
HAL Id: hal-01400366
https://hal.science/hal-01400366

Submitted on 21 Nov 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A CSP versus a zonotope-based method for solving
guard set intersection in nonlinear hybrid reachability

Moussa Maïga, Nacim Ramdani, Louise Travé-Massuyès, Christophe
Combastel

To cite this version:
Moussa Maïga, Nacim Ramdani, Louise Travé-Massuyès, Christophe Combastel. A CSP versus a
zonotope-based method for solving guard set intersection in nonlinear hybrid reachability. Mathemat-
ics in Computer Science, 2014, Interval Methods and Applications, 8 (3-4), pp.407-423. �hal-01400366�

https://hal.science/hal-01400366
https://hal.archives-ouvertes.fr

A CSP versus a zonotope-based method for solving guard
set intersection in nonlinear hybrid reachability

Moussa Maı̈ga, Nacim Ramdani, Louise Travé-Massuyès and Christophe
Combastel

Abstract. Computing the reachable set of hybrid dynamical systems in a reliable and verified way
is an important step when addressing verification or synthesis tasks. This issue is still challenging
for uncertain nonlinear hybrid dynamical systems. We show in this paper how to combine a method
for computing continuous transitions via interval Taylor methods and a method for computing the
geometrical intersection of a flowpipe with guard sets, to build an interval method for reachability
computation that can be used with truly nonlinear hybrid systems. Our method for flowpipe guard
set intersection has two variants. The first one relies on interval constraint propagation for solving
a constraint satisfaction problem and applies in the general case. The second one computes the
intersection of a zonotope and a hyperplane and applies only when the guard sets are linear. The
performance of our method is illustrated on examples involving typical hybrid systems.

Keywords. Intervals analysis, hybrid systems, event detection, event localization, zonotope, reach-
ability analysis.

1. Introduction
Hybrid systems are complex dynamical systems, which involve the interaction of discrete and con-
tinuous dynamics. This is the case for instance when real-time digital controllers interact with phys-
ical environments in our daily lives. Many complex systems exhibiting piecewise continuous dy-
namical behaviours, can be regarded as hybrid systems. Hybrid systems are often components of
safety-critical systems. It is then necessary to have a thorough and guaranteed insight of their prop-
erties, such as performance, safety or stability [5, 44, 24]. The verification of these properties can be
achieved through reachability analyses, some of which require an explicit computation of the hybrid
state space, i.e. the set of all trajectories of the hybrid system starting from a possible initial set
and under all admissible disturbances and variations in parameter values. This is a challenging issue
since it is practically impossible to enumerate in a reliable way all the possible systems’ behaviours.

Usual algorithms for hybrid reachability computation alternate the computation of continuous
and discrete transitions, and most of them must address the challenging issue of event detection and
localisation, that is computing the geometrical intersection of the continuous flowpipe with guard
sets [2].

This issue has been addressed by many authors recently, although most of them focus on affine
dynamics and polyhedral guard sets. Using support functions, [20] investigates ways of reducing the

This work is supported by the French National Research Agency under contract ANR 2011 INS 006 MAGIC-SPS
(projects.laas.fr/ANR-MAGIC-SPS)..

2 M. Maı̈ga, N. Ramdani, L. Travé-Massuyès and C. Combastel

over-approximation when computing the discrete transitions. The critical operation in this computa-
tion is the intersection of the flowpipe with the guard sets. They propose an approach for computing
the intersection for affine dynamics with polyhedral guards. Reference [2] introduced a new approach
for avoiding geometric intersection operations in reachability analysis by over-approximating the in-
tersection of affine dynamics with guard sets modeled as halfspaces by nonlinear mappings.

Another family of effective but non-guaranteed methods combine polynomial approximations
of the guard condition with root finding algorithms ([43, 8, 19, 18, 21, 39]), but uncertainties (about
initial states, model parameters, ...) cannot be taken into account. Other approaches are based on
zonotopes (a.o. [23, 2, 1, 3]), support functions ([26, 25, 20]) or polytopes [22] ; they scale well and
are well adapted to affine dynamics.

When it comes to hybrid reachability computation with nonlinear hybrid systems, i.e. hybrid
dynamical systems with nonlinear dynamics and guard sets described by nonlinear functions, there
are very few truly nonlinear methods available, among which our previous work [41] and references
[16, 28].

In [41], continuous transitions were addressed via set integration based on interval Taylor meth-
ods, and the event detection and localisation problems underlying flow/guard intersection was solved
using propagation techniques for constraint-satisfaction problem (CSP). Recently, we introduced
technical improvements of the latter method in order to reduce both the computation time while
ensuring reduced over-approximation when crossing the guard set conditions. Our method now im-
plements Lohner’s QR-factorization [36] within the guaranteed numerical set integration method to
control the wrapping effect, applies the standard contractor HC4Revise [9] for solving the CSP at
discrete transition steps only, and makes use of bisection in a single dimension to ensure polynomial
time complexity [34].

In this paper, we further improve this method to solve the flow/guard intersection directly with-
out using any CSP solver when the guard sets are defined by hyperplanes. When a discrete transition
is detected, we solve the event localisation problem as follows : we characterize the reached set as
a zonotope, then we compute the zonotope enclosing the intersection between the reached set and
the hyperplane defining the guard sets. This zonotope-based approach is compared to the CSP-based
approach on two hybrid systems.

The paper is organized as follows. Sect. 2 defines hybrid dynamical systems. Sect. 3 overviews
the interval tools used in the paper. Sect. 4 reviews our method for solving continuous transitions.
Sect. 5 gathers our two methods for flow-guard sets intersection. Results are presented in Sect. 6 for
two hybrid systems.

2. Uncertain nonlinear hybrid systems
Dynamical hybrid systems can be represented by a hybrid automaton [6] given by

HA = (Q,D,P,Σ,A, Inv,F) (1)

and defined as follows:
• Q is a set of locations {q} whose continuous dynamics, i.e. flow transitions, are described by

non-autonomous differential equations fq ∈ F of the form

flow(q) : ẋ(t) = fq(x, p, t), (2)

where fq : D×P×R+ 7→ D is nonlinear and assumed sufficiently smooth over D ⊆ Rn, with
dimension n that may depend on q, and p ∈ P, where P is an uncertainty domain for the
parameter vector p.

