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The resource λ-calculus is a variation of the λ-calculus where arguments are

superpositions of terms and must be linearly used, hence it is a model for linear and

non-deterministic programming languages. Moreover, it is the target language of the

Taylor-Ehrhard-Regnier expansion of λ-terms, a linearisation of the λ-calculus which

develops ordinary terms into infinite series of resource terms. In a strictly typed

restriction of the resource λ-calculus, we study the notion of path persistence, and define

a remarkably simple geometry of resource interaction (GoRI) that characterises it. In

addition, GoRI is invariant under reduction and counts addends in normal forms. We

also analyse expansion on paths in ordinary terms, showing that reduction commutes

with expansion and, consequently, that persistence can be transferred back and forth

between a path and its expansion. Lastly, we also provide an expanded counterpart of

the execution formula, which computes paths as series of objects of GoRI, thus

exchanging determinism and conciseness for linearity and simplicity.

Introduction

Geometry of Interaction. The dynamics of β-reduction or cut elimination can be de-

scribed in a purely geometric way — studying paths in some graph representations of

terms or proofs, and looking at those which are persistent, i.e. that have a residual path

in any reduct. The quest for an effective semantic characterisation of persistence sepa-

rately produced three notions of paths: regularity, defined by a dynamic algebra (Girard,

1989; Danos and Regnier, 1995), legality, formulated by topological conditions cycles

(Asperti and Laneve, 1995); consistency, expressed as traces of a token-machine exe-

cution (Gonthier et al., 1992) and developed to study the implementation (Lamping,

1989; Kathail, 1990) of Lévy-optimal reduction (Lévy, 1978). These notions are equiv-

alent (Asperti et al., 1994), and their common core idea — describing computation by

local and asynchronous conditions on routing of paths — inspired the design of efficient

parallel abstract machines (Mackie, 1995; Danos et al., 1997; Laurent, 2001; Pinto, 2001;
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Pedicini and Quaglia, 2007; Dal Lago et al., 2014; Pedicini et al., 2014; Dal Lago et al.,

2015, among others). More recently, the geometry of interaction (GoI) approach has been

fruitfully employed for semantic investigations which characterised quantitative proper-

ties of programs, with respect to both time (Dal Lago, 2009; Perrinel, 2014; Aubert et al.,

2016) and space complexity (Aubert and Seiller, 2014; Aubert and Seiller, 2015; Mazza,

2015b; Mazza and Terui, 2015).

Taylor-Ehrhard-Regnier expansion and resource calculus. Linear logic’s (Girard, 1987)

decomposition of the intuitionistic implication unveiled the relation between the alge-

braic concept of linearity and the computational property of a function argument to

be used exactly once. Such a decomposition enabled a differential constructor and lin-

ear combinations to extend: the λ-calculus into the differential λ-calculus (Ehrhard and

Regnier, 2003); and, more generally, linear logic into the differential linear logic (DiLL)

(Ehrhard and Regnier, 2006b; Tranquilli, 2011). These constructions allow considering

the Taylor expansion of a term (Ehrhard and Regnier, 2008), which rewrites it as an in-

finite series of terms of the resource λ-calculus (RC). It is a completely linear restriction

of the differential λ-calculus, similar to the λ-calculus with multiplicities (Boudol, 1993),

where the argument of an application is a superposition of terms and must be linearly

used. Taylor-Ehrhard-Regnier expansion contains any finite approximation of the head-

normalisation of a term, as evoked by its commutativity with Böhm trees: the expansion

of the Böhm tree of a term is equal to the normal form of its expansion (Ehrhard and

Regnier, 2006a). Approximation of λ-terms have been studied within affine calculi as well

(Mazza, 2015a), and also using paths to guide the very process of linearisation (Alves

and Florido, 2005). Taylor-Ehrhard-Regnier expansion originated various investigations

on quantitative semantics, using the concept of power series for describing program eval-

uation, and has been applied in various non-standard models of computation (Danos and

Ehrhard, 2011; Pagani et al., 2014, for example).

Aim and contributions. How can geometry of interaction and Taylor-Ehrhard-Regnier

expansion interact? What is the GoI for resource calculus? How are paths dynamics re-

lated before and after the expansion? Can we expand β-reduction into an infinite parallel

step of resource reductions? Is there a linear and non-deterministic GoI for the resource

calculus? Can we use it to characterise persistent paths in λ-terms, via expansion? This

paper addresses these questions and recounts the interplay between the two aforemen-

tioned semantic approaches, exploring both directions of their mutual influence.

After having introduced RC (Section 1), we consider the resource interaction nets (RINs),

that are the type-restricted translation of resource terms into differential interaction nets

(Section 2). We then study the appropriate notion of paths (Section 3) in RINs and their

property of persistence, which intuitively is the ability to survive to the graph rewriting

until the normal form. We extend the usual definition to deal with the fact that the

reduct of a term t is a sum of terms t1 + . . . + tn. Also, we observe that every path in

the net-representation of ti has to be a residual of some path in the net of t, and that

the reduction strongly normalises. Thus, we say that a path of t is persistent whenever

it has a residual in at least one of the addends of the reduct of (the net of) t. Restricting
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to the constant type, whose only inhabitant is the value ?, we have t→ ?+ . . .+ ?. Now

there is only one persistent path of ?, the trivial one, therefore we prove that persistent

paths of t are as many as persistent paths of its normal form (Theorem 1).

Furthermore, we define a suitable GoI for RC, in order to characterise persistence (Sec-

tion 4). We define the notion of regularity by rL∗, a monoidal structure simplifying the

dynamic algebra, where exponential modalities (! and ?) become an n-ary variant of the

multiplicatives connectives (resp. ⊗ and `), whose premises are not ordered. Morally,

they are the sum of those generalised multiplicatives we obtain by considering all the n!

permutations of their premises. We weigh paths with objects of rL∗, and then consider

the sum of the weights of all paths in a RIN. What we obtain is the execution formula for

resource nets, which is shown to be invariant under reduction (Theorem 3). Therefore,

the construction provides denotational semantics for RC and of the corresponding logic,

that is a minimal, propositional and promotion-free fragment of DiLL. From invariance

theorem not only we subsume the equivalence of persistence and regularity (Corollary 1),

that is the usual result of GoI constructions, but we also show that the number of ad-

dends in a normal form is equal to the number of regular paths (Corollary 2).

In the last part of the paper, we present proof-nets of the minimal propositional re-

striction of the multiplicative exponential fragment of linear logic (mMELL), where the

typed λ-calculus is encoded. Then we introduce a qualitative variant of Taylor-Ehrhard-

Regnier expansion (Section 5), which maps a proof-net, or a path within it, in an infinite

sum of simple RINs, or of set of paths within them. Since here this sum is idempo-

tent, the expansion is essentially the infinite set. Also, we define a notion of expanded

cut-elimination, a kind of infinite parallel reduction for RINs which reduces together all

redexes that are copied by the expansion (Section 6). The commutativity of the expan-

sion of the reducts and the reduction of the expansion over paths is proved in Theorem 4.

Therefore, the property of being persistent can be transferred along expansion: a path

persists to MELL reduction if and only if there is a path in its expansion which persists to

RIN reduction (Theorem 5). Lastly, we exploit these last results to define a variant of the

execution formula for the λ-calculus based on the GoRI — if we assign to every path π

in a proof-net the infinite sets of rL∗-weights belonging to expansions of π, we obtain an

expanded formula enjoying the properties of our interest: invariance (Theorem 6) hence

characterisation of persistence (Corollary 3).

Related works. A GoI construction for differential interaction nets (DINs) (Ehrhard and

Regnier, 2006b) has already been formulated (de Falco, 2008). Besides the similarities

in the technical setting of DINs, the geometry of resource interaction turns out to be

simpler and more effective, mainly thanks to: (1) the restriction to closed and ground-

typed resource nets, (2) the associative syntax we adopted for exponential links, and (3)

the stronger notion of path we use. The first simplifies the shape of persistent paths,

because it implies that they are palindromes — they first start from the root of the net,

then travel until to a link representing the constant term ?, and finally return to the root

— and unique in every normal net/term. The second simplifies the management of the

exponential links, because it ensures associativity and delimits their dynamics in only

one pair of links, while in De Falco’s work this property was completely lost and the
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system more verbose. In the latter paper, the author uses binary exponential links and

introduces a syntactical embedding of the sum in nets by mean of binary links of named

sums, and then recover associativity with an equivalence on nets. Compared to ours, De

Falco’s choice results in a drastically more complex GoI construction, even though he

suggests possible extensions of his approach with promotion (corresponding to the full

differential λ-calculus) or even additives. The third ingredient allows us to consider full

reduction, i.e. including the annihilating rule, while De Falco studied a “weak” variant,

where that kind of redexes are frozen, and the GoI only characterises the corresponding

notion of “weak-persistence”. Indeed, we restrict to paths that cross every exponential in

the net and prove this assumption not being a limitation, since it is always true, in case

of persistence. Thus whenever t → 0 a path necessarily crosses the annihilating redex,

and the dynamic algebra is able to detect it.

In an inspiring paper (Ehrhard and Regnier, 2006a) Taylor expansion was already shown

to commute with head-reduction normalisation. In particular, the authors proved that

for any ordinary term t, the set of resource terms obtained by expanding the Böhm tree

of t is equal to the set of any non-zero normal form of the expansion of t. Their proof

is based on a operational view on the correspondence with a modified Krivine’s machine

(Krivine, 2007). For simply typed terms, the aforementioned Theorem 4 of this paper

generalises such commutation property to any reduction sequence and to any choice of

strategy, and is more directly formulated and proved on paths.

This paper extends with Section 5-7 a previous work (Solieri, 2015) by the author, who

is grateful to Michele Pagani and Stefano Guerrini for their advice, to Lionel Vaux and

Laurent Regnier for interesting discussions, and to anonymous reviewers of this paper

for numerous comments and suggestions.

1. Resource calculus

The resource calculus (RC) is, on one hand, a linear and thus finitary restriction of the λ-

calculus: in the application t S the function tmust use exactly once each s belonging to the

multiset of arguments S, i.e. s cannot be duplicated nor erased, so every reduction enjoys

strong normalisation. On the other hand, RC adds non-determinism to such restriction

of the λ-calculus, since arguments are now finite multisets of ordinary terms. Therefore,

the reduct of t S is defined as the superposition, i.e. a sum, of all the possible ways of

substituting each s ∈ S. In particular, the number of arguments provided to a function

can be insufficient or excess the function’s request, i.e. the number of occurrences of the

variable bounded by the abstraction under consideration. In this case, computation is

deadlocked and the application reduces to 0.

In this section until in Subsection 5.1, where we present proof-nets of the minimal

propositional fragment of MELL (mMELL), we shall avoid to repeat the “resource” naming

of terms, interaction nets, reduction, paths and and other notions that are identically

named in the two systems.

Definition 1 (Syntax). Let V be a denumerable set of variable symbols x, y, z, . . ..

Then, the set ∆ of simple terms and the set ∆! of simple polyterms are inductively and
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mutually generated by the following grammars.

∆ : M ::= ? | V | λV.M |M B ∆! : B ::= 1 | [M] | B · B (1)

Where ? is the constant dummy value, 1 is the empty multiset, brackets delimit multisets,

and · is the multiset union (associative and commutative, has 1 as neutral element). So

that ([x]·1)·[y] = [x, y] is a simple polyterm. Simple terms are denoted by lowercase Latin

letters s, t, u, . . ., polyterms by uppercase S, T, U, . . .. The set N〈∆〉 of terms (resp. the

set N〈∆!〉 of polyterms) is the set of linear combinations of simple terms (resp. polyterms)

having coefficients in the semiring of natural numbers N . We also assume all syntactic

constructors of simple terms and polyterms to be extended to sums by (bi-) linearity, i.e.

to commute with sums. E.g., a non-simple term could be written as (λx.(2x+y))[z+ 4u]

to mean: 2(λx.x)[z] + 8(λx.x)[u] + (λx.y)[z] + 4(λx.y)[u].

Definition 2 (Reduction). A redex is a simple term of the form (λx.s)T . Let the i-th

free occurrence of x appearing in s to be uniquely indexed with a natural number as x@i,

with 1 ≤ i ≤ for m being the number of occurrences. The reduction is the relation →
between polyterms obtained by the context closure and the linear extension to sums of

the following elementary reduction rule.

(λx.s) [t1, . . . , tn]→


∑

σn∈Sn

s {t1/x@σn(1), . . . , tn/x@σn(n)} if n = m

0 if n 6= m

(2)

Where Sn denotes the set of permutations over the set {1, . . . , n}, and {t/x} is the usual

capture-avoiding substitution.

Notation 1 (Rewriting). We fix some quite usual notational conventions employed

for rewriting notions. Given a rewriting relation → on a set A, the symbols →+ and

→∗ respectively denote the transitive and the transitive-reflexive closures of →. Given

a, a′ ∈ A, if a→ a′ (resp. a→∗ a′) we say that there is a rewriting step (resp. sequence)

from a to a′. Also, if a sequence is made of k steps, we write →k. We write a 6→ and say

that a is a normal form, when there exists no a′ such that a → a′. If a →∗ a′ 6→, then

we say that a′ is a normal form of a; if a′ is unique†we also write NF(a) = a′. Reduction

steps are named with Greek letters ρ, σ, τ, . . ., and sequences with barred letters, so that

we can denote the reduct of a with respect to a step ρ (resp. a sequence ρ̄) as ρ(a) (resp.

ρ̄(a)).

Example 1. Let I = I ′ = λx.x@1 and also let t = λf.f@1[f@2[?]], where occurrences of

† It is the case for all reductions we consider here. See Proposition 1 and 2.
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f have been subscripted in order to distinguish them. Then we have:

t[I, I ′]

→ f1[f@2[?]]{I/f@2, I
′/f@2}+ f1[f@2[?]]{I/f@2, I

′/f@1}
= I[I ′[?]] + I ′[I[?]]

→2 I ′[?] + I[?]

→2 2?

= NF(t[I, I ′])

Note also a case of annihilation in t[I] → 0. Finally, observe that if s = (λx.?)T → ?

then T must be 1 (otherwise s→ 0).

