined by

Lε (x, v, ξ) = W (x, v, ξ) + Φε (x) .

Then for each O ∈ O (Ω) the family F (·;O) Γ(Lp)-converges to

F0 (u;O) =

ˆ

O

W0 (x, u (x) ,∇u (x)) +DλΦ0 (x) dx.

Indeed, we have that (P1) holds because of the p-growth of W and (i). Now, we
have for almost all x ∈ Ω

lim
ρ→0

lim
ε→0 Qρ(x)

Φε (y) dy = DλΦ0 (x)



∈
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)
an see that for every x ∈ Ω, every ε > 0, every ρ > 0 and every

inf

{

Qρ(x)

W (y, w (y) ,∇w (y)) dy : w ∈ ux +W 1,p
0 (Qρ (x) ;R

m)

}

+
Qρ(x)

Φε (y) dy.

It means that (H ) holds and Theorem 5.5 applies with

L0 (x, u (x) ,∇u (x)) = W0 (x, u (x) ,∇u (x)) +DλΦ0 (x) .

We give a concrete example. Assume that Ω = B1 (0) ⊂ R
d the euclidean open

ball with center 0 and radius 1. Let g : Ω → [0,∞] be defined by

g (x) :=

{
2√
‖x‖

if x ∈ Ω \ {0}
∞ if x = 0.

where ‖ · ‖ is the euclidean norm. Then g ∈ L1 (Ω). For each ε > 0 we set for
every x ∈ Ω

Φε (x) :=
1√
ε
1Bε(0) (x) + h (x)

where h ∈ L1 (Ω) and satisfies h (x) ≤ 1
2
g (x) for all x ∈ Ω. Then (i) and (ii)

hold with
Φε (·) λ ∗

⇀ Φ0 := δ0 + hλ as ε→ 0

where δ0 is the dirac measure at 0. It follows that

DλΦ0 (x) = h (x) a.e. in Ω.

5.2. Homogenization

Let L : Rd×M
m×d → [0,∞[ be a Borel measurable function which is p-coercive,

i.e., there exists α>0 such that

α|ξ|p ≤ L (x, ξ)

for all (x, ξ) ∈ Ω×M
m×d. For each ε>0 we consider Fε : W

1,p (Ω;Rm)×O (Ω) →
[0,∞] given by

Fε (u;O) :=

ˆ

O

L
(x
ε
,∇u (x)

)
dx.

The family F = {Fε}ε ⊂ I (p, α). For each ξ ∈ M
m×d we define Sξ : O (Ω) →

[0,∞] a set function by

SL
ξ (O) := inf

{
ˆ

O

L (y, ξ +∇ϕ (y)) dy : ϕ ∈ W 1,p
0 (O;Rm)

}
.



Definition 5.4. We say that L is an H-integrand (H stands for “homogeniz-
able”) if

(H ) ∀ξ ∈ M
m×d lim

ρ→0
lim
t→∞

SL
ξ (tQρ (x))

λ (tQρ (x))
= lim

ρ→0
lim
t→∞

SL
ξ (tQρ (x))

λ (tQρ (x))
a.e. in Ω.

In this case we denote the common value by Lhom (x, ξ).

We see that (H ) implies (H1), indeed, for every u ∈ MF (O) we have

SL
∇u(x)

(
1
ε
Qρ (x)

)

λ
(
1
ε
Qρ (x)

) =
mε (ux·; Qρ (x))

ρd
.

for all ε> 0 and all x ∈ O. So, we can deduce from Theorem 5.1 the following
result.

Theorem 5.5. If (P1) holds and L is an H-integrand, i.e., (H ) holds. Then for
each O ∈ O (Ω) the family F (·;O) Γ(Lp)-converges at every u ∈ W 1,p (Ω;Rm)
to

F0 (u,O) =

ˆ

O

Lhom (x,∇u (x)) dx

where

Lhom (x, ξ) = L0 (x, ξ) = lim
ρ→0

lim
t→∞

SL
ξ (tQρ (x))

λ (tQρ (x))
.

for all x ∈ O and ξ ∈ M
m×d.

