Philippe Bernardoff 
email: philippe.bernardoff@univ-pau.fr
  
Laplace copulas of multifactor gamma distributions are new generalized Farlie-Gumbel-Morgenstern copulas

Keywords: Archimedean copula, cumulative distribution function, copula, exponential families, infinitely divisible distribution, generalized Farlie-Gumbel-Morgenstern copulas, generalized hypergeometric function, generalized Lauricella functions, Horn function, Kendall's tau, Laplace copula, Laplace transform, multi-factor gamma distribution, multivariate gamma distribution, Spearmann's rho

This paper provides bifactor gamma distribution, trivariate gamma distribution and two copula families on [0, 1] n obtained from the Laplace transforms of the multivariate gamma distribution and the multi-factor gamma distribution given by [P (θ)] -λ and [P (θ)] -λ n i=1 (1 + piθi) -(λ i -λ) respectively, where P is an affine polynomial with respect to the n variables θ1, . . . , θn.

These copulas are new generalized Farlie-Gumbel-Morgenstern copulas and allow in particular to obtain multivariate gamma distributions for which the cumulative distribution functions and the probability distribution functions are known.

Introduction

This paper is motivated by the opportunity to produce explicit cumulative distribution functions (cdf) and probability distribution functions (pdf) of multivariate gamma distributions and multi-factor gamma distributions. In this way, we present two new classes of multivariate copulas generalizing the Farlie-Gumbel-Morgenstern Copulas. From Sklar [START_REF] Sklar | Fonctions de répartition à n dimensions et leurs marges[END_REF] who states that the cdf F of a random vector X = (X 1 , . . . , X n ) with continuous marginal cdfs can be uniquely written in the form

F (x 1 , . . . , x n ) = C [F 1 (x 1 ) , . . . , F n (x n )] , x = (x 1 , . . . , x n ) ∈ R n , ( 1 
)
where n is the dimension of the random vector X, where C : [0, 1] n → [0, 1] is a copula and where F 1 , . . . , F n are the marginal cdfs of X.

If f is the pdf of the random vector X and f 1 , . . . , f n the marginal pdfs of X, then

c (u 1 , . . . , u n ) = ∂ n ∂u 1 . . . ∂u n C (u 1 , . . . , u n ) ,
and we have the following equality

f (x 1 , . . . , x n ) = c [F 1 (x 1 ) , . . . , F n (x n )] f 1 (x 1 ) . . . f n (x n ) . (2) 
From Equality (1) it is possible to express the cdf F of X. This expression cannot simply explicitly give the copula C for the multivariate gamma distribution associated with (P, λ) and the multi-factor gamma distribution associated with (P, Λ) . But with Joe [START_REF] Joe | Multivariate Models and Dependance Concepts[END_REF], we can give copulas deduced of the Laplace transform of the multivariate gamma distribution associated with (P, λ) and the Laplace transform of the multi-factor gamma distribution associated with (P, Λ) . By applying the formulas [START_REF] Balakrishnan | Continuous Multivariate Distributions[END_REF] and [START_REF] Bar-Lev | The diagonal multivariate natural exponential families and their classification[END_REF] we can give a new multivariate gamma distribution associated with (P, λ) and a new multi-factor gamma distribution associated with (P, Λ) for which we have an explicit formula for its cdf and its pdf.

The paper is organized as follows. Section 2 gives definitions of multivariate gamma distributions and multi-factor gamma distributions for which Laplace transform is given, and considers the bidimentional and tridimentional case. Section 3 defines the Laplace copula. Section 4 states the two main results.

Section 5 applies the main cases to bidimensional and tridimensional cases. In particular, the Joe's family BB10 is generalized. For ease of the fluent exposition of the paper, proofs are collected in the Appendix.

2 Multivariate gamma distributions and multi-factor gamma distributions

In the literature, the multivariate gamma distributions on R n have several non-equivalent definitions.

