
HAL Id: hal-01400360
https://hal.science/hal-01400360

Submitted on 5 Feb 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Iterative hybrid causal model based diagnosis:
Application to automotive embedded functions

Renaud Pons, Audine Subias, Louise Travé-Massuyès

To cite this version:
Renaud Pons, Audine Subias, Louise Travé-Massuyès. Iterative hybrid causal model based diagnosis:
Application to automotive embedded functions. Engineering Applications of Artificial Intelligence,
2015, 37, pp.319-335. �10.1016/j.engappai.2014.09.016�. �hal-01400360�

https://hal.science/hal-01400360
https://hal.archives-ouvertes.fr


Iterative Hybrid Causal Model Based Diagnosis:
Application to Automotive Embedded Functions

R. Ponsa,c,∗, A. Subiasa,b, L. Travé-Massuyèsa,c

aCNRS, LAAS, 7, avenue du Colonel Roche, F-31400 Toulouse, France
bUniv de Toulouse, INSA, LAAS, F-31400 Toulouse, France

cUniv de Toulouse, LAAS, F-31400 Toulouse, France

Abstract

This paper addresses off-line diagnosis of embedded functions, such

as that made in workshops by the technicians. The diagnosis problem ex-

presses as the determination of a proper sequence of tests and measures at

available control points, which would lead to greedily localize the fault

quickly and at the lowest cost. Whereas anticipated discrete faults can

be properly addressed by fault dictionary methods based on simulation, a

consistency based method designed for hybrid systems is proposed to ad-

dress parametric faults and non anticipated faults. This method uses those

same inputs as the fault dictionary method and the only additional infor-

mation is the structure of the reference models in the form of a causal graph

and the interpretation of the simulation results into qualitative values and

events. The consistency based diagnosis method is combined with a test

selection procedure to produce an original iterative diagnosis method for

hybrid systems that reduces diagnosis ambiguity at each iteration.

The method is illustrated in the automotive domain with a real case
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study consisting in the electronic function commanding the rear windscreen

wiper of a car.

Keywords: Consistency Based Diagnosis, Hybrid Systems, Causal Graphs,

Test Selection, Automotive Embedded Functions

1. Introduction

Today embedded systems are found everywhere and form an integral

part of the design of contemporary artefacts, in interaction with hardware

components spanning multi-domain technologies, such as mechanical, hy-

draulic, etc. The intimate coupling of software and hardware capacities

allows engineers to design systems for responding at the nearest of ev-

ery anticipated situation. The resulting systems exhibit complex patterns

of behavior and numerous nominal modes of operation to achieve high

adaptability. Hardware components are inherently continuous but control

is generally performed by supervisory controllers, also known as Electronic

Control Units (ECUs), that impose discrete switching between the modes of

operation (McIlraith et al., 2000a). Diagnosing and trouble-shooting such

systems is a tedious task, which must not only account for the structural

interconnection of components but also for the different configurations un-

derlying behavioral modes.

In this paper, we are interested in off-line diagnosis, such as that made

in workshops by the technicians. In practice, embedded systems are diag-

nosed from diagnosis trees built beforehand, often manually. They allow

the technicians to find the faulty component(s) by performing a guided

sequence of measurements. The diagnosis problem expresses as the deter-

mination of a proper sequence of tests and measures at available control
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points, which would lead to greedily localize the fault quickly and at the

lowest cost. This problem is also known as the Test Sequencing Problem

(Pattipati and Dontamsetty, 1992a; Pattipati and Alexandridis, 1990) or Test

Prioritization Problem in the software testing and debugging community

(Li et al., 2007). It is generally approached by anticipating all the possible

test results to generate a complete optimal diagnosis tree. Another option

however is to iterate a diagnosis session starting with a few measurements

and a test selection procedure proposing the next best test (Struss, 1994).

This is the approach adopted in this paper.

In the automotive field, the use of electronic systems to control several

functions, like fuel injection or ABS, has considerably increased during the

last decade. These electronic systems are composed of voltage supplies,

sensors and actuators linked to ECU by a wire harness. ECUs are equipped

with an auto-diagnosis function delivering fault codes that reliably detect

the failing electric circuits which are connected to this ECU, although they

are unable to localize precisely the faulty components.

Diagnosis starts with a set of preliminary symptoms gathered by the

garage mechanic. In addition to fault codes, these are client symptoms and

other preliminary garage mechanic observations. Then, fault isolation is

performed by successively applying the test that brings the best discrim-

ination among the diagnostic hypotheses generated with the preliminary

symptoms. One test is defined by the variable to be sensed and the config-

uration in which the system must operate. Previous works have proposed

solutions to diagnose electric circuits (Faure et al., 1999; Faure, 2001; Olive

et al., 2003; Price et al., 1996; Sachenbacher and Struss, 2001), among which

only few of them fully account for the hybrid nature of the systems (Travé-

massuyès et al., 2013). Most methods are based on a dictionary of fault
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signatures supporting heuristic optimization techniques or the computa-

tion of the expected quantity of information for the tests. In (Ressencourt

et al., 2006), hybrid system simulation techniques, based on the Modelica

language, are used to build the dictionary of fault signatures from faulty

models. Hierarchical multi-model strategies are then applied to structure

the search space by articulating functional observations with low level sig-

nal measures, so that proposed tests best match expert human intuition.

This method is very powerful to diagnose extreme faults (short-circuits,

open circuits, etc.), which are easily anticipated. However, dictionary based

methods are limited by the fact that, when the actual fault is out of the an-

ticipated set, for instance a parametric fault corresponding to a parameter

deviation, the generated tree does not allow the garage mechanic to reach

a diagnosis conclusion.

This paper proposes a consistency based method designed for hybrid

systems that can complement an available fault dictionary based method,

in our case the method of (Ressencourt et al., 2006) based on Modelica mod-

els, and uses the same models and simulation results. The only additional

information that is required is the structure of the reference models in the

form of a causal graph that we are able to derive automatically and the

interpretation of the simulation results obtained for continuous variables

into qualitative values and events. The principle of consistency based di-

agnosis methods is to rely on a model of normal behavior that provides a

reference. Any deviation from this reference indicates a fault that can be

isolated by reasoning about the different parts of the model involved in the

discrepancy (Hamscher et al., 1992; de Kleer and Kurien, 2003; Blanke et al.,

2003). The hybrid model consistency based method is combined with a test

selection procedure to produce an original iterative diagnosis method for
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hybrid systems that reduces diagnosis ambiguity at each iteration.

The paper is organized as follows. A discussion on the position of the

contribution and related work is given Section 8. Section 2 presents a global

view of the iterative diagnosis method. Section 3 defines formally the hy-

brid causal model. Then Section 4 shows how the continuous behavior of

the system is abstracted. The causal models and their use in a fault local-

ization framework are presented in Section 5. Section 6 presents how these

different concepts are used together and enhanced with the test selection

method to perform iterative consistency based hybrid diagnosis. Finally

Section 7 describes a real case study which is the function commanding the

rear windscreen wiper of a car.

2. Global view of the iterative consistency based diagnosis method for

hybrid systems

Figure 1 gives an overview of the proposed hybrid causal diagnosis

method. The numbers appearing in the figure correspond to the different

steps explained in the textual description below and that are presented in

detail in the rest of the paper. These steps are divided in two main stages.

Design stage: modeling and generation of the partial diagnoser

The modeling step starts with the hybrid model of the system formal-

ized in the form of a hybrid automaton 1© and aims at abstracting the hybrid

automaton into a pure discrete event model. From the hybrid model, we

derive three types of mathematical objects that represent three different as-

pects of the system. The first one is the underlying DES 2©. The second

one refers to the mode signatures that capture the qualitative expected val-

ues of the observable continuous variables within each behavioral mode
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Figure 1: Modeling, detection and diagnosis algorithm.
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; they are generated using a dedicated simulation tool for hybrid systems

(Modelica) and an abstraction function 3© that computes qualitative mode

signatures 4©. The third one is a set of causal graphs (see Section 5) that

describe the causal relationships among the variables for each mode of the

system 5©. The next step abstracts the continuous dynamics captured by

qualitative mode signature changes into signature-events. Putting together

the signature-events with the underlying DES model, we generate the so-

called behavior automaton 6©. This automaton provides a pure discrete event

view of the hybrid system. The modeling step is completed by the gener-

ation of the causal graphs assigned to each mode of the system. The con-

struction of a partial diagnoser 7© including normal trajectories and some

fault trajectories is then performed like in (Sampath et al., 1995) by project-

ing the behavior automaton onto the observable space.