Theorem 5.5 becomes a “classical” homogenization result when Lhom does not
depend on x. For instance, when L is 1-periodic or almost periodic with respect
to the first variable then by subadditive theorems [13, Theorem 2.1 and Theorem
3.1] the condition (H ) holds, i.e., L is an H-integrand, and we have

Lhom (ξ) = inf
n∈N

SL
ξ (nY )

nd
(periodic case) (49)

Lhom (ξ) = lim
n→∞

SL
ξ (nY )

nd
(almost-periodic case). (50)

Example 5.6 (Periodic integrand with perturbation). ConsiderW : Rd×
M

m×d → [0,∞[ be a Borel measurable function 1-periodic with respect to the
first variable, i.e.,

∀x ∈ R
d ∀z ∈ Z

d ∀ξ ∈ M
m×d W (x+ z, ξ) = W (x, ξ) ,

and satisfying p-growth and p-coercivity, i.e, there exist α, β>0 such that

∀ (x, ξ) ∈ R
d ×M

m×d α|ξ|p ≤W (x, ξ) ≤ β (1 + |ξ|p) .

Let Φ ∈ L1
loc

(
R

d;R+
)
such that



(i) there exists g ∈ L1
loc

(
R

d
)
such that Φ

(
x
ε

)
≤ g (x) for all x ∈ Ω and all

ε>0;

(ii) there exists a nonnegative Borel measure Φ0 such that

Φ
( ·
ε

)
λ

∗
⇀ Φ0 as ε → 0. (51)

Let L : Rd ×M
m×d → [0,∞[ be defined by

L (x, ξ) = W (x, ξ) + Φ (x) .

Note that L is not periodic with respect to the first variable, because of the
“perturbation” Φ.

We consider the family F = {Fε}ε ⊂ I (p, α) given by

Fε (u;O) :=

ˆ

O

L
(x
ε
,∇u (x)

)
dx

for all (u,O) ∈ W 1,p (Ω;Rm)×O (Ω). Then F (·;O) Γ(Lp)-converges to

F0 (u;O) =

ˆ

O

Whom (∇u (x)) +DλΦ0 (x) dx

for all u ∈ W 1,p (Ω;Rm)×O (Ω), and whereWhom (ξ) is given by the formula (49)
with SW

ξ in place of SL
ξ . Indeed, (P1) holds because of the p-growth ofW and (i).

Now, we have for almost all x ∈ Ω

lim
ρ→0

lim
ε→0 Qρ(x)

Φ
(y
ε

)
dy = DλΦ0 (x)

since (51). Using [13, Theorem 2.1] we have for every ξ ∈ M
m×d

Whom (ξ) +DλΦ0 (x) = lim
ρ→0

lim
t→∞

SL
ξ (tQρ (x))

λ (tQρ (x))
= lim

ρ→0
lim
t→∞

SL
ξ (tQρ (x))

λ (tQρ (x))
a.e. in Ω,

since we can see that for every x ∈ Ω, every t>0 and every ρ>0

SL
ξ (tQρ (x))

λ (tQρ (x))
= inf

{

tQρ(x)

W (y, ξ +∇ϕ (y)) dy : ϕ ∈ W 1,p
0 (tQρ (x) ;R

m)

}

+
tQρ(x)

Φ (y) dy.

It means that L is an H-integrand and Theorem 5.5 apply with

Lhom (x, ξ) =Whom (ξ) +DλΦ0 (x) .

Remark 5.7. An interesting problem in the field of deterministic homogeniza-
tion (see [16]) is the characterization of all H-integrands L : Rd×M

m×d → [0,∞[
Borel measurable with p-growth and p-coercivity, i.e., satisfying

∃α>0 ∃β>0 ∀ (x, ξ) ∈ Ω×M
m×d α|ξ|p ≤ L (x, ξ) ≤ β (1 + |ξ|p) .



