Moussa Maïga

Nacim Ramdani

Louise Travé-Massuyès

Christophe Combastel

A CSP

Keywords: Intervals analysis, hybrid systems, event detection, event localization, zonotope, reachability analysis

come L'archive ouverte pluridisciplinaire

Introduction

Hybrid systems are complex dynamical systems, which involve the interaction of discrete and continuous dynamics. This is the case for instance when real-time digital controllers interact with physical environments in our daily lives. Many complex systems exhibiting piecewise continuous dynamical behaviours, can be regarded as hybrid systems. Hybrid systems are often components of safety-critical systems. It is then necessary to have a thorough and guaranteed insight of their properties, such as performance, safety or stability [START_REF] Alur | The algorithmic analysis of hybrid systems[END_REF][START_REF] Waltz | Generating semantic descriptions from drawings of scenes with shadows[END_REF][START_REF] Guernic | Reachability analysis of hybrid systems using support functions[END_REF]. The verification of these properties can be achieved through reachability analyses, some of which require an explicit computation of the hybrid state space, i.e. the set of all trajectories of the hybrid system starting from a possible initial set and under all admissible disturbances and variations in parameter values. This is a challenging issue since it is practically impossible to enumerate in a reliable way all the possible systems' behaviours.

Usual algorithms for hybrid reachability computation alternate the computation of continuous and discrete transitions, and most of them must address the challenging issue of event detection and localisation, that is computing the geometrical intersection of the continuous flowpipe with guard sets [START_REF] Althoff | Avoiding geometric intersection operations in reachability analysis of hybrid systems[END_REF].

This issue has been addressed by many authors recently, although most of them focus on affine dynamics and polyhedral guard sets. Using support functions, [START_REF] Girard | Detection of event occurrence in piecewise linear hybrid systems[END_REF] investigates ways of reducing the over-approximation when computing the discrete transitions. The critical operation in this computation is the intersection of the flowpipe with the guard sets. They propose an approach for computing the intersection for affine dynamics with polyhedral guards. Reference [START_REF] Althoff | Avoiding geometric intersection operations in reachability analysis of hybrid systems[END_REF] introduced a new approach for avoiding geometric intersection operations in reachability analysis by over-approximating the intersection of affine dynamics with guard sets modeled as halfspaces by nonlinear mappings.

Another family of effective but non-guaranteed methods combine polynomial approximations of the guard condition with root finding algorithms ([START_REF] Tomlin | Computational techniques for the verification of hybrid systems[END_REF][START_REF] Chabert | IBEX: Interval Based EXplorer[END_REF][START_REF] Frehse | Flowpipe-guard intersection for reachability computations with support functions[END_REF][START_REF] Esposito | Accurate event detection for simulating hybrid systems[END_REF][START_REF] Girard | Reachability of uncertain linear systems using zonotopes[END_REF][START_REF] Ramdani | A hybrid bounding method for computing an overapproximation for the reachable set of uncertain nonlinear systems[END_REF]), but uncertainties (about initial states, model parameters, ...) cannot be taken into account. Other approaches are based on zonotopes (a.o. [START_REF] Guéguen | On the formal verification of hybrid systems[END_REF][START_REF] Althoff | Avoiding geometric intersection operations in reachability analysis of hybrid systems[END_REF][START_REF] Althoff | Zonotope bundles for the efficient computation of reachable sets[END_REF][START_REF] Althoff | Reachability analysis of nonlinear systems with uncertain parameters using conservative linearization[END_REF]), support functions ([START_REF] Hansen | Global optimization using interval analysis[END_REF][START_REF] Guernic | Reachability analysis of hybrid systems using support functions[END_REF][START_REF] Girard | Detection of event occurrence in piecewise linear hybrid systems[END_REF]) or polytopes [START_REF] Girard | Zonotope/hyperplane intersection for hybrid systems reachability analysis[END_REF] ; they scale well and are well adapted to affine dynamics.

When it comes to hybrid reachability computation with nonlinear hybrid systems, i.e. hybrid dynamical systems with nonlinear dynamics and guard sets described by nonlinear functions, there are very few truly nonlinear methods available, among which our previous work [START_REF] Sanderson | Armadillo: C++ linear algebra library[END_REF] and references [START_REF] Eggers | Improving the SAT modulo ODE approach to hybrid systems analysis by combining different enclosure methods[END_REF][START_REF] Jaulin | Applied Interval Analysis: with examples in parameter and state estimation, robust control and robotics[END_REF].