Garage stage: diagnosis hypotheses generation and test selection

Hypotheses generation is performed by applying consistency based rea-

soning 8© based on the causal graphs and on the knowledge of a set of pos-

sible reference behavioral modes Qref for checking the consistency. The

set Qref 9© is obtained when the sequence of observations gathered by the

car mechanic is not consistent with the expected discrete behaviours. In

other cases, the fault (or normal situation) associated with the consistent

behaviour is reported ( 11© and 12©).

At the end of the hypotheses generation step a diagnosis ambiguity setA

is generated 13©. If A is not a singleton and if there are some measurements

left, the test selection step takes place. The method chosen for selecting the

tests is RAPTOR 14©, proposed by (Gonzalez-Sanchez et al., 2011a) (see Sec-

tion 6.3). With the new selected test 15©, i.e. the variable to be measured and
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the system configuration, the partial diagnoser is updated and the process

is reiterated. If A is a singleton or if there are no measurements left, the

diagnosis result 16© is given by A.

3. The hybrid causal model

The hybrid system at hand is modeled by an extended transition sys-

tem whose discrete states represent the modes of operation for which the

continuous dynamics are characterized by a qualitative domain, called the

qualitative mode signature defined in Section 4.1, and a causal model. The

transition system in itself constitutes the underlying DES and constrains the

possible transitions among modes. Formally, a hybrid causal system is de-

fined as a tuple :

Γ = (X ,D, Conf, Sig, T,Σ, CSD, Init) (1)

where:

• X = {xi} is a set of qualitative variables, obtained from continuous

variables as explained in Section 4.1. They correspond to state and

input/output variables and are functions of time t. The set of quali-

tative variables that are or can be measured is denoted by XOBS . 1

• D is a set of discrete variables. D = Q ∪ K ∪ H, where Q is the set

of states qi of the transition system, representing operation modes

of the system. K = {Ki, i = 1, . . . , nc} is a set of auxiliary discrete

variables used to represent the system configuration in each mode

1We assume that the set of system observable variables is the same in all system modes.

This assumption is generally verified when the set of system’s sensors is permanent.
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qi as defined below by Conf(qi). H is the set of discrete variables

whose value changes trigger an event σ as defined below. Discrete

variables may not be directly observable but their observability may

be achieved through the observability of events.

• Conf and Sig are a couple of functions that define two domains for

each mode, the configuration and the qualitative mode signature:

– Conf(qi) : Q → ⊗iD(Ki)
2, where D(Ki) is the domain of Ki ∈

K, provides the configuration associated to the mode, i.e. the

modes of the underlying multimode components (typically, a

switch has two normal modes, open and closed);

– Sig(qi) : Q → ⊗iD(xi), where D(xi) is the domain of xi ∈ X ,

provides the qualitative signature of the mode.

• Σ is a finite set of events, noted σ, associated to the transitions. There

may be guards expressing boolean conditions depending on qualita-

tive variables. Σo is the set of observable events and Σuo is the set of

unobservable events.

• T : Q × Σ → Q is the transition function. The transition from mode

qi to mode qj with associated event σ is noted (qi, σ, qj) or qi
σ→ qj .

Without loss of generality, we assume that the model is deterministic,

i.e. whenever qi
σ→ qj and qi

σ→ qk then qj = qk for each (qi, qj , qk) ∈

Q3 and each σ ∈ Σ.

• CSD ⊇
⋃
iCSDi is the Causal System Description, or causal model,

used to represent the constraints underlying the continuous dynam-

2⊗ is the Cartesian product.
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ics of the hybrid system. Every CSDi, associated to a mode qi, is

given by a graph (V = X ∪ K, Ai). There is an edge e(vi, vj) ∈ Ai

from vi ∈ V to vj ∈ V if variable vi influences variable vj . Vertices

represent variables, edges represent influences between variables and

every edge is labelled by a component composing the system. The

set of influences and the set of components are noted I and COMP ,

respectively (cf. Section 5).

• Init ∈ X × D is the initial condition of the hybrid system. q0 ∈ Q is

the initial mode.

4. Abstractions of the continuous behavior

4.1. Qualitative abstraction of continuous behavior

Although the behavior of the systems that we consider involves con-

tinuous dynamics, diagnosis focuses on identifying the mode of operation.

The idea of the qualitative abstraction is to partition the domain value of

the continuous variables into a finite number of labels such that the label re-

mains invariant when the system is operating within a given mode. Then,

qualitative signatures can be defined for every mode.

The domainD(xi) of a qualitative variable xi ∈ X is obtained through a

function fqual : D(xci ) → D(xi) that maps the continuous domain D(xci ) ⊆

R of the original continuous variable xci into a finite discrete domain, gen-

erally built from a partition of D(xci ).

In choosing the qualitative abstraction functions, the transition guards

must remain expressible. For instance, if a guard is given by the condition

xci > k, k being a constant, then k must be among the landmarks of the

partition of D(xci ) leading to D(xi).
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The qualitative abstraction corresponds to the target function. As an

example of qualitative abstraction, consider the input voltage of a motor.

If one is interested in the motor running or being off, for this continuous

variable, the abstract values 0 and 1 will be chosen to represent the real val-

ues 0±εV (ground voltage) and 12±εV (voltage delivered by the battery),

respectively, where ε is an uncertainty parameter accounting for noise.

The possibility to address parametric faults through qualitative signa-

tures depends on the sharpness of the partition of D(xci ) and, of course, on

the available sensors.

4.2. Qualitative mode signatures

Qualitative signatures characterize the expected values of the observ-

able qualitative variables within a given mode. These values remain con-

stant in a mode. Define as [xOBS ] the vector composed of the qualitative

variables xi ∈ XOBS .

Definition 1 (Qualitative mode signature). The qualitative signature of a mode

qi noted Sig(qi) is the qualitative valuation of the vector [xOBS ] in this mode:

Sig(qi) = [xOBS ]qi (2)

It is important to notice that the qualitative abstraction function fqual

is defined such that a mode qi has one and only one qualitative signature.

This qualitative signature characterizes this mode with respect to the other

modes.

2-lights circuit example

Let us consider the electric circuit shown in Figure 2, named the 2-lights

circuit, that will be used as a running example.
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Figure 2: The 2-lights circuit.

The command u opens and closes the circuit and allows the voltage

generator on the left branch to switch on the lights L1 or L2, depending on

the position of the switch S, which is not observable. Since there are two

switches, this system has 22 = 4 configurations and operating modes q1 to

q4. q1 is the mode in which the switch u is closed and S is in position 1,

therefore the light bulb L1 is lit and L2 is not. When S is switched to posi-

tion 2, L1 turns off, L2 turns on and the mode q2 is active. When u opens,

both lights are unpowered and the circuit is in mode q3. If S is switched

back to position 1, both lights are still off because of u being opened and

the system is in mode q4.

The qualitative abstraction corresponds to the target function in the nor-

mal operating mode, which is the shining function of the light bulbs. If

Vi, i = 1, 2 is not zero, then the light bulb Li shines and it does not shine

otherwise. The qualitative variables and mode signatures are given in Table

1.

Following the idea proposed in (Bayoudh et al., 2008; Bayoudh and

Travé-Massuyès, 2012), qualitative mode signatures are used to generate

signature-events that inform about the changes of operation mode based on

12



Table 1: Qualitative variables and mode signatures for the 2-

lights circuit.

q1 q2 q3 q4

u 1 1 0 0

V1 1 0 0 1

V2 0 1 1 0

the observed qualitative variables.

The corresponding event generator is defined by the abstraction func-

tion fSig→σ that maps qualitative signature changes to a set of discrete

events ΣSig called signature-events. ΣSig is partitioned into observable (ΣSig
o )

and unobservable (ΣSig
uo ) signature-events, depending on whether the mode

signature of the source mode is different from the mode signature of the

destination mode or not .

fSig→σ : Q× T (Q,Σ) −→ ΣSig

(qi, qj) 7−→


roi,j ∈ ΣSig

o if Sig(qi) 6= Sig(qj)

ruoi,j ∈ ΣSig
uo if Sig(qi) = Sig(qj)

(3)

2-lights circuit example

The signature events of the 2-lights circuit are given in Table 2.

Figure 3 gives the discrete part of the model, i.e. the underlying discrete

event system M = (Q,T,Σ, q0).

The event σ1,2 (resp. σ2,1) represents the change of position of the switch

S from position 1 to position 2 (resp. position 2 to position 1). The event

σO,C (resp. σC,O) represents the change of position of the command switch

u from opened to closed (resp. closed to opened). All these events are

13



Table 2: Signature-events for the 2-lights circuit.