5.3. Relaxation

The following result is an extension of Acerbi-Fusco-Dacorogna relaxation the-
orem (see [7, Theorem 9.8, p. 432] and [1, Statement III.7, p. 144]) in the case
where the integrand is assumed Borel measurable only.

Theorem 5.8. If L : Ω× R
m ×M

m×d → [0,∞[ is Borel measurable and satis-
fies (H1) and (32) then for every O ∈ O (Ω)

F0 (u;O) =

ˆ

O

L0 (x, u (x) ,∇u (x)) dx

where for a.a. x ∈ O

L0 (x, u (x) ,∇u (x))

= lim
ρ→0

inf

{
 

Qρ(x)

L (y, w (y) ,∇w (y)) dy : w ∈ ux +W 1,p
0 (Qρ (x) ;R

m)

}
.

Moreover, if L is Carathéodory, i.e.,

(i) for each (v, ξ) ∈ R
m×M

m×d the function Ω ∋ x 7→ L (x, v, ξ) is measurable;

(ii) for a.a. x ∈ Ω the function R
m×M

m×d ∋ (v, ξ) 7→ L (x, v, ξ) is continuous,

then for almost every x ∈ Ω and for every (v, ξ) ∈ R
d ×M

m×d

L̃0 (x, v, ξ) = inf

{
ˆ

Y

L (x, v, ξ +∇ϕ (y)) dy : ϕ ∈ W 1,∞
0 (Y ;Rm)

}
. (52)

Proof. The formula (52) follows from Proposition 5.11.

Remark 5.9. Under the same assumptions of Theorem 5.8 and using Proposi-
tion 2.7 we also have

F0 (u;O) = FD

0 (u;O) =

ˆ

O

L0 (x, u (x) ,∇u (x)) dx

for all (u,O) ∈ W 1,p (Ω;Rm)×O (Ω).

We can give an extension of W 1,p-quasiconvexity as follows.

Definition 5.10. We say that a Borel measurable integrand L : Ω × R
d ×

M
m×d → [0,∞] is W 1,p-quasiconvex if for every (x, v, ξ) ∈ Ω× R

d ×M
m×d

L̃0 (x, v, ξ) = L (x, v, ξ) .

However, when the integrand is dependent on (x, v) this generalization of qua-
siconvexity is more difficult to handle. When the integrand L is Carathéodory
the variables x and v can be frozen and we recover the classical concept of
quasiconvexity.



Proposition 5.11. If L is Carathéodory and satisfies p-growth (32) then for
a.a. x ∈ Ω and for every (v, ξ) ∈ R

m ×M
m×d we have

L̃0 (x, v, ξ) = inf

{
ˆ

Y

L (x, v, ξ +∇ϕ (y)) dy : ϕ ∈ W 1,∞
0 (Y ;Rm)

}
. (53)

Proof. For each (x, v, ξ) ∈ Ω×R
m×M

m×d we denote by QdacL (x, v, ξ) the right
hand side of (53). For each ρ ∈]0, 1[ we define Λρ, Lρ : Ω×R

m×M
m×d → [0,∞[

by

Λρ (x, v, ξ) := inf

{
ˆ

Y

L (x+ ρy, v + ρ (ξy + ψ (y)) , ξ +∇ψ (y)) dy :

ψ ∈ W 1,∞
0 (Y ;Rm)

}
;

Lρ (x, v, ξ) := inf

{
ˆ

Y

L (x+ ρy, v + ρ (ξy + ϕ (y)) , ξ +∇ϕ (y)) dy :

ϕ ∈ W 1,p
0 (Y ;Rm)

}
.

It is easy to see, by a change of variables, that for a.a. x ∈ Ω and for every
(v, ξ) ∈ R

m ×M
m×d we have

lim
ρ→0

Lρ (x, v, ξ) = L̃0 (x, v, ξ) . (54)

It is enough to show that for a.a. x ∈ Ω, for every (v, ξ) ∈ R
m×M

m×d and every
ρ ∈]0, 1[ it hold

QdacL (x, v, ξ) = lim
ρ→0

Λρ (x, v, ξ) (55)

Λρ (x, v, ξ) = Lρ (x, v, ξ) . (56)

Indeed, combining (54), (55) and (56) we obtain (53).