In [START_REF] Sanderson | Armadillo: C++ linear algebra library[END_REF], continuous transitions were addressed via set integration based on interval Taylor methods, and the event detection and localisation problems underlying flow/guard intersection was solved using propagation techniques for constraint-satisfaction problem (CSP). Recently, we introduced technical improvements of the latter method in order to reduce both the computation time while ensuring reduced over-approximation when crossing the guard set conditions. Our method now implements Lohner's QR-factorization [START_REF] Nedialkov | An effective high-order interval method for validating existence and uniqueness of the solution of an ivp for an ode[END_REF] within the guaranteed numerical set integration method to control the wrapping effect, applies the standard contractor HC4Revise [START_REF] Chen | Taylor model flowpipe construction for nonlinear hybrid systems[END_REF] for solving the CSP at discrete transition steps only, and makes use of bisection in a single dimension to ensure polynomial time complexity [START_REF] Moore | Interval Analysis[END_REF].

In this paper, we further improve this method to solve the flow/guard intersection directly without using any CSP solver when the guard sets are defined by hyperplanes. When a discrete transition is detected, we solve the event localisation problem as follows : we characterize the reached set as a zonotope, then we compute the zonotope enclosing the intersection between the reached set and the hyperplane defining the guard sets. This zonotope-based approach is compared to the CSP-based approach on two hybrid systems.

The paper is organized as follows. Sect. 2 defines hybrid dynamical systems. Sect. 3 overviews the interval tools used in the paper. Sect. 4 reviews our method for solving continuous transitions. Sect. 5 gathers our two methods for flow-guard sets intersection. Results are presented in Sect. 6 for two hybrid systems.

Uncertain nonlinear hybrid systems

Dynamical hybrid systems can be represented by a hybrid automaton [START_REF] Bendtsen | FADBAD, a flexible C++ package for automatic differentiation[END_REF] given by

HA = (Q, D, P, Σ, A, Inv, F) (1)
and defined as follows:

• Q is a set of locations {q} whose continuous dynamics, i.e. flow transitions, are described by non-autonomous differential equations f q ∈ F of the form flow(q) : ẋ(t) = f q (x, p,t),

where f q : D × P × R + → D is nonlinear and assumed sufficiently smooth over D ⊆ R n , with dimension n that may depend on q, and p ∈ P, where P is an uncertainty domain for the parameter vector p. • Inv is an invariant, which assigns a domain to the continuous state space of each location:

Inv(q) : ν q (x(t), p,t) < 0, (3)
X e ν 0 (.) < 0 Forbidden ν 1 (.) < 0 γ 0(.) = 0 Reach. Reach. x(t e) ρ 0 (X e) x 0 (t 0) X 0 (t 0) ρ(x(t - e) FIGURE 1.
Set reachable in finite time by system [START_REF] Althoff | Avoiding geometric intersection operations in reachability analysis of hybrid systems[END_REF][START_REF] Althoff | Reachability analysis of nonlinear systems with uncertain parameters using conservative linearization[END_REF][START_REF] Alur | The algorithmic analysis of hybrid systems[END_REF].

where inequalities are taken componentwise, ν q : D × P × R + → R m is also nonlinear, and the number m of inequalities may also depend on q. • A is the set of discrete transitions {e = (q → q)} given by the 5-tuple (q, guard, σ , ρ, q), where q and q represent upstream and downstream locations respectively; guard is a condition of the form:

guard(e) : γ e (x(t), p,t) = 0;

σ is an event, and ρ is a reset function assumed to be affine.

A transition q → q may occur when the continuous state flow reaches the guard set, i.e. when the continuous state satisfies condition (4). The set reachable in finite time by system (2-4) is illustrated in Fig. 1. When starting from an initial state vector x(t 0) taken in X(t 0), a discrete transition occurs when the continuous flow intersects the guard set at time t e . Then, the continuous state vector is reset as x 1 (t + e) = ρ 0 (x 0 (t - e)). X e is the set of all possible vectors x(t e) when vector x(t 0) varies in X(t 0). The reachable set may then intersect a forbidden area as shown in the figure . Introducing the new state variable z = (x, p ,t) with ż = (ẋ, 0, 1), and defining Z = D × P × R + , equations (2-4) are rewritten:

flow(q) : ż(t) = f q (z), (5)
Inv(q) : ν q (z(t)) < 0 and [START_REF] Bendtsen | FADBAD, a flexible C++ package for automatic differentiation[END_REF] guard(e) : γ e (z(t)) = 0.

so that all uncertain quantities are embedded in the initial state vector. When analyzing hybrid systems, intersections with guard sets that enable discrete transitions may occur. When a flowpipe of non-zero size reaches a guard condition described by linear or nonlinear constraints, there is a non-empty set of instants during which the constraint is satisfied, leading to a continuum of switching times [START_REF] Esposito | A state event detection algorithm for numerically simulating hybrid systems with model singularities[END_REF].

Solving constraint satisfaction problems with interval methods

In this section, we overview key concepts regarding methods based on interval analysis that we use for finding intersections with invariants and guards, and evaluating jump functions.