• Inv is an invariant, which assigns a domain to the continuous state space of each location:

Inv(q) : νq(x(t), p, t)< 0, (3)

Guard set intersection in nonlinear hybrid reachability 3

Xe

ν0(.) < 0

Forbidden

ν1(.) < 0

γ 0
(.
)
=
0

Reach.

Reach.x(te)
ρ0(Xe)x0(t0)

X0(t0)

ρ(x(t−e)

FIGURE 1. Set reachable in finite time by system (2-4).

where inequalities are taken componentwise, νq : D×P×R+ 7→ Rm is also nonlinear, and the
number m of inequalities may also depend on q.
• A is the set of discrete transitions {e= (q→ q′)} given by the 5-tuple (q,guard,σ ,ρ,q′), where

q and q′ represent upstream and downstream locations respectively; guard is a condition of the
form:

guard(e) : γe(x(t), p, t) = 0; (4)

σ is an event, and ρ is a reset function assumed to be affine.

A transition q→ q′ may occur when the continuous state flow reaches the guard set, i.e. when the
continuous state satisfies condition (4).

The set reachable in finite time by system (2-4) is illustrated in Fig. 1. When starting from
an initial state vector x(t0) taken in X(t0), a discrete transition occurs when the continuous flow
intersects the guard set at time te. Then, the continuous state vector is reset as x1(t+e) = ρ0(x0(t−e)).
Xe is the set of all possible vectors x(te) when vector x(t0) varies in X(t0). The reachable set may
then intersect a forbidden area as shown in the figure.

Introducing the new state variable z = (x, p , t) with ż = (ẋ,0, 1), and defining Z=D×P×R+,
equations (2–4) are rewritten:

flow(q) : ż(t) = fq(z), (5)

Inv(q) : νq(z(t))< 0 and (6)

guard(e) : γe(z(t)) = 0. (7)

so that all uncertain quantities are embedded in the initial state vector.
When analyzing hybrid systems, intersections with guard sets that enable discrete transitions

may occur. When a flowpipe of non-zero size reaches a guard condition described by linear or non-
linear constraints, there is a non-empty set of instants during which the constraint is satisfied, leading
to a continuum of switching times [17].

3. Solving constraint satisfaction problems with interval methods
In this section, we overview key concepts regarding methods based on interval analysis that we use
for finding intersections with invariants and guards, and evaluating jump functions.

Consider the system of m (in)equalities over n variables z ∈ Rn

C : ∧1≤i≤m(hi(z)≺ 0),≺∈ {=,<} (8)

4 M. Maı̈ga, N. Ramdani, L. Travé-Massuyès and C. Combastel

and denote the domain of z by Z . Here, inequalities are considered when one computes mode
invariants or prune solution sets from those parts that are not contained in invariants. Equalities are
considered when one addresses flow/guard intersection and the evaluation of jump successors.

System (8) is a numerical constraint satisfaction problem CSP : (Z , C). Denoting by S its
set of solutions, we have

S = {z ∈Z | ∧1≤i≤m (hi(z)≺ 0)}. (9)

An enclosure of S can be computed in a reliable and guaranteed way via branch-and-prune ap-
proaches using interval analysis and contractors based on constraint propagation [29].

3.1. Intervals analysis

A real interval [u] = [u,u] is a closed and connected subset of R where u represents the lower bound
of [u] and u represents the upper bound. The width of an interval [u] is defined by wid([u]) = u−u, its
midpoint by mid([u]) = (u+u)/2, and its radius by rad([u]) = (u−u)/2 = wid([u])/2. An interval
[u] can be defined by its midpoint and its radius, so [u] = [mid([u])− rad([u]),mid([u])+ rad([u]),
the unitary interval is B = [−1,1]. The set of all real intervals of R is denoted IR. Two intervals [u]
and [v] are equal if and only if u = v and u = v. Real arithmetic operations are extended to intervals
[35]. Arithmetic operations on two intervals [u] and [v] can be defined as:

◦ ∈ {+,−,∗,/}, [u] ◦ [v] = {x◦ y | x ∈ [u], y ∈ [v]}.

An interval vector (or box) [X] is a vector with interval components and may equivalently be
seen as a Cartesian product of scalar intervals: [X] = [x1]× [x2]...× [xn]. The set of n−dimensional
real interval vectors is denoted by IRn. A unitary box in IRn, denoted by Bn, is a box composed by
n unitary intervals.

An interval matrix is a matrix with interval components. The set of n×m real interval matrices
is denoted by IRn×m. Classical operations for interval vectors (resp. interval matrices) are direct
extensions of the same operations for point vectors (resp. point matrices) [35]. Let f : Rn→Rm, the
range of function f over an interval vector [u] is given by:

f ([u]) = { f (x)|x ∈ [u]}.

The interval function [f] from IRn to IRm is an inclusion function for f if:

∀[u] ∈ IRn, f ([u])⊆ [f]([u]).

An inclusion function of f can be obtained by replacing each occurrence of a real variable by
its corresponding interval and by replacing each standard function by its interval evaluation. Such a
function is called the natural inclusion function. In practice the inclusion function is not unique, it
depends on the formal expression of f .

3.2. Branch-and-prune algorithms

Consider system (8) and the case when “ ≺ ” is “ = ”. Constraint-satisfaction algorithms work as
follows.