Proof of (55). Let δ > 0. By Scorza-Dragoni theorem, there exists a compact
set Kδ ⊂ Y such that λ (Y \Kδ) < δ and L⌊

Kδ×(Rm×Mm×d) is continuous. Fix

(x, v, ξ) ∈ Ω× R
m ×M

m×d such that

a (x) = lim
ρ→0 Qρ(x)

a (y) dy = lim
ρ→0

ˆ

Y

a (x+ ρy) dy<∞. (57)

We show first that limρ→0Λρ (x, v, ξ) ≤ QdacL (x, v, ξ). Note that

QdacL (x, v, ξ) ≤ L (x, v, ξ) ≤ β (a (x) + |v|p + |ξ|p)<∞.



Let ε>0. There exists ψ ∈ W 1,∞
0 (Y ;Rm) such that

ˆ

Y

L (x, v, ξ +∇ψ (y)) dy ≤ ε+QdacL (x, v, ξ) . (58)

Fix ρ∈]0, 1[. Set gρ (y) := L (x+ ρy, v+ ρ (ξy + ψ (y)) , ξ +∇ψ (y)) and g0 (y) :=
L (x, v, ξ +∇ψ (y)) for all y ∈ Y . Using (58) we have

Λρ (x, v, ξ) (59)

≤
ˆ

Kδ

gρ (y) dy +

ˆ

Y \Kδ

gρ (y) dy

=

ˆ

Kδ

gρ (y)− g0 (y) dy +

ˆ

Y \Kδ

gρ (y)− g0 (y) dy +

ˆ

Y

g0 (y) dy

≤
ˆ

Kδ

|gρ (y)− g0 (y)| dy +
ˆ

Y \Kδ

|gρ (y)− g0 (y)| dy + ε+QdacL (x, v, ξ) .

By using the p-growth (32) it easy to see that there exists C depending on β
and p only such that

max {g0 (y) , gρ (y)} (60)

≤ C (a (x+ ρy) + |v|p + |ξ|p + |ψ (y) |p + |∇ψ (y) |p) a.e. in Y.

By continuity of L⌊
Kδ×(Rm×Mm×d) we have gρ (y)− g0 (y) → 0 a.e. in Kδ as ρ→

0. Using the domination (60) we obtain by applying the Lebesgue dominated
convergence theorem

lim
ρ→0

ˆ

Kδ

|gρ (y)− g0 (y)| dy = 0. (61)

By (60) we have

ˆ

Y \Kδ

|gρ (y)− g0 (y)| dy (62)

≤ 2C

(
ˆ

Y \Kδ

a (x+ ρy) dy + δ (a (x) + |v|p + |ξ|p + ‖ψ‖p∞ + ‖∇ψ‖p∞)

)
.

Note that {Y ∋ y 7→ a (x+ ρy)}ρ∈]0,1[ is uniformly integrable since (57). So,
taking the supremum over ρ and passing to the limit δ ↓ 0 in (62) we find that

lim
δ↓0

sup
ρ∈]0,1[

ˆ

Y \Kδ

|gρ (y)− g0 (y)| dy = 0. (63)

Taking (61) and (63) into account in (59) we find

lim
ρ→0

Λρ (x, v, ξ) ≤ ε+QdacL (x, v, ξ) .



Now, we want to show that limρ→0 Λρ (x, v, ξ) ≥ QdacL (x, v, ξ). Consider a 
sequence {ρn}n∈N ⊂]0, 1[ such that

lim
ρ→0

Λρ (x, v, ξ) = lim
n→∞

Λρn (x, v, ξ) ≤ β (a (x) + |v|p + |ξ|p)<∞

since p-growth conditions (32). Fix n ∈ N. We can choose ψn ∈ W 1,∞
0 (Y ;Rm)

such that
ˆ

Y

gn (y)dy ≤ ρn + Λρn (x, v, ξ)

where gn (y) := L (x+ ρny, v + ρn (ξy + ψρn (y)) , ξ +∇ψρn (y)) for all y ∈ Y .
Since p-coercivity, we can choose a subsequence (not relabelled) such that