Many authors require only that the marginal distributions are ordinary gamma distributions (Balakrishnan et al., 1997). In the present paper, we use the extension of the classical one-dimensional definition to R n obtained as follows: we consider an affine polynomial P (θ) in θ = (θ 1 , . . . , θ n ) where 'affine' means that, for j = 1, . . . , n, ∂ 2 P/∂θ 2 j = 0. We also assume that P (0) = 1. For instance, for n = 2, we have

P (θ 1 , θ 2 ) = 1 + p 1 θ 1 + p 2 θ 2 + p {1,2} θ 1 θ 2 .
We denote by P n = P ([n]) the family of all subsets of [n] and P * n the family of non-empty subsets of [n] = {1, . . . , n} . For simplicity, if n is fixed and if there is no ambiguity, we denote these families by P and P * , respectively.

We denote by N the set of non-negative integers.

If z = (z 1 , . . . , z n ) ∈ R n and α = (α 1 , . . . , α n ) ∈ N n , then α! = α 1 ! . . . α n !, |α| = α 1 + . . . + α n , a α = a α1,...,αn and z α = n i=1 z αi i = z α1 1 . . . z αn n .
For T in P n , we simplify the above notation by writing z T = t∈T z t instead of z 1T where

1 T = (α 1 , . . . , α n ) with α i = 1 if i ∈ T and α i = 0 if i / ∈ T.
We also write z -T for t∈T 1/z t . For a mapping a : P → R, we shall use the notation a : P → R, T → a T . In this notation, an affine polynomial with constant term equal to 1 is P (θ) = T ∈P p T θ T , with p ∅ = 1. For simplicity, if T = {t 1 , . . . , t k } , we denote a {t1,...,t k } = a t1...t k . The indicator function of a set S is denoted by ½ S , that is, ½ S (x) = 1 for x ∈ S and 0 for x / ∈ S.

We fix λ > 0. If a random vector X = (X 1 , . . . , X n ) on R n with probability distribution (pd) µ X is such that its Laplace transform is

E {exp [-(θ 1 X 1 + • • • + θ n X n )]} = [P (θ)] -λ , (3) 
where E denotes the expectation, for a set of θ with non-empty interior, then we denote µ X = γ (P,λ) , and γ (P,λ) will be called the multivariate gamma distribution associated with (P, λ). These multivariate gamma distributions occur naturally in the classification of natural exponential families in R n (Bar-Lev

et al., 1994).
The marginal distributions of the multivariate gamma distribution associated with (P, λ) are ordinary gamma distributions of parameters (p i , λ) for i = 1, . . . , n, with Laplace transform (1 + p i θ i ) -λ , and pd

γ (pi,λ) (d x) = x λ-1 p -λ i /Γ (λ) exp (-x/p i ) ½ (0,∞) (x)d x.
We extend the first definition to the multi-factor gamma distribution associated with (P, Λ) where Λ = (λ, λ 1 , . . . , λ n ) and λ i λ > 0 for all i = 1, . . . , n by its Laplace transform

E {exp [-(θ 1 X 1 + • • • + θ n X n )]} = [P (θ)] -λ n i=1 (1 + p i θ i ) -(λi-λ) . (4) 
The marginal distributions of the multi-factor gamma distribution associated with (P, Λ) are ordinary gamma distributions of parameters (p i , λ i ) for i = 1, . . . , n.

We state first a proposition, whose proof is obvious.

Proposition 1 A random vector X with distribution γ P,Λ can be obtained in the following way:

Let Y be a vector with distribution γ P,λ . Let Z = (Z 1 , . . . , Z n ) be a random vector constituted of independent margins for which its pds are γ (pi,λi) , and such that Z and Y are independent. Then the vector X = Y + Z has Laplace transform (4), and consequently is a multi-factor gamma distribution associated to (P, Λ) .