Guard set intersection in nonlinear hybrid reachability 5

Algorithm 1: Interval-Solve
input : ‘∧1≤i≤mhi([z]) = 0’, Z ,ε1,ε2
output: list of boxes S

1 define a running list of boxes L and initialize it with [z] = Hull(Z);
33 while L 6= 0 do
4 pick first box [z] from the list;
5 evaluate hi([z]);
6 if ∃i : 0 /∈ hi([z]) then
7 discard box [z];
8 else if ((maxwid([z])< ε1) or (maxi wid(hi([z]))< ε2)) then
9 store box [z] in list S

10 else
11 partition [z] and store new boxes in L ;
12 end if
13 end while

Clearly, this simple algorithm is of exponential complexity. There are several technical and
heuristic improvements, which make it possible to control the overall computation time and memory
usage [29, 27]. They also address partitioning strategies, and the possible use of interval narrowing
procedures on box [z].

3.3. Contractors
The idea underlying contractors is to use a reduction function that reduces the size of box [z] during
the branching scheme of algorithm Interval-Solve without using bisection. This reduction can
be achieved by an interval narrowing operator, a contractor for (8) on [z], which we write as

[z]′ = Contractor(C , [z]).

This operator removes from [z] subsets that do not contain a solution to (8) and satisfies the following
properties: (a) [z]′ ⊆ [z] and (b) [z]′∩S = [z]∩S , where S is the solution set (9).

Most contractors use consistency filtering techniques (e.g. [12], see also the review [38]) and/or
constraint propagation [29]. Interval propagation techniques are based on the interval extension of
the local Waltz filtering [15, 45, 11]. Consistency filtering techniques rely on local consistency prop-
erties.

4. Continuous transitions using set integration via Interval Taylor methods
For better readability, we briefly overview in this section, the main ideas underlying continuous
reachability analysis using guaranteed set integration via interval Taylor methods.

Consider the uncertain dynamical system described by (5)–(7) with z(t0) ∈ Z0 at time t0 ≥ 0
and denote by Z(t; t0,Z0) the set of solutions of (5) at time t originating from each initial condition
in Z0 at t0. Z(t; t0,Z0) is abbreviated as Z(t) when there is no ambiguity.

Define a time grid t0 < t1 < t2 < .. . < tnT , which needs not to be equally spaced in this paper,
and assume initial domain is an interval vector; i.e. Z0 = [z0] = [z0,z0].

Then, guaranteed set integration via interval Taylor methods computes interval vectors [z j], j =
1, . . . ,nT , that are guaranteed to contain the set of solutions Z(t j; t0,Z0) of (5) at times t j, j =
1, . . . ,nT in three stages:

• verify the existence and uniqueness of the solution using the Banach fixed point theorem and
the Picard-Lindelöf operator [35, 14, 37].

6 M. Maı̈ga, N. Ramdani, L. Travé-Massuyès and C. Combastel

• compute an a priori enclosure [z̃ j] such that [z̃ j]⊇Z(t) for all t in [t j, t j+1]. Hence, [z̃ j] is indeed
an over-approximation of the reachable set over [t j, t j+1]. It can be made as tight as possible
using the following stage.
• compute a tighter enclosure for the set of solutions of (5) at t that can be taken as t j+1 or any

t ∈ [t j, t j+1] not necessarily on the time-grid, using a Taylor series expansion of order k of the
solution at t j, and where [z̃ j] is used to enclose the remainder term:

Z(t; t j, [z j])⊆ [z](t; t j, [z j]) = [z j]+
k−1

∑
i=1

(t− t j)
if
[i]
q ([z j])+(t− t j)

kf
[k]
q ([z̃ j]), (10)

and where the f
[i]
q ([z j]) are the Taylor coefficients.

Remark 1. Eq. (10) written for any t in [t j, t j+1] is an extension of what is classically done for guar-
anteed set integration, since latter methods aim at computing tight enclosures for time instants taken
on the grid. Here, for solving the flow/guard intersection we need to obtain an explicit characteriza-
tion of the solution for any time instant taken between two time grid points. Eq. (10) can be viewed
as a conservative polynomial interpolation, hence acts as an analytical solution for the flowpipe for
t in [t j, t j+1], since f

[k]
q ([z̃ j]) encloses the remainder of the Taylor series for any t in [t j, t j+1] [40].

Extending the results from [36], (10) can be turned into a computationally acceptable scheme
that controls the wrapping effect1 by using the mean-value approach complemented by QR-factorization
as proposed by Lohner. The solution enclosure at time t ∈ [t j, t j+1] can be computed in the mean-
value form :

Z(t; t j,Z0) ∈ {v+A(t)r |v ∈ [v](t),r ∈ [r](t)},
and

Z j+1 = Z(t j+1; t j,Z0) ∈ {v+A j+1r |v ∈ [v j+1],r ∈ [r j+1]},
Defining:

[χ](t)≡ {[z](t), ẑ(t), [v](t), [r](t), A(t)}, (11)

where ẑ(t) := mid([z](t)), the algorithm ϕQR(.) given in Algorithm 2 is used to compute the so-
lution set of (5) at time t ∈ [t j, t j+1] [41]. The solution enclosure at time t j+1 is given by [χ j+1] =

ϕQR([χ j], t j, t j+1, [z̃ j]).

Algorithm 2: Algorithm ϕQR

input : [χ j], t j, t, [z̃ j]

output: [χ](t)

1 [v](t) := ẑ j +
k−1
∑

i=1
(t− t j)

if
[i]
q (ẑ j)+(t− t j)

kf
[k]
q ([z̃ j]);

2 [S](t) := I+
k−1
∑

i=1
(t− t j)

i ∂ f
[i]
q

∂ z ([z j]) ;

3 [q](t) := ([S](t)A j)[r j]+ [S](t)([v j]− ẑ j);
4 [z](t) := [v](t)+ [q](t);
5 obtain A(t) via QR-factorization of mid([S](t)A j) [33];
6 [r](t) := A(t)−1([S](t)A j)[r j]+ (A(t)−1[S])([v j]− ẑ j);
7 ẑ(t) := mid([v](t)) ;
8 [χ](t) := {[z](t), ẑ(t), [v](t), [r](t), A(t)};

1The wrapping effect is the over-approximation induced by enclosing a set of any shape in an axis-aligned box.