Proposition 1. Resource reduction is confluent and strong normalising (Pagani and

Tranquilli, 2009; Ehrhard and Regnier, 2003).

2. Resource nets

From an operational point of view, a net can be seen as a graphical, finer representation

of typed terms by means of a syntax extending linear logic proof-nets, where negative

exponential links have a symmetrical dual. From a proof-theoretic point of view, a net is

a proof of a minimal, propositional, promotion-free fragment of differential linear logic

(Ehrhard and Regnier, 2006b). Our presentation of resource nets employs a concise syn-

tax (Mazza and Pagani, 2007) which belongs to the tradition of the so-called nouvelle

syntaxe for linear logic proof-nets, and many technical solutions are inspired by Tran-

quilli’s careful work (2001) on the more general setting of differential nets, that includes

also promotion rule and boxes.

2.1. Pre-nets

Definition 3 (Links). Given a denumerable set of symbols called vertices, a link l is

a triple (P,K,C), where: P is a sequence of vertices, called premisses; K is a kind, i.e.

an element in the set {F,(,(̄, !, ?}; C is a singleton with a vertex, called conclusion,

disjoint from P . A link l = ((u1, . . . , un), κ, {v}) will be denoted as 〈u1, . . . , un (κ) v〉,
or depicted as in Figure 1. We shall also write P (l), K(l) and C(l) to denote the three

components of l. When v ∈ P (l) ∪ C(l) for some vertex v and link l, we write that v is

connected by l, or simply that v ∈ l. The arity of a link l is the length of its premisses’

sequence, and as shown in Figure 1, it is determined by K(l) when it is different from !

and ?, which instead have arbitrary finite arity. Links of these last kinds are exponential

links, and are respectively called co-contraction and contraction or, when their arity

is 0, co-weakening and weakening. In the same figure it is shown that l assigns to its

connected vertices a polarity, that is one of the two elements in {in, out}, where each one

is said to be the opposite of the other. By extension, the polarity of a link is that of its

conclusion. In graphical representations, vertices of a link shall be placed following the

usual convention for λ-calculus graphs (outs on the top, and ins on the bottom); exiting

arrows mark conclusions vertices, while premisses have entering ones.
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F

vout

〈(F) vout〉

(

vout

uin
2uout

1

〈uout
1 , uin

2 (() vout〉

(̄

uout
2
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〈uin
1 , u

out
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!

vout
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1 uin
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. . .
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1 , . . . , u
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n (! ) vout〉

?

uout
1 uout

n

vin

. . .

〈uout
1 , . . . , uout

n (?) vin〉

Fig. 1: Links: kind, arity and polarity associated to vertices, in both graphical and

textual notations

Definition 4 (Types). A type is a word of the grammar given by T ::=F | E( T and

E ::= !T, where F is the only ground type. A typing function T is a map from vertices of

a link to types. If l = 〈u1, . . . , un (K(l)) v〉 is a link, and A,B are types, then T respects

the following constraints.

— If K(l) =F, then T (v) =F.

— If K(l) = ( or (̄, then T (v) = A(B with A = T (u1) and B = T (u2).

— If K(l) = ? or !, then T (v) = !A, where A = T (ui) for all 1 ≤ i ≤ n.

Definition 5 (Pre-nets). A simple pre-net P is a triple (V,L, T ), where V is a set of

vertices, L is a set of links and T a typing function on V , such that for every vertex

v ∈ V the followings holds:

1 there are at least one and at most two links l, l′ such that l 3 v ∈ l′, and when there

is only one, then v is called a conclusion of P;

2 the set C(P) of conclusions contains exactly one vertex u with out polarity, and if u

is the unique element of C(P) then P is called closed ;

3 if l 3 v ∈ l′, then l, l′ associate opposite polarities to v; in particular, v is called a cut

when C(l) = v = C(l′), and an axiom when P (l) 3 v ∈ P (l′).

We shall also write V (P) and L(P) to denote the first and second component of P,

respectively. The type of a pre-net P is the type T = T (v), where v ∈ C(P) of out

polarity, written P : T . The interface I(P) of a simple pre-net P is the set, for all

v ∈ C(P), of the ordered pair (T (v), p) where p is the polarity of v. A pre-net P of

interface I is a linear combination c1P1 + . . .+ cnPn of simple pre-nets on the semiring

N where for any 1 ≤ i 6= j ≤ n, we have: V (Pi) ∩ V (Pj) = ∅ and I(Pi) = I. We shall

simply use 0 to denote each of the empty sums of pre-nets having the same interface I, for

every interface I. Two simple pre-nets P,Q are equal when there exists a type-preserving

isomorphism ' such that P ' Q. Let P = c1P1 + . . .+cnPn and Q = d1Q1 + . . .+cmQm
be two pre-nets. We say P = Q when there is a bijection ∼ between the non-zero addends

of P and those of Q such that if ciPi ∼ djPj , then ci = dj and Pi ' Qj .

2.2. Term translation and net reduction

As in the usual translation of the simply typed λ-calculus into MELL proof-nets (Girard,

1987), the(-link is used to translate λ-abstraction, the (̄-link for application, and the
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L?MΓ =
F

v

Lx@iMΓ = Γ(x@i)

Lλx.tMΓ = LtMΓ

(

v

?

u1

u2

w1 . . . wn

L[s1, . . . , sn]MΓ =

Ls1MΓ . . . LsnMΓ

!

v

u1 . . . un

w1 . . . wn z1 . . . zn

Lt SMΓ =

LtMΓ LSMΓ

(̄

v

u w

y1 . . . yn z1 . . . zn

JtKΓ =

LtMΓ

w

? ?

v1 vl

. . . . . .

. . .

u11
u1j ul1 ulk

Fig. 2: Pre-translation and translation of simple terms into simple nets.

?-link for contracting together all the occurrences of the same variable. In addition, we

use !-link for polyterm and formal sum of nets for. . . formal sum of terms.

Definition 6 (Term translation). Let t be a simple term, and Γ an injection between

the variable occurrences in t and a set of vertices V ′. The translation JtKΓ is a pre-net

whose vertices is a superset of V ′ and that is defined in Figure 2. The actual work is

performed by the pre-translation of t, denoted as LtMΓ, which goes by induction on the

syntax of t; while the final step only adds a ?-link linking all occurrences of a given free

variable x, for all free variables of t. Since the choice of Γ produce no change in the

translation, we shall omit to specify it. Moreover, a linear combination of simple terms is

translated as the same linear combination of their translation, i.e.: Jc1t1 + . . .+ cntnK =

c1Jt1K + . . .+ cnJtnK.

Remark 1. A pre-net translation is always defined for simple terms while it is not

for general terms, because of possible incompatibilities in the interfaces of translated

addends.

Definition 7 (Resource permutations). Given a simple pre-net P, a resource per-

mutation σP is a function from the set of !-links in P, to
⋃
n∈N Sn, where Sn is the

group of permutations over the set {1, . . . , n}, such that: if a !-link l has arity m, then

σ(l) is an element σm of Sm. We shall write σl for σP(l) and denote the set of resource

permutation of P as SP .

Definition 8 (Contexts, redexes and reduction). A simple context C[ ] is a simple

pre-net containing exactly one hole-link, i.e. a link with arbitrary arity, polarity and

types. A context C[ ] is the sum of a simple context C and a pre-net P . The interface

of the hole link is called the internal interface of C[ ]. Given P a simple pre-net and C[ ]

a simple context with hole link h, the substitution of the former in the latter, written

C[P], is defined whenever the interface of P is the same as the internal interface of

C[ ] by replacing P for h. The substitution of non-simple nets is the extension to linear

combinations: C[0] = 0, and C[cP + P ] = c C[P] + C[P ]. Finally, given a non-simple

context C[ ] = C[ ] + P , we define C[P] = C[P] + P .

Recall that a vertex w in a simple pre-net is a cut if it the conclusion of two links l, l′. The
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(

(̄

u

u′

v
v′

w → · v′≡u′

· v≡u

?

!

v1 . . . vn

u1 . . . um

w n=m−−→
∑

σn∈Sn

· v1≡vσn(1) . . . · vn≡vσn(n)0
n 6=m←−−

Fig. 3: Cut elimination rules: linear implication and exponential.

redex of w is the pair l, l′. The reduction → is the graph-rewriting relation on pre-nets

defined by closing with respect to contexts the relation given by the two rules in Figure 3,

which maps simple pre-nets into pre-nets. Namely, if according to that figure P → P
(where P may be a simple net), then C[P] → C[P ], for any context C[ ]. In Figure 3,

[v≡ u] denotes the fact that the two vertices v, u have been equated. Other notational

conventions have been previously fixed in Notation 1.

Definition 9 (Resource interaction nets). Let t ∈ N〈∆〉 and JtK→∗ N , for a pre-net

N = c1N1 + . . .+ cnNn. Then each Ni is called a simple net and N a net.

Proposition 2. Net reduction simulates term reduction and strongly normalises. (Tran-

quilli, 2011, on the promotion-enabled generalisation of RINs and RC).

Example 2. Consider δ = λx.x@1[x@2] and notice JδK is not defined, because of the

lack of adequate typing function. Recall the terms I = λx.x@1 and t = λf.f@1[f@2[?]]

from Example 1; we now explain Figure 4, which shows the translations of these terms

as nets, and provides an example of net reduction. On the left extremity: JIK is closed

and JIK : !?( ?. On the middle left: N : ? is not a translation of a term, but it is a net,

because Jt[x, y]K→ N by eliminating a linear implication cut. Also, N is not a closed net,

because it has three conclusions: v1, z1, z2. On the right side: an exponential reduction

step involving index permutation, that rewrites N as a sum of two normal simple nets.

In order to stress the fact that addends do not share vertices, those of the rightmost

addend have been labelled differently from the leftmost one. Observe the reduct is equal

to Jx[y[?]] + y[x[?]] K.
Consider Jλf.f@1[f@2[?]][I, I]K, that is a closed net of type ?, and observe the reduct

M of the only linear implication cut that is depicted in Figure 5 (with the same vertex

notation as before). The normalisation requires: one exponential step (on the left), two

linear implication steps per addend (on the right), and finally two other exponential steps

per addend (omitted) to reach the net 〈(F) v1≡v8〉+ 〈(F) v′1≡v′8〉 = J2?K.

3. Paths

3.1. Path statics

We introduce some basic definitions about paths, where the most notable characterise

those where the computation is visible (straightness) in its entirety (maximality and
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N =JIK =

(

w1

?

w2

w3

v1

(̄

!

(̄

?

!

!

F

z2 z1

v2

v4

v5

v6
v7

v3 v8

→

v1

(̄

!

(̄

!

F

v2≡z2 v6≡z1

v4

v5

v7

v8

+

v′1

(̄

!

(̄

!

F

v′6≡z′2 v′2≡z′1

v′4

v′5

v′7

v′8

Fig. 4: Example: nets and reduction.

(

?

w2

w3

(

?

z2

z3

v1

(̄

!

(̄

?

!

!

F

v2

v4

v5

v6
v7

v3 v8

w1
z1

→

(

?

w2

w3

(

?

z2

z3

v1

(̄

!

(̄

!

F

v2≡w1

v4

v5

v6≡z1 v7

v8

+

(

?

w′2

w′3

(

?

z′2

z′3

v′1

(̄

!

(̄

!

F

v′2≡z′1

v′4

v′5

v′6≡w′1 v′7

v′8

→4

v1≡w2

?

!

?

!

F

w3≡v4

v5≡z2

z3≡v7

v8

+

v′1≡z′2

?

!

?

!

F

z′3≡v′4

v′5≡w′2

w′3≡v′7

v′8

Fig. 5: Example: nets reduction. Rightmost reduction is made of four steps, two on

each addend.

comprehensiveness). This last notion is the only substantial difference with respect to

the classic restrictions for paths in proof-nets (Danos and Regnier, 1995). A superficial

technical difference is the choice of using concatenation instead of composition as the

basic relation on paths.

Definition 10 (Path). Given a simple net N , two vertices u,w ∈ N are connected, if

there is a link l ∈ N s.t. u,w ∈ l. A path π = (v1, . . . , vn) with n > 0 in N is a sequence

of vertices s.t. for all i < n, the vertices vi, vi+1 are connected. We call π trivial if its

length is 1, atomic if it is 2, and remark that in the latter case π crosses exactly one link.

If π crosses consecutively the same link l, then π is called bouncing. If l is not a ?-link

and π crosses l through vi, vi+1 such that vi, vi+1 ∈ C(l) or vi, vi+1 ∈ P (l), then π is

twisting. When π is not bouncing nor twisting, π is straight. Moreover, π is maximal if

there is no other path π′ ∈ N s.t. π ⊆ π′, where ⊆ is the inclusion ordering on sequences.

Also, π is comprehensive when it crosses all the premisses of all the exponential links.

Finally if π is both straight and maximal, then π is an execution path. In a net N , we
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denote with P(N ) the set of straight paths in any simple N addend of N , while PE(N )

is the set of execution paths, and PEC(N ) is the set of comprehensive execution paths.

Given π = (v1, . . . , vn) and φ = (u1, . . . , um) in P(N ), we denote the reversal of π by

π† = (vn, . . . , v1). If vn = u1 then the concatenation of φ to π is defined as π :: π′ =

(v1, . . . , vn = u1, . . . um). If π ∈ P(N ) and φ ∈ P(M), we say π = φ when N = M
and, if ' is the isomorphism such that N 'M, then vi ' ui, for any 1 ≤ i ≤ n = m.

Example 3. Recall the nets discussed in Example 2 and observe again Figure 4. Consider

the net JIK and the path φ = (w1, w2, w3), which is straight and also maximal. Moreover,

PE(JIK) = {φ, φ†}. Notice that in N the paths (v1, v4) and (v1, v2, v1) are not straight

— the former is twisting, while the latter is bouncing. What about PE(N )? If we start

from v1 we find two paths seeking for the head variable: π1 = (v1, v2, v3, z1) and π2 =

(v1, v2, v3, z2). Both π1, π2 are straight and maximal, thus execution, but they are not

comprehensive, since they do not cross v4 nor v7.

3.2. Path dynamics

With the notions just introduced we now define the property of path persistence, that

intuitively means “surviving cut-elimination”. We first inspect the action of reduction on

paths, and isolate the notion of residual of a given path with respect to a given reduction.