Sig(q1)
ro1,2−−−−−→←−−−−−
ro2,1

Sig(q2) Sig(q2)
ro2,3−−−−−→←−−−−−
ro3,2

Sig(q3)

Sig(q3)
ruo3,4−−−−−→←−−−−−
ruo4,3

Sig(q4) Sig(q4)
ro4,1−−−−−→←−−−−−
ro1,4

Sig(q1)

q2

q4 q3

q1
σ1,2
σ2,1

σC,O

σ1,2
σ2,1

σC,OσO,CσO,C

Figure 3: Underlying DES of the 2-lights circuit.

observable.

4.3. Behaviour automaton

The abstraction of the continuous dynamics in terms of discrete events

allows us to define an abstract language to describe the behavior of the

hybrid system. We denote by Σ = Σ ∪ ΣSig the alphabet that contains

“natural” discrete events and signature-events.

Σ can be partitioned into Σ = Σo ∪ Σuo with Σo = Σo ∪ ΣSig
o and Σuo =

Σuo ∪ ΣSig
uo .

The behavior of the hybrid system is hence modeled by the prefix-

closed language L(Γ).

Definition 2 (Language of the hybrid system ). The language generated by the

system Γ is the set L(Γ)
∆
= {s ∈ Σ

∗|q0
s→} whose elements are called trajectories
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of Γ.

The set of finite sequences over Σ is denoted by Σ
∗, and ε is the empty

sequence. The finite state generator (Ramadge and Wonham, 1989) of the

language L(Γ) is called the behavior automaton and denoted:

BA(Γ) = (Q,Σ, T , q0). (4)

The behavior automaton is obtained by defining a set of transient modes

Qt that model the continuous dynamics reaction to the occurrence of a

mode change, and hence lead to the generation of a signature-event of ΣSig.

We first define the bijective function ft that associates a transient mode to

each transition t(qi, σi,j , qj) ∈ T of the underlying DES M = (Q,Σ, T, q0).

The set of transient modes is obtained as follows :

ft : T −→ Qt

t(qi, σi,j , qj) 7−→ qi,j
(5)

The set of modes of the behavior automaton is then given byQ = Q∪Qt.

The set of observable states of the behavior automaton is given by

Qo = {q0} ∪
{
q ∈ Q,∃(q′, σ) ∈ Q× Σo | T (q′, σ) = q

}
(6)

The partial transition function T ⊆ (Q × Σ −→ Q) is decomposed in two

partial transition functions as follows:

T = T
1 ∪ T 2

with


T

1 ⊆ (Q× Σ −→ Qt)

T
2 ⊆ (Qt × ΣSig −→ Q)

(7)

The behavior automaton BA(Γ) = (Q,Σ, T , q0) is obtained by replac-

ing every transition t(qi, σi,j , qj) in M = (Q,Σ, T, q0) by two transitions in

15



q1,2

q1,4

q1 q2

q2,3

q4 q3,4 q3

ro1,2

ro3,2

ro2,3

ruo3,4

ruo4,3

ro1,4

ro4,1

ro2,1

σ1,2
σ2,1

σC,O

σO,C σO,C

σC,O

σ1,2
σ2,1

Figure 4: Behaviour automaton of the 2-lights circuit.

sequence t1(qi, σi,j , qi,j) ∈ T
1 and t2(qi,j , ri,j , qj) ∈ T

2, the transient mode

qi,j ∈ Qt hence coming in between qi and qj .

Informally, this means that on the occurrence of an event σi,j ∈ Σ that

triggers a transition from mode qi to mode qj , the system goes through a

transient mode qi,j in which the transition is not yet effective. The transition

to mode qj is confirmed by the occurrence of the corresponding signature-

event ro/uoi,j , providing evidence (when observable) of the response of the

continuous dynamics 3.

2-lights example

Figure 4 shows the automaton behavior of the 2-lights circuit.

3Notice that, by construction, mode signatures cannot change while being in the same

mode.
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4.4. The partial diagnoser

Once the hybrid system behavior Γ has been abstracted in the form of

a behavior automaton BA(Γ), the diagnoser approach of (Sampath et al.,

1995) is applicable. The obtained diagnoser can be viewed as a partial diag-

noser because it does not account for all the fault trajectories but only those

anticipated in the functional specifications. We define:

• Lo(Γ, q) the set of all strings that originate from the state q and end at

the first observable event:

Lo(Γ, q) = {s ∈ L(Γ, q) | s = uσ, u ∈ Σ
∗
uo, σ ∈ Σo}; (8)

• Lσ(Γ, q) those strings in Lo(Γ, q) that end at the particular observable

event σ:

Lσ(Γ, q) = {s ∈ Lo(Γ, q) | sf = σ}; (9)

with sf the final event of a string s.

• the set of event labels LE = {E1, E2, . . . , Eλ}, where λ is the number

of different unobservable events in the system, λ = |(Σuo)|. The set of

possible labels is defined as L = 2LE .

• The label propagation function LP : Qo×L×Σ
∗ → L. Given q ∈ Qo,

l ∈ L and s ∈ Lo(Γ, q), LP propagates the label l over s, starting from

q and following the dynamics of Γ, i.e. according to L(Γ, q):

LP (q, l, s) =


∅ if l = ∅ and ∀σ ∈ s, σ ∈ Σo

{Ek|Ek ∈ l} ∪ {Ei|∃σ ∈ Σuo, σ ∈ s} otherwise.
(10)

17



The diagnoser of the hybrid system is a deterministic finite state ma-

chine built from the behavior automaton, PDiag(BA(Γ)) = (QPD,ΣPD, TPD,

qPD0) where:

• qPD0 = {(q0, ∅)} is the initial state of the partial diagnoser (assuming

Γ is normal to start with);

• ΣPD = Σo is the set of all observable events of the system;

• QPD ⊆ 2Qo×L is the set of states of the partial diagnoser where L =

2Σuo . The states of the partial diagnoser provide a set of couples

whose first element refers to the state of the behavior automaton and

the second is a label providing the unobservable events on the path

leading to this state. In other words, an element qPD ∈ QPD is a set

qPD = {(q1, l1), (q2, l2), . . . , (qn, ln)}, where qi ∈ Qo and li ∈ L. li is

of the form li = ∅ or li = {Ei1 , Ei2 , . . . , Eik} where {i1, i2, . . . , ik} ⊆

{1, 2, . . . , λ}.

• TPD ⊆ QPD × Σo → QPD is the partial transition function of the

diagnoser defined as follows:

TPD(qPD, σ) =
⋃

(q,l)∈qPD
s∈Lσ(Γ,q)

{(T (q, s), LP (q, l, s))}. (11)

T (q, s) is the recursive application of T along the string s = s1s2 . . . snσ

of events defined as T (q, s) = T (. . . T (T (q, s1), s2), . . . , sn), σ).

The reader must notice that the diagnoser (Sampath et al., 1995) has

been fully quoted in the previous paragraph. However the method pro-

posed in this paper does not make use of the labels li ∈ L. They are not

computed by the software DIADES that we use and will not appear in the

rest of the paper.
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2-lights example

The partial diagnoser is automatically built using the DIADES software

(Pencolé, 2013). DIADES takes as input a text file that describes the behav-

ior automaton of the system and lists the observable and non-observable

events. Applying the diagnoser approach to the 2-lights circuit example

leads to the partial diagnoser shown in Figure 5.

5. Causal models

Causal models have been shown to be suitable for diagnosis in sev-

eral pieces of work (Venkatasubramanian et al., 2003). In (Narasimhan

and Biswas, 2007a; Travé-Massuyès et al., 2001; Travé-Massuyès, 2014), the

causal model is proposed as a substitute of dependency recording mecha-

nisms like the ATMS (de Kleer and Williams, 1987). Also, the generation of

analytical redundancy relations from causal models is addressed in (Svard

and Nyberg, 2010).

Causal models are supported by an oriented graph, also called causal

graph. The causal graph is used for explanations purposes and not for sim-

ulations ones. In this case the causal graph may contain cycles and there

is no need to tackle time related issues. In such a graph, vertices represent

variables and edges represent influences from variable to variable. An ori-

ented edge from variable vi to variable vj exists if vi has an influence on vj ,

i.e. if a value change on variable vi affects the value of variable vj . vi and vj

are called the cause and the effect variables of the influence, respectively. As

explained in Section 5.1, influences represent the causal structure of the un-

derlying equational model (Travé-Massuyès and Pons, 1997) but they may

also capture behavioral information when adequately labelled (Gentil et al.,
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Figure 5: Partial diagnoser of the 2-lights circuit.
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2004; Heim et al., 2003; Travé-Massuyès and Calderon-Espinoza, 2007).