For the bidimensional case, Dussauchoy and Berland, [START_REF] Dussauchoy | Lois gamma à deux dimensions[END_REF]) consider the random vector X = (X 1 , X 2 ) with Laplace transform

L X (θ 1 , θ 2 ) = (1 + p 1 θ 1 ) -λ1 (1 + p 2 θ 2 ) -λ2 1 - r 12 p 1 p 2 θ 1 (1 + p 1 θ 1 ) (1 + p 2 θ 2 ) -λ = (1 + p 1 θ 1 ) -(λ1-λ) (1 + p 2 θ 2 ) -(λ2-λ) (1 + p 1 θ 1 + p 2 θ 2 + p 12 θ 1 ) -λ , (5) 
where r 12 = 1 -p 12 / (p 1 p 2 ) > 0 and p 1 , p 2 , p 12 > 0.

Unfortunately the Laplace transform of these pds is simple, but its pdfs and cdfs are unknown, except for the case n = 2 for the multivariate gamma distribution associated with (P, λ). Let F p m be the generalized hypergeometric function [START_REF] Slater | Generalized Hypergeometric Functions[END_REF] defined by

F p m (α 1 , . . . , α p ; β 1 , . . . , β m ; z) = ∞ k=0 (α 1 ) k • • • (α p ) k (β 1 ) k • • • (β m ) k z k k! , (6) 
where (a) k = Γ (a + k) /Γ (a) for a > 0 and k ∈ N, or more generally by (a) 0 = 1, (a) n+1 = (a + n)(a), ∀n ∈ N, ∀a ∈ R, is the Pochhammer's symbol. For simplification, we denote F 0 m by F m . Bernardoff [START_REF] Bernardoff | Which multivariate gamma distributions are infinitely divisible?[END_REF] gives the Proposition 2 Let P (θ 1 , θ 2 ) = 1 + p 1 θ 1 + p 2 θ 2 + p 12 θ 1 θ 2 be an affine polynomial where p 1 , p 2 > 0 and p 1,2 > 0. Let µ = γ (P,λ) be the gamma distribution associated to (P, λ) . The measure µ exists if and only if c = (p 1 p 2 -p 12 ) /p 2 12 = p 1 p 2 /p 2 12 r 12 > 0. Then we have

γ (P,λ) (dx 1 , dx 2 ) = p -λ 12 Γ (λ) 2 e -p 2 p 12 x1- p 1 p 12 x2 (x 1 x 2 ) λ-1 F 1 (λ; cx 1 x 2 ) ½ (0,∞) 2 (x) d (x) . (7) 
For the case Λ = (λ, λ, λ 2 ), the multi-factor gamma distribution associated with (P, Λ) is named by Chatelain et al. [START_REF] Chatelain | Change detection in multisensor SAR images using bivariate gamma distributions[END_REF] the multisensor gamma distribution associated with (P, λ, λ 2 )

and they have proved that its pd is given by the equality

γ (P,Λ) (dx 1 , dx 2 ) = p -λ 12 p -(λ2-λ) 2 1 Γ (λ) Γ (λ 2 ) x λ-1 1 x λ2-1 2 e - p 2 p 12 x1- p 1 p 12 x2 Φ 3 (λ 2 -λ; λ 2 ; c p 12 p 2 x 2 ; cx 1 x 2 ) × ½ (0,∞) 2 (x 1 , x 2 ) dx 1 dx 2 , (8) 
where

Φ 3 (a; b; x, y) = m,n 0 (a) m (b) m+n x m m! y n n! (9) 
is the Horn function.

For the bidimensional general case, we have the following Theorem. Let F I be the function defined by

F I (a, b, c, z) = ∞ m1,m2,m3=0 (a) m1 (b) m2 (c) m3 (a + c) m1+m3 (b + c) m2+m3 z m1 1 m 1 ! z m2 2 m 2 ! z m3 3 m 3 ! ; ( 10 
)
it is a particular generalized Lauricella function defined, by example, in [START_REF] Panda | Some integrals associated with the generalized Lauricella functions[END_REF].