Guard set intersection in nonlinear hybrid reachability 7

5. Computing the geometrical intersection of a flowpipe and guard sets
We now show how to compute the geometrical intersection of a continuous flowpipe with the guard
sets2. For completeness, we overview a preliminary version of an algorithm based on solving a CSP,
then we introduce a variant using zonotopes. These two methods will be compared on the same
examples in the next section.

5.1. Event detection and localization
The issue is first to detect if the flowpipe intersects a guard set, then to compute when and where the
intersection occurs, in other words we need to compute the time instants te and solution state vector
z(te) such that (7) is satisfied, i.e. γe(z(te)) = 0.

Because the flowpipe has a non-zero width, there is a continuum of time instants where the
intersection occurs. Hence, we need to characterize the set of all such solutions, i.e.

T ?×Z ? =
{

te× z(te) s. t. (te ∈ [t j, t j+1])∧ (γe(z(te)) = 0)∧ (ż(t) = fq(z))∧ (z(t j) ∈ [z j])
}

(12)

Let us assume an event exists for te in [t j, t j+1], then the methods described in the sequel are
able to detect the existence of such event.

Computing solution set (12) is now an analytical problem since algorithm ϕQR(t) yields for
any t in [t j, t j+1] an analytical solution for the flowpipe over the time interval [t j, t j+1], hence the
methods described in section 3 applies directly. To obtain a tight characterization of (12), we need
to partition the search space. Therefore, to curb computational complexity and keep a polynomial
computation time, we partition only in the single direction of the time variable, and use contractors
to reduce the solution set at a given time instant.

Let us denote [t?, t?]l ⊆ [t j, t j+1] a sub-interval over which (7) is satisfied, and Z ?
l the set

of state vectors for which t exists in [t?, t?]l that satisfies (7). Solution set (12) can then be over-
approximated by

T ?×Z ? ⊆
L⋃

l=1

[t?, t?]l×Z ?
l (13)

where L is the number of solution sub-boxes.
Allowing some over-approximation when computing te, we say that an event occurs over the

subinterval [t?, t?]l if wid([t?, t?]l) is smaller than a given threshold εT , as suggested in [41].
Now the question remains on how to compute a tight over-approximation of Z ?

l . In the sequel,
we show two ways to do this.

The first one solves a constraint satisfaction problem as in [34] and applies to nonlinear guard
sets. The second one computes directly the intersection of the enclosure (11) with the guard set and
applies when the latter is described as a hyperplane.

5.2. Computing the intersection by solving a CSP
Recall that the enclosure of the solution of the IVP ODE (5) can be computed for the small time
interval [t?]l = [t?, t?]l in the compound form (11), denoted [χ]l , using an inclusion function for
algorithm ϕQR(t), which we obtain by using an interval [t] as input. We will save the notation [χ?]l
for the compound form characterizing the tight over-approximation of Z ?

l . Removing the l subscript
for simplicity, we have

[χ] = {[z], ẑ, [v], [r], A?}. (14)
Therefore

(∃z ∈ [z] s.t. γe(z) = 0) ⇒ (∃v× r ∈ [v]× [r] s.t. γe(v+A?r) = 0), (15)
hence, computing the intersection over the time interval [t?] boils down to solving the CSP

E :
(
[v]× [r], “γe

(
v+A?r

)
= 0”

)
. (16)

2The same computational methods apply for the intersection with invariant sets.

8 M. Maı̈ga, N. Ramdani, L. Travé-Massuyès and C. Combastel

Using a contractor, we can obtain a tight over-approximation of Z ? as a compound form [χ?]l where

[v?]× [r?] = Contractor(E , [v]× [r]). (17)

If the solution set for CSP (17) is not empty, we assume that the event e = q→ q′ occurs at te = t?

and that [χ](t−e) = [χ?], as suggested in [41]. The discrete transition can then be computed from
there, using the reset function ρ .

5.3. Computing the intersecting from a zonotope and a hyperplane
We now show how to compute the flowpipe/guard set intersection by using the intersection of a zono-
tope and a hyperplane. We extend the approach initially given in [13] for computing the intersection
of two zonotopes. Compared to the previous scheme as presented in 5.2, it reduces to simple linear
algebra computations (mainly, evaluation of a null space), which ensures polynomial complexity and
small computation time as the space dimension increases. Let us first review zonotope definitions
and then introduce our main results.

5.3.1. Zonotopes. Given a vector c ∈ Rn and a matrix R ∈ Rn×p, a zonotope [32] Z is the set Z =
c⊕RBp = {c+Rx : x ∈ Bp}. The vector c is the center of the zonotope, and the matrix R defines the
shape of the (centrally symmetric) zonotopic domain. Z is the Minkowski sum3 of the m-segments
defined as m columns of matrix R in Rn×p.

Property 1. The Minkowski sum of two zonotopes Z1 = c1⊕R1Bp1 ∈Rn and Z2 = c2⊕R2Bp2 ∈Rn

is also a zonotope, defined as Z1⊕Z2 = (c1 + c2)⊕ [R1 R2]Bp1+p2 .

Property 2. The image of a zonotope Z= c⊕RBp ∈Rn by a linear mapping L can be computed by
a standard matrix product LZ= Lc⊕ (LR)Bp.

5.3.2. Computing the intersection of a zonotope and a hyperplane.

Proposition 5.1. Consider a zonotope Z = c⊕RBp and a hyperplane H (η ,d) = {x|η>x = d}
with non empty intersection (which can easily be tested using support vector η). Let us define :
σ = R>η , d′ = d−η>c, cs = σd′/‖σ‖2

2, V0 = N(σ>), i.e. a basis of the null space (or kernel) of
σ>, Rs =V0V>0 , c∩ = c+Rcs, and R∩ = RRs, then a zonotope enclosing the intersection between Z

and the hyperplane H (η ,d) is given by

Z∩H ⊆ Z∩ = c∩⊕R∩Bp. (18)

Proof. Let x ∈ Z, then s ∈ Bp exists such that x = c+Rs. The point vector x also belongs to the
hyperplane H (η ,d) if η>x = d, hence if η>c+η>Rs = d. Then, introducing σ = R>η and d′ =
d−η>c, we can deduce the necessary and sufficient condition

x ∈ Z∩H ⇔ x ∈ {c⊕Rs |s ∈ Bp∧σ
>s = d′}. (19)

Bounding Z∩H (η ,d) boils down to finding all s ∈ Bp such that σ>s = d′. This equation can be
solved using the singular value decomposition (SVD) of vector σ>, which takes the particular form

σ
> =U ·S ·V> =

[
U1
]
.
[
S1 01×p−1

]
.