5.1. Automatic derivation of the causal model

The theory of causal ordering issued from the Qualitative Reasoning com-

munity can be advantageously applied to derive automatically the causal

structure associated to a set of equations (Iwasaki and Simon, 1986, 1994).

Deriving the causal model of a system in a given operating mode implies to

gather the equations that represent the behavior of the system in this mode.

Their structure is then represented in the form of a bipartite graph, com-

posed of two disjoint vertices sets: the equation vertices on one side and the

variable vertices on the other side. There exists an edge between an equa-

tion vertex and a variable vertex if the variable appears in the equation.

The idea of causal ordering is to match a variable to every equation, then

interpret every equation as a causal mechanism that can be used to solve

for the matched variable. This step is performed by searching for a perfect

matching in the bipartite graph (Hopcroft and Karp, 1973). An equation

hence gives rise to a bunch of influences starting at non matched variable

vertices and all pointing to the matched variable vertex. This graph pat-

tern, called an equation bunch, is the primary pattern of the Causal System

Description.

(Travé-Massuyès and Pons, 1997) extended causal ordering to systems

with several operating modes, by associating activation conditions to the

equations. The influences of the resulting graph consequently carry acti-

vation conditions as well. The proposed algorithm, implemented in the
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Causalito software4, makes use of conditions that avoid recomputing a to-

tally new perfect matching for every operating mode, thus reducing the

computational cost.

In this work, the variables at hand belong to the set V = X ∪ K ∪H (cf.

Section 3) where VOBS ⊆ V denotes the subset of observed, i.e. measured,

variables, and we call I the set of influences. The Causal System Descrip-

tion is hence given by CSD = (V, I), where each influence is labeled with:

• an activation condition stating the modes in which it is active (or no

label if it is active in all modes),

• the corresponding equation,

• the component whose behavior is represented by the equation.

2-lights circuit example

In the 2-lights circuit example of Figure 2, we define the boolean con-

ditions Cu, which is true when the circuit is closed by the command u,

¬Cu which is true when the circuit is open, and C1, which is true when

the switch S is connected to the light L1, and ¬C1 which is true when the

switch S to the light L2. V1 and V2 are the voltages of the lights L1 and L2.

The equations of the 2-lights circuit are

V = V0 if Cu (12)

V = 0 if ¬Cu (13)

V1 = V if C1 (14)

4Available on the PLUME project website https://www.projet-

plume.org/relier/causalito
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V1 = 0 if ¬C1 (15)

V2 = 0 if C1 (16)

V2 = V if ¬C1 (17)

The causal graphs of the system modes are given in Figure 6.

V0 V

V1

V2

switch u
light L1

light L2

Mode q1:   Cu,   C1

u S

V0 V

V1

V2

switch u
light L1

light L2

Mode q4:   Cu,   C1

u S

V0 V

V1

V2

switch u
light L1

light L2

Mode q2:   Cu,   C1

u S

V0 V

V1

V2

switch u
light L1

light L2

Mode q3:   Cu,   C1

u S

Figure 6: Causal graphs of the 2-lights circuit in the four modes.

Let us notice that in this simple example, the switch related to the com-

mand u as well as the switch S are activated exogeneously.

5.2. The causal diagnosis problem

The causal model is used for explanatory purposes, based on a prelim-

inary labeling process of the vertices corresponding to observed variables.

An observed variable is qualified as normal/misbehaving at some time point

when there is a match/discrepancy between the measured value and the

predicted value obtained from the Modelica simulations. A discrepancy
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for variable vi ∈ VOBS is noted with a predicate as KO(vi), otherwise the

variable is qualified as OK(vi). The corresponding vertices are labelled

accordingly. Exogenous input variables are unconditionally qualified as

OK(vi) and so are the labels of the vertices with no in-going influences in

the causal graph. The causal graph is explored backwards to determine the

cause(s) of discrepancies using the results of the logical theory of Model-

Based Diagnosis (MBD) (Reiter, 1987). The main concepts and results of

MBD are summarized and interpreted in the causal modeling framework

below.

Diagnosis must explain the detected discrepancies by providing the

health status of each component Ci ∈ COMP , i.e. AB(Ci) if abnormal and

¬AB(Ci) if normal. A component is qualified AB if and only if at least one

of its underlying influences is AB5. The set of observations OBS is defined

as follows:

Definition 3 (Observations). A set of observations OBS is given by the tuple

that qualifies every observed variable vi ∈ VOBS as KO(vi) or OK(vi).

Definition 4 (Diagnosis problem). A diagnosis problem is defined as the triple

(CSD, COMP, OBS) where CSD is the Causal System Description, COMP the

set of components and OBS a set of observations.

The set of observations OBS defines a partial labeling of the vertices

of CSD. When one or several vertices are labeled KO, the diagnosis sys-

tem must derive all sets of faulty components of COMP, or equivalently all

health status assignments, that are consistent with the observations OBS.

5The AB (resp.¬AB) predicate is used to qualify abnormal (resp. normal) components

while the OK (resp.KO) predicate is used for variables.
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Figure 7: Subgraph GCi of a component Ci.

Consistency is defined with respect to a model as explained below.

Without loss of generality, consider that CSD corresponds to one single

operating mode. In CSD, all the in-going influences of any vertex with non

zero in-degree have the same supporting component as they correspond to

an equation bunch (cf. Section 5.1). If the behavior of a component Ci is

represented by several equations, then the causal representation of the be-

havior of Ci corresponds to a connected subgraph GCi composed of equa-

tion bunches. Consider a component Ci and its associated subgraph GCi
as exemplified in Figure 7, then the set of input vertices is noted V in

Ci
, the

output vertex is noted vout
Ci

and the set of influences from V in
Ci

to vout
Ci

is noted

ICi . In this example, V in
Ci

= {v1, v2, v3, v4, v7, v8} and ICi = {I1, ..., I8}.

The component Ci is AB if and only if at least one of the influences in

ICi is AB, it is qualified OK otherwise. In the same way, V in
Ci

is qualified

as KO if and only if at least one of its vertex elements is KO, it is qualified

OK otherwise. The labels of V in
Ci

and vout
Ci

are constrained by the consistency

model shown in Table 3, which is generic to all components.

It should be noticed that this consistency model is free of assumptions,

i.e. it does not assume single fault neither exoneration 6. The only true con-

6The exoneration assumption states that if voutCi
is OK then Ci is ¬AB and V in

Ci
is OK .
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Table 3: Component consistency model.

Ci V in
Ci

vout
Ci

AB/¬AB OK OK

AB/¬AB KO OK

AB/¬AB KO KO

AB OK KO

straint is given by the last row expressing the fact that if the inputs are all

OK and the output is KO, the component is necessarily AB (in the table,

"AB/¬AB" means that AB or ¬AB are consistent). However, this con-

straint can only be checked when all the inputs and the output are labeled,

i.e. observed. This is why the constraint is generalized later on and used to

define the notion of R-conflict.

5.3. Conflict generation and diagnoses computation

Definition 5 (Diagnoses and minimal diagnoses). A diagnosis for (CSD, COMP,

OBS) is a set of components ∆ ⊆ COMP such that the assignment AB(Ci) for

Ci ∈ ∆ and ¬AB(Ci) for Ci ∈ COMP −∆ is consistent with CSD and OBS.

A minimal diagnosis is a diagnosis ∆ such that ∀∆′ ⊂ ∆, ∆′ is not a diagnosis.

The notion of R-conflict, in the sense of (Reiter, 1987), plays an important

role for computing the diagnoses.

Definition 6 (Reiter conflict and minimal conflict). A conflict in the sense

of (Reiter, 1987), or R-conflict, for (CSD, COMP, OBS) is a set of components

S = {C1, . . . , Ck} ⊆ COMP such that the assignment of ¬AB to all Ci ∈ S is
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inconsistent. A minimal R-conflict is an R-conflict which does not strictly include

(in the sense of set inclusion) any R-conflict.

Interpreting the notion of R-conflict in our causal framework requires to

define the notions of Observed Macro-Component (OMC) and test.

Definition 7 (Observed Macro-Component (OMC)). An OMC Ci is defined

by a non-zero in-degree output vertex vout
Ci ∈ VOBS and a set of input vertices

vi ∈ V in
Ci defined as a set of observed predecessors of (predecessors of) vout

Ci . The

behavior of Ci is represented by the subgraph of CSD GCi given by the in-tree in

which only vout
Ci is reachable from every other vertex.