Theorem 3 The pd of γ (P,(λ,λ1,λ2)) is given by the equality

γ (P,(λ,λ1,λ2)) (dx 1 , dx 2 ) = p -λ 12 p -(λ1-λ) 1 p -(λ2-λ) 2 Γ (λ 1 ) Γ (λ 2 ) x λ1-1 1 x λ2-1 2 e - p 2 p 12 x1+ p 1 p 12 x2 × F I λ 1 -λ, λ 2 -λ, λ, p 12 p 1 x 1 , p 12 p 2 x 2 , cx 1 x 2 ½ (0,∞) 2 (x 1 , x 2 ) dx 1 dx 2 , (11) 
If we get λ 1 = λ in the equality [START_REF] Letac | Laplace transforms which are negative powers of quadratic polynomials[END_REF], we obtain Chatelain and Tourneret's result [START_REF] Joe | Multivariate Models and Dependance Concepts[END_REF] because

F I (0, λ 2 -λ, λ, z 1 , z 2 , z 3 ) = ∞ m2,m3=0 (b) m2 (b + c) m2+m3 z m2 2 m 2 ! z m3 3 m 3 ! = Φ 3 (b; b + c; z 2 , z 3 ) .
Bernardoff [START_REF] Bernardoff | Which multivariate gamma distributions are infinitely divisible?[END_REF] gives the following Proposition:

Proposition 4 Let µ be a multivariate gamma distribution on R n associated to (P, λ) . Assume that µ is not concentrated on a linear subspace of R n of the form {x ∈ R n ; x k = 0} for some k in [n] = {1, . . . , n}.

Then:

(i) For all i ∈ [n] , p i = 0. (ii) If p 1 , . . . , p k < 0 and p k+1 , . . . , p n > 0, then Supp (µ) ⊂ (-∞, 0] k × [0, ∞) n-k . (iii) If p 1 , . . . , p n > 0 then p [n] 0.
Bernardoff [START_REF] Bernardoff | Which multivariate gamma distributions are infinitely divisible?[END_REF] gives a necessary and sufficient condition for infinite divisibility of the multivariate gamma distribution associated with (P, λ), in the sense that the Laplace transform of γ (P,λ)

power t for all positive t is still the Laplace transform of a positive measure, by the following theorem:

Theorem 5 Let µ = γ P,λ be a gamma distribution associated with (P, λ) , where λ > 0 and P (θ) =

T ∈Pn p T θ T is such that p i > 0, for all i ∈ [n] , and p [n] > 0. Let P (θ) = T ∈Pn p T θ T be the affine polynomial such that p T = -p T /p [n] for all T ∈ P n , where

T = [n] T . Let b S = b S ( P ) = |S| k=1 (k -1)! T ∈Π k S T ∈T p T ,
where |S| denotes the cardinality of the set S, and Π k S denotes the set of all partitions of S into k non-empty subsets of S. Then the measure µ is infinitely divisible if and only if

p i < 0 for all i ∈ [n] , (12) 
and

b S 0 for all S ∈ P * n such that |S| 2. ( 13 
)
Corollary 6 By the properties of infinite divisible distributions we conclude that the necessary and sufficient conditions for infinite divisibility of a multivariate gamma distribution associated to (P, λ) of theorem [START_REF] Chatelain | Change detection in multisensor SAR images using bivariate gamma distributions[END_REF], are also necessary and sufficient conditions for infinite divisibility of multivariate multifactor gamma distribution associated to (P, Λ) .

To illustrate the difficulty to calculate the multivariate gamma distribution associated with (P, λ) we give, for the tridimensional case, the following theorem. Let F II be the function defined by

F II (λ 1 , λ 2 , z 1 , z 2 , z 3 , z 4 ) = ∞ m1,...,m4=0 1 (λ 1 ) m1+m2+m3 (λ 2 ) 2m1+m2+m4 z m1 1 m 1 ! z m2 2 m 2 ! z m3 3 m 3 ! z m4 4 m 4 ! ; (14) 
it is still a particular generalized Lauricella function.

Theorem 7 In the case n = 3,

p i > 0 for i ∈ [3] , p ij > 0 for (i, j) ∈ [3] 2 , b ij = -b k p123 + p jk p ik p 2 [Γ (λ)] 3 exp( p 1 x 1 + p 2 x 2 + p 3 x 3 ) (x 1 x 2 x 3 ) λ-1 × F II (λ, λ, b 13 x 1 x 3 b 23 x 2 x 3 , b 123 x 1 x 2 x 3 , b 12 x 1 x 2 , b 13 x 1 x 3 + b 23 x 2 x 3 )½ (0,∞) 3 (x) dx. ( 15 
)
Remark 8 The case p 123 = 0 is solved by Letac and Weso lowski (Letac and Weso lowski, 2008). 