We shall go by induction on its subpaths that pass through a given redex, called crossings,

and say that the residual(s) of a path are obtained by the substitution of the crossing

with its residual(s), that are the images of reduction as naturally induced by the graph-

rewriting. The case of linear implication is straightforward, because the rewriting is local

and we only have to ensure that a path does not partially belong to the redex. The case

of exponentials is instead more delicate, because the rewriting is global: a simple net is

rewritten as a sum of simple nets, hence a path may be duplicated in several addends

or destroyed. Which addends contain the residual(s) of a given crossing of the redex?

If the reduction of an exponential redex R rewrites the simple net to which it belongs

as the empty sum, then also the residual of the crossing is 0. Otherwise, the reduction

rewrites the net as a sum of simple nets where any crossing always has a residual (cf.

Definition 8). But two crossings of R within a path may have residuals in different simple

nets created by the reduction, each one obtained from a fixed permutation of premisses

to substitute R. Therefore, the residual of a path is a sum of paths, morally varying on

the set of permutations they are allowed to follow.

Definition 11 (Crossing). Given a net N and a reduction ρ on a redex R, we say a

path π ∈ P(N ) is long enough for R when neither its first nor its last vertex is the cut

vertex in R. A crossing of R is a maximal sub-sequence of π entirely contained in R.

If π is long enough for R, we can express π in the redex crossing form of π for R, i.e.

RCFR(π) = π0 :: χ1 :: π1 :: . . . :: χk :: πk, where for any 1 ≤ l ≤ k, the sub-path χl is a

crossing of R.

Definition 12 (Linear implication residual). Let N be a net where χ ∈ P(N ) is a

crossing of a linear implication redex R. Suppose R as in the leftmost redex of Figure 3,
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and let ρ be the reduction step on R. Then the residual of χ with respect to ρ, is defined

as follows and by the rule ρ(χ†) = (ρ(χ))†.

ρ((v, w, u)) = (v) (3)

ρ((v′, w, u′)) = (v′) (4)

ρ((v, w, u′)) = 0 (5)

ρ((v′, w, u)) = 0 (6)

Let π ∈ P(N ) such that RCFR(π) = π0 :: χ1 :: π1 :: . . . :: χk :: πk. Then:

ρ(π) =

{
π0 :: ρ(χ1) :: π1 :: . . . :: ρ(χk) :: πk if for any i, ρ(χi) 6= 0

0 otherwise
(7)

Fix definition

Definition 13 (Exponential residual). Let N be a net where χ ∈ P(N ) is a crossing

of an exponential redex R. Suppose R as in the rightmost redex of Figure 3, and let ρ

be the reduction step on R and σn ∈ Sn. The residual of χ with respect to ρ and σn is

defined as follows and by rule ρ(χ†) = (ρ(χ))†. For any 1 ≤ i ≤ n, and 1 ≤ j ≤ m:

ρσn((vi, w, uj)) =

{
(vi) if n = m, and σn(i) = j,

0 if n 6= m, or σn(i) 6= j;
(8)

where in V (ρ(R)) we have that vi ≡ uσn(i). Now, similarly to the last definition, given

π ∈ P(N ) such that RCFR(π) = π0 :: χ1 :: π1 :: . . . :: χk :: πk, we define the residual of

π with respect to σn:

ρσn(π) =


π0 :: ρσn(χ1) :: π1 :: . . . :: ρσn(χk) :: πk if n = m, and

for all 1 ≤ l ≤ k, ρσn(χl) 6= 0;

0 otherwise.

(9)

Notice that ρσn(π) may be 0 even if k = 0, i.e. when π does not cross R. Finally, we can

define the residual of π as the sum of all the residuals, for any σn:

ρ(π) =
∑

σn∈Sn

ρσn(π). (10)

Definition 14 (Reduction and persistence). For a given reduction step ρ, the path

reduction function w.r.t. ρ is the function, written ρ, that maps a path π in N to the

residual of π, i.e. a sum of paths in ρ(N ). If ρ(π) 6= 0, then π is persistent w.r.t. ρ. If,

for every reduction sequence ρ̄ = (ρ1, . . . , ρm), and for every 1 ≤ i ≤ m, the path π is

persistent w.r.t. ρi, then π is persistent.

Example 4. Recall the nets discussed in Example 2 and let ρ be the reduction illustrated

in Figure 4, where we will denote by Nl and Nr the left and right addend of the reduct,

respectively. Observe the execution paths π1 = (v1, v2, v3, z1) and π2 = (v1, v2, v3, z2),

mentioned in Example 3. Both are persistent, since: NF(π1) = π1r = (v1, v2 ≡ z1) and

NF(π2) = π2l = (v1, v2 ≡ z2). Remark also that π1, π2 cross the exponential redex dif-

ferently, and they do not belong to the same addend of the reduct, for π1r ∈ Nr, while

π2l ∈ Nl. Also, if we begin with the in conclusion z1, which morally represents a free
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variable, we find straight paths that search for the argument to be substituted there, even-

tually reaching the out conclusion. Consider π3 = (z1, v3, v2, v4, v5, v6, v3, z1). It crosses

the same exponential redex with two crossings, namely (z1, v3, v2) and (v6, v3, z1), that

are incompatible since they belong to different permutations. Therefore π3 not persistent,

as it morally uses the same variable twice, for both the applications in N .

Fact 1. Straightness, maximality and comprehensiveness are preserved by reduction.

3.3. Comprehensiveness and bijectivity

The persistence property of a path naturally implies that it travels only through vertices

whose links morally contributes to the normalisation — a persistent path cannot cross

(co-)weakenings‡. Therefore, if we restrict ourselves to closed nets of constant type, we

obtain a stronger property: a persistent execution path travel through all vertices of the

net that are not conclusions of a 0-ary exponential links. Despite what the creation of

sums may suggest at a first glance, RINs do not allow for duplication of paths: the set

of persistent ones are intuively splitted from the simple net containing the redex into

the addends created by the reduction. We shall show indeed that path reduction for any

step ρ induces a bijection between the persistent paths of a net N and those of ρ(N ).

To prove these two facts, we first explicit in the next lemma an expected property: the

alternation between multiplicative and exponential operators that lies in the grammar of

types has a natural and graphical counterpart in links of nets.

Lemma 1. In a closed net, a non-cut vertex v is the conclusion of an exponential link

if and only if v is the first premiss of multiplicative link.

Proof. Given Definition 9 of nets, we proceed by induction on the length of the reduc-

tion sequence ρ̄ : JtK→∗ N , for some term t.

1 Base. Suppose |ρ̄| = 0. Observe first, that the syntax of terms (Definition 1) and the

typing constraints (Definition 4) of their translation into nets (Definition 6), forces

JtK to have the out conclusion r typed either with ? or with(, otherwise t would be

a polyterm, contradicting the hypothesis. Therefore, a vertex that is the conclusion

of an exponential link or the first premiss of a multiplicative one, cannot be r, nor

any another in conclusion of JtK, because, since JtK is closed, there are not. Secondly,

an immediate verification of the definition of translation shows that the statement

holds for JtK, since: a (-link and a ?-link are introduced when pre-translating an

abstraction; a (̄-link and a !-link are introduced when pre-translating an application

and the polyterm; and in both cases the statement holds.

2 Step. Suppose |ρ̄| > 0 and let ρ = ρ′ρ̄′′, for some reduction sequence ρ̄′′, and for some

step ρ′ of our interest acting on a redex R. For any z /∈ R the inductive hypothesis

‡ The remark can be generalised also to GoI constructions for non-linear calculi, such as the ordinary
λ-calculus or MELL proof-nets, where an abstraction with no occurrences of the bound variable may

erase its argument, or a weakening may erase the box that is cut with.
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(IH) is trivially preserved. So let us focus on R and distinguish two cases depending

its type.

(a) T (R) = (/(̄. Let R = 〈u, v (() w〉, 〈u′, v′ ((̄) w〉. By IH, since v and v′ are

the first premisses of two multiplicative links, they must be conclusions of a ?-

and a !-link, respectively. Now, in ρ′(R) we have the vertex v≡v′, where the claim

trivially holds since it is a cut.

(b) T (R) = !/?. Let R = 〈v1 . . . vn (?) w〉, 〈u1 . . . um (! ) w〉. If n 6= m then ρ′(R) = 0

and there is nothing to prove, so let us assume otherwise. We show that no vertex

z in R can satisfy any of the two statements whose co-implication is claimed.

i If z = w, then it is a cut. Moreover, z cannot be the premiss of any link, since

in R there are already two links connected to z, (cf. Definition 5, item 1).

ii If z = vi (or z = ui) for some 1 ≤ i ≤ n, then we observe that it cannot be the

conclusion of an exponential link l, nor the first premiss of a multiplicative link

l′, since it would violate the typing constraints. Indeed, it must be the case that

T (z) = !A, where either A = T (x) and x is any premiss of l, or !A( B = T (y)

and y is the conclusion of l′. This would require that T (w) = !!A, which does

not belong to the grammar of types (cf. Definition 4).

Lemma 2. In a closed net N : ? any persistent execution path is comprehensive.

Proof. We shall prove a stronger statement: given a persistent path π ∈ PE(N ), a

vertex v /∈ π if and only if there exists a (co-)weakening l such that v ∈ C(l).

— The “if” direction of the claim follows from a mere observation of the Definition 10 of

execution paths. If π includes a conclusion of a (co-)weakening, then π is necessarily

bouncing or non-maximal, in both cases contradicting the hypothesis that π is an

execution path.

— In order to prove the “only if” part of the claim, let us first recall that, by Definition 9,

for any simple netN ′ there exists a term such thatN ′ either appears in its translation,

or in some of its reducts. We now go by induction on a sequence (ρ̄)−1 of expansions

(or an anti-sequence of reductions) from NF(N ) back to N = JtK, for some term t. If

NF(N ) = 0 there is nothing to prove, so we shall assume it to be non-zero.

1 Base. Suppose |ρ̄| = 0. Then NF(N ) = N = JtK. Therefore t = ?, because the

only closed term whose translation is normal with respect to net reduction is ?.

Then N = 〈(F) v〉, and PE(N ) = {(v, v)}, hence the claim.

2 Step. Suppose |ρ̄| > 0. Let ρ : N → N ′ and N ′ →∗ NF(N ). Also, let R be the

redex eliminated by ρ, and C[ ] its context. We then distinguish two sub-cases

depending on the type of R.

(a) T (R) = (/(̄. Suppose N ′ to be an addend of N ′ containing the vertices

v≡v1≡v2 and u≡u1≡u2, and assume N to be the addend of N containing

u, v. Let the expansion step be the following, which introduces the distinct

vertices v1, v2, u1, u2, w.

N ′ = C[u1≡u2, v1≡v2] ← C[〈u1, v1 (() w〉, 〈u2, v2 ((̄) w〉] (11)
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We firstly assume that π ∈ N ′, because otherwise π is unaffected and the

IH would be trivially preserved. Now v1, v2 are second premisses of the cut

links, therefore, as established by Lemma 1, they cannot be the conclusion of

a (co-)weakening, and consequently neither v can. Hence, by IH, v ∈ π and it is

enough to observe, by Definition 12, that also v1, v2 ∈ ρ−1(π). Let’s now discuss

u. Observe first that, since u1 and u2 are first premisses of multiplicative links,

we know from Lemma 1 that they both must be conclusion of exponential

links. Therefore, and by definition of reduction, u has to be an exponential

cut. We distinguish two sub-cases.

i If u /∈ π, then by definition of path reduction, u1, u2 /∈ ρ−1(π). Moreover,

by IH we have that u the conclusion of a weakening or a co-weakening link.

A If u is the conclusion of a weakening, then observe that the co-contraction

whose conclusion is u must have arity 0. Otherwise, the reduction of u

would rewrite N ′ as 0, contradicting the persistence hypothesis for π.

B If instead u the conclusion of a co-weakening, then, dually with respect to

the previous case, and for the same reductio ad absurdum, the contraction

that has conclusion in u must have arity 0.

Hence, in both cases u is a cut between 0-ary exponentials, which by def-

inition of reduction implies that u1, u2 are respectively conclusions of a

weakening and a co-weakening link.

ii Otherwise, u ∈ π. Then again by inspection of Definition 12, we verify that

u1, u2 ∈ ρ−1(π).

(b) T (R) = !/?. If the expansion affects no addends, i.e. if the reduction rewrites as

0 a simple net in N ′, then π is unaffected, since we assumed it to be persistent,

and IH is trivially preserved. Otherwise, the arity of the two exponential links

are equal, so let ρ be as follows.

C
[ ∑
σn∈Sn

v1≡uσn(1), . . . , vn≡uσn(n)

]
← C [〈v1, . . . , vn (! ) w〉, 〈u1, . . . , un (?) w〉] (12)

i If n = 0, and the reduct of the redex is empty, then trivially π cannot not

cross it. Nor can cross the redex, since the redex is made by a wakening and

a co-weakening link, and we supposed π maximal and persistent.

ii If n > 0, then let σn ∈ Sn and consider the vertex vi≡uσn(i). Notice that it

cannot be the conclusion of a 0-ary exponential link. By contraposition, sup-

pose otherwise and notice that, by definition of typing, in the reducendum

we would have T (vi ≡ vσn(i)) = !A for some type A. This would absurdly

imply T (w) = !!A, that is not a valid type. Not being a (co-)weakening con-

clusion, by IH we have that vi≡uσn(i) ∈ π. To conclude it is then sufficient

to observe that by definition of reduction, either (vi, w, vσn(i)) or its reversal

belong to ρ−1(π).
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Theorem 1. For any closed net N : ?, every reduction step ρ induces a bijection between

execution paths in N that are persistent to ρ and those in ρ(N ).

Proof. Let π ∈ PE(N ) be persistent to ρ, letR the redex of ρ, and supposeRCFR(π) =

π0 :: χ1 :: π1 :: . . . :: χk :: πk. There are two reduction rules possibly used by ρ.