ψn → ψ∞ in Lp (Y ;Rm) ; (64)

∇ψn ⇀ ∇ψ∞ in Lp
(
Y ;Mm×d

)
. (65)

Fix δ > 0 and choose a compact set Kδ ⊂ Y such that λ (Y \Kδ) < δ and
L⌊

Kδ×(Rm×Mm×d) is continuous. We have by Eisen convergence theorem [12, p.

75] that
gn (y)− L (x, v, ξ +∇ψn (y)) → 0 in measure in Kδ. (66)

We have
ˆ

Y

gn (y)dy ≥
ˆ

Kδ

gn (y)− L (x, v, ξ +∇ψn (y)) dy

+

ˆ

Y \Kδ

gn (y)− L (x, v, ξ +∇ψn (y)) dy +QdacL (x, v, ξ) .

Using growth conditions we have for a.a. y ∈ Y

|gn (y)− L (x, v, ξ +∇ψn (y))| (67)

≤ 2C (a (x+ ρny) + a (x) + |v|p + |ξ|p + |ψn (y) |p + |∇ψn (y) |p) .

By taking (66), (67), (64) and (65) into account we have

lim
n→∞

ˆ

Kδ

|gn (y)− L (x, v, ξ +∇ψn (y))| dy = 0

since Vitali convergence theorem. Using (67) and reasoning similarly as in the
first part of the proof we have

lim
δ→0

sup
n∈N

ˆ

Y \Kδ

|gn (y)− L (x, v, ξ +∇ψn (y))| dy = 0.

It follows that

lim
ρ→0

Λρ (x, v, ξ) = lim
n→∞

Λρn (x, v, ξ) ≥ lim
n→∞

ˆ

Y

gn (y) dy ≥ QdacL (x, v, ξ) .



Proof of (56). Fix (x, v, ξ) ∈ Ω × R
m ×M

m×d and ρ ∈]0, 1[. We only need to
prove that

Lρ (x, v, ξ) ≥ Λρ (x, v, ξ) . (68)

Let ε>0. There exists ϕε ∈ W 1,p
0 (Y ;Rm) such that

Lρ (x, v, ξ) + ε ≥
ˆ

Y

L (x+ ρy, v + ρ (ξy + ϕε (y)) , ξ +∇ϕε (y)) dy.

There exists a sequence {ψn}n∈N ⊂ W 1,∞
0 (Y ;Rm) such that ψn → ϕε in

W 1,p (Y ;Rm), ψn → ϕε a.e. in Y and ∇ψn → ∇ϕε a.e. in Y as n → ∞. Using
growth conditions we have for some C depending on β and p only, for a.a. y ∈ Y
and for all n ∈ N

L (x+ ρy, v + ρ (ξy + ψn (y)) , ξ +∇ψn (y))

≤ C (a (x+ ρy) + |v|p + |ξ|p + |ψn (y) |p + |∇ψn (y) |p) .
Since L is Carathéodory we have

lim
n→∞

L (x+ ρy, v + ρ (ξy + ψn (y)) , ξ +∇ψn (y))

= L (x+ ρy, v + ρ (ξy + ϕε (y)) , ξ +∇ϕε (y)) a.e. in Y.

Applying Vitali convergence theorem we obtain

Λρ (x, v, ξ) ≤ lim
n→∞

ˆ

Y

L (x+ ρy, v + ρ (ξy + ψn (y)) , ξ +∇ψn (y)) dy

=

ˆ

Y

L (x+ ρy, v + ρ (ξy + ϕε (y)) , ξ +∇ϕε (y)) dy

≤ Lρ (x, v, ξ) + ε.

Letting ε→ 0 we finally obtain (68).