Consider the system of m (in)equalities over

n variables z ∈ R n C : ∧ 1≤i≤m (h i (z) ≺ 0), ≺∈ {=, <} (8)
and denote the domain of z by Z . Here, inequalities are considered when one computes mode invariants or prune solution sets from those parts that are not contained in invariants. Equalities are considered when one addresses flow/guard intersection and the evaluation of jump successors. System (8) is a numerical constraint satisfaction problem CSP : (Z , C). Denoting by S its set of solutions, we have

S = {z ∈ Z | ∧ 1≤i≤m (h i (z) ≺ 0)}. (9
)
An enclosure of S can be computed in a reliable and guaranteed way via branch-and-prune approaches using interval analysis and contractors based on constraint propagation [START_REF] Klima | AML++: Another Matrix Library in c++[END_REF]. [START_REF] Nedialkov | Validated solutions of initial value problems for ordinary differential equations[END_REF]. Arithmetic operations on two intervals [u] and [v] can be defined as:

Intervals analysis

A real interval [u] = [u,
• ∈ {+, -, * , /}, [u] • [v] = {x • y | x ∈ [u], y ∈ [v]}.
An interval vector (or box) [X] is a vector with interval components and may equivalently be seen as a Cartesian product of scalar intervals:

[X] = [x 1] × [x 2]... × [x n].
The set of n-dimensional real interval vectors is denoted by IR n . A unitary box in IR n , denoted by B n , is a box composed by n unitary intervals.

An interval matrix is a matrix with interval components. The set of n × m real interval matrices is denoted by IR n×m . Classical operations for interval vectors (resp. interval matrices) are direct extensions of the same operations for point vectors (resp. point matrices) [START_REF] Nedialkov | Validated solutions of initial value problems for ordinary differential equations[END_REF]. Let f : R n → R m , the range of function f over an interval vector [u] is given by:

f ([u]) = { f (x)|x ∈ [u]}. The interval function [f] from IR n to IR m is an inclusion function for f if: ∀[u] ∈ IR n , f ([u]) ⊆ [f]([u]).
An inclusion function of f can be obtained by replacing each occurrence of a real variable by its corresponding interval and by replacing each standard function by its interval evaluation. Such a function is called the natural inclusion function. In practice the inclusion function is not unique, it depends on the formal expression of f .

Branch-and-prune algorithms

Consider system (8) and the case when " ≺ " is " = ". Constraint-satisfaction algorithms work as follows.

Algorithm 1: Interval-Solve input : '∧ 1≤i≤m h i ([z]) = 0', Z , ε 1 , ε 2 output: list of boxes S
1 define a running list of boxes L and initialize it with [z] = Hull(Z); Clearly, this simple algorithm is of exponential complexity. There are several technical and heuristic improvements, which make it possible to control the overall computation time and memory usage [START_REF] Klima | AML++: Another Matrix Library in c++[END_REF][START_REF] Ishii | An interval-based sat modulo ode solver for model checking nonlinear hybrid systems[END_REF]. They also address partitioning strategies, and the possible use of interval narrowing procedures on box [z].

3 3 while L = 0 do 4 pick first box [z] from the list; 5 evaluate h i ([z]); 6 if ∃i : 0 / ∈ h i ([z]) then 7 discard box [z]; 8 else if ((max wid ([z]) < ε 1) or (max i wid (h i ([z])) < ε 2)) then 9 store box [z] in list S

Contractors

The idea underlying contractors is to use a reduction function that reduces the size of box [z] during the branching scheme of algorithm Interval-Solve without using bisection. This reduction can be achieved by an interval narrowing operator, a contractor for (8) on [z], which we write as

[z] = Contractor(C , [z]).
This operator removes from [z] subsets that do not contain a solution to [START_REF] Chabert | IBEX: Interval Based EXplorer[END_REF] Most contractors use consistency filtering techniques (e.g. [START_REF] Combastel | Fault diagnosis based on the enclosure of parameters estimated with an adaptive observer[END_REF], see also the review [START_REF] Park | State event location in differential-algebraic models[END_REF]) and/or constraint propagation [START_REF] Klima | AML++: Another Matrix Library in c++[END_REF]. Interval propagation techniques are based on the interval extension of the local Waltz filtering [START_REF] Eggers | SAT Modulo ODE: A direct SAT approach to hybrid systems[END_REF]45,[START_REF] Collavizza | Comparing partial consistencies[END_REF]. Consistency filtering techniques rely on local consistency properties.

Continuous transitions using set integration via Interval Taylor methods

For better readability, we briefly overview in this section, the main ideas underlying continuous reachability analysis using guaranteed set integration via interval Taylor methods.

Consider the uncertain dynamical system described by (5)-(7) with z(t 0) ∈ Z 0 at time t 0 ≥ 0 and denote by Z(t;t 0 , Z 0) the set of solutions of (5) at time t originating from each initial condition in Z 0 at t 0 . Z(t;t 0 , Z 0) is abbreviated as Z(t) when there is no ambiguity.

Define a time grid t 0 < t 1 < t 2 < . . . < t n T , which needs not to be equally spaced in this paper, and assume initial domain is an interval vector; i.e.