1 T (R) = (/(̄. Because of the persistence of π to ρ, and by the definition given by

Equation 7, we have χl 6= 0, for all 0 ≤ l ≤ k, and ρ(π) = π0 :: ρ(χ1) :: π1 :: . . . ::

ρ(χk) :: πk. Then, if ρ is as in Figure 3, the bijection is given as follows:

(a) χl = (v, w, u) if and only if ρ(χl) = (v);

(b)χl = (v′, w, u′) if and only if ρ(χl) = (v′).

Such a bijection holds between χl and ρ(χl), so we also have a bijection between π

and ρ(π).

2 T (R) = !/?. Suppose the redex R being as in Figure 3. Because of the persistence of π

to ρ, and by the definition given by Equation 9 and 10, it must be the case that n = m

and that there exists a permutation σn ∈ Sn such that for all 0 ≤ l ≤ k, we have

ρσn(χl) 6= 0. Moreover, by Lemma 2, π is comprehensive, which in particular means

that vi, uj ∈ π for any 1 ≤ i, j ≤ n. Hence, for any 1 ≤ i ≤ n there exist 0 ≤ l ≤ k

and 0 ≤ j ≤ n such that χl is either (v1, w, uj) or its reversal. In both cases, by

Equation 8, it must be the case that σn(i) = j so that ρσn(χl) = (vσn(i)≡uj). This

means that σn is unique, and for any other σ′n we have ρσ
′
n(π) = 0. We then obtained

a one-to-one correspondence between π and ρ(π).

3.4. Confluence and persistence

Since reductions on both RC and on RINs enjoy local confluence, the property is easily

verified also on path reduction. This implies that persistence of a path with respect to a

normalisation sequence is a sufficient condition for its general persistence.

Lemma 3. Let N be a resource net and let π ∈ PE(N ). For any two reduction steps

ρ, σ on N , there exist two sequences ρ̄, σ̄ such that ρ̄(σ(π)) = σ̄(ρ(π)).

Proof. Let R,S be the respective redexes of ρ and σ, and let N ,M be the simple nets

to which R,S respectively belong.

1 If N 6= M, then let N = M + N +M. By Definition 8 of reduction, ρ(N ) =

M+ ρ(N ) +M and σ(N ) = M+N + σ(M). Therefore R ⊂ σ(N ) and S ⊂ ρ(N ).

Let ρ̄ be the reduction step acting on R within σ(N ) and let σ̄ be that on S within

ρ(N ). We immediately obtain that ρ̄(σ(N )) = M + ρ̄(N ) + σ(M), and σ̄(ρ(N )) =

M + ρ(N ) + σ̄(M), which are equal as claimed.

2 If N =M, then consider the partitioning of π obtained by iteratively isolating: first

the longest prefix π′ which does not cross S, then the longest prefix π′′ which does

not cross R.

π = π′1 :: π′′1 :: . . . :: π′h :: π′′h (13)

By definition of reduction, R,S are disjoint, i.e. if R 3 v ∈ S then I(R) 3 v ∈ I(S).
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This means that π′i, π
′′
i , for any 1 ≤ i ≤ h, are long enough respectively for R,S.

Therefore, we can highlight RCFR(π′i) and RCFS(π′′i ) within Equation 13 and obtain

a combined redex crossing form of π for R,S:

RCFR,S(π) = π0,0 ::

χ1,1 :: π1,1 :: . . . :: χ1,r1 :: π1,r1 ::

ψ1,1 :: π1,r1+1 :: . . . :: ψ1,s1 :: π1,r1+s1 ::

...

χh,1 :: πh,1 :: . . . :: χh,rh :: πh,rh ::

ψh,1 :: πh,rh+1 :: . . . :: ψh,sh :: πh,rh+sh (14)

where χi,j (resp. ψi,j) is the j-th crossing of R (resp. of S) within π′i (resp. π′′i ). We

distinguish three cases, depending on the kind of redexes.

(a) T (R) = T (S) = (/(̄. Recall that R,S are disjoint, and observe that by Defini-

tion 8 of net reduction, both ρ and σ rewrite N as a simple net. Thus, S ⊂ ρ(N )

and R ⊂ σ(N ). This means that we can simply take ρ̄ = ρ reducing R and

σ̄ = σ reducing S. We immediately verify the claim by applying Definition 12 of

multiplicative residual to Equation 14.

σ̄(ρ(π)) = ρ̄(σ(π)) = π0,0 ::

ρ(χ1,1) :: π1,1 :: . . . :: ρ(χ1,r1) :: π1,r1 ::

σ(ψ1,1) :: π1,r1+1 :: . . . :: σ(ψ1,s1) :: π1,r1+s1 ::

...

ρ(χh,1) :: πh,1 :: . . . :: ρ(χh,rh) :: πh,rh ::

σ(ψh,1) :: πh,rh+1 :: . . . :: σ(ψh,sh) :: πh,rh+sh (15)

(b) T (R) = (/(̄ and T (S) = !/?, or T (R) = !/? and T (S) = (/(̄. We assume

the former, since the proof is identical once the roles of R and S are swapped.

Let n be the arity of the ?-link in R. This time ρ rewrites N as a simple net,

while σ rewrites it as a sum of n′ simple nets (cf. Definition 8). Observe again

that S ⊂ ρ(N ), so take σ̄ = σ to be the reduction step for such S.

i If n′ = 0, R is not present in σ(N ) = 0. So, let ρ̄ be the empty reduction

sequence. We immediately verify the claim.

ii Otherwise n′ > 0, which means that R is copied in the n′ addends of σ(N ) =∑
σn∈Sn σ

σnN . To close the reduction diagram, we then have to reduce all the

duplicates of R. So, let us denote the sum of reducts of R as
∑
σn∈Sn Rσn , and

consider the set, for any σn ∈ Sn, of the reduction step ρσn which reduces Rσn .

Let ρ̄ be the sequence obtained by any ordering on that set. We can now unfold
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Definition 12 and Definition 13 of exponential residual onto Equation 14.

σ̄(ρ(π)) =
∑

σn∈Sn

π0,0 ::

ρ(χ1,1) :: π1,1 :: . . . :: ρ(χ1,r1) :: π1,r1 ::

σσn(ψ1,1) :: π1,r1+1 :: . . . :: σσn(ψ1,s1) :: π1,r1+s1 ::

...

ρ(χh,1) :: πh,1 :: . . . :: ρ(χh,rh) :: πh,rh ::

σσn(ψh,1) :: πh,rh+1 :: . . . :: σσn(ψh,sh) :: πh,rh+sh (16)

ρ̄(σ(π)) =
∑

σn∈Sn

π0,0 ::

ρσn(χ1,1) :: π1,1 :: . . . :: ρσn(χ1,r1) :: π1,r1 ::

σσn(ψ1,1) :: π1,r1+1 :: . . . :: σσn(ψ1,s1) :: π1,r1+s1 ::

...

ρσn(χh,1) :: πh,1 :: . . . :: ρσn(χh,rh) :: πh,rh ::

σσn(ψh,1) :: πh,rh+1 :: . . . :: σσn(ψh,sh) :: πh,rh+sh (17)

Comparing the last two equations, we verify immediately that ρσm(χi,j) =

ρ(χi,j), for any σn ∈ Sn. Ergo ρ̄(σ(π)) = σ̄(ρ(π)).

(c) T (R) = T (S) = !/?. Let n,m respectively be the arities of the ?-links in R,S,

and let n′,m′ be the numbers of simple nets respectively generated by ρ, σ on N .

We separate three cases depending on the condition of nullity of n′,m′.

i n′ = m′ = 0, which means that n (resp. m) is not equal to the arity of the !-link

in R (resp. S). Then clearly ρ(π) = σ(π) = 0, so let ρ̄ and σ̄ both be the empty

reduction sequence, and immediately obtain the claim: ρ̄(σ(π)) = σ̄(ρ(π)) = 0.

ii Either n′ or m′ is null. Suppose the former (the other case is dual), i.e. n′ = 0

and m′ > 0. This last fact implies that ρ(π) = 0, so on the one hand, let σ̄

be the empty reduction sequence. On the other hand notice that, as in case

2(b)ii, R is copied by σ into
∑
σn∈Sn Rσn . So, let ρ̄ be an enumeration of the

set including the reduction step ρσn reducing on RSn , for all σn ∈ Sn. We

then obtain:

ρ̄(σ(π)) =
∑

σm∈Sm
σn∈Sn

π0,0 ::

ρσmσn (χ1,1) :: π1,1 :: . . . :: ρσmσn (χ1,r1) :: π1,r1 ::

σσn(ψ1,1) :: π1,r1+1 :: . . . :: σσn(ψ1,s1) :: π1,r1+s1 ::

...

ρσmσn (χh,1) :: πh,1 :: . . . :: ρσmσn (χh,rh) :: πh,rh ::

σσn(ψh,1) :: πh,rh+1 :: . . . :: σσn(ψh,sh) :: πh,rh+sh (18)

where for any σn ∈ Sn, and any σm ∈ Sm, we have ρσmσn (χi,j) = 0. Thus,

ρ̄(σ(π)) = 0.
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iii n′,m′ > 0. Let ρ̄ be defined as in sub-sub-case 2(c)ii. Dually, since S is copied

by ρ into
∑
σm∈Sm Sσm , define σ̄ as an enumeration of the set of any reduction

step σσn reducing on SSm , for all σm ∈ Sm. We obtain:

ρ̄(σ(π)) =
∑

σn∈Sn
σm∈Sm

π0,0 ::

ρσm(χ1,1) :: π1,1 :: . . . :: ρσm(χ1,r1) :: π1,r1 ::

σσnσm(ψ1,1) :: π1,r1+1 :: . . . :: σσnσm(ψ1,s1) :: π1,r1+s1 ::

...

ρσm(χh,1) :: πh,1 :: . . . :: ρσm(χh,rh) :: πh,rh ::

σσnσm(ψh,1) :: πh,rh+1 :: . . . :: σσnσm(ψh,sh) :: πh,rh+sh (19)

Comparing it with Equation 18, we observe that for any σn ∈ Sn and any

σm ∈ Sm, we clearly have ρσm(χi,j) = ρσmσn (χi,j), and σσn(ψi′,j′) = ρσnσm(ψi′,j′).

Hence ρ̄(σ(π)) = σ̄(ρ(π)).

Lemma 4. Let N be a resource net and let π ∈ PE(N ). If π is persistent w.r.t. a

reduction sequence ρ̄ such that ρ̄(N ) = NF(N ), then π is persistent.

Proof. Let the rank rk(N ) of a resource net N be the length of the longest reduction

sequence on N . Observe that the rank is always finite, since the reduction on RINs is

strongly normalising and thanks to Kőnig lemma. So we can go by induction on rk(N )

and show that π is persistent to any normalisation sequence σ̄.

1 Base: rk(N ) = 0. This implies that |ρ̄| = 0, which means that NF(N ) = N . There-

fore, ρ̄ is the only possible reduction sequence on N . Hence, π is trivially persistent.

2 Step: rk(N ) > 0. Since this implies that |ρ̄|, |σ̄| > 0, let ρ̄ = ρ1ρ̄2 and σ̄ = σ1σ̄2

for some reduction steps ρ1, σ1 and reduction sequences ρ̄2, σ̄2. We can then apply

the local confluence property (Lemma 3) on ρ1, σ1 and obtain that there exist two

sequences θ̄, φ̄ such that θ̄(ρ1(π)) = φ̄(σ1(π)).

Now, since rk(ρ1(N )) < rk(N ) and ρ1(π) is persistent w.r.t. the normalisation ρ̄2, per

IH we have that ρ1(π) is persistent. This in particular implies that ρ1(π) persists to

θ̄. Moreover, if µ̄ is a normalisation sequence on θ̄(ρ1(π)), then ρ1(π) persists to θ̄µ̄ as

well. Therefore, we can apply IH again, because rk(θ̄(ρ1(N ))) < rk(ρ1(N )) < rk(N ),

and obtain that θ̄(ρ1(π)) is persistent. But φ̄(σ1(π)) = θ̄(ρ1(π)) 6= 0, therefore this

means that σ1(π) persists to φ̄ and to φ̄µ̄. Now rk(σ1(N )) < rk(N ), so we can apply

the IH one last time and conclude that σ1(π) is persistent. Hence, σ1(π) persists in

particular to σ̄2, which means that π is persistent w.r.t. σ1σ̄2, i.e. w.r.t. σ̄.



M. Solieri 20

(a) Monoid rules.

a(bc) =(ab)c (20)

a1 = 1a = a (21)

a0 = 0a = 0 (22)

(b) Adjoint rules.

(a∗)∗ = a (23)

(ab)∗ = b∗a∗ (24)

(c) Computation rules.

pp
∗ = qq

∗ = ll
∗ = rr

∗ = 1 (25)

qp
∗ = pq

∗ = rl
∗ = lr

∗ = 0 (26)

Fig. 6: The rL∗ monoid.

4. Execution

4.1. Dynamic algebra and execution

We are ready to formulate the GoI construction for RINs. We adapt the formulation for

the case of MELL as most classically formulated (Danos and Regnier, 1995), but we char-

acterise our resource exponentials, which have no promotion, as a sort of superposition

of n-ary multiplicatives. We define a weight assignment for paths, so that the execution

of a net is the sum of the weights of any execution path within it, and we formulate a

monoidal structure rL∗ of weights representing the computation. A crossing of an expo-

nential link is morally weighed with a sum of indexed symbols, where the index varies in

the set of permutations of the link’s premisses, and exponential weights interacts exactly

as multiplicatives ones, i.e. by nullification or neutralisation.

Definition 15 (Dynamic algebra). The rL∗ monoid is defined over terminal sym-

bols in {0, 1, p, q, l, r, ?}. A word of its alphabet, called weight, is generated by a binary

concatenation operator with infix implicit notation and a unary adjoint operator (·)∗.
The concatenation operator and the set of symbols has the structure of a monoid, whose

identity element is 1, equipped with an additional absorbing element 0 (cf. Figure 6a).

Moreover, the inversion operator is involutive and distributes over concatenation by re-

versing left and right operands (cf. Figure 6b), and satisfies the neutralisation and two

annihilation equations in Figure 6c.

We denote l r . . . r︸ ︷︷ ︸
n

as en, so that for any n 6= m ∈ N we have ene
∗
n = 1 and ene

∗
m = 0.