6. Appendix

6.1. Usage of Vitali covering theorem

Let A ⊂ O ∈ O (Ω) be a set which is not necessarily measurable. For each
x ∈ A we consider a family of closed balls Kx containing x of O satisfying
inf {diam (Q) : Q ∈ Kx} = 0 and A ⊂ ∪Q∈K Q with K := ∪x∈A Kx. We say that
K is a fine cover of A.

Then there exists a countable pairwise disjointed family of balls
{
Qi

}
i≥1

⊂ K
such that

λ
(
A \ ∞∪

i=1
Qi

)
= 0.

It follows that for any µ ∈ Aλ (O), i.e. µ ≪ λ⌊O, we have µ (A \ ∪i≥1Qi) = 0.
Moreover, if λ (A) < ∞ then for any δ > 0 we can choose a finite subfamily
{
Qi

}N
i=1

⊂ K satisfying

µ

(
A \ N∪

i=1
Qi

)
<δ.



6.2. Level sets of derivative of set functions

Let G : Qo (Ω) →]−∞, ∞] be a set function. Let O ∈ O (Ω). For each h ∈ R we 
consider the strict sublevel (resp. superlevel) of the lower (resp. upper) derivative

of G

Sh := {x ∈ O : DλG (x)<h}
(
resp. Sh :=

{
x ∈ O : DλG (x)>h

})

The following lemma give consequences of sublevel (resp. superlevel) sets of
derivative of set functions.

Lemma 6.1. Let h ∈ R and η>0. Then

(i) there exists a countable pairwise disjointed family {Qi}i∈I ⊂ Qo (O) such
that

λ

(
Sh \ ∪

i∈I
Qi

)
= 0, ∀i ∈ I G (Qi)<hλ (Qi) and diam (Qi) ∈]0, η[ (69)

(resp. λ
(
Sh \ ∪i∈I Qi

)
= 0, ∀i ∈ I G (Qi)>hλ (Qi) and diam (Qi) ∈]0, η[);

(ii) for every δ > 0 there exists a finite pairwise disjointed family {Qi}i∈I ⊂
Qo (O) such that

λ

(
Sh \ ∪

i∈I
Qi

)
<δ, ∀i ∈ I G (Qi)<hλ (Qi) and diam (Qi) ∈]0, η[

(resp. λ
(
Sh \ ∪i∈I Qi

)
<δ, ∀i ∈ I G (Qi)>hλ (Qi) and diam (Qi) ∈]0, η[).

Proof. Let h ∈ R and η > 0. We only give the proof for Sh, since similar
arguments apply for Sh. Note that (ii) is a direct consequence of (i), so, we only
show (i).

If x ∈ Sh then for some ε>0

∀ρ ∈]0, η[ inf

{
G (Q)

λ (Q)
: Q ∈ Bx,ρ (O)

}
<h− ε

where Bx,ρ (O) := {Q : x ∈ Q ∈ Qo (O) and diam (Q) ≤ ρ}. For each ρ ∈]0, η[
there exists Qx,ρ ∈ Bx,ρ (O) such that

G (Qx,ρ)

λ (Qx,ρ)
− ε ≤ inf

{
G (Q)

λ (Q)
: Q ∈ Bx,ρ (O)

}
<h− ε. (70)

Consider the family Kη :=
{
Qx,ρ

}
x∈Sh,ρ∈]0,η[

of closed cubes such that (70) holds.

The family Kη is a fine cover of Sh, i.e.,

Sh ⊂ ∪
Q∈Kη

Q and ∀x ∈ Sh inf {diam (Q) : Q ∈ Kη,x} = 0

where Kη,x :=
{
Qx,ρ

}
ρ∈]0,η[

⊂ Kη. By Vitali covering theorem we conclude (69).



6.3. Proof of Lemma 3.3

Fix c ∈ R. We have to prove that

Mc := {x ∈ O : DλG (x) ≤ c}

is measurable. Fix η > 0. Set h := c + η. By Lemma 6.1 (i) there exists a
countable pairwise disjointed family {Qi}i∈I ⊂ Qo (O) such that

λ

(
Sh \ ∪

i∈I
Qi

)
= 0, ∀i ∈ I G (Qi)<hλ (Qi) and diam (Qi) ∈]0, η[.