Similar to a component (cf. Figure 7), an OMC Ci has one single output

vertex vout
Ci and a set of input vertices noted V in

Ci and its subgraph GCi is

composed of equation bunches. The difference is that vout
Ci ∈ VOBS and

vi ∈ V in
Ci ⇔ vi ∈ VOBS . In other words, an OMC determines a subgraph

whose input and output vertices are observed.

Definition 8 (Test and covered components). The labeling associated to an

OMC Ci is defined as a test Ti. The test Ti is said to be based on vout
Ci : if vout

Ci is

labelled KO, than the test is said to fail and if it is labelled OK, the test is said to

pass. The components Cj1 , . . . , CjKi labeling the influences of GCi are called the

components covered by Ti, or the coverage of Ti.

The consistency model given in Table 3 for a component extends to

OMCs.

Proposition 1 (Potential R-conflict and R-conflict). The set of components

{Cj1 , . . . , CjKi} covered by a test Ti define a potential R-conflict in the sense

of (Cordier et al., 2004). {Cj1 , . . . , CjKi} is a R-conflict if and only if the health

status of Ci is AB.
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Proof. A test Ti is associated to an OMC Ci. Because the inputs and output

of Ci are observed, its health status can be assessed from Table 3. If Ci

is AB, then at least one component underlying Ci is AB, hence the set of

components {Cj1 , . . . , CjKi} covered by Ti is an R-conflict.

In the causal framework, R-conflicts can be identified according to the

following result:

Corollary 1 (Conflict identification). The set of components {Cj1 , . . . , CjKi}

covered by a test Ti that fails and whose input label is OK, i.e. V in
Ci is OK, define

an R-conflict.

Proof. From the last row of Table 3, the health status of Ci is AB if Ti fails

and the input label is OK.

(Reiter, 1987) proved that diagnoses can be computed from R-conflicts.

Proposition 2 (Diagnosis). ∆ ⊆ COMP is a (minimal) diagnosis for (CSD,

COMP, OBS) if and only if ∆ is a (minimal) hitting set for the collection of (min-

imal) R-conflict sets of (CSD, COMP, OBS).

A hitting set of a collection of sets is a set intersecting every set of this

collection. An incremental algorithm to generate all the minimal hitting

sets based on a set of R-conflicts was originally proposed by (Reiter, 1987),

then corrected by (Greiner et al., 1989).

The set of diagnoses defines the ambiguity set A. Every element of the

ambiguity set is a diagnosis hypothesis.

2-lights circuit example

Let’s assume that the 2-lights circuit is in mode q2 (Cu and ¬C1 are true)

and the OMC C∗ defined by vout
C∗ = V2 and V in

C∗ = {V0}. V0 is an input to
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the circuit and is always labelled OK. We measure V2 to be 0, hence the

test TV2 fails and is labelled KO, so the health status of C∗ is AB. The cov-

erage of TV2 is the set {switch u, light L2}, which is hence an R-conflict by

Corollary 1 (see Figure 8). With this only conflict, the minimal diagnoses are

{switch u} and {light L2} and the ambiguity set isA = {switch u, light L2}.

V0 V

V1

V2

switch u
light L1

light L2

Mode q2:   Cu,   C1

u S
KO

Figure 8: Example of a conflict for the 2-lights circuit

6. Consistency based hybrid diagnosis

A diagnosis consistency based-approach relies on the use of a reference

model and on the observation of the real behavior of the monitored sys-

tem. In our case the model represents a hybrid system is constituted, on

one hand by the partial diagnoser PDiag(BA(Γ)) and, on the other hand

by the Causal System Description CSD. Observations takes the form of a

sequence of events sobs ∈ Lobs(Γ, q) = {s ∈ L(Γ, q) | s = uσ, u ∈ Σ∗hybo , σ ∈

Σo}, i.e. sobs is a word of Lobs(Γ, q). The events may be natural discrete

events or signature-events coming from the continuous dynamics. Basing

consistency-based diagnosis reasoning on our model requires to interface

event-based and variable-based diagnosis reasoning, which is explained in
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the next section.

6.1. Interfacing event-based and variable-based diagnosis reasoning

Our diagnosis method interlinks event-based and variable-based rea-

soning thanks to the addition, in CSD, of a set of vertices corresponding

to discrete variables K. These variables represent the switch positions that

materialize configurations and whose switches trigger mode changes. The

influences outgoing these vertices are different from standard influences

since they act on the causal graph structure. The variables in K are labelled

OK/KO by the set of natural discrete events that are actually observed

compared to those that are expected from the model.

6.2. The iterative diagnosis process

The diagnosis process iterates diagnosis hypotheses generation and test

selection. The set of observed variables hence monotonically increases along

the process, implying that qualitative mode signatures must be updated ac-

cordingly and so must be the set of signature-events. The behavior automa-

ton and the resulting partial diagnoser must also be updated. In practice,

it may be more efficient to build the partial diagnoser for the full measure-

ment situation, i.e. when all the continuous variables are measured, and to

derive the successive partial diagnosers by removing the states and events

that correspond to non-measured variables. The dependence upon the it-

eration is indicated by superscripting the corresponding symbols by k :

X kOBS , Sigk(qi), PDiag(Bk
A(Γ)), etc.

At each iteration k, the consistency based hybrid diagnosis algorithm is

structured along the following steps:
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• Step 1: Fault detection and reference mode hypotheses generation – This is

achieved by synchronizing PDiag(Bk
A(Γ)) with sobs. If none synchro-

nized trajectory corresponds to a complete trajectory, i.e. a trajectory

that ends with a receptor state or with a cycle, then a fault is detected.

The last state of each synchronized trajectory indicates a possible ref-

erence mode. These modes are put in the set Qkref and the ambiguity

set is initialized to Ak = COMP .

• Step 2: Diagnosis hypotheses generation – Every hypothesized reference

mode qi ∈ Qkref is likely to provide evidence about the faulty situation

of the system. For every qi ∈ Qkref , we consider the corresponding

CSDi, and apply the consistency-based causal diagnosis approach

presented in Section 5 to obtain an ambiguity set Aki . The global am-

biguity set A is then updated as Ak = COMP ∩
⋂
i{Aki }.

• Step 3: Test selection – This step determines the best next variable xi ∈

XOBS − X kOBS to be tested to maximize ambiguity reduction. It is

detailed below in Section 6.3.

• Step 4: Hypothesis discrimination – The current ambiguity set Ak is re-

duced by going to step 1.

6.3. Test selection

Given an ambiguity set Ak resulting from processing a subset of tests

based on the qualitative variables ofX kOBS , the goal of the test selection step

is to determine the best next test Ti based on a variable xi ∈ XOBS −X kOBS .

This test should maximize diagnostic information while minimizing the

overall testing cost CT .
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For this purpose, we use the ideas of the RAPTOR (gReedy diAgnostic

Prioritization by ambiguiTy Reduction) method (Gonzalez-Sanchez et al.,

2011a) in which test selection is based on maximizing diagnosis ambiguity

reduction. Diagnostic performance is expressed in terms of a cost metricCd

that measures the excess effort incurred in finding the faulty component.

Cd represents the number of inspected components that are not the faulty

one or, in other words, the wasted effort.

Tests are characterized by their coverage, i.e. set of covered components,

as defined in Definition 8. In our method, this information is provided

by the CSD. Two components that are covered by the same tests cannot

be discriminated. In (Gonzalez-Sanchez et al., 2011a), sets of such undis-

criminable components are defined as ambiguity groups and RAPTOR is

presented to be used off-line, taking iteratively as input a set of ambigu-

ity groups and determining the best next test. At the end of the algorithm,

a sequence of tests reducing diagnosis ambiguity at best is available. RAP-

TOR is not theoretically optimal but has been shown to be quite competitive

(Gonzalez-Sanchez et al., 2011b).

In our method, we use the test selection on-line based on one iteration

of RAPTOR to determine the best next test and we apply the test. The ambi-

guity set is updated accordingly and constitutes the only ambiguity group

given as input for the next iteration. Each test Ti breaks the ambiguity set

Ak into two ambiguity groupsAk1(Ti) andAk2(Ti), one corresponding to the

components covered by the test, and one corresponding to the components

that are not covered.

The expected diagnostic effort if components were picked randomly in

Ak for inspection is:
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ED(Ak) =
|Ak| − 1

2
(18)

Considering the test Ti and the corresponding set of ambiguity groups

AG(Ti) = {Ak1(Ti),Ak2(Ti)}, we want to estimate diagnosis qualityQ(AG(Ti))

which can be seen as an estimation of the residual diagnosis effort.