Definition 16 (Weighting and execution). The permuted base weighting is a map

w that associate a weight of rL∗ to an atomic straight path π = (u, v) ∈ P(N ) and a

resource permutation σ. Straightness of π implies that it goes either: (i) from a conclusion

to a conclusion of a ?-link; (ii) from a premiss to a conclusion of a binary link; (iii) vice

versa, from a conclusion vertex to a premiss of a binary link. The permuted base weighting

is defined as follows, where the first clause covers (i), the clauses from the second to the
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fifth cover (ii), and the last clause covers (iii).

wσ((u, v)) =



? if there is 〈(F) u〉 and u = v

p if there is 〈u,w (() v〉 or 〈u,w ((̄) v〉
q if there is 〈w, u (() v〉 or 〈w, u ((̄) v〉
ei if there is 〈u1, . . . , ui, . . . , un (?) v〉 and ui = u

eσr(i) if there is r = 〈u1, . . . , ui, . . . , un (! ) v〉 and ui = u(
wσ((v, u))

)∗
otherwise.

(27)

The permuted weighting, denoted again as wσ(π), is the lifting of the permuted base

weighting to generic straight paths, and the path weighting, written w (π), is the sum of

all the permuted weights of a path, for any resource permutation:

wσ((v)) = 1 (28)

wσ((u, v) :: π) = wσ((u, v))wσ(π) (29)

w (0) = 0 (30)

w (π) =
∑
σ∈SN

wσ(π) (31)

The sum forms a free commutative monoid on the rL∗ structure, and its identity is 0.

Formally, we have that for any a, b, c ∈ (rL∗,+):

(a+ b) + c = a+ (b+ c) (32) a+ b = b+ a (33) a+ 0 = a (34)

A path π is regular if w (π) 6= 0. The execution of a net N , is defined as:

Ex(N ) =
∑

π∈PEC(N )

w (π) . (35)

Example 5. Consider again the closed simple net M, whose reduction has been dis-

cussed in Example 2, and that is depicted in the leftmost extremity of Figure 5. To have

an idea of the execution of M and of the behaviour of the algebraic structure, let us

consider an execution comprehensive path, one of the persistent two, and compute its

weight. Given that the path is palindromic, i.e. has the form π :: π†, we will consider

only its first half, that goes from the root of the term to the constant. Moreover, we will

break lines when a path inverts its polarity direction, i.e. if it walks from in to out or vice

versa.

(v1, v2, v3, w1, w2, w3,
∑
σ∈S2

q e1 e∗σ(2) q
∗ e1·

w1, v3, v2, p eσ(2) e
∗
1·

v4, v5, v6, v3, z1, z2, z3, p∗ e∗1 q e2 e∗σ(1) q
∗ e1·

z1, v3, v6, p eσ(1) e
∗
2 ·

v7, v8) p∗ e∗1 ?
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On the path: reduce it using the exponential rule. On the weight: apply Equation 26 and

then 22 on the addend s.t. σ = (2, 1), apply Equation 25 and then 21 on the one s.t.

σ = (1, 2).

→ (v1, v2≡w1, w2, w3, =rL∗ q q∗ e1·
w1≡v2, p ·
v4, v5, v6≡z1, z2, z3, p∗ e∗1 q q∗ e1·
z1≡v6, p ·
v7, v8) + p∗ e∗1 ? +

0 0

Forget zeros on both side. On the path: reduce it using the leftmost linear implication

rule. On the weight: apply Equation 25 and then 21.

→ (v1≡w2, w3≡v4, v5, v6≡z1, z2, z3, =rL∗ e1 e∗1 q q∗ e1·
z1≡v6, p ·
v7, v8) p∗ e∗1 ?

On the path: reduce it using the linear implication rule. On the weight: apply Equation 25

and then 21.

→ (v1≡w2, w3≡v4, v5≡z2, z3≡v7, v8) =rL∗ e1 e∗1 e1 e∗1 ?

On the path: reduce it twice using exponential rules. On the weight: apply Equation 25

and then 21, and repeat.

→ (v1≡w2≡v5≡z2, z3≡v7, v8) =rL∗ e1 e∗1 ?

→ (v1≡w2≡v5≡z2≡v8) =rL∗ ?

Therefore the persistent path turns out to be regular. Even more, along the reduction we

managed to apply, for each step, some rL∗ equations so that the weight of every reduct is

equal to the manipulated weight. The next two theorems shall generalise these two facts.

4.2. Invariance and regularity

We now show that the rL∗ monoid introduced above accurately computes path reduction.

We prove the equivalence between regularity and persistence, and show that execution

is invariant by reduction. Not only the construction is a suitable semantic for ground

typed RINs, but also possesses quantitative awareness, since, for any term, the number

of execution paths that are regular is equal to the number of addends in its normal form.

Lemma 5. For any closed net N : ?, any reduction step ρ, and any path π ∈ PEC(N ):

w (π) =rL∗ w (ρ(π)) . (36)

Proof. Let π ∈ PE(N ) with N addend of N containing the redex R. Recall that

π has to be long enough for ρ, for it is maximal. Suppose the RCF of π w.r.t. R is

π0 :: χ1 :: π1 :: . . . :: χk :: πk. We proceed by a case analysis of the kind of reduction rule.
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1 T (R) = ( /(̄. Let R be as in the leftmost redex of Figure 3. We distinguish two

sub-cases, depending on the nullity of ρ(π).

(a) Suppose ρ(π) = 0. By definition of weighting (Equation 30) we have w (ρ(π)) = 0.

Moreover, by Definition 12 and in particular Equation 7, there must exists 0 ≤
l ≤ k, such that ρ(χl) = 0. Hence, it must be the case that χl is either as in

Equation 5, or as in Equation 6.

i Suppose χl = (v, w, u′). Then ρ(χl) = 0, and w (χl) = pq∗ =rL∗ 0.

ii Suppose χl = (v′, w, u). Then ρ(χl) = 0, and w (χl) = qp∗ =rL∗ 0.

Again by definition of weighting (Equation 29, 31), and applying Equation 22, we

conclude w (π) =rL∗ 0 = w (ρ(π)).

(b) Suppose ρ(π) 6= 0. Then, again by definition of multiplicative residual, and in

particular by Equation 7, we know ρ(χl) 6= 0 for any 0 ≤ l ≤ k. Hence, it must be

the case that χl is either as in Equation 3, or as in 4.

i Suppose χl = (v, w, u). Then ρ(χl) = (v′≡u′), and w (χl) = pp∗ =rL∗ 1.

ii Suppose χl = (v′, w, u′). Then ρ(χl) = (v′≡u′), and w (χl) = qq∗ =rL∗ 1.

Now, applying this fact on the definition given by Equation 7, and using Equa-

tion 21 we conclude.

w (π) =
∑
σ∈SN

wσ(π0) wσ(χ1) wσ(π1) . . . wσ(χk) wσ(πk)

=
∑
σ∈SN

wσ(π0) wσ(π1) . . . wσ(πk)

= w (ρ(π))

2 T (R) = !/?. Let R be as in the rightmost redex of Figure 3, and let r be the !-link

involved in it. We distinguish again two sub-cases, depending on the nullity of ρ(π).

(a) Suppose ρ(π) = 0. Then by Definition 13, in particular Equation 9, there are only

two possible causes.

i Arity mismatch, i.e. when n 6= m, where n,m are the arities of the two links.

Because of the hypothesis of comprehensiveness of π, it must be the case

that k ≥ max(n,m). Then, whatever permutation σn ∈ Sn we choose for

the premisses of the !-link in R, there always exists a crossing χl, for some

0 ≤ l ≤ k, such that χl = (uσn(i), w, vj) and σn(i) 6= j.

ii Permutation incoherence, i.e. when n = m, but for any σn ∈ Sn there exists

a crossing χl ⊆ π such that σn(i) 6= j. This morally happens when π tries to

use more than once a resource, travelling from the same premiss of the ?-link

to two different premisses of the corresponding !-link.

Thus, in both cases there is a “wrong” crossing χl ⊂ π such that, for any re-

source permutation σ ∈ SN (recall Definition 7), we have wσ(χl) = eσ(r)(i)e
∗
j

where σ(r)(i) 6= j. Hence, by Equation 26, wσ(χl) = 0. By definition of weighting

(Equation 29, 31) and applying Equation 22, we have w (π) =rL∗ 0. But by the

same definition we also have w (ρ(π)) = 0, so we conclude.
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(b) Suppose ρ(π) 6= 0. Again by definition of path reduction, it must be the case

that n = m, and that there exists σ′n ∈ Sn such that for all 0 ≤ l ≤ k we have

ρσ
′
n(χl) 6= 0. In particular, let χl be as in Equation 8, and observe it must be

also the case that σ′n(i) = j, which allows ρσ
′
n(vi, w, uj) = (vσn(i)≡uj). Moreover,

by the comprehensiveness hypothesis for π, σ′n has to be unique, so that for any

other σ′′n, we have ρσ
′′
n (π) = 0. So, according to this, we split resource permutations

SN into S′N ∪ S′′N , where the former is the set of any σ′ such that σ′(r) = σ′n,

while, symmetrically, the latter contains any σ′′ for which σ′′(r) 6= σ′n. Hence, by

Definition 16 we obtain:

w (π) =
∑

σ′∈S′N

wσ
′
(π) +

∑
σ′′∈S′′N

wσ
′′
(π)

=
∑

σ′∈S′N

wσ
′
(π0) wσ

′
(χ1) wσ

′
(π1) . . . wσ

′
(χk) wσ

′
(πk) +

∑
σ′′∈S′′N

wσ
′′
(π0) wσ

′′
(χ1) wσ

′′
(π1) . . . wσ

′′
(χk) wσ

′′
(πk).

In the leftmost series, by Equation 25, wσ
′
(χl) = eσ′(r)(i)e

∗
j = 1. While in the

rightmost, by Equation 26, wσ
′′
(χl) = eσ′′(r)(i)e

∗
j = 0, so it neutralises to 0.

Therefore we concluded:

=rL∗
∑

σ′∈S′N

wσ
′
(π0) wσ

′
(π1) . . . wσ

′
(πk)

= w (ρ(π)) .

Theorem 2. For any closed net N : ?, any reduction sequence ρ̄, and any path π ∈
PEC(N ):

w (π) =rL∗ w (ρ̄(π)) . (37)

Proof. A straightforward induction on the length n of ρ̄.

1 Base. Suppose n = 0. Trivially, ρ̄(π) = π, so w (ρ̄(π)) = w (π).

2 Step. Suppose n > 0. Let ρ̄ = ρ′ρ̄′′, with ρ′ a single step, ρ̄′′ a sequence of reduc-

tions. By Definition 14 of path reduction, ρ′(ρ̄′′(π)) = ρ̄(π). By previous Lemma 5,

w (ρ̄′′(π)) =rL∗ w (ρ′(ρ̄′′(π))). But, by inductive hypothesis we have that w (π) =rL∗

w (ρ̄′′(π)) so we conclude.

Corollary 1. For any closed net N : ?, a path π ∈ PEC(N ) is persistent if and only if

π is regular.

Proof. Immediate from Theorem 2.

Theorem 3. For any closed net N : ? and any reduction sequence ρ̄,

Ex(N ) =rL∗ Ex(ρ̄(N )). (38)
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Proof. Consider first the execution of N (Definition 16 and Equation 35), and notice

that we can separate the weights of paths that are persistent to ρ̄ from those of paths

that are not.

Ex(N ) =
∑

π∈PEC(N )

w (π) =
∑

π′∈PEC(N )
persistent to ρ̄

w (π′) +
∑

π′′∈PEC(N )
not persistent to ρ̄

w (π′′) (39)

But, by hypothesis of non-persistence w.r.t. ρ̄ we have ρ̄(π) = 0, which implies by Theo-

rem 2 that w (π′′) = 0. Hence, the rightmost series is 0, and we obtain that:

=
∑

π′∈PEC(N )
persistent to ρ̄

w (π′) . (40)

Consider now the execution of ρ̄(N ), which by definition is:

Ex(ρ̄(N )) =
∑

π′′′∈PEC(ρ̄(N ))

w (π′′′) . (41)

Observe that, by a straightforward induction on the length of ρ̄, we can generalise Theo-

rem 1 to obtain the bijection induced by ρ̄ between the paths in PEC(N ) persist to ρ̄ and

those in PEC(ρ̄(N )). So let π′ ∈ PEC(N ) persistent to ρ̄, and π′′′ ∈ PEC(ρ̄(N )), such

that ρ̄(π′) = π′′′. But by Theorem 2 we have w (π′) = w (ρ̄(π′))), hence we conclude.

=
∑

π′∈PEC(N )
persistent to ρ̄

w (π′) = Ex(N ) (42)

Corollary 2. For any term JtK : ?, regular paths in JtK are as many as (non-zero) addends

in NF(t).

Proof. By definition of the calculus and of its nets syntax, NF(t) = n?, for some natural

number n. Clearly, PEC(J?K) contains a unique path, made by the unique vertex of J?K.
Then |PEC(JNF(t)K)| = n. But from last Theorem 3, Ex(JtK) = Ex(JNF(t)K), therefore

the claim.

5. mMELL nets, Taylor-Ehrhard expansion and paths

5.1. mMELL proof-nets, paths and reduction

We now introduce proof-nets for the mimimal propositional fragment of multiplicative

exponential linear logic (mMELL for short) as a translation of λ-calculus. We follow

Girard’s translation of intuitionistic logic (1987) which represents a formula/type A→ B

as !A( B and implements a call-by-name calculus (Maraist et al., 1995). There we can

recall how paths are deformed under cut-elimination. With respect to the heterogeneous

panorama of proof-net definitions, we opted, among the most common traits, for those

that resulted of the highest convenience for our interest, similarly to how RINs have

been formalised. We adopt a hypergraph formulation of the so-called nouvelle syntaxe
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tradition, where in particular: (i) hyperlinks represent logical connectors or syntactic

constructs, while vertices represent formulae or types; (ii) there is only one in exponential

link instead of three (dereliction, contraction and weakening); (iii) auxiliary doors, cut

and axioms are not represented by explicit links, but as vertices with some distinctive

properties.