γ (λ,P ) (dx) = p -λ 123 [Γ (λ)] 3 exp( p 1 x 1 + p 2 x 2 + p 3 x 3 ) (x 1 x 2 x 3 ) λ-1 F 2 λ, λ; b 123 x 1 x 2 x 3 ½ (0,∞) 3 (x) dx,
and if we put λ = 1 in this last equality, we obtain the Kibble and Moran distribution given in (Balakrishnan et al., 2000).

Laplace copula

We recall the following theorem [START_REF] Marshall | Families of Multivariate Distributions[END_REF] 

(i = 1, . . . , n). Let K be a copula. If F i (x) = exp -φ -1 i [H i (x)] (i = 1, . . . , n) , then H (x 1 , . . . , x n ) = • • • K [F 1 (x 1 )] θ1 , . . . , [F n (x n )] θn dG (θ 1 , . . . , θ n ) (16)
is an n-variate cdf with marginals H 1 , . . . , H n .

Corollary 11 Under the conditions of the Theorem 10, with

K (x 1 , . . . , x n ) = n i=1 x i , (0 x i 1; i = 1, . . . , n) , H (x 1 , . . . , x n ) = φ φ -1 1 [H 1 (x 1 )] , . . . , φ -1 n [H n (x n )] ( 17 
)
defines an n-variate cdf with marginals H 1 , . . . , H n .

Therefore copula for H is associated to G and is given by the formula

C (u 1 , . . . , u n ) = φ φ -1 1 (u 1 ) , . . . φ -1 n (u n ) . (18) 
Remark 12 If we know φ and φ i , for i = 1, . . . , n, we can find the copula C, that is the case for the multivariate gamma distributions and for the multivariate multi-factor gamma distributions. For the case H i = G i , we can write :

H (x 1 , . . . , x n ) = φ φ -1 1 [G 1 (x 1 )] , . . . φ -1 n [G n (x n )] , (19) 
and this last formula defines n-variate cdf gamma H with margin distributions G 1 , . . . , G n .

Then the copula associated to H is

C (u 1 , . . . , u n ) = φ φ -1 1 (u 1 ) , . . . , φ -1 n (u n ) .
Now, from the Formula 18, we can give the following Definition

Definition 13 Let X = (X 1 , X 2 , . . . , X n ) be a random vector in ]0, +∞[ n with Laplace transform ϕ X defined by L X (θ) = L X (θ 1 , . . . , θ n ) = ϕ X (θ 1 , . . . , θ n ) = E {exp [-(θ 1 X 1 + • • • + θ n X n )]}
, and let ϕ Xi be the Laplace transform of the random variable X i , defined by 

L Xi (θ i ) = ϕ Xi (θ i ) = E [exp (-θ i X i )] .
C L X (u 1 , . . . , u n ) = ϕ X ϕ -1 X1 (u 1 ) , . . . , ϕ -1 Xn (u n )
is a copula. We call this copula C L X the Laplace copula associated to the random vector X. If X has pd

µ X (dx) , then we denote still C L X (u 1 , . . . , u n ) = C L µ X (u 1 , . . . , u n ) .
Proposition 14 Let F 1 , . . . , F n , be n univariate cdfs on ]0, +∞[ . The relation

F (x 1 , . . . , x n ) = ϕ X ϕ -1 X1 [F 1 (x 1 )] , . . . , ϕ -1 Xn [F n (x n )] = C L X [F 1 (x 1 ) , . . . , F n (x n )]
defines a cdf F with marginal cdfs F 1 , . . . , F n . Then the copula associated to F is C L X .