The expected diagnostic effort if components were picked randomly in

each ambiguity group for inspection is ED(Ak1(Ti)) and ED(Ak2(Ti)). Con-

sidering that faults are distributed uniformly in the ambiguity set, we have

Pr(Akj (Ti)) =
|Akj (Ti)|
|Ak| . Averaging the effort in each group by its probability,

the residual diagnosis effort can hence be estimated by :

Q(AG(Ti)) = Q(Ak1(Ti)) +Q(Ak2(Ti))

=

2∑
j=1

Pr(Akj (Ti))× ED(Akj (Ti))

=

2∑
j=1

∣∣∣Akj (ti)∣∣∣
|Ak|

×
|Akj (Ti)| − 1

2
,

(19)

The ambiguity reduction heuristic is defined as the difference in resid-

ual diagnosis effort, i.e. in ambiguity, caused by considering test Ti :

AR(Ti) = Q(Ak)−Q(AG(Ti)), (20)

where Q(Ak) = ED(Ak) because Pr(Ak) = 1.

If the costs of the tests were to be accounted for, one should consider the

ratios Q(Ak)

CkT
and Q(AG(Ti))

CkT+CTi
, where CkT is the cost of the executed tests and

CTi is the cost of text Ti. The test Ti which maximizes AR(Ti) is chosen as

the best next test. Let us notice that discriminability based on test coverage

comes back to adopt the exoneration assumption. The test selection method
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is actually based on that a test that passes exonerates the components of its

coverage and a test that fails incriminates them. Since exoneration is not an

assumption of the diagnosis method presented in Section 5.3, if the selected

test is applied and passes, the ambiguity reduction may hence be lower

than expected. This means that RAPTOR selects the test that may eventually

lead to the highest diagnosis ambiguity reduction.

2-lights circuit example

Although this simple example is quite trivial to illustrate test selec-

tion, let’s follow on with the 2-lights circuit in mode q2 (assumed to be

the reference mode). After the test based on V2, the ambiguity set is {A1 =

{switch u, light L2}} (cf. Figure 8) and Q(A1)) = ED(A1)) = 2−1
2 = 0.5. If

we select the test TV (V is actually the only unmeasured variable), we ob-

tain two ambiguity groups and we haveQ(AG(TV )) = 1
2×

1−1
2 +1

2×
1−1

2 = 0.

The ambiguity reduction is obviously maximized since ambiguity is com-

pletely resorbed :

AR(TV ) = Q(A1)−Q(AG(TV )) = 0.5− 0 = 0.5 (21)

Indeed, if TV fails, the diagnosis is {switch u} and if TV passes, the

diagnosis is {light L2}.

In our hybrid framework, one has to deal with all the reference modes in

Qkref , accounting for the different test coverages. The test selection strategy

presented above is applied for each reference mode and the overall best test

is chosen. The ambiguity sets resulting from the different reference modes

are intersected to obtain a unique ambiguity set at each iteration (cf. step 2

of the diagnosis algorithm).
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CAN_car1

cmd_evar

rst

CEAR

Figure 9: Synoptic of the rear windscreen wiper.

7. Case study

The case study consists in the function of the rear windscreen wiper of a

C4 Citroën car whose synoptic is given on Figure 9. The technical material

refering to this case study, in particular sketches, was kindly provided by

the ACTIA R© Group, based in Toulouse, France, that designed the system

in the framework of the collaborative OSEO-ISI project AMIC-TCP 7. Many

acronyms are in French. The glossary of the Table 4 provides the acronyms’

meaning in French and English.

The system is modeled in the Modelica R© language with the sofware

Dymola R© and is composed of:

• Two electronic control units (ECU_hdc and ECU_hab) communicating

through the Controller Area Network CAN_car1. ECU_hdc is dedi-

cated to the control of the steering wheel. It acquires and filters infor-

mation on the position of the rear windscreen wiper switch (CEAR)

and transmits it to the ECU_hab via the CAN. ECU_hab is assigned to

the passenger compartment. It manages the global operation of the

7Available on the ACTIA company website AMIC-TCP program.
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Table 4: Glossary

Glossary

CAN: fr bus système série de type Controller Area Network, en Con-

troller Area Network serial system bus

CAN_car1: fr CAN du véhicule car1, en CAN for vehicle car1

CEAR: fr commande essuie-vitre arrière, en rear windscreen wiper

switch

cmd_evar: fr signal de la commande essuie-vitre arrière, en rear wind-

screen wiper signal

ECU_hab: fr calculateur de l’habitacle, en electronic control unit of the

passenger compartment

ECU_hdc: fr calculateur des commandes au volant, en electronic control

unit of the steering wheel switches

EVAR: fr essuie-vitre arrière, en rear windscreen wiper

Hard_ECU_hab: fr composant matériel de ECU_hab, en hardware part

of ECU_hab

Soft_ECU_hab: fr composant logiciel de ECU_hab, en software part of

ECU_hab

36



system and controls the motor of the rear windscreen wiper through

the cmd_evar request. It acquires and filters the signal rst indicating

that the wiper is in the rest position. ECU_hab manages also other

systems interacting with the rear windscreen wiper such as the front

wiper.

• A switch rear windscreen wiper (CEAR).

• A rear windscreen wiper module (EVAR).

7.1. System description

The ECU_hdc is composed of a software part whereas the ECU_hab in-

cludes both a software and a hardware part (see Figure 10 and Figure 11).

The software part Soft_ECU_hab receives the wiper switch position sig-

nal CEAR from CANcar1 and the wiper rest sensor signal from the hard-

ware part Hard_ECU_hab. Soft_ECU_hab implements the discrete event sys-

tem (see Figure 12) that controls the activation of the switch SwitchK1 in

Hard_ECU_hab via cmd_evar.

The rear windscreen wiper module is given on Figure 13. This module

is composed of an electrical motor, a wiper linkage system and a wiper rest

switch SwitchK2 .

The rear windscreen wiper can be activated in two ways:

1. By the driver acting on the rear windscreen actuator: In this case the

wiping is intermittent and the wiper movement is periodic with a

period that includes a forward and backward movement and a stop

in rest position.

2. Automatically, when the front wiper is activated and when the driver

puts the car into reverse.
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Figure 10: Decomposition of the ECU_hab.
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Figure 11: Hardware part of the ECU_hab.
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Figure 12: Dymola R© software screenshot: discrete event control implemented in

Soft_ECU_hab.
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Figure 13: Rear windscreen wiper module.

In the following we consider the simplified description of the system

shown in Figure 14 and focus on the intermittent movement of the wiper

controlled by the switch position (framed part of Figure 12).

When the driver acts on the actuator act, the ECU ECU_hab closes the

switch SwitchK1 and then supplies electrical power from the battery bat

to the wiper motor M . The rotational move of the motor flange is trans-

formed into an alternative straight move via the wiper linkage that allows

the wiper to wipe the screen. After the wiper has moved forward and

backward on the screen, it opens the switch SwitchK2 , supplying electrical

power to the wiper rest sensor that issues the rest position signal rst. The

sensor sends the signal rst back to the ECU_hab to indicate that the wiper is

in rest position. The ECU_hab then opens the switch SwitchK1 for a given

timeout: the wiper motor is no longer supplied with power and stays in

rest position until the timeout expires, then the ECU_hab closes the switch

SwitchK1 again. Hence, the wiper moves forward and backward on the

screen, stops during the timeout, etc. until the driver switches the actuator
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Figure 14: Rear windscreen wiper simplified synoptic.

act off.

7.2. Hybrid features of the windscreen wiper

The windscreen wiper system obviously involves hybrid behavior. Since

there are two switches SwitchK1 and SwitchK2 in the circuit, the underlying

system has four modes. In addition, modeling the behavior of this system

involves a set of discrete variables and a set of continuous variables.

The discrete variables are ign that gives the ignition status, act that re-

flects the actuator position controlled by the driver, CEAR that is the wiper

switch position signal, rst that is the wiper rest position signal, and the end

of timeout eot. The position (open or closed) of the two switches SwitchK1

and SwitchK2 come into play as two auxiliary discrete (Boolean) variables

K1 and K2 that indicate the system configuration associated to an operation

mode. Ki = 0/1 when SwitchKi is opened/closed, i = 1, 2. The system has

thus four different operation modes.