Z 0 = [z 0] = [z 0 , z 0].
Then, guaranteed set integration via interval Taylor methods computes interval vectors [z j], j = 1, . . . , n T , that are guaranteed to contain the set of solutions Z(t j ;t 0 , Z 0) of (5) at times t j , j = 1, . . . , n T in three stages:

• verify the existence and uniqueness of the solution using the Banach fixed point theorem and the Picard-Lindelöf operator [START_REF] Nedialkov | Validated solutions of initial value problems for ordinary differential equations[END_REF][START_REF] Davis | Constraint propagation with interval labels[END_REF][START_REF] Neumaier | Complete search in continuous global optimization and constraint satisfaction[END_REF].

• compute an a priori enclosure [z j] such that [z j] ⊇ Z(t) for all t in [t j ,t j+1]. Hence, [z j] is indeed an over-approximation of the reachable set over [t j ,t j+1]. It can be made as tight as possible using the following stage. • compute a tighter enclosure for the set of solutions of (5) at t that can be taken as t j+1 or any t ∈ [t j ,t j+1] not necessarily on the time-grid, using a Taylor series expansion of order k of the solution at t j , and where [z j] is used to enclose the remainder term:

Z(t;t j , [z j]) ⊆ [z](t;t j , [z j]) = [z j] + k-1 ∑ i=1 (t -t j) i f [i] q ([z j]) + (t -t j) k f [k] q ([z j]), (10)
and where the f

[i]
q ([z j]) are the Taylor coefficients.

Remark 1. Eq. (10) written for any t in [t j ,t j+1] is an extension of what is classically done for guaranteed set integration, since latter methods aim at computing tight enclosures for time instants taken on the grid. Here, for solving the flow/guard intersection we need to obtain an explicit characterization of the solution for any time instant taken between two time grid points. Eq. (10) can be viewed as a conservative polynomial interpolation, hence acts as an analytical solution for the flowpipe for t in [t j ,t j+1], since f

[k]
q ([z j]) encloses the remainder of the Taylor series for any t in [t j ,t j+1] [START_REF] Ramdani | Computing reachable sets for uncertain nonlinear hybrid systems using interval constraint-propagation techniques[END_REF].

Extending the results from [START_REF] Nedialkov | An effective high-order interval method for validating existence and uniqueness of the solution of an ivp for an ode[END_REF], [START_REF] Cleary | Logical arithmetic[END_REF] can be turned into a computationally acceptable scheme that controls the wrapping effect 1 by using the mean-value approach complemented by QR-factorization as proposed by Lohner. The solution enclosure at time t ∈ [t j ,t j+1] can be computed in the meanvalue form :

Z(t;t j , Z 0) ∈ {v + A(t)r | v ∈ [v](t), r ∈ [r](t)}, and
Z j+1 = Z(t j+1 ;t j , Z 0) ∈ {v + A j+1 r | v ∈ [v j+1], r ∈ [r j+1]}, Defining: [χ](t) ≡ {[z](t), ẑ(t), [v](t), [r](t), A(t)}, (11)
where ẑ(t) := mid ([z](t)), the algorithm ϕ QR (.) given in Algorithm 2 is used to compute the solution set of (5) at time t ∈ [t j , t j+1] [41]. The solution enclosure at time t j+1 is given by

[χ j+1] = ϕ QR ([χ j], t j , t j+1 , [z j]). Algorithm 2: Algorithm ϕ QR input : [χ j], t j , t, [z j] output: [χ](t) 1 [v](t) := ẑ j + k-1 ∑ i=1 (t -t j) i f [i] q (ẑ j) + (t -t j) k f [k] q ([z j]); 2 [S](t) := I + k-1 ∑ i=1 (t -t j) i ∂ f [i] q ∂ z ([z j]) ; 3 [q](t) := ([S](t)A j)[r j] + [S](t)([v j] -ẑ j); 4 [z](t) := [v](t) + [q](t); 5 obtain A(t) via QR-factorization of mid ([S](t)A j) [33]; 6 [r](t) := A(t) -1 ([S](t)A j)[r j] + (A(t) -1 [S])([v j] -ẑ j); 7 ẑ(t) := mid ([v](t)) ; 8 [χ](t) := {[z](t), ẑ(t), [v](t), [r](t), A(t)};
1 The wrapping effect is the over-approximation induced by enclosing a set of any shape in an axis-aligned box.

Computing the geometrical intersection of a flowpipe and guard sets

We now show how to compute the geometrical intersection of a continuous flowpipe with the guard sets 2 . For completeness, we overview a preliminary version of an algorithm based on solving a CSP, then we introduce a variant using zonotopes. These two methods will be compared on the same examples in the next section.

Event detection and localization

The issue is first to detect if the flowpipe intersects a guard set, then to compute when and where the intersection occurs, in other words we need to compute the time instants t e and solution state vector z(t e) such that (7) is satisfied, i.e. γ e (z(t e)) = 0.