Since Sh ⊃Mc we have

λ

(
Mc \ ∪

i∈I
Qi

)
= 0.

If we show that the Borel set Q∞ := ∪i∈I Qi ⊂ Mc then Mc will be the reunion
of a Borel set and a λ-negligible set and so measurable since λ is complete. Let
z ∈ Q∞. Then there exists iz ∈ I such that z ∈ Qiz . It follows that

inf

{
G (Q)

λ (Q)
: z ∈ Q ∈ Qo (Ω) , diam (Q) ≤ η

}
≤ G (Qiz)

λ (Qiz)
≤ c+ η.

Passing to the limit η → 0 we obtain DλG (z) ≤ c which means that z ∈ Mc.
The proof is complete.

6.4. Properties of the family of set functions {mε (u; ·)}ε
Lemma 6.2. Let (u,O) ∈ W 1,p (Ω;Rm) ×O (Ω). Then the family {mε (u; ·)}ε,
mε (u; ·) : O (O) → [0,∞] satisfies

(i) for every ε>0 and every (U, V ) ∈ O (O)×O (O)

U ∩ V = ∅ =⇒ mε (u;U ∪ V ) ≤ mε (u;U) +mε (u;V ) ;

(ii) for every ε>0, every U, V ∈ O (O) with U ⊂ V

λ (V \U) = 0 =⇒ mε (u;U) = mε (u;V ) ;

(iii) in particular, for every U ∈ O (O) and V ∈ O (O) satisfying U ⊂ V we
have for every ε>0

λ (∂U) = 0 =⇒ mε (u;V ) ≤ mε (u;U) +mε

(
u;V \ U

)
.

Proof. We recall that for A ∈ O (Ω) we have

W 1,p
0 (A;Rm) =

{
u ∈ W 1,p (Ω;Rm) : u = 0 in Ω \ A

}
.



If U, V ∈ O (O) satisfy U∩V = ∅ then for every ϕi ∈ Lp (Ω; Rm) with i ∈ {0, 1, 2} 
we have

ϕ1 ∈ W 1,p
0 (U ;Rm) and ϕ2 ∈ W 1,p

0 (V ;Rm)

=⇒ ϕ11U + ϕ21V ∈ W 1,p
0 (U ∪ V ;Rm) .

Let ε>0. To verify (i) it suffices to write for every ϕ1 ∈ W 1,p
0 (U ;Rm) and ϕ2 ∈

W 1,p
0 (V ;Rm)

Fε (u+ ϕ1;U) + Fε (u+ ϕ2;V ) = Fε (u+ ϕ11U + ϕ21V ;U ∪ V )
≥ mε (u;U ∪ V ) ,

taking the infimum over ϕ1 and ϕ2 we obtain

mε (u;U) +mε (u;V ) ≥ mε (u;U ∪ V ) .

Consider U, V ∈ O (O) satisfying U ⊂ V and λ (V \ U) = 0. Since U ⊂ V
we have W 1,p

0 (U ;Rm) ⊂ W 1,p
0 (V ;Rm), thus mε (u;U) ≥ mε (u;V ). Assume

that mε (u;V ) < ∞. For every η > 0 there exists ϕ ∈ W 1,p
0 (V ;Rm) such that

∞>mε (u;V ) + η ≥ Fε (u+ ϕ;V ). By using (C2) we have

mε (u;V ) + η ≥ Fε (u+ ϕ;V ) = Fε (u+ ϕ1U ;U) + Fε (u+ ϕ;V \ U)
≥ mε (u;U) .

Note that ϕ1U = ϕ a.e. in V and so ϕ1U ∈ W 1,p
0 (U ;Rm). Therefore (ii) is

satisfied.

To prove (iii) it is sufficient to use the properties (ii), (i) together with the
fact that we can write V \

(
U ∪

(
V \ U

))
= ∂U for all U, V ∈ O (O) satisfying

U ⊂ V .
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