For the sake of clarity, in the present and next section we shall explicit “mMELL” and

“resource” to distinguish nets, reduction, paths and other notions that are identically

named in the two systems.

Definition 17 (mMELL links, boxes and structures). The set of mMELL links

is similar to that of resource links introduced in Definition 3 and Figure 1. The only

difference is that the !-link has fixed unary arity, instead of arbitrary, is called promotion,

instead of co-contraction (see Figure 7). A mMELL pre-net is a pre-net made of mMELL

links. Given a pre-net P = (V,L, T ), a sub-pre-net P ′ of P is a pre-net (V ′, L′, T ) such

that V ′ ⊆ V (P), L′ ⊆ L(P ′), and T ′ is the restriction of T to V ′. A boxing b is a function

that maps a promotion link l to a sub-pre-net B ⊆ P and satisfies the followings.

1 The vertex v = P (l) belongs to V (B).

2 Any v′ ∈ I(B) different from v is either the premiss of a ?-link or a conclusion of P.

3 There is no v′ ∈ V (B) such that P (l′) 3 v′ ∈ C(l′′) while l′ ∈ L(B) and l′′ /∈ L(B).

4 For any !-link l′ such that B′ = b(l′), if L(B) ∩ L(B′) 6= ∅ then B ⊆ B′ or B ⊇ B′.
A mMELL structure N is a pair (P, b) where P is a mMELL pre-net and b is a boxing

for !-links of P. A sub-structure N ′ of N , written N ′ ⊆ N , is a structure (P ′, b′) such

that: P ′ ⊆ P, and b′ is the restriction of b to L(P ′) such that for any !-link l ∈ L(P ′),
b(l) ⊆ P ′. If b(l) = P ′ for some !-link l in L(N ), then: B = N ′ is a box of N ; the

sub-structure made by B and l is a bordered box and written B; the vertex v ∈ I(B) is

called the principal door of B if v ∈ C(l), otherwise an auxiliary door. The set of boxes

of N is written Bxs (N ). The box B is depicted drawing a dashed square enclosing all

the vertices in B and connecting its doors. In textual notation, B will be denoted as its

collapse to a link, e.g. as 〈x1, . . . , xn [B] w〉, where w is the principal door and xi is an

auxiliary one. The box depth level, or simply the depth, of a vertex v, written d(v), is the

number of boxes it belongs to. By extension, the depth of a link l is d(C(l)), while the

depth of a box 〈V [B] w〉 is d(w). Two structures are equal when there exists a box- and

type-preserving isomorphism between them.

Definition 18 (Term translation). A λ-term t, is an element of the language Λ in-

duced by the grammar T ::= ? | V | λV.T | (T T). Given t ∈ Λ and Γ injection between

the variable occurrences in t and a set of vertices V ′, the translation JtKΓ is a mMELL

structure having one out conclusion and a possibly empty set of in conclusions. The

translation is defined almost identically to that of simple resource terms we introduced

in Definition 6 and Figure 2. The only different case is the pre-translation of application,

that is depicted in Figure 7, where the pre-translation of the argument is put into a box

and connected by a promotion (instead of a co-contraction).

Definition 19 (mMELL reduction and proof-nets). The mMELL reduction is the
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Fig. 7: mMELL statics: promotion link, and pre-translation of application.
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Fig. 8: mMELL dynamics: exponential reduction.

graph-rewriting relation on mMELL structures induced by the context closure of: the

linear implication rule defined in Figure 3, and the exponential rule depicted in Fig-

ure 8. In this case, the redex sub-structure R includes not only the two exponential links

〈u1, . . . , uk (?) c〉 and p = 〈v (! ) c〉, but also the box 〈W [B] v〉 that is connected to the

cut !-link, together with the set of every link 〈Xi (?) yi〉 such that there exists w ∈ W
that also belongs to Xi. (The boxes C,D are drawn in Figure 8 for the sake of clarity,

but are not part of the redex.) The reduction removes the cut exponential links, and

duplicates B into k copies (erasing it when k = 0): 〈W1 [B1] u1〉, . . . , 〈Wk [Bk] uk〉.
Also, the boxing b′ of the reduct is obtained by the boxing b of R so that the box copy

Bh is included in any box that in R contains vh. More precisely:

1 if p′ is the !-link of a box B containing uh for some 0 ≤ h ≤ k, then b′(p′) = b(p′)∪Bh;

2 if p′ 6= p is the !-link of a box B′ ( B then b′(p′h) = b(p′), for any 0 ≤ h ≤ k;

3 otherwise b′(p′) = b(p′).

Notice that for any 0 ≤ j ≤ s, the set of premisses of the j-th ?-link containing auxiliary

doors for B is modified by the reduction: the sequence of premisses X ′j of its reduct is

obtained by replacing any occurrence of a vertex w ∈W with the sequence (w1, . . . , wk)

such that its elements respectively belongs to W1, . . . ,Wk.
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A mMELL structure N is a mMELL proof-net if there exists t ∈ Λ such that JtK→∗ N .

Static notions and notations for paths defined in Section 3 in RINs are seamlessly

extended to mMELL proof-nets: recall from Definition 10 straight, maximal and execution

paths, and reversal and concatenation; adapt from Definition 11 the notions of crossing

to the mMELL exponential reduction rule.

Definition 20 (mMELL path reduction). The mMELL path reduction is a function

mapping a straight path π that is in a proof-net N and long enough for a reduction ρ to

a set ρ(π) of paths in ρ(N ). The reduct of a redex crossing χ is defined depending on its

kind. The linear implication case is obtained by the corresponding case in Definition 12,

by taking the set of the (unique) image there defined. For the exponential case, let R be

as in Figure 8, and let β be a maximal sub-path of χ whose vertices are in the box B.

Also, let βj be the copy of β in Bj , that is the j-th copy of B. We isolate three kinds of

crossings, depending on the polarities (in or out) of the two extrema of β.

1 out-out. Let 1 ≤ j, j′ ≤ k, where j 6= j′. Then

ρ
(
(uj , c, v) :: β :: (v, c, uj)

)
= {(uj) :: βj :: (uj) [uj≡vj ]} ; (43)

ρ
(
(uj , c, v) :: β :: (v, c, uj′)

)
= ∅. (44)

2 out-in. Let 1 ≤ j ≤ k and 1 ≤ l ≤ s. Then

ρ
(
(uj , c, v) :: β :: (wl, yl)

)
=
{

(uj) :: βj :: (wlj , yl) [uj≡vj ]
}

. (45)

3 in-in. Let 1 ≤ l,m ≤ s. Then

ρ
(
(yl, wl) :: β :: (wm, ym)

)
=
{

(yl, wlj ) :: βj :: (wmj , ym)
∣∣ 1 ≤ j ≤ k

}
. (46)

If R is the redex of ρ, and RCFR(π) = π0 :: χ1 :: π1 :: . . . :: χk :: πk, then

ρ(π) =
{
π0 :: χ′1 :: π1 :: . . . :: χ′k :: πk

∣∣∣ χ′1 ∈ ρ(χ1), . . . , χ′k ∈ ρ(χk)
}

. (47)

Lemma 6. The reduction of a path induces a partition on paths of the reduct. Given

N mMELL proof-net and ρ reduction step, for any π ∈ PE(ρ(N )) there exists a unique

φ ∈ PE(N ) such that π ∈ ρ(φ).

Proof. Let N = C[R], for some redex R and some context C[ ]. Suppose also that

π = π0 :: χ′1 :: π1 :: . . . χ′n :: πn, where, for any 1 ≤ i ≤ k, the subpath χ′i is a maximal

sequence of vertices belonging to ρ(R). Observe that the extrema of χ′i necessarily belong

to the interface of ρ(R), because π is an execution path. Now, by definition of reduction,

and in particular as per Equation 47, if n = 0 (i.e. π does not cross ρ(R)), then there

is nothing to prove, since by definition of reduction we have that π ∈ PE(N ) and

ρ(π) = {π}. So, suppose otherwise that n > 0 and let us discuss χ′i distinguishing two

cases depending on the kind of the redex.

1 T (R) = (/(̄. The claim is proven by case item 1 of the proof of Theorem 1.

2 T (R) = !/?. Let ρ be as in Figure 8 and recall that ρ(R) is made by the subnets Bj ,
for any 1 ≤ j ≤ k, that are copies of the box 〈W [B] c〉 in R. We distinguish three

sub-cases depending on the polarity of the extrema of π.



Geometry of Resource Interaction and Taylor-Ehrhard-Regnier Expansion 29

B =

!

z

B
W

v

? ?

y1 ys

X1 Xs

xh

. . .

Bi =

!

z

B1

W1

v1

Bi
Wi

vi

. . .

? ?

y1 ys

X ′1 X ′s

xh.1 xh.i

. . .

Fig. 9: i-ary box expansion.

(a) out-out. Let χ′i = (uj) :: βj :: (uj) for some 1 ≤ j ≤ k. Then take χi = (uj , c, v) ::

β :: (v, c, uj), and observe that by definition of reduction (cf. Equation 43) χi is

the only crossing of R such that ρ(χi) = {χ′i}.
(b) out-in. Let χ′i = (uj) :: βj :: (wlj , yl). Then take χ = (uj , c, v) :: β :: (wl, yl),

and verify again (cf. Equation 45) that χi is the only crossing of R such that

ρ(χi) = {χ′i}.
(c) Let χ′i = (yl, wlj ) :: βj :: (wmj , ym) for some 1 ≤ l,m ≤ s (recall that s is the

number of ?-links having a premiss in Wj′ for some 1 ≤ j′ ≤ k). Then take

χ = (yl, wl) :: β :: (wm, ym) and inspect Equation 46 to verify that χi is the only

crossing of R such that χ′i ∈ ρ(χi).

5.2. Net expansion

We now recall Taylor-Ehrhard-Regnier expansion of mMELL proof-nets into RINs, using

almost standard definitions. Although the challenging study of multiplicity coefficients

is postponed to future investigations, we preserve coherence and employ sums to put

together simple nets, even though the sum is idempotent so they essentially represent

the support of the infinite series used in the original definition.

Definition 21 (Proof-net expansion). Given a mMELL pre-net N , and B ∈ Bxs (N ),

the i-ary box expansion of B, written Bi, is depicted in Figure 9. Contractions’ premisses

are duplicated together with B enforcing stability with respect to their ordering: given

a contraction 〈Xj (?) yj〉 such that there exists xh ∈ Xj secondary door of B, in the

expansion such a contraction becomes 〈X ′j (?) yj〉, where the sequence X ′j is obtained

from Xj by replacing any such xh with the sequence xh.1, . . . , xh.i. A simple mixed net

is pre-net built with resource or mMELL links, i.e. possibly containing co-contractions

and promotions with boxes, and a mixed net is a possibly infinite sum of simple mixed

nets. The sum + is not only associative, commutative, and having an identity element,

i.e. the empty sum 0, but it is also idempotent:M+M =M. The outermost expansion,

is a function from simple to generic mixed nets, written as M◦ when applied to M,

and defined by induction on d(M). If d(M) = 0, then simply M◦ = M. Otherwise, if
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B1, . . . ,Bn are the outermost bordered boxes of M, and Nn is the set of functions from

{1, . . . , n} to N, then:

N ◦ =
∑
a∈Nn

N a, (48) N a = N
[
Ba(1)

1

/
B1, . . . ,B

a(n)

n

/
Bn
]

. (49)

We define the complete expansion of a simple mixed net M as the fixed point of the

outermost expansion, whose domain is extended to generic mixed nets.

0◦ = 0 (50) (M+ M)
◦

=M◦ + M◦ (51) M• = (M•)◦ (52)

The support of a mixed net M is the set supp (M) of all addends in M. And any

element in supp (M•) is called an expansion of N .

Fact 2. The complete expansion of a mMELL proof-net is a possibly infinite sum of

simple resource interaction nets.

5.3. Path expansion

We now proceed to define the expansion of a path π in a proof-net N from the natural

observation of the action of expansion on paths — it is the sum of all paths belonging to

any simple resource nets in the complete expansion of N .

Definition 22 (Box crossing). Given a proof-net N and π ∈ P(N ), its outermost-box

crossing form is: OBCF (π) = ε0 :: β1 :: ε1 :: . . . :: βn :: εn, where, for every 1 ≤ i ≤ n,

βi is a box crossing, that is a maximal subpath belonging to an outermost box B, i.e.

d(B) = 0. Notice that n may be null and that a crossing is not necessarily a maximal

path in B.

Definition 23 (Path expansion). Given N a mixed net and π ∈ P(N ), let B1, . . . ,Bm
be the outermost bordered boxes of N and a ∈ Nm. Then the a-ary outermost expansion

of π in N is the sets of paths obtained by the action of the outermost expansion of N
according to a.

πN
a

=

{π} if m = 0,{
ε0 :: β1k1

:: ε1 :: . . . :: βnkn :: εn

∣∣∣ 1 ≤ ki ≤ a(i)
}

otherwise.
(53)

Notice that the rightmost side of Equation 53 is empty whenever there exists 1 ≤ i ≤ m
such that a(i) = 0; while it is the singleton {ε0} if n = 0. The outermost expansion of a

set of paths Π is the sum of sets of paths generated by the sum of all a-ary outermost

expansions, extending its domain to sets of path. The sum of paths satisfies the same

properties of the sum of simple resource nets.

ΠN
a

=
⋃
π∈Π

πN
a

(54) ΠN
◦

=


Π if m = 0,∑
a∈Nm

ΠN
a

otherwise. (55)
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The complete expansion of a sum of sets of paths Π is the fixpoint of the outermost

expansion, where we neatly extend its domain to sums of sets of nets.

ΠN◦ =
∑

N∈supp(N )
Π⊇Π⊆P(N )

ΠN
◦

(56) ΠN• =
(
ΠN•

)N◦
(57)

When it does not lead to confusion, we shall ease the notation of {π}N• writing πN
•
.

The complete expansion of a vertex v is the sum of sets of vertices that is naturally

obtained by the complete expansion of the atomic path (v):

vN
•

=
∑

Π∈supp((v)N•)

{v′ | (v′) ∈ Π} . (58)

We similarly define the complete expansion of a link l in N as the sum of sets of links

defined as follows.