[
V>1
V>0

]
, (20)

where U1 = 1 is scalar, S1 = ‖σ‖2, V1 =
σ

‖σ‖2 , V0 = N(σ>), and where ‖σ‖2 is the Euclidean norm

of σ (‖σ‖2
2 = σ>σ) and N(σ>) is an orthonormal basis of the kernel of σ>.

Let V = [V1,V0] be viewed as a change of coordinates, and define point vector ξ = (ξ1,ξ0) which
satisfies s = V ξ = V1ξ1 +V0ξ0. Since V>V = I, we have V>1 s = ξ1 and V>0 s = ξ0. From σ>s = d′

and σ> =U1S1V>1 , it comes U1S1ξ1 = d′ and ξ1 =
d′
‖σ‖2 .

3Let ξ1,ξ2 ⊂ Rn, the Minkowski sum of ξ1 and ξ2 is: ξ1⊕ξ2 = {s1 + s2|s1 ∈ ξ1,s2 ∈ ξ2}.

Guard set intersection in nonlinear hybrid reachability 9

Recall that ξ0 =V>0 s. Since s∈Bp, then ξ0 ∈V>0 Bp. From s=V1ξ1+V0ξ0 we have s∈ cs⊕V0V>0 Bp.
Finally, an over-approximation [s] of the set of all s ∈ Bp that satisfies σ>s = d′ is given by

[s] = cs⊕RsBp. (21)

By combining (19) and (21), it comes:

x ∈ Z∩H ⇒ x ∈ c⊕R(cs⊕RsBp)⇔ x ∈ (c+Rcs)⊕RRsBp. (22)

Introducing c∩ = c⊕Rcs, and R∩ = RRs, we have

x ∈ Z∩H ⇒ x ∈ Z∩ = c∩⊕R∩Bp. (23)

�

Corollary 1. By construction, the zonotope Z∩ enclosing the intersection as defined in (19), is in-
cluded in the hyperplane H .

Proof. Let x ∈ c∩⊕R∩Bp then ∃s ∈ Bp such that x = c∩+R∩s, then η>x = η>(c+Rσd′/‖σ‖2
2 +

RV0V>0 s) = η>c+‖σ‖2
2d′/‖σ‖2

2 +σ>V0V>0 s, because σT = ηT R. Since σ>V0 = 0 by construction
of V0, and since d′ = d−η>c, η>x = d which completes the proof. �

Finally, proposition 5.1 and equation (18) give a computational scheme for computing an over-
approximation of Z∩H summarized in Algorithm 3. This approximation may feature some con-
servativeness but we found that it is reasonably tight for our applications, as illustrated by Fig. (2).

 0.67

 0.68

 0.69

 0.7

 0.71

 0.72

 0.73

 0.74

 0.75

 0.76

 1.28 1.3 1.32 1.34 1.36 1.38 1.4 1.42 1.44 1.46 1.48 1.5

x
2
*

x1*

(a) Instant t?1

 0.68

 0.69

 0.7

 0.71

 0.72

 0.73

 0.74

 0.75

 0.76

 0.77

 1.26 1.28 1.3 1.32 1.34 1.36 1.38 1.4 1.42 1.44 1.46 1.48

x
2
*

x1*

(b) Instant t?2

FIGURE 2. Initial zonotope in blue color, enclosed by an axis-aligned box in green
color, the zonotope enclosing the intersection with the hyperplane is depicted in
red, for two time instants

5.3.3. Main algorithm. As in section 5.2, we consider the flowpipe Zl computed over a sub-
interval [t?]l = [t?, t?]l using an inclusion function for algorithm ϕQR(t) and given in the compound
form (11). Removing again l subscript for simplicity, we have

Z = {v+A?r |v ∈ [v],r ∈ [r]} ⊆ A?[r]⊕ [v]. (24)

It is easy to see that domain Z is a MSPB i.e the Minkowski sum of the parallelotope A?[r]
and the axis-aligned box [v] (see Fig. 3). Furthermore, it is worth noticing that each domain Z is a
particular zonotope. Indeed, introducing point vector

c = A?mid([r])+mid([v]) ∈ Rn, (25)

10 M. Maı̈ga, N. Ramdani, L. Travé-Massuyès and C. Combastel

Algorithm 3: Intersection Z H

input : c, R, η , d
output: c∩, R∩

1 σ = R>η ;
2 d′ = d−η>c ;
3 V0 = N(σ>);
4 cs = σd′/‖σ‖2

2;
5 Rs =V0V>0 ;
6 c∩ = c+Rcs;
7 R∩ = RRs;

and point matrix

R =
[

A?dr([r]) dr([v])
]
∈ Rn×2n (26)

where dr(.) is a short notation for diag(rad(.)), we can write the flowpipe as a zonotope as follows

Z = c⊕RB2n (27)

Let us assume that the guard sets are characterized by hyperplane H , i.e. equation (7) simpli-
fies as

γe(z(t)) = 0⇔ η
>z(t) = d (28)

then, the MSBP Z ? =Z∩ that over-approximates Z ∩H can directly be obtained using proposition
5.1 with p = 2n.