The continuous variables are the battery voltage V0, the wiper motor
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Table 5: Qualitative variables and mode signatures for the

rear windscreen wiper.

q0 q1 q2 q3

Off On Wiping Timeout

V0 1 1 1 1

V1 0 0 1 0

V2 1 1 1 0

Ω 0 0 1 0

θ 0 0 1 0

Table 6: Signature-events for the rear windscreen wiper in the

full measurement situation.

Sig(q0)
ruo0,1−−→ Sig(q1) Sig(q1)

ro1,2−−→ Sig(q2)

Sig(q2)
ro2,3−−→ Sig(q3) Sig(q3)

ro3,2−−→ Sig(q2)

input voltage V1, the rest position sensor output voltage V2, the wiper an-

gular velocity Ω, and its angular position θ. As explained in Section 4.1,

continuous behaviors are captured qualitatively. Hence the domain value

of continuous variables is partitioned into an appropriate number of qual-

itative labels (cf. Section 4.1).

7.3. Design stage

The qualitative variables and their values providing the qualitative mode

signatures in each mode are shown in Table 5. Signature-events for the

full measurement situation, i.e. when all the continuous variables V0, V1,
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off on wiping timeout

Figure 15: Underlying DES of the rear windscreen wiper.

V2, Ω, θ are measured, are given in Table 6. Qualitative mode signatures

are obtained from the Modelica simulation underlying the fault dictionary

method.

In the case study, continuous variable domain partitioning has been

chosen to tackle extreme faults such as a broken coil. It must be noticed

that incipient faults could be addressed by means of a finer partition. The

ability to discriminate incipient faults also relies on the system’s instru-

mentation. As an example, there is no way to detect a change in the motor

resistance since the speed of the wiper cannot be evaluated: there is indeed

no speed sensor and no way to measure the required time for the wiper to

make a forward and backward move.

Figure 15 gives the discrete part of the model, i.e. the underlying DES

M = (Q,T,Σ, q0). This model is obtained from the function specification

data and corresponds to a simplified version of the control embedded in

the software part of the ECU_hab. All the events appearing in Figure 15 are

observable. Figure 16 gives the behavior automaton for the full measure-

ment situation. The corresponding partial diagnoser is given in Figure 17.

Among the tasks of the design stage, one has to derive the CSD of the

system from the structure of its equations. The different components of
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Figure 16: Behavior automaton of the rear windscreen wiper for the full measurement situ-

ation.

State Number= 6
Transition Number= 6

q0,{ }
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Figure 17: Partial diagnoser PDiag(BA(Γ)) for the full measurement situation.
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the system (see Figure 14) and their corresponding structural equations are

described below.

Structural model of the system. Only structural knowledge is required, i.e.

the knowledge of the relations linking the variables and which variables

are involved in which relations.

The battery voltage V0 is considered as an exogenous variable. It must

be explicitely specified by the equation:

f0(V0) = 0. (22)

The wiper motor voltage V1 is related to V0 and K1:

f1(V1,K1, V0) = 0. (23)

The wiper angular speed Ω is related to V1:

f2(Ω, V1) = 0. (24)

and we have the following relation for the wiper position Θ:

f3(Θ,Ω) = 0. (25)

The wiper position opens or closes the second switch SwitchK2 :

f4(Θ,K2) = 0. (26)

The rest sensor receives the V2 voltage signal depending on the positionK2

of the SwitchK2 :

f5(V2,K2, V0) = 0, (27)

and accordingly sends the event σrst to the ECU_hab:

f6(rst, V2) = 0. (28)

45



The ECU_hab opens or closes SwitchK1 depending on the values of the ig-

nition signal ign, the actuator position act, the timeout eot and the rest

position signal rst:

f7(K1, ign, act, eot, rst) = 0. (29)

7.4. Fault scenario

The fault scenario is the following: the wiper motor coil is broken (opened

circuit), the command to move the wiper is sent by the ECU_hab (σact is is-

sued) and the motor is powered but the wiper does not move. Obviously,

the wiper never gets to the rest position and the ECU_hab never receives

the rest position event σrst. We assume that neither the battery nor its wired

connexion are faulty.

7.5. Garage stage

The diagnosis is within the initial ambiguity set:

A0 = {ECU_hab, motor, wiper, rest sensor, SwitchK1 , SwitchK2}

= COMP.

The discrete events are always observable as they are linked to the state

of the ECUs and can be obtained by a reading of the ECU parameters, i.e.

Σo = {σign, σact, σrst, σeot}.

The garage mechanic starts the diagnosis session by measuring the in-

put voltage of the wiper motor: the set of observable variables at iteration

k = 1 is hence X 1
obs = {V1} (cf. Figure 18). Note that X 1

obs induces the

behavior automaton PDiag(B1
A(Γ)) of Figure 198. The system issues the

8As stated previously, the labels of the diagnoser approach are not used and remain

empty.
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Figure 18: V1 observed behavior.

signature-events and the observed event sequence sobs = {σign, σact}. In

particular, the occurrence of the event r0→1
V1

(V1 value transitioning from 0

to 1) in the signal of V1 is a sufficient condition for ro1,2 to be issued.

Step 1: Fault detection and reference mode hypotheses generation. The synchro-

nization of the observed event sequence with PDiag(B1
A(Γ)) (Figure 19)

indicates that the system can be synchronized along the sub-trajectory

[{(q0, .}, {(q0,1, .), (q1, .)}, {(q1,2, .)}, {(q2, .)}] .

This is not a complete trajectory, hence a fault is detected and Q1
ref = {q2}.

Step 2: Diagnosis hypotheses generation. As described in Section 2, this step

relies on the four causal models associated to the system modes. The causal

models of the modes q1 and q2 are given in Figure 20. The dashed arrows

show that the position of the switches SwitchK1 and SwitchK2 activate or

desactivate the influences they point to (e.g. if SwitchK1 is on, i.e. K1 = 1,

then there is an influence from V0 to V1, which happens in mode q2). The

dotted arrows represent influences that are not active in the current mode.
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State Number= 7
Transition Number= 7
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Figure 19: Partial diagnoser PDiag(B1
A(Γ)) for X 1

obs = {V1}.
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Figure 20: Causal models of q1 and q2 (X : OK, X : KO).

sobs does not include σrst, which is supposed to be emitted in q2 by the

rest sensor when SwitchK2 switches, hence rst is labelled KO in q2, which

means that there is a conflict {SwitchK2 , wiper, motor, rest sensor}.

Interlinking temporally the observed events σign, σact and r0→1
V1

as shown

in Figure 18 provides the observed (partial) signatures for every synchro-

nized state of PDiag(B1
A(Γ)) (cf. Figure 21). These signatures must be

compared to the theoretical partial signatures of every mode as given in

Table 5, from which one obtains the labeling of the corresponding vertices

of the two causal models. Q1
ref = q2 and in q2, V1 is labelled OK so the cor-
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Figure 21: Observed qualitative signatures based on V1 at iteration k = 1.

responding test TV1 passes and does not indicate any additional R-conflict.

The R-conflict indicated by the label of rst in q2 leads to:

A1 = {SwitchK2 , wiper, motor, rest sensor}.

Step 3: Test selection. This step relies on the coverage of the tests. These

are given for mode q2 at the iteration 1, i.e. after the test TV1 has passed,

in Table 7. We consider the subtable defined by the components of A1 =

{SwitchK2 , wiper, motor, rest sensor}, which is the ambiguity set. We

have Q(A1) = 4−1
2 = 1.5 and consider the possible next tests TV2 , Tθ and

TΩ. These break the ambiguity set in two ambiguity groups and we have:

• AG(TV2) = {A1
1(TV2) = {rest sensor},

A1
2(TV2) = {SwitchK2 , wiper,motor}},

Q(AG(TV2) = 1
4

1−1
2 + 3

4
3−1

2 = 0.75,

AR(TV2) = Q(A1)−Q(AG(TV2) = 1.5− 0.75 = 0.75;

• AG(Tθ) = {A1
1(Tθ) = {rest sensor, SwitchK2 , wiper},

A1
2(Tθ) = {wiper,motor}},

Q(AG(Tθ) = 3
4

2−1
2 + 2

4
2−1

2 = 0.625,

AR(Tθ) = Q(A1)−Q(AG(Tθ) = 1.5− 0.625 = 0.875;

• AG(TΩ) = {A1
1(TΩ) = {rest sensor, SwitchK2 , wiper},

A1
2(TΩ) = {motor}},
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Table 7: Tests and their coverage for mode q2 at

iteration 1 (TV1 has passed).

TV1 TV2 Tθ TΩ

motor passed 1 1 1

wiper passed 1 1 0

switch K2 passed 1 0 0

rest sensor passed 0 0 0

Q(AG(TΩ) = 3
4

3−1
2 + 1

4
1−1

2 = 0.75,

AR(TΩ) = Q(A1)−Q(AG(TΩ) = 1.5− 0.75 = 0.75.