〈U (κ) v〉N
•

=
∑

V ∈supp
(
vN
•)

U∈supp
(
uN
•)

u∈U

{
l′ = 〈U ′ (κ′) v′〉

∣∣∣ v′ ∈ V, u′ ∈ U, l′ ∈ L(N •)
}

(59)

Fact 3. Expansion preserves types and polarities of links. For any mMELL proof-net N ,

let l = 〈U (κ) v〉 ∈ L(N ) and l′ = 〈U ′ (κ′) v′〉 ∈ L′ ∈ supp
(
lN
•)

. Then:

1 κ = κ′;

2 T (v) = T (v′);

3 for any u ∈ U and u ∈ U ′, if u′ ∈ U ′′ ∈ supp
(
uN
•)

then T (u) = T (u′).

Remark 2 (Length and cardinality). Path expansion does not expand a path in the

sense of increasing its length. Indeed, for any π ∈ P(N ), and any π′ ∈ Π ∈ supp
(
πN

•)
,

we have |π| = |π′|. On the other hand, path expansion introduces a degree of non-

determinism quite higher than net expansion. In fact, for any single N ′ ∈ supp (N •), the

set Π ∈ supp
(
πN

•)
containing expansions of π in N ′ has a cardinality that is a function

of the number of box crossing and their respective expanded arities. For example, in the

case of just one box expanded in n copies and k crossings, |Π| ∼ nk.

Lemma 7. The inverse relation of path expansion is a function. For any mMELL proof-

net N , any simple resource net N ′ ∈ supp (N •), and any path π′ ∈ P(N ′):
1 there exist π ∈ P(N ) and Π ∈ supp

(
πN

•)
such that π′ ∈ Π;

2 for any γ ∈ P(N ), if π′ ∈ Γ ∈ supp
(
γN
•)

then Γ = Π and γ = π.

Proof. By immediate verification against definition of path expansion.

6. Expansion and reduction

We are now able to see how the Taylor-Ehrhard expansion commutes with reduction,

proving that, for any reduction sequence, the series obtained by expansion of the set of

reducts of a mMELL path π is qualitatively equal to what one gets by reducing in parallel

any addend of the expansion of π. Thanks to such result, we will obtain as a corollary
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the equivalence between persistence of π and the existence of a persistent path π′ within

πN
•
. Before that, we need to detail what is such an infinitary parallel reduction, which

represents the expansion of mMELL proof-nets’ dynamics. Fact 3 implies that a mMELL

vertex c is a cut if and only if every set in every addend of its expansion contains only

resource cuts; moreover, their redexes never overlap. We therefore define first a tailored§

notion of parallel reduction and then precisely restrict it to reduce all and only resource

cuts which belong to the complete expansion of the same mMELL cut.

6.1. Expanded reduction

Definition 24 (Multi-hole contexts and substitution). A simple multi-hole context

CJ K, (resp. a multi-hole context CJ K) is a simple context (resp. a linear combination of

simple contexts over the semiring of N) having a finite, possibly null, number of hole

links (see Definition 8). If CJ K has holes h1, . . . , hn and N is a sum of simple resource

pre-nets P1, . . . ,Pm, then CJN K consists of the (possibly empty) sum of any possible

substitution of the m (non-zero) addends of N into the n holes of CJ K. Formally, if Nk

denotes {1, . . . , k} (where N0 = {}), and A� B the set of injections from a set A to a

set B:

CJN K =
∑

c∈Nn�Nm

C[Pc(1)/h1, . . . ,Pc(n)/hn] s.t. I(Pc(i)) = I(hi) (60)

In particular, note that if m = 0 and consequently N = 0, then CJN K = 0. Given CJ K a

non-simple resource context, and N a resource pre-net, CJN K is the substitution of the

latter in each addend of the former; i.e.: 0JN K = 0 and (C + C)JN K = CJN K + CJN K.

Definition 25 (Parallel and expanded reduction). The closure of the simple re-

duction relation with respect to multi-hole resource contexts is called parallel resource

reduction and written �. Formally, given a resource net N = CJP1 + . . . + PnK where

CJ K is a multi-hole context and P1, . . . ,Pn are pre-nets, if P1 → P1, . . . ,Pn → Pn then

N � CJP1 + . . . + PnK. Given a mMELL proof-net N and a reduction step ρ on a cut

c ∈ V (N ), the expanded reduction of ρ, written ρ•, is the parallel reduction of the set of

any resource redex in supp (N •) for any cut in supp (c•).

Notation. We extend the domain of resource reduction for paths to sets of paths. For

any reduction ρ, and any set of paths Π, we write ρ(Π) to denote
⋃
π∈Π ρ(π).

6.2. Commutativity of reduction and expansion

Lemma 8. Let R be a mMELL redex, ρ be its reduction step, and χ ∈ P(R). Then:

supp
(

(ρ(χ))
(ρ(R))•

)
= supp

(
ρ•
(
χR
•
))

. (61)

Proof. We distinguish two cases according to the type of redex.

§ The classic and general notion has been formalised in a similar setting (Mazza and Pagani, 2007).
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1 T (R) = (/(̄. Let R = 〈v′, v (() w〉, 〈u′, u ((̄) w〉 as in Figure 3. We immediately

notice that, by Definition 21, R• = R while, as per Definition 23, we have χR
•

= {χ}.
We consider two sub-cases depending on the persistence of χ to ρ.

(a) ρ(χ) 6= ∅. This implies that, by Definition 12 and in particular Equation 3, 4,

that χ is either (v′, w, u′), (v, w, u), or the reversal of these. Given that from

the analysis of one case the other three can be straightforwardly obtained, let us

assume χ = (v′, w, u′). By definition of reduction, we have ρ(χ) = {(v′)[v′≡u′]}.
Moreover, by definition of path expansion, we have that

(ρ(χ))(ρ(R))• = {(v′)[v′≡u′]}(ρ(R))•
= {(v′)[v′≡u′]} .

Let us now look at χR
•

= {χ}, and consider its expanded reduction: ρ•
(
χR
•)

=

ρ• (χ). Notice that ρ• contains only one reduction step, which is identical to ρ,

because R• = R. Hence we conclude:

ρ•
(
χN

•
)

= ρ(χ) = {(v′)[v′≡u′]} .

(b) ρ(χ) = ∅. Then we immediately notice that by definition of path expansion:

(ρ(χ))
(ρ(R))•

= ∅(ρ(R))• = ∅.

Moreover, given that, as we remarked in previous case, we have χR
•

= {χ}, and

ρ• = {ρ}, we immediately conclude:

ρ•(χR
•
) = ρ•(χ) = ρ(χ) = ∅.

2 T (R) = !/?. Let R be as in Figure 8:

R = 〈u1, . . . , uk (?) c〉, 〈v (! ) c〉, 〈W [B] v〉, 〈X1 (?) y1〉, . . . , 〈Xs (?) ys〉. (62)

We distinguish three sub-cases depending on the polarities of the extrema vertices of

the crossing of B.

(a) out-out. Let χ = (uj , c, v) :: β :: (v, c, uj′). Being the most interesting one, we

shall discuss in full details this sub-case, further distinguishing two sub-sub-cases

according to the persistence of χ.

i χ persistent to ρ. Then, by definition of mMELL path reduction (in particular

Equation 43), j = j′ and:

ρ (χ) = {(uj) :: βj :: (uj) [uj≡vj ]} ,

where we kept trivial paths as extrema for the sake of clarity. By Definition 23:

(ρ(χ))(ρ(R))• =
{

(uj) :: β
B•j
j :: (uj)

}
Now let us look at the rightmost side of Equation 61, and apply the definition

of path expansion. If B is the h-th of the m outermost boxes of R,

(χ)R
•

=
∑
a∈Nm

{
(uj , c, vn) :: β

B•n
n :: (vn, c, uj)

∣∣∣ 1 ≤ n ≤ a(h)
}

,
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so we can consider its expanded reduction w.r.t. ρ,

ρ•
(
χR
•
)

=
∑
a∈Nm

{
ρ•
(

(uj , c, vn) :: β
B•n
n :: (vn, c, uj)

) ∣∣∣ 1 ≤ n ≤ a(h)
}

.

Notice that in any element of any addend of the sum, the two outermost paths

are crossings of a resource redex of exponential type. The reduction step ρ•

performs by definition the reduction of any cut c′ ∈ C ′ ∈ supp (c•), including

c. Therefore, we can apply Definition 13 of path reduction and in particular

Equation 10.

ρ•
(
χR
•
)

=
∑

a∈Nm

σ∈Sa(h)

{
ρσ
(

(uj , c, vn) :: β
B•n
n :: (vn, c, uj)

) ∣∣∣ 1 ≤ n ≤ a(h)
}

=
∑

a∈Nm

σ∈Sa(h)

{
ρσ ((uj , c, vn)) :: β

B•n
n :: ρσ ((vn, c, uj))

∣∣∣ 1 ≤ n ≤ a(h)
}

.

By definition (cf. Equation 8), ρσ maps to 0 whenever the arities mismatch,

or when the permutation is not respected by all crossing; otherwise it reduces

to a trivial path. Hence, recalling that k is the arity of the cut ?-link in R,

ρ•
(
χR
•
)

=
∑

a∈Nm

σ∈Sa(h)

{
(uj) :: β

B•n
n :: (uj)

[
uj≡vσ(j)

]
∣∣∣ 1 ≤ n ≤ a(h), k = a(h), σ(j) = n

}
.

Because of the condition on a(h), we can immediately simplify as:

ρ•
(
χR
•
)

=
∑
σ∈Sk

{
(uj) :: β

B•n
n :: (uj)

[
uj≡vσ(j)

] ∣∣∣ 1 ≤ n ≤ k, σ(j) = n
}

.

Observe that for any σ ∈ Sk there exists a unique 1 ≤ n ≤ k such that

σ(j) = n. Therefore, every addend is a singleton of a path:

ρ•
(
χR
•
)

=
∑
σ∈Sk

{
(uj) :: β

B•σ(j)
σ(j) :: (uj)

[
uj≡vσ(j)

] }
.

Now observe that, for any {χ′}, {χ′′} ∈ supp
(
ρ•
(
χR
•))

, we have χ′ = χ′′, since

they are copies of the same path, within copies of the same sub-substructure.

In particular, we have |Sk| = k! equal addends, which can be simplified in a

single one, since the sum is idempotent, and conclude:

supp
(
ρ•
(
χR
•
))

=
{

(uj) :: β
B•j
j :: (uj) [uj≡vj ]

}
= supp

(
(ρ(χ))(ρ(R))•

)
.

ii χ not persistent to ρ. Then, as per Equation 44, j 6= j′ and ρ(χ) = ∅. Then,

immediately by Equation 55: (ρ(χ))
(ρ(R))•

= 0. The analysis of ρ•
(
χR
•)

goes
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as we previously did, until we reach

ρ•
(
χR
•
)

=
∑

a∈Nm

σ∈Sa(h)

{
ρσ ((uj , c, vn)) :: β

B•n
n :: ρσ

(
(vn, c, u

′
j)
) ∣∣∣ 1 ≤ n ≤ a(h)

}
,

where we notice that there exists no σ ∈ Sa(h) such that σ(j) = n = σ(j′).

Therefore, by Equation 8, in every element of any set of the summation that

we are now considering, we have that ρσ ((uj , c, vn)) = 0 or ρσ ((vn, c, uj)) = 0.

Hence, ρ•
(
χR
•)

= 0.

(b) out-in. We follow the same reasoning used in previous sub-case. Let 1 ≤ j ≤ k and

1 ≤ l ≤ s, and then let χ = (uj , c, v) :: βi :: (wl, yl). Then:

ρ
(
χ
)

=
{

(uj) :: βj :: (wlj , yl) [uj≡vj ]
}

.

Hence,

(ρ(χ))(ρ(R))• =
{

(uj) :: β
B•j
j :: (wlj , yl)

}
.

On the other side of Equation 61,

(χ)R
•

=
∑
a∈Nm

{
(uj , c, vn) :: β

B•n
n :: (wlj , yl)

∣∣∣ 1 ≤ n ≤ a(h)
}

.

In this case, expanded reduction trivially deals with one cut per crossing of the

expansion. Therefore simply applying the definition of reduction, and then simpli-

fying by sum’s idempotence the k! equal singletons in the summation, we obtain:

ρ•
(
χR
•
)

=
∑
σ∈Sk

{
(uj) :: β

B•σ(j)
σ(j) :: (wlj , yl)

[
uj≡vσ(j)

] }
=
{

(uj) :: β
B•j
j :: (wlj , yl) [uj≡vj ]

}
,

whose support is equal to supp
(
(ρ(χ))(ρ(R))•

)
, as required.

(c) in-in. Again, along the same line of reasoning, let 1 ≤ l,m ≤ s, and let χ =

(yl, wl) :: β :: (wm, ym). This time, differently from previous cases 2a and 2b, the

set that is the reduct of χ may contain more than one path (cf. Equation 46).

ρ
(
χ
)

=
{

(yl, wlj ) :: βj :: (wmj , ym) | 1 ≤ j ≤ k
}

. (63)

Hence, its expansion is:

(ρ(χ))(ρ(R))• =
{

(yl, wlj ) :: β
B•j
j :: (wmj , ym)

∣∣∣ 1 ≤ j ≤ k
}

.

On the right side of Equation 61, if B is the h-th of the b outermost boxes of R,

we find that

(χ)R
•

=
∑
a∈Nb

{
(yl, wln) :: β

B•n
n :: (wmn , ym)

∣∣∣ 1 ≤ n ≤ a(h)
}

.
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Now, consider its expanded reduction as we previously did:

ρ•
(
χR
•
)

=
∑

a∈Nb

σ∈Sa(h)

{
ρσ
(

(yl, wln) :: β
B•n
n :: (wmn , ym)

) ∣∣∣ 1 ≤ n ≤ a(h)
}

.

Let us consider the persistence w.r.t. ρ• of a path χ′ ∈ X ′, for some addend X ′

of the sum. By definition, given a redex R′ of some cut c′ ∈ c•, χ′ is persistent if:

a(h) = k′, where k′ is the arity of the ?-link cut in R′ and is equal to k, the arity of

the ?-link cut in R; every crossing of R′ in χ′ preserves σ ∈ Sa(h). Now, χ′ contains

no such crossing, so the second condition is always (vacuously) satisfied. Hence,

we can simplify by imposing a(h) = k and applying the definition of exponential

reduction.