FIGURE 3. Minkowski sum of oriented box A j[r j] and aligned box [v j]

Example 1. Consider the zonotope Z1 = c⊕RBp and the hyperplane H = {x|η>x = d} with

c =

[
1
2

]
, R =

[
1 2 3 0.5 0
3 2 1 0 −0.5

]
, η =

[
−2
1

]
, d =−0.5;

In Fig. 4, red line shows the obtained zonotope Z∩ that bounds the intersection Z1∩H

Guard set intersection in nonlinear hybrid reachability 11

FIGURE 4. Z1∩H ⊆ Z∩

Algorithm 4: GetGEN

input : [z], ẑ, [v], [r], A
output: c, R

1 c=Amid([r])+mid([v]);
2 R = [A.diag(rad([r])),diag(rad([v]))]

5.4. Nonlinear hybrid reachability approach
Finally, we can combine the method for computing continuous transitions described in section 4 with
the method for computing the intersection between the flowpipe and the guard sets described in this
section to derive a complete method for nonlinear hybrid reachability computation. The combined
methods are gathered in the algorithms described in Algorithm (4) and (5).

Remark 2. Note that in Algorithm 5 (Hybrid-Transition) the inclusion test at line 20 checks
whether the guard condition is satisfied for a state vector z ∈ [̃z], where [̃z] is a flowpipe enclosure
computed over the tiny time interval [t?, t?]. A nice consequence is that the reachable set needs not
to cross completely the guard condition over the latter time interval in order to activate the discrete
jump using the reset function ρ .

Remark 3. Note also that when the guard condition is a sliding surface, small over-approximations
introduced when computing enclosures [̃z] may introduce spurious guard crossing. However, in the
general case, as illustrated in the examples below, our approach correctly handles discrete transition
without introducing spurious guard crossing.

12 M. Maı̈ga, N. Ramdani, L. Travé-Massuyès and C. Combastel

Algorithm 5: Hybrid-Transition

input : L F
j , t j+1,{ϕ lqr

q (), ϕ̃q(),νq()}q∈Q,{γe(),ρe()}e∈E ,εT ,η ,d
output: L F

j+1,L
R
j+1

1 Initialization : initialize running frontier list L := L F
j ;

33 while L 6= 0 do
4 pick up L list element (q, t0, [χ0]);
5 /*Continuous transition */
6 compute continuous expansion over [t0, t j+1]→ [̃z] j;
7 update reached set list L R

j+1← (q, t0, t j+1, [̃z j]);
8 compute new solution at time t j+1→ [χ j+1];
9 solve CSP to compute [χ ′j+1] := [χ j+1]∩ inv(q);

10 if [χ j+1]
′ 6= /0 then

11 update frontier list L F
j+1← (q, t j+1, [χ j+1]

′);
12 end if
13 /*Discrete transition */
14 forall the elements e← E do
15 initialize running jump list Le := {(q, t0, [χ0], t j+1)};
1717 while Le 6= 0 do
18 compute flow over [t0, t1]→ [̃z];
19 if e = (q,q′) exists then
20 if (γe([̃z]) 3 0) then
21 t? = t0 ; t? = t1;
22 if ((t?− t?)≤ εT) then
23 compute flow enclosure over [t?, t?]→ [χ̃]?;
24 [c,R]← GetGEN([χ]) ;
25 (c∩,R∩) = Intersection Z H(c,R,η ,d) ;
26 jump and update L ← (q′, t?,ρe(Z∩));
27 else
28 compute solution set at t?→ [χ]?1;
29 compute solution set at t1 := (t?+ t?)/2→ [χ]?2; update running

jump list Le← (q, t?, [χ]?1, t1); update running jump list
Le← (q, t1, [χ]?2, t

?);
30 end if
31 end if
32 end if
33 end while
34 end forall
35 end while

6. Numerical experiments

For the purpose of numerical experimentation, the above system-solving methods have been im-
plemented in the IBEX C++ library [9] and we have used the standard contractor HC4Revise
it includes. We have also used Profil/Bias C++ class library [31] for interval computation,
FABDAB++ package [7] for automatic differentiation and computing the Taylor coefficients, AML++ [30]

Guard set intersection in nonlinear hybrid reachability 13

and Armadillo [42] package for Linear algebra. All experiments were tested on a i5− 2430M
2.4GHz CPU with 3.8GB RAM running Ubuntu Linux.

6.1. Example 1
Consider the hybrid transition for a hybrid dynamical system (Brusselator) with two modes q = 1, 2
and one jump transition e = 1→ 2 given by :

flow(1) : f1

(
x1
x2

)
=

(
1− (b1 +1)x1 +a1x2

1x2
b1x1−a1x2

1x2

)
inv(1) : ν1(x1,x2) =−2x1 + x2 +2

flow(2) : f2

(
x1
x2

)
=

(
1− (b2 +1)x1 +a2x2

1x2
b2x1−a2x2

1x2

)
inv(2) : ν2(x1,x2) =−ν1(x1,x2)
guard(1) : γ1(x1,x2) = ν1(x1,x2)

reset(1) : ρ1(x1,x2) = L
(

x1
x2

)
+

(
l1
l2

)
(29)

with L = I2, l1 = l2 =−0.5, a1 = 1.5, a2 = 3.5, b1 = 1, b2 = 3.5 and x0 ∈ [2,2.15]× [0.1,0.15].
We use a constant integration time step h = 0.05, and time interval was bisected until a thresh-
old εT = 0.005. When we compare the results obtained in (Fig.s 5), we see that the method using
the intersection of a zonotope with a hyperplane exhibits smaller computation time (CPU time =
0.16s) than the one using a contactor (CPU time = 0.20s). Furthermore, when we focus on the over-
approximation of the flowpipe/guard set intersection that is represented by black boxes, we also see
that the two approaches yield similar results (see Fig.5(b)).