If we choose, for i = 1, 2, . . . , n, F i = F Xi , the cdf of X i , then F is the cdf of a random vector X for which the marginal cdfs are the cdfs of X i , and we have F = F X where F X calls the cdf of X. In the case of multivariate gamma distributions and multi-factor gamma distributions, we get other multivariate gamma distributions and multi-factor gamma distributions with given copula.

Laplace copula can be seen as a generalization of Archimedean copula [START_REF] Joe | Multivariate Models and Dependance Concepts[END_REF][START_REF] Joe | Dependence Modeling with Copulas[END_REF].

Main results

Now, we are in the capacity to give the two main results of this paper Theorem 15 Let P an affine polynomial in the n variables θ i , i = 1, . . . , n, with P (0) = 1, then the Laplace copula of the multivariate gamma distribution γ (P,λ) associated to (P, λ) is

C Lγ (P,λ) (v) = v [n] [1 + T ⊂[n],|T |>1 (-1) |T | P (- 1 p 1 T ) t∈T (1 -v 1 λ t )] -λ , (20) 
where v = (v 1 , . . . , v n ) , |T | is the cardinality of T and the vector 1 p 1 T is defined by

1 p 1 T i = 1 pi if i ∈ T , 1 p 1 T i = 0 if i / ∈ T , for i ∈ {1, 2, . . . , n}.
This family is given, by example, for the simpler case P (θ) = n i=1 (1+p i θ i )]-βp [n] θ [n] , with 0 β < 1, corresponding to the family gived by [START_REF] Fang | A family of bivariate distributions with non-elliptical contours[END_REF], namely

C (v) = v [n] [1 -β n i=1 (1 -v 1 λ i )] -λ .
Theorem 16 Let P an affine polynomial in the n variables θ i , i = 1, . . . , n, with P (0) = 1, let Λ = (λ, λ 1 , . . . , λ n ) with λ i > λ > 0, for i ∈ {1, 2, . . . , n} , then the Laplace copula of the multivariate multifactor gamma distribution γ (P,Λ) associated to (P, Λ) is

C Lγ (P,Λ) (v) = v [n] [1 + T ⊂[n],|T |>1 (-1) |T | P (- 1 p 1 T ) t∈T (1 -v 1 λ t t )] -λ . ( 21 
)
This copula family is a new generalization of Farlie-Gumbel-Morgenstern Copulas.

Bekrizadeh et al., 2012 propose a similar formula only for λ being a negative integer.

We note that, if the conditions of Theorem 5 are checked, formulas (20) and (21) define copulas.

For these copulas, if we inject univariate gamma distributions γ (pi,λ) in the first case or γ (pi,λi) in the second case, then we obtain other multivariate gamma distributions and other multivariate multifactor gamma distributions in the sense that their marginal distributions are respectively γ (p1,λ) and γ (p1,λi) . Their cdf and pdf are given by ( 1) and ( 2) respectively, and have a link with multivariate gamma distribution associated with (P, λ) and multi-factor gamma distribution associated with (P, Λ) respectively.

The bidimensional and tridimensional cases

For the bidimensional case, Theorem [START_REF] Slater | Generalized Hypergeometric Functions[END_REF] and Theorem (16) give the following corollary Corollary 17 For the bivariate gamma distribution such that L γ (P,λ) (θ) = (P (θ))

-λ , we have

C Lγ (P,λ) (v 1 , v 2 ) = v 1 v 2 [1 -r 12 (1 -v 1 λ 1 )(1 -v 1 λ 2 )] -λ ,
where, for X = (X 1 , X 2 ) with pd γ (P,λ) , r 12 = -P (-p -1 1 , -p -1 2 ) = 1 -p 12 / (p 1 p 2 ) is the linear correlation coefficient of the random variables X 1 , X 2 ; it checks 0 r 12 1. It is the copula of the BB10 family p. 154 in the Joe's book [START_REF] Joe | Multivariate Models and Dependance Concepts[END_REF]). This result is due to the following equalities :