=
∑
σ∈Sk

{
ρσ
(

(yl, wln) :: β
B•n
n :: (wmn , ym)

) ∣∣∣ 1 ≤ n ≤ k
}

=
∑
σ∈Sk

{
(yl, wln) :: β

B•n
n :: (wmn , ym)

∣∣∣ 1 ≤ n ≤ k
}

Then, once again, k! equal addends are neutralised by sum’s idempotence:

=
{

(yl, wln) :: β
B•n
n :: (wmn , ym)

∣∣∣ 1 ≤ n ≤ k
}

,

and we observe that its support is equal to supp
(
(ρ(χ))(ρ(R))•

)
.

Lemma 9. Let N be a mMELL proof-net, let ρ be a reduction step on N , and π ∈
PE(N ). Then

supp
(

(ρ(π))
(ρ(N ))•

)
= supp

(
ρ•(πN

•
)
)

. (64)

Proof. Let R be the redex of ρ, so that N = C[R]. Being an execution path, π is

necessarily long enough for R, so let RCFR(π) = γ0 :: χ1 :: γ1 :: . . . :: χk :: γk, and

let γ = γ0 :: θ1 :: γ1 :: . . . :: θk :: γk be the corresponding path in C, where θi for any

1 ≤ i ≤ k is an atomic path crossing its hole-link. Now let us analyse path expansion.

By definition, we can express πN
•

as the appropriate substitution of any χ′i appearing

in χR
•

i of the corresponding θ′i appearing in γC
•
:

πN
•

=
∑

Γ∈supp
(
γC
•)

X′i∈supp
(
χR
•

i

)
{
γ′0 :: χ′1 :: γ′1 :: . . . :: χ′k :: γ′k∣∣ γ′0 :: θ′1 :: γ′1 :: . . . :: θ′k :: γ′k ∈ Γ, χ′i ∈ X ′i

}
(65)

Now, reduction of mMELL paths (Definition 20) acts on redex crossing:

ρ(π) = γ0 :: ρ(χ1) :: γ1 :: . . . :: ρ(χk) :: γk,

therefore, similarly to what we have done in Equation 65, we can write the expansion of

ρ(π) as the expansion of γ where we substitute any sub-path θ′i (that is an expansion of
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θ) with any expansion of ρ(χi).

(ρ(π))
(ρ(N ))•

=
∑

Γ∈supp
(
γC
•)

X′i∈supp
(
ρ(χi)

(ρ(R))•
)
{
γ′0 :: χ′1 :: γ′1 :: . . . :: χ′k :: γ′k∣∣ γ′0 :: θ′1 :: γ′1 :: . . . :: θ′k :: γ′k ∈ Γ,

χ′i ∈ X ′i
}

(66)

Now let us consider the action of expanded reduction on Equation 65. For any set of

resource redexes R′ in the support of the expansion of R, let ρR
′ ⊆ ρ• denote the set of

ordinary resource reduction steps acting on every redex in R′. We distinguish two cases

according to the type of redex.

1 T (R) = (/(̄. We can directly apply Definition 12.

ρ•
(
πN

•
)

=
∑

Γ∈supp
(
γC
•)

R′∈supp(R•)

X′′i ∈supp
(
ρR
′(
χR
′•

i

))

{
γ′0 :: χ′′1 :: γ′1 :: . . . :: χ′′k :: γ′k∣∣ γ′0 :: θ′1 :: γ′′1 :: . . . :: θ′k :: γ′′k ∈ Γ,

χ′′i ∈ X ′′i
}

(67)

Therefore, from Equation 66 and 67, we deduce that it is enough to prove that

supp
(
ρ(χi)

(ρ(R))•
)

?
= supp

 ∑
R′∈supp(R•)

ρR
′
(
χR
′•

i

) ,

which is equivalent to the very statement of Lemma 8:

supp
(
ρ(χi)

(ρ(R))•
)

= supp
(
ρ•
(
χR
•

i

))
.

2 T (R) = !/?. Similarly to the previous case, we now apply Definition 13 of path

reduction. This time the sum we obtain spans also over the resource permutation:

ρ•
(
πN

•
)

=
∑

Γ∈supp
(
γC
•)

R′∈supp(R•)
σ∈SR′

X′′i ∈supp
(
ρR
′σ(

χR
′•

i

))

{
γ′0 :: χ′′1 :: γ′1 :: . . . :: χ′′k :: γ′k∣∣ γ′0 :: θ′1 :: γ′′1 :: . . . :: θ′k :: γ′′k ∈ Γ,

χ′′i ∈ X ′′i
}

(68)

Comparing Equation 66 and 68, we reduce the statement to:

supp
(
ρ(χi)

(ρ(R))•
)

?
= supp

 ∑
R′∈supp(R•)
σ∈SR′

ρR
′σ
(
χR
′•

i

) ,

which is ensured again by Lemma 8:

supp
(
ρ(χi)

(ρ(R))•
)

= supp
(
ρ•
(
χR
•

i

))
.

Theorem 4. Let N be a mMELL proof-net, let ρ̄ be a reduction sequence on N , and
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π ∈ PE(N ). Then:

supp
(

(ρ̄(π))
(ρ̄(N ))•

)
= supp

(
ρ̄•(πN

•
)
)

. (69)

Proof. Using Lemma 9, the proof reduces to a simple induction on the number of

reduction steps in ρ̄.

Theorem 5. For any proof-net N , and π ∈ PE(N ), π is persistent if and only if there

exists π′ ∈ Π ∈ supp
(
πN

•)
which is persistent.

Proof. We separately prove necessity and sufficiency.

1 (⇐). By contraposition, suppose π non persistent. This means that there exists a

mMELL reduction sequence σ̄ such that σ̄(π) = ∅. Hence, (σ̄(π))(σ̄(N ))• = ∅. There-

fore, by commutativity of Theorem 4, also σ̄•(πN
•
) = ∅. This allows us to conclude

— for any Π ∈ supp
(
πN

•)
and for every π′ ∈ Π, there exists some resource reduction

sequence σ̄′ ⊆ σ̄• such that σ̄′(π′) = ∅.
2 (⇒). Let σ̄ be a reduction sequence N →∗ NF(N ). By hypothesis σ̄(π) 6= ∅, there-

fore (σ̄(π))
NF(N )• 6= ∅. By commutativity of expansion with reduction (Theorem 4),

supp
(

(σ̄(π))
NF(N )•

)
= supp

(
σ̄•
(
πN

•))
, which implies that σ̄•

(
πN

•) 6= ∅. Hence,

there exist Π ∈ supp
(
πN

•)
and π′ ∈ Π such that σ̄•(π′) 6= ∅. Now, since σ̄(N ) is

cut-free, by Fact 3 it must be the case that also σ̄•(N •) is cut-free, i.e. it is in normal

form with respect to resource reduction. Therefore, we conclude by Lemma 4 that π′

is persistent.

7. Expansion and execution

Theorem 5 showed that persistence of a mMELL execution path π can be characterised

by the existence of persistent resource paths in its expansion. But this, in turn, can

be characterised by regularity, as established in Corollary 1. So we can formulate an

expanded variant of the notion of regularity, which characterise persistence of π using

weights of its expansion. Moreover, we can formulate a qualitative and expanded variant

of the execution formula for a ?-typed mMELL proof-net N . We weigh, within the rL∗

monoid, any path in any set of the sum obtained by expanding any path in N . Such

expansion-execution is invariant with respect to mMELL reduction.

Definition 26 (Expansion-regularity and execution). The expanded weight of a

mMELL path π in a mMELL proof-net N is the sum of the rL∗ weights any of its com-

prehensive expansions:

w•(π) =
∑

π′∈Π∈supp
(
πN
•)

π′compr.

w (π′) . (70)

We call π expansion-regular if w•(π) 6= 0. The expansion-execution ofN , written Ex•(N ),

is the sum of the expanded weights of any execution path in N :

Ex•(N ) =
∑

π∈PE(N )

w•(π). (71)
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Corollary 3. A path π is persistent if and only if π is expansion-regular.

Proof. We separately prove necessity and sufficiency. Let N be the proof-net of π.

1 (⇐). By contraposition, suppose π not persistent. Then, by Theorem 5, we have that

any π′ ∈ Π ∈ supp
(
πN

•)
is not persistent. In particular, it is the case when π′ is

comprehensive, but Corollary 1 established that any such π′ is not regular, which

means by definition that w (π′) = 0. Ergo, π is not expansion-regular.

2 (⇒). By contraposition, suppose π not expansion-regular, which by definition means

that
∑
π′compr.∈Π∈supp(πN•) w (π′) = 0. Now, since in (rL∗,+) the only invertible

element is the identity (for any a, b ∈ rL∗, if a + b = 0 then a = b = 0), it must

be the case that w (π′) = 0 for any π′. Ergo, by Corollary 1, any comprehensive

π′ ∈ πN• is not persistent. Now, recall that, by Lemma 2, every execution path that

is not comprehensive cannot be persistent. Therefore, there exists no π′ ∈ πN• being

persistent. Hence, by Theorem 5, we conclude that π is not persistent as well.

Theorem 6. For any mMELL proof-netN and reduction step ρ, Ex•(N ) =rL∗ Ex
•(ρ(N )).

Proof. By definition, we need to show that
∑
π∈PE(N ) w

•(π) =
∑
φ∈PE(ρ(N )) w

•(φ).

Since by Lemma 6, the step ρ induces a partition on PE(ρ(N )), we may express the

claim as the equality between∑
π∈PE(N )

w•(π) and
∑

π∈PE(N )
φ∈ρ(π)⊆PE(ρ(N ))

w•(φ).

Hence, for any π ∈ PE(N ), we shall prove that the followings are equal:

w•(π) and
∑

φ∈ρ(π)

w•(φ).

By definition, they are the sum of their comprehensive expansions:∑
π′∈Π∈supp

(
πN
•)

π′compr.

w (π′) and
∑

φ∈ρ(π)

φ′∈Φ∈supp
(
φ(ρ(N))•

)
φ′compr.

w (φ′) .

Exploiting again Lemma 6, we can highlight the expansion of ρ(π) within the rightmost

summation, and obtain:∑
π′∈Π′∈supp

(
πN
•)

π′compr.

w (π′) and
∑

π′′∈Π′′∈supp
(

(ρ(π))(ρ(N))•
)

π′′compr.

w (π′′) .
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On the leftmost summation, by invariance theorem of rL∗ (Theorem 3), for any reduction

step ρ′, we have that w (π′) =rL∗ w (ρ′(π′)). Consequently, iterating this argument on

any step of ρ•, we conclude that w (π′) =rL∗ w (ρ•(π′)). Hence, we can equivalently

compare: ∑
π′∈Π∈supp

(
πN
•)

π′compr.

w (ρ•(π′)) and
∑

π′′∈Π∈supp
(

(ρ(π))(ρ(N))•
)

π′′compr.

w (π′′) .

On the rightmost summation, we know from commutativity Lemma 9 that (ρ(π))(ρ(N ))•

and ρ•
(
πN

•)
have the same support. Thus, we obtain:∑

π′∈Π′∈supp
(
πN
•)

π′compr.

w (ρ•(π′)) and
∑

π′′∈Π′′∈supp
(
ρ•(πN

•
)
)

π′′compr.

w (π′′) .

Recall that ρ• is equivalent to a reduction sequence σ̄ which includes a step ρ′ redex of

ρ•. Now for any such ρ′, we know from Theorem 1 that ρ• induces a bijection between

execution paths in a RIN and its reduct, provided they persist to ρ′. Moreover, as stated

in Fact 1, comprehensiveness is preserved by reduction. Thus, ρ̄, hence ρ•, induces a

bijection between execution comprehensive paths πN
•

and those of ρ•
(
πN

•)
. Therefore

we can write the rightmost summation identically to the leftmost one.

Future work

The results presented here not only open various interesting questions, but also evoke

some possible directions towards their answers.

(i) Can we strengthen the expressivity of the calculi considered here, beyond the minimal-

ist formulation to get closer to real programming-language class? An obvious direction

is the inclusion of fixed-point combinators, to define a PCF-like variant of the resource

calculus (RC), where the restriction to ground types remains innocuous.

(ii) Is there a nicely-expressible and general notion of infinite paths allowing represent-

ing infinite normal-forms? The inspiration may come from Böhm trees and its notion of

meaningful infinite head normal form, and such a reduction strategy is already known to

be closely related both to dynamics of expansion (Ehrhard and Regnier, 2006a) and of

paths (Laurent, 2001).

(iii) Can we design a non-deterministic linear abstract machine inspired by the construc-

tion presented here? In order to do so, we need to represent locally the notion expansion,

which has a twofold global nature: one in the argument superposition of RC, the other in

the superposition of differently expanded terms. Removing the latter, indeed subsumed

by the former, the challenge becomes that of formalising a notion of expanded execution

which does not explicitly consider the expansion of the proof-net, but which instead first

assigns algebraic weights locally, and then computes them in a distributed way. Starting

from the approach presented here, the question may be addressed by formalising expan-

sion as a local graph-rewriting system.

(iv) Is it possible to define a more general GoI-based model for the full differential
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λ-calculus, and for the full differential linear logic, where both superposition and non-

linearity are present? In that case, the shape of persistent crossings in an exponential

redex does not necessarily respect the definition we gave here by means of fixed permu-

tations, because different copies of a box containing a redex may need different resource

assignments. Moreover, in order to obtain a degree of compositionality higher than our

GoRI, one should most probably sacrifice the beauty of the invariance under reduction,

and make do with a result of equivalence between regularity and persistence. Nonethe-

less, the presented results on the dynamics of Taylor-Ehrhard-Regnier expansion of paths

seems to provides a promising starting point for these investigations.

(v) What are the multiplicity coefficients for path expansion? A study of the non-trivial

combinatorial properties would complete our results, providing a tool to study the combi-

natorics of ordinary paths in λ-terms. We believe it to be connected to the normalisation

complexity and the expansion-related part of the framework to be fruitfully extendible

at a quantitative level.
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