6.2. Example 2 : Vehicle Model

FIGURE 6. Hybrid automaton of the vehicle model

The dynamics of a non-holonomic vehicle [10] is given as follows :
dx
dt = vct ;

dy
dt = vst ; dv

dt = u1
dct
dt = σv2st ; dst

dt =−σv2ct ; dσ

dt = u2
(30)

where u1, u2 are control inputs. We consider the case of a vehicle with three control modes m1,
m2, m3. The control inputs are given by (u1,u2) = (−0.05,−0.1) for mode m1, (0,0) for m2 and
(0.05,0.1) for m3. The transitions between modes are shown in Fig. 6. We start our simulation from
m1 with the initial variable values :

x ∈ [1,1.2] y ∈ [1,1.2] v ∈ [0.8,0.81]

st ∈ [0.6,0.61] ct ∈ [0.7,0.71] σ = [0,0.01]

We took for this simulation a constant integration time step h= 1, the time interval was bisected
until a threshold εT = 0.05. All results are plotted in Fig.7(a) and Fig.7(c) when using the zonotope-
based method, and in Fig.7(b) and Fig.7(d) for the CSP-based one.

14 M. Maı̈ga, N. Ramdani, L. Travé-Massuyès and C. Combastel

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

x
1

t

(a) Zonotope-based method. Time history of x1.

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

x
1

t

(b) CSP-based method. Time history of x1.

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

x
2

t

(c) Zonotope-based method. Time history of x2.

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

x
2

t

(d) CSP-based method. Time history of x2.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.5 1 1.5 2

x
2

x1

(e) Zonotope-based method. Projections onto x1× x2.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.5 1 1.5 2

x
2

x1

(f) CSP-based method. Projections onto x1× x2.

FIGURE 5. Reachable set computed for (29). Zonotope-based method, CPU
times=0.16s. CSP-based method, CPU times=0.20s.

These figures show that the zonotope-based method yields tighter reachable set obtained in a
smaller computation time (CPU time = 36s) than the CSP-based method (CPU time = 46s).

Fig.7(a)-7(c) shows that our algorithm can perform numerical model simulations with large
integration time step h = 1, hence illustrating the benefit of the proposed method. Note also that
our method can produce hybrid reachable sets that correctly cover two guard sets conditions (st <
0.75, st < 0.65) simultaneously.

REFERENCES 15

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0 2 4 6 8 10

S
t

t

(a) Zonotope-based method. Time history of St .

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0 2 4 6 8 10

S
t

t

(b) CSP-based method. Time history of St .

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 1 2 3 4 5 6

y

x

(c) Zonotope-based method. Projection onto x× y

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 1 2 3 4 5 6

y

x

(d) CSP-based method. Projection onto x× y

FIGURE 7. Reachable set of (30). Zonotope-based method, CPU time = 36s. CSP-
based method, CPU time = 46s.

7. Concluding remarks
We have shown that nonlinear hybrid reachability computation can be achieved efficiently by com-
bining interval Taylor methods, interval constraint propagation and zonotope geometrical tools. Eval-
uating our approach on a 6-dim non-holonomic vehicle benchmark we emphasized its nice perfor-
mance. Future work will focus on how to extend the zonotope-based method to nonlinear guards.
Furthermore, even though bisection is performed on a single direction only, our method generates in
practice a large number of boxes to cover the hybrid reachable set, for both variants. The natural idea
to reduce this number is to merge these boxes. Ways to achieve this box merging are under study.

References
[1] M. Althoff and B. H. Krogh. Zonotope bundles for the efficient computation of reachable sets.

In CDC-ECE, pages 6814–6821, 2011.
[2] M. Althoff and B. H. Krogh. Avoiding geometric intersection operations in reachability anal-

ysis of hybrid systems. In HSCC, pages 45–54, 2012.
[3] M. Althoff, O. Stursberg, and M. Buss. Reachability analysis of nonlinear systems with uncer-

tain parameters using conservative linearization. In CDC, pages 4042–4048, 2008.

16 REFERENCES

[4] R. Alur, C. Courcoubetis, N. Halbwachs, T. Henzinger, P.-H. Ho, X. Nicollin, A. Olivero,
J. Sifakis, and S. Yovine. The algorithmic analysis of hybrid systems. Theoretical Computer
Science, 138:3–34, 1995.

[5] R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P.-H. Ho, X. Nicollin, A. Olivero,
J. Sifakis, and S. Yovine. The algorithmic analysis of hybrid systems. THEORETICAL COM-
PUTER SCIENCE, 138:3–34, 1995.

[6] C. Bendtsen and O. Stauning. FADBAD, a flexible C++ package for automatic differentia-
tion. Technical Report IMM–REP–1996–17, Department of Mathematical Modelling, Techni-
cal University of Denmark, Lyngby, Denmark, aug 1996.

[7] L. G. Birta, T. I. Oren, and D. L. Kettenis. A robust procedure for discontinuity handling in
continuous system simulation. Trans. Soc. Comput. Simul. Int., 2(3):189–205, Sept. 1985.

[8] G. Chabert. IBEX: Interval Based EXplorer, available at http://www.ibex-lib.org/,
2007.

[9] X. Chen, E. Abraham, and S. Sankaranarayanan. Taylor model flowpipe construction for non-
linear hybrid systems. In 33rd IEEE Real-Time Systems Symposium (RTSS 12), pages 183–192,
2012.

[10] J. C. Cleary. Logical arithmetic. Future Computing Systems, 2:125–149, 1987.
[11] H. Collavizza, F. Delobel, and M. Rueher. Comparing partial consistencies. Reliable comput-

ing, 5:213–228, 1999.
[12] C. Combastel, Q. Zhang, and A. Lalami. Fault diagnosis based on the enclosure of parameters

estimated with an adaptive observer. In 17th IFAC World Congress, Seoul, Korea, July 6-11
2008.

[13] G. F. Corliss and R. Rihm. Validating an a priori enclosure using high-order taylor series.
In In Scientific Computing, Computer Arithmetic, and Validated Numerics, pages 228–238.
Akademie Verlag, 1996.

[14] E. Davis. Constraint propagation with interval labels. Artificial Intelligence, 32:281–331, 1987.
[15] A. Eggers, M. Fränzle, and C. Herde. SAT Modulo ODE: A direct SAT approach to hybrid

systems. In Cha et al. (Eds.): ATVA 2008, LNCS 5311, pages 171–185, 2008.
[16] A. Eggers, N. Ramdani, N. S. Nedialko, and M. Fränzle. Improving the SAT modulo ODE

approach to hybrid systems analysis by combining different enclosure methods. Software &
Systems Modeling, pages 1–28, 2012.