The test that maximizes ambiguity reduction is Tθ, then the set of ob-

served variables at iteration 2 is: X 2
obs = {V1, θ}. According to Table 5,

the signature-events and the partial diagnoser remain unchanged, as well

as the set of possible reference modes: PDiag(B2
A(Γ)) = PDiag(B1

A(Γ)),

Q2
ref = Q1

ref = {q2}. The signal for θ remains flat at θ = 0, which indicates

that θ is KO. The new conflict in mode q2 implies that the ambiguity set is

reduced to A2 = {motor, wiper}.

The test selection procedure then obviously proposes the test TΩ. Ω is

also found KO, providing another conflict, and leading to A3 = {motor},

leaving the final single component diagnosis ∆ = {motor}.

8. Position of the contribution and related work

The iterative hybrid model based diagnosis method proposed in this

paper refers to two research domains: hybrid model based diagnosis and

test prioritization.
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Hybrid models, in particular the specific class known as switched sys-

tems, represent systems that undergo abrupt changes of dynamics upon

switches. They provide a particularly relevant framework for diagnosis be-

cause discrete fault occurrence can be represented by switching dynamics.

Many methods have hence addressed discrete faults by adding fault modes

to the nominal system model for each discrete fault (Hofbaur and Williams,

2004; Wang et al., 2007; Bayoudh et al., 2008; Benazera and Travé-Massuyès,

2009; Rienmüller et al., 2013). Other methods have addressed parametric

faults like (McIlraith et al., 2000b; Narasimhan and Biswas, 2007b).

In this work, we are interested in those methods that handle the two

kinds of faults in an integrated framework like (Cocquempot et al., 2004;

Daigle et al., 2010; Arogeti et al., 2010; Yu et al., 2012). All these works

make use of fault signatures which differ in the way they are obtained. The

framework of (Cocquempot et al., 2004) is based on a hybrid automaton

and makes use of analytical redundancy relations (ARRs) obtained for ev-

ery automaton state, i.e. every behavioral mode. In a faulty situation, the

satisfaction or violation of the set of ARRs generates a boolean indicator

vector which is the signature of the fault. Mode identification relies on the

concept of discernability, which uses ARRs evaluated with the continuous

measured signals.

(Arogeti et al., 2010) and (Yu et al., 2012) use extensions of ARRs called

Global ARRs (GARRs) (for parametric faults) and Augmented GARRs (for

sensor/actuator faults) that provide a compact representation of ARRs valid

for all modes. They are able to distinguish mode changes from fault occur-

rence thanks to a Mode-Change Signature Matrix (MCSM) which repre-

sents cause-effect relations between mode changes and GARRs.

ARRs, GARRs and AGARRs require the knowledge of the analytical ex-
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pressions describing the continuous behavior of the system in every behav-

ioral mode. In our case, we do not have this knowledge and are constrained

by the fact that only the Modelica simulation models underlying the fault

dictionary method and their structure, i.e. which variables are dependent

and which are not, are available for use. This is why, in our method, the

fault signatures are obtained from the Modelica simulation by interpreting

the output signals qualitatively. This is quite similar to the qualitative sig-

natures of Hybrid Transcend (Daigle et al., 2010). However, our method

differs from (Daigle et al., 2010) in the way mode changes are addressed.

(Daigle et al., 2010) extends signatures with the variables, i.e. effort and

flow, associated to the junctions of the Hybrid Bond Graph used to repre-

sent the system. Like (Cocquempot et al., 2004), rather we use a hybrid

automaton to represent the behavior of the hybrid system and the discrete

automaton is obtained automatically from the ECU specifications. Then

following (Bayoudh et al., 2008; Bayoudh and Travé-Massuyès, 2012), we

enrich this automaton with so-called signature-events that signify signa-

ture changes to finally build a partial diagnoser following diagnosis meth-

ods for discrete-event systems (Sampath et al., 1995). Our diagnoser is

partial because it does not account for all fault modes. It captures the set

of faulty behaviors that are anticipated in the ECU specifications and for

which some alerting or reaction mechanism is implemented. The partial

diagnoser tracks mode changes and either identifies directly a fault mode

or points at the mode(s) whose model(s) must be taken as reference to lo-

calize the fault. Fault localization is achieved by an additional procedure

relying on the structure of the model in the form of a causal graph, which

presents similarities with the Temporal Causal Graph of (Daigle et al., 2010)

but does not require a Hybrid Bond Graph. What is also different is that the
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procedure relies on the logical theory of diagnosis (Reiter, 1987) interpreted

in the causal modeling framework, which allows us to address single and

multiple faults in a unified way (Cordier et al., 2004).

The other domain to which our work refers is Test Prioritization that

can be formulated as the problem of selecting tests or determining a proper

sequence of tests. This domain has also received a lot of attention (Pattipati

and Dontamsetty, 1992a,b; Dick and Faivre, 1993). Solutions to this prob-

lem can be found through heuristic optimization techniques (Li et al., 2007;

Raghavan et al., 1999). Among the standard heuristics is the Information

Gain, relying on entropy, which is based on a theoretical measurement of

the quality of the current diagnosis, the probability of the test passing or

failing, and the quality of the diagnosis if the test passes or fails (de Kleer

and Williams, 1987; Pattipati and Alexandridis, 1990). The performance of

the Information Gain heuristic heavily depends on the precise estimation

of several parameters that are difficult to obtain and are often erroneous,

like false negative test rate, and it requires costly on-line calculations based

on the actual fail/pass results of previously executed tests. Based on the

Information Gain heuristic, some methods, known as Diagnostic Test Pri-

oritization Techniques, have been proposed to maximize the diagnostic in-

formation gain per test and increase the rate at which diagnosis quality

improves (Gonzalez-Sanchez et al., 2011b) but they are still limited by their

complexity. The gReedy diAgnostic Prioritization by ambiguiTy Reduction

(RAPTOR) method (Gonzalez-Sanchez et al., 2011a) stands because it is low

complexity and can be used off-line. It relies on a quite intuitive diagnosis

ambiguity heuristic presented in Section 6.3. In addition to this, RAPTOR

is based on concepts, in particular Tests and Test Coverage, that are eas-

ily matched to the concepts of our causal diagnosis reasoning framework.
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For all these reasons, we selected RAPTOR to implement the test selection

procedure.

9. Conclusion

This paper addresses the problem of diagnosing embedded functions

by a test and diagnose method. The diagnosis method is designed for

hybrid systems and relies on a theoretical framework that merges ideas

from discrete event and continuous systems diagnosis. It does not require

the availability of fault models and can be viewed as a consistency based

method that complements an available fault dictionary method based on

simulation (Modelica model based simulation in our case). The required

additional information is the discrete dynamics automaton (underlying DES

automaton), the causal structure of the reference continuous models and

the abstraction of continuous signals available from the simulation of the

models into qualitative values and events. The diagnosis method is cou-

pled to a test selection procedure that determines the test expected to bring

the best information for discriminating among the diagnostic hypotheses.

The diagnosis ambiguity set is hence reduced in an iterative way towards

the localization of the faulty component(s).

The paper reports the results of experimenting this method on the elec-

tronic function commanding the rear windscreen wiper of a car.

One of the questions often raised about the DES diagnoser method used

in this paper is its complexity, as the number of states is exponential with

respect to the number of states of the underlying DES automaton. In the

proposed approach, the diagnoser as well as the causal graphs are gener-

ated in the design stage and used in the garage. In this context, compu-
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tational or resource constraints are not an issue. On the other hand, the

formalism that we use to represent hybrid systems is not a standard DES

formalism as it proceeds of an aggregation in terms of modes. Particular to

embedded functions is the fact that the functional decomposition generally

leads to quite elementary functions whose associated subsystems’ behavior

shows a quite limited number of operating modes. Hence the diagnoser’s

complexity is drastically reduced. This does not solve however the prob-

lem of modeling all the faults and particularly multiple faults. This is just

what the consistency based diagnosis approach avoids to do and this is

why, among other reasons, it is interesting.

Future work could however consolidate some aspects of the method. In

particular, the abstraction of the continuous signals into qualitative values

that remain invariant when the system is operating within a given operat-

ing mode may not be easy in the general case. In the rear windscreen wiper

case study, this operation is quite obvious and the abstraction is rather intu-

itive. We expect it to be the same for many embedded electronic functions,

however the automatization of this step would be beneficial to the method.
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