Because the flowpipe has a non-zero width, there is a continuum of time instants where the intersection occurs. Hence, we need to characterize the set of all such solutions, i.e.

T × Z = t e × z(t e) s. t. (t e ∈ [t j , t j+1]) ∧ (γ e (z(t e)) = 0) ∧ (ż(t) = f q (z)) ∧ (z(t j) ∈ [z j]) (12)
Let us assume an event exists for t e in [t j , t j+1], then the methods described in the sequel are able to detect the existence of such event.

Computing solution set (12) is now an analytical problem since algorithm ϕ QR (t) yields for any t in [t j , t j+1] an analytical solution for the flowpipe over the time interval [t j , t j+1], hence the methods described in section 3 applies directly. To obtain a tight characterization of (12), we need to partition the search space. Therefore, to curb computational complexity and keep a polynomial computation time, we partition only in the single direction of the time variable, and use contractors to reduce the solution set at a given time instant.

Let us denote [t ,t] l ⊆ [t j ,t j+1] a sub-interval over which (7) is satisfied, and Z l the set of state vectors for which t exists in [t ,t] l that satisfies [START_REF] Birta | A robust procedure for discontinuity handling in continuous system simulation[END_REF]. Solution set [START_REF] Combastel | Fault diagnosis based on the enclosure of parameters estimated with an adaptive observer[END_REF] can then be overapproximated by

T × Z ⊆ L l=1 [t ,t] l × Z l (13
)
where L is the number of solution sub-boxes. Allowing some over-approximation when computing t e , we say that an event occurs over the subinterval [t ,t] l if wid ([t ,t] l) is smaller than a given threshold ε T , as suggested in [START_REF] Sanderson | Armadillo: C++ linear algebra library[END_REF]. Now the question remains on how to compute a tight over-approximation of Z l . In the sequel, we show two ways to do this.

The first one solves a constraint satisfaction problem as in [START_REF] Moore | Interval Analysis[END_REF] and applies to nonlinear guard sets. The second one computes directly the intersection of the enclosure [START_REF] Collavizza | Comparing partial consistencies[END_REF] with the guard set and applies when the latter is described as a hyperplane.

Computing the intersection by solving a CSP

Recall that the enclosure of the solution of the IVP ODE (5) can be computed for the small time interval [t] l = [t ,t] l in the compound form [START_REF] Collavizza | Comparing partial consistencies[END_REF], denoted [χ] l , using an inclusion function for algorithm ϕ QR (t), which we obtain by using an interval [t] as input. We will save the notation [χ] l for the compound form characterizing the tight over-approximation of Z l . Removing the l subscript for simplicity, we have

[χ] = {[z], ẑ, [v], [r], A }. (14) Therefore (∃z ∈ [z] s.t. γ e (z) = 0) ⇒ (∃v × r ∈ [v] × [r] s.t. γ e (v + A r) = 0), (15)
hence, computing the intersection over the time interval [t] boils down to solving the CSP

E : [v] × [r], "γ e v + A r = 0" . (16)
Using a contractor, we can obtain a tight over-approximation of Z as a compound form [χ] l where

[v] × [r] = Contractor(E , [v] × [r]). (17)
If the solution set for CSP [START_REF] Esposito | A state event detection algorithm for numerically simulating hybrid systems with model singularities[END_REF] is not empty, we assume that the event e = q → q occurs at t e = t and that [χ](t - e) = [χ], as suggested in [START_REF] Sanderson | Armadillo: C++ linear algebra library[END_REF]. The discrete transition can then be computed from there, using the reset function ρ.

Computing the intersecting from a zonotope and a hyperplane

We now show how to compute the flowpipe/guard set intersection by using the intersection of a zonotope and a hyperplane. We extend the approach initially given in [START_REF] Corliss | Validating an a priori enclosure using high-order taylor series[END_REF] for computing the intersection of two zonotopes. Compared to the previous scheme as presented in 5.2, it reduces to simple linear algebra computations (mainly, evaluation of a null space), which ensures polynomial complexity and small computation time as the space dimension increases. Let us first review zonotope definitions and then introduce our main results. 5.3.1. Zonotopes. Given a vector c ∈ R n and a matrix R ∈ R n×p , a zonotope [START_REF] Lohner | Enclosing the solutions of ordinary initial and boundary value problems[END_REF] Z is the set Z = c ⊕ RB p = {c + Rx : x ∈ B p }. The vector c is the center of the zonotope, and the matrix R defines the shape of the (centrally symmetric) zonotopic domain. Z is the Minkowski sum3 of the m-segments defined as m columns of matrix R in R n×p .

Property 1. The Minkowski sum of two zonotopes

Z 1 = c 1 ⊕ R 1 B p 1 ∈ R n and Z 2 = c 2 ⊕ R 2 B p 2 ∈ R n is also a zonotope, defined as Z 1 ⊕ Z 2 = (c 1 + c 2) ⊕ [R 1 R 2]B p 1 +p 2 .
Property 2. The image of a zonotope Z = c ⊕ RB p ∈ R n by a linear mapping L can be computed by a standard matrix product LZ = Lc ⊕ (LR)B p .