[17] J. M. Esposito and V. Kumar. A state event detection algorithm for numerically simulating
hybrid systems with model singularities. ACM Trans. Model. Comput. Simul., 17(1), 2007.

[18] J. M. Esposito, V. Kumar, and G. J. Pappas. Accurate event detection for simulating hybrid
systems. In HSCC, pages 204–217, 2001.

[19] G. Frehse and R. Ray. Flowpipe-guard intersection for reachability computations with support
functions. In IFAC Conf. Analysis and Design of Hybrid Systems (ADHS), pages 94–101, 2012.

[20] A. Girard. Detection of event occurrence in piecewise linear hybrid systems. Dec. 2002.
[21] A. Girard. Reachability of uncertain linear systems using zonotopes. In HSCC, vol 3414 in

LNCS, pages 291–305, 2005.
[22] A. Girard and C. L. Guernic. Zonotope/hyperplane intersection for hybrid systems reachability

analysis. In HSCC, pages 215–228, 2008.
[23] H. Guéguen and J. Zaytoon. On the formal verification of hybrid systems. Control Engineering

Practice, 12:1253–1267, 2004.
[24] C. Guernic and A. Girard. Reachability analysis of hybrid systems using support functions. In

Proceedings of the 21st International Conference on Computer Aided Verification, CAV ’09,
pages 540–554, Berlin, Heidelberg, 2009. Springer-Verlag.

[25] C. L. Guernic and A. Girard. Reachability analysis of hybrid systems using support functions.
In CAV, pages 540–554, 2009.

REFERENCES 17

[26] E. Hansen and G. Walster. Global optimization using interval analysis. Marcel Dekker, 2nd
edition, 2004.

[27] D. Ishii, K. Ueda, and H. Hosobe. An interval-based sat modulo ode solver for model checking
nonlinear hybrid systems. International Journal on Software Tools for Technology Transfer,
13:449–461, 2011.

[28] L. Jaulin, M. Kieffer, O. Didrit, and E. Walter. Applied Interval Analysis: with examples in
parameter and state estimation, robust control and robotics. Springer-Verlag, London, 2001.

[29] G. Klima. AML++: Another Matrix Library in c++, available at
http://amlpp.sourceforge.net/, 2008-2010.

[30] O. Knüppel. PROFIL/BIAS a fast interval library. Computing, 53(3-4):277–287, 1994.
[31] A. Lalami and C. Combastel. A state bounding algorithm for linear systems with bounded

input and bounded slew-rate. European Control Conference, 2007.
[32] R. J. Lohner. Enclosing the solutions of ordinary initial and boundary value problems. In E. W.

Kaucher, U. W. Kulisch, and C. Ullrich, editors, Computer Arithmetic: Scientific Computation
and Programming Languages, pages 255–286. Wiley-Teubner, Stuttgart, 1987.

[33] M. Maı̈ga, N. Ramdani, and L. Travé-Massuyès. A fast method for solving guard set inter-
section in nonlinear hybrid reachability. In Proc. of 52nd IEEE Conference on Decision and
Control, CDC 2013., pages 508–513, December 2013.

[34] R. E. Moore. Interval Analysis. Englewood Cliffs, prentice-hall., 1996.
[35] N. Nedialkov, K. Jackson, and G. Corliss. Validated solutions of initial value problems for

ordinary differential equations. Applied Mathematics and Computation, 105(1):21 – 68, 1999.
[36] N. S. Nedialkov and K. R. Jackson. An effective high-order interval method for validating

existence and uniqueness of the solution of an ivp for an ode. Computing, 17:pages., 2001.
[37] A. Neumaier. Complete search in continuous global optimization and constraint satisfaction.

In A. Iserles, editor, Acta Numerica, chapter 4. Cambridge University Press, 2004.
[38] T. Park and P. I. Barton. State event location in differential-algebraic models. ACM Trans.

Model. Comput. Simul., 6(2):137–165, 1996.
[39] N. Ramdani, N. Meslem, and Y. Candau. A hybrid bounding method for computing an over-

approximation for the reachable set of uncertain nonlinear systems. IEEE Trans. Automat.
Contr., 54(10):2352–2364, 2009.

[40] N. Ramdani and N. S. Nedialkov. Computing reachable sets for uncertain nonlinear hybrid
systems using interval constraint-propagation techniques. Nonlinear Analysis: Hybrid Systems,
5(2):149 – 162, 2011.

[41] C. Sanderson. Armadillo: C++ linear algebra library, available at
http://arma.sourceforge.net/, 2013.

[42] L. F. Shampine, I. Gladwell, and R. W. Brankin. Reliable solution of special event location
problems for ODEs. ACM transactions on Mathematical Software, 17:11–25, 1987.

[43] C. J. Tomlin, I. M. Mitchell, A. M. Bayen, and M. Oishi. Computational techniques for the
verification of hybrid systems. Proceedings of the IEEE, 91(7):986–1001, 2003.

[44] D. L. Waltz. Generating semantic descriptions from drawings of scenes with shadows, pages
19–91. McGraw-Hill, New York, 1975.

Moussa Maı̈ga
Univ. Orléans, INSA-CVL, PRISME, EA 4229, F45072, Orléans, and CNRS, LAAS, Toulouse, France
e-mail: mmaiga@laas.fr

Nacim Ramdani
Univ. Orléans, INSA-CVL, PRISME, EA 4229, F45072, Orléans, France
e-mail: nacim.ramdani@univ-orleans.fr

18 REFERENCES

Louise Travé-Massuyès
CNRS, LAAS, Toulouse, France
e-mail: louise@laas.fr

Christophe Combastel
ENSEA, ECS-Lab, Paris, France
e-mail: christophe.combastel@ensea.fr