5.3.2.

Computing the intersection of a zonotope and a hyperplane.

Z ∩ H ⊆ Z ∩ = c ∩ ⊕ R ∩ B p . (18
)
Proof. Let x ∈ Z, then s ∈ B p exists such that x = c + Rs. The point vector x also belongs to the hyperplane

H (η, d) if η x = d, hence if η c + η Rs = d.
Then, introducing σ = R η and d = dη c, we can deduce the necessary and sufficient condition

x ∈ Z ∩ H ⇔ x ∈ {c ⊕ Rs | s ∈ B p ∧ σ s = d }. (19
)
Bounding Z ∩ H (η, d) boils down to finding all s ∈ B p such that σ s = d . This equation can be solved using the singular value decomposition (SVD) of vector σ , which takes the particular form

σ = U • S •V = U 1 . S 1 0 1×p-1 . V 1 V 0 , (20
)
where

U 1 = 1 is scalar, S 1 = σ 2 , V 1 = σ σ 2 , V 0 = N(σ),
and where σ 2 is the Euclidean norm of σ (σ 2 2 = σ σ) and N(σ) is an orthonormal basis of the kernel of σ . Let V = [V 1 ,V 0] be viewed as a change of coordinates, and define point vector ξ

= (ξ 1 , ξ 0) which satisfies s = V ξ = V 1 ξ 1 + V 0 ξ 0 . Since V V = I, we have V 1 s = ξ 1 and V 0 s = ξ 0 . From σ s = d and σ = U 1 S 1 V 1 , it comes U 1 S 1 ξ 1 = d and ξ 1 = d σ 2 . Recall that ξ 0 = V 0 s. Since s ∈ B p , then ξ 0 ∈ V 0 B p . From s = V 1 ξ 1 +V 0 ξ 0 we have s ∈ c s ⊕V 0 V 0 B p .
Finally, an over-approximation [s] of the set of all s ∈ B p that satisfies σ s = d is given by

[s] = c s ⊕ R s B p . (21
)
By combining (19) and (21), it comes:

x ∈ Z ∩ H ⇒ x ∈ c ⊕ R(c s ⊕ R s B p) ⇔ x ∈ (c + Rc s) ⊕ RR s B p . (22
)
Introducing c ∩ = c ⊕ Rc s , and R ∩ = RR s , we have

x ∈ Z ∩ H ⇒ x ∈ Z ∩ = c ∩ ⊕ R ∩ B p . (23)
Corollary 1. By construction, the zonotope Z ∩ enclosing the intersection as defined in [START_REF] Frehse | Flowpipe-guard intersection for reachability computations with support functions[END_REF], is included in the hyperplane H .

Proof. Let x ∈ c ∩ ⊕ R ∩ B p then ∃s ∈ B p such that x = c ∩ + R ∩ s, then η x = η (c + Rσ d / σ 2 2 + RV 0 V 0 s) = η c + σ 2 2 d / σ 2 2 + σ V 0 V 0 s, because σ T = η T R. Since σ V 0 = 0 by construction of V 0 , and since d = d -η c, η x = d which completes the proof.
Finally, proposition 5.1 and equation (18) give a computational scheme for computing an overapproximation of Z ∩ H summarized in Algorithm 3. This approximation may feature some conservativeness but we found that it is reasonably tight for our applications, as illustrated by Fig. (As in section 5.2, we consider the flowpipe Z l computed over a subinterval [t] l = [t ,t] l using an inclusion function for algorithm ϕ QR (t) and given in the compound form [START_REF] Collavizza | Comparing partial consistencies[END_REF]. Removing again l subscript for simplicity, we have

Z = {v + A r | v ∈ [v], r ∈ [r]} ⊆ A [r] ⊕ [v]. (24)
It is easy to see that domain Z is a MSPB i.e the Minkowski sum of the parallelotope A [r] and the axis-aligned box [v] (see Fig. 3). Furthermore, it is worth noticing that each domain Z is a particular zonotope. Indeed, introducing point vector

c = A mid ([r]) + mid ([v]) ∈ R n , (25)
Algorithm 3:

Intersection Z H input : c, R, η, d output: c ∩ , R ∩ 1 σ = R η; 2 d = d -η c ; 3 V 0 = N(σ); 4 c s = σ d / σ 2 2 ; 5 R s = V 0 V 0 ; 6 c ∩ = c + Rc s ; 7 R ∩ = RR s ;
and point matrix

R = A dr([r]) dr([v]) ∈ R n×2n (26)
where dr(.) is a short notation for diag(rad (.)), we can write the flowpipe as a zonotope as follows

Z = c ⊕ RB 2n (27)
Let us assume that the guard sets are characterized by hyperplane H , i.e. equation (7) simplifies as

γ e (z(t)) = 0 ⇔ η z(t) = d (28)
then, the MSBP Z = Z ∩ that over-approximates Z ∩H can directly be obtained using proposition 5.1 with p = 2n. In Fig. 4, red line shows the obtained zonotope Z ∩ that bounds the intersection

Z 1 ∩ H FIGURE 4. Z 1 ∩ H ⊆ Z ∩ Algorithm 4: GetGEN input : [z], ẑ, [v], [r], A output: c, R 1 c = Amid([r]) + mid([v]); 2 R = [A.diag(rad([r])), diag(rad([v]))]

Nonlinear hybrid reachability approach

Finally, we can combine the method for computing continuous transitions described in section 4 with the method for computing the intersection between the flowpipe and the guard sets described in this section to derive a complete method for nonlinear hybrid reachability computation. The combined methods are gathered in the algorithms described in Algorithm (4) and (5).

Remark 2. Note that in Algorithm 5 (Hybrid-Transition) the inclusion test at line 20 checks whether the guard condition is satisfied for a state vector z ∈ [z], where [z] is a flowpipe enclosure computed over the tiny time interval [t ,t]. A nice consequence is that the reachable set needs not to cross completely the guard condition over the latter time interval in order to activate the discrete jump using the reset function ρ.

Remark 3. Note also that when the guard condition is a sliding surface, small over-approximations introduced when computing enclosures [z] may introduce spurious guard crossing. However, in the general case, as illustrated in the examples below, our approach correctly handles discrete transition without introducing spurious guard crossing.

Algorithm 5: Hybrid-Transition input : L F j ,t j+1 , {ϕ l qr q (), ϕ q (), ν q ()} q∈Q ,{γ e (), ρ e ()} e∈E ,ε T , η, d output: L F j+1 , L R j+1 1 Initialization : initialize running frontier list L := L F j ; 3 3 while L = 0 do 4 pick up L list element (q,t 0 , [χ 0]);

Numerical experiments

For the purpose of numerical experimentation, the above system-solving methods have been implemented in the IBEX C++ library [START_REF] Chen | Taylor model flowpipe construction for nonlinear hybrid systems[END_REF] and we have used the standard contractor HC4Revise it includes. We have also used Profil/Bias C++ class library [START_REF] Lalami | A state bounding algorithm for linear systems with bounded input and bounded slew-rate[END_REF] for interval computation, FABDAB++ package [START_REF] Birta | A robust procedure for discontinuity handling in continuous system simulation[END_REF] for automatic differentiation and computing the Taylor coefficients, AML++ [START_REF] Knüppel | PROFIL/BIAS a fast interval library[END_REF] and Armadillo [START_REF] Shampine | Reliable solution of special event location problems for ODEs[END_REF] package for Linear algebra. All experiments were tested on a i5 -2430M 2.4GHz CPU with 3.8GB RAM running Ubuntu Linux.

Example 1

Consider the hybrid transition for a hybrid dynamical system (Brusselator) with two modes q = 1, 2 and one jump transition e = 1 → 2 given by : . We use a constant integration time step h = 0.05, and time interval was bisected until a threshold ε T = 0.005. When we compare the results obtained in (Fig. s 5), we see that the method using the intersection of a zonotope with a hyperplane exhibits smaller computation time (CPU time = 0.16s) than the one using a contactor (CPU time = 0.20s). Furthermore, when we focus on the overapproximation of the flowpipe/guard set intersection that is represented by black boxes, we also see that the two approaches yield similar results (see Fig. 5(b)). The dynamics of a non-holonomic vehicle [START_REF] Cleary | Logical arithmetic[END_REF] is given as follows :

                           flow(1) : f 1 x 1 x 2 = 1 -(b 1 + 1)x 1 + a 1 x 2 1 x 2 b 1 x 1 -a 1 x 2 1 x 2 inv(1) : ν 1 (x 1 , x 2) = -2x 1 + x 2 + 2 flow(2) : f 2 x 1 x 2 = 1 -(b 2 + 1)x 1 + a 2 x 2 1 x 2 b 2 x 1 -a 2 x 2 1 x 2 inv(2) : ν 2 (x 1 , x 2) = -ν 1 (x 1 , x 2) guard(1) : γ 1 (x 1 , x 2) = ν 1 (x 1 , x 2) reset(1) : ρ 1 (x 1 , x 2) = L x 1 x 2 + l 1 l 2 (29

Example 2 : Vehicle Model

dx dt = vc t ; dy dt = vs t ; dv dt = u 1 dc t dt = σ v 2 s t ; ds t dt = -σ v 2 c t ; dσ dt = u 2 (30)
where u 1 , u 2 are control inputs. We consider the case of a vehicle with three control modes m 1 , m 2 , m 3 . The control inputs are given by (u 1 , u 2) = (-0.05, -0.1) for mode m 1 , (0, 0) for m 2 and (0.05, 0.1) for m 3 . The transitions between modes are shown in Fig. 6. We start our simulation from m 1 with the initial variable values :

x

∈ [1, 1.2] y ∈ [1, 1.2] v ∈ [0.8, 0.81] s t ∈ [0.6, 0.61] c t ∈ [0.7, 0.71] σ = [0, 0.01]
We took for this simulation a constant integration time step h = 1, the time interval was bisected until a threshold ε T = 0.05. All results are plotted in Fig. 7(a) and Fig. 7(c) when using the zonotopebased method, and in Fig. 7 These figures show that the zonotope-based method yields tighter reachable set obtained in a smaller computation time (CPU time = 36s) than the CSP-based method (CPU time = 46s). Fig. 7(a)-7(c) shows that our algorithm can perform numerical model simulations with large integration time step h = 1, hence illustrating the benefit of the proposed method. Note also that our method can produce hybrid reachable sets that correctly cover two guard sets conditions (s t < 0.75, s t < 0.65) simultaneously.

Concluding remarks

We have shown that nonlinear hybrid reachability computation can be achieved efficiently by combining interval Taylor methods, interval constraint propagation and zonotope geometrical tools. Evaluating our approach on a 6-dim non-holonomic vehicle benchmark we emphasized its nice performance. Future work will focus on how to extend the zonotope-based method to nonlinear guards. Furthermore, even though bisection is performed on a single direction only, our method generates in practice a large number of boxes to cover the hybrid reachable set, for both variants. The natural idea to reduce this number is to merge these boxes. Ways to achieve this box merging are under study.

10 else 11 partition

 1011 [z] and store new boxes in L ;

 and satisfies the following properties: (a) [z] ⊆ [z] and (b) [z] ∩ S = [z] ∩ S , where S is the solution set (9).

Proposition 5 . 1 .

 51 Consider a zonotope Z = c ⊕ RB p and a hyperplane H (η, d) = {x|η x = d} with non empty intersection (which can easily be tested using support vector η). Let us define :σ = R η, d = dη c, c s = σ d / σ 22 , V 0 = N(σ), i.e. a basis of the null space (or kernel) of σ , R s = V 0 V 0 , c ∩ = c + Rc s , and R ∩ = RR s , then a zonotope enclosing the intersection between Z and the hyperplane H (η, d) is given by

FIGURE 3 .Example 1 . 1 ,

 311 FIGURE 3. Minkowski sum of oriented box A j [r j] and aligned box [v j]

) with L = I 2 , l 1 = l 2 = -0.5, a 1 = 1.5, a 2 = 3.5, b 1 = 1, b 2 = 3.5 and x 0 ∈ [2, 2.15] × [0.1, 0.15]

FIGURE 6 .

 6 FIGURE 6. Hybrid automaton of the vehicle model

 (b) and Fig.7(d) for the CSP-based one.

 Zonotope-based method. Time history of x 1 . CSP-based method. Time history of x 1 . Zonotope-based method. Time history of x 2 . CSP-based method. Time history of x 2 . Zonotope-based method. Projections onto x1 × x2. CSP-based method. Projections onto x1 × x2.

FIGURE 5 .

 5 FIGURE 5. Reachable set computed for[START_REF] Klima | AML++: Another Matrix Library in c++[END_REF]. Zonotope-based method, CPU times=0.16s. CSP-based method, CPU times=0.20s.

FIGURE 7 .

 7 FIGURE 7. Reachable set of[START_REF] Knüppel | PROFIL/BIAS a fast interval library[END_REF]. Zonotope-based method, CPU time = 36s. CSPbased method, CPU time = 46s.

 2).

	0.76												0.77											
	0.75												0.76											
	0.74												0.75											
	0.73												0.74											
	0.72												0.73											
	x2*											x2*												
	0.71												0.72											
	0.7												0.71											
	0.69												0.7											
	0.68												0.69											
	0.67												0.68											
	1.28	1.3	1.32	1.34	1.36	1.38	1.4	1.42	1.44	1.46	1.48	1.5	1.26	1.28	1.3	1.32	1.34	1.36	1.38	1.4	1.42	1.44	1.46	1.48
						x1*												x1*						
					(a) Instant t 1										(b) Instant t 2					
	FIGURE 2. Initial zonotope in blue color, enclosed by an axis-aligned box in green	
	color, the zonotope enclosing the intersection with the hyperplane is depicted in	
	red, for two time instants																
	5.3.3. Main algorithm.																			

The same computational methods apply for the intersection with invariant sets.

Let ξ 1 , ξ 2 ⊂ R n , the Minkowski sum of ξ 1 and ξ 2 is: ξ 1 ⊕ ξ 2 = {s 1 + s 2 | s 1 ∈ ξ 1 , s 2 ∈ ξ 2 }.

This work is supported by the French National Research Agency under contract ANR 2011 INS 006 MAGIC-SPS (projects.laas.fr/ANR-MAGIC-SPS)..