E (X i ) = λp i, V ar (X i ) = λp 2 i , Cov(X 1 , X 2 ) = λ (-p 12 + p 1 p 2 )
obtained by derivating L γ (P,λ) (θ) at 0. For the bivariate multi-factor gamma distribution such that L γ (P,Λ) (θ) = (P (θ)) -λ 2 i=1 (1 + p i θ i ) -(λi-λ) , we have a more general family

C Lγ (P,Λ) (v 1 , v 2 ) = v 1 v 2 [1 -r 12 (1 -v 1 λ 1 1 )(1 -v 1 λ 2 2 )] -λ , ( 22 
)
where, for

X = (X 1 , X 2 ) = (Y 1 , Y 2 ) + (Z 1 , Z 2 ) = Y + Z
as defined in Proposition 1 with pd γ (P,Λ) , and

0 r 12 = -P (-p -1 1 , -p -1 2 ) = 1 -p 12 / (p 1 p 2 ) 1, is the linear correlation coefficient of the random variables Y 1 , Y 2 in the bivariate gamma distribution such that L Y (θ) = [P (θ)] -λ .
This bivariate family is not given in the Joe's books [START_REF] Joe | Multivariate Models and Dependance Concepts[END_REF][START_REF] Joe | Dependence Modeling with Copulas[END_REF]. Bekrizadeh et al., 2012 give a similar formula for λ being a negative integer.

We recall the formulas [START_REF] Joe | Dependence Modeling with Copulas[END_REF] for the computation of τ, the Kendall's tau, and ρ S , the Spearmann's rho

τ = 1 -4 [0,1] 2 ∂C ∂u (u, v) ∂C ∂v (u, v) dudv, ( 23 
)
ρ S = 12 [0,1] 2 C (u, v) dudv -3. ( 24 
)
Then, we can give the following result Proposition 18 The Kendall's tau and the Spearman's rho of the Laplace copula of the bivariate multifactor gamma distribution are given by the following formulas

τ = 1 -F 3 2 (2λ, 1, 1; 2λ 1 + 1, 2λ 2 + 1; r 12 ) + 4λ (2λ 1 + 1) (2λ 2 + 1) r 12 F 3 2 (2λ + 1, 1, 2; 2λ 1 + 2, 2λ 2 + 2; r 12 ) - λ 2 (2λ 1 + 1) (2λ 2 + 1) (λ 1 + 1) (λ 2 + 1) r 2 12 F 3 2 (2λ + 2, 2, 2; 2λ 1 + 3, 2λ 2 + 3; r 12 ) , (25) 
and

ρ S = 3 F 3 2 (1, 1, λ; 2λ 1 + 1, 2λ 2 + 1; r 12 ) -1 (26) = 3λ (2λ 1 + 1) (2λ 2 + 1) r 12 F 3 2 (1, 2, λ + 1; 2λ 1 + 2, 2λ 2 + 2; r 12 ). ( 27 
)
For the tridimensional case, Theorem [START_REF] Slater | Generalized Hypergeometric Functions[END_REF] and Theorem (16) give the following corollary

Corollary 19 For the trivariate gamma distribution γ (P,λ) such that L γ (P,λ) (θ) = (P (θ))

-λ , we have

C Lγ (P,λ) (v 1 , v 2 , v 3 ) = v 1 v 2 v 3 [1 -r 12 (1 -v 1 λ 1 )(1 -v 1 λ 2 ) -r 13 (1 -v 1 λ 1 )(1 -v 1 λ 3 ) -r 23 (1 -v 1 λ 2 )(1 -v 1 λ 3 ) + 2r 123 (1 -v 1 λ 1 )(1 -v 1 λ 2 )(1 -v 1 λ 3 )] -λ ,
where, for X = (X 1 , X 2 , X 3 ) with pd γ (P,λ) , we denote by r ij = -P (-

1 p 1 {i,j} ) = 1 -p ij /(p i p j ), 1 i = j
3, the linear correlation coefficient of the random variables X i , X j , they check 0 r ij 1, and we denote by r 123 the number defined by

r 123 = E{ 3 i=1 [X i -E (X i )]}/ 3 i=1 (E{[X i -E (X i )] 3 }) 1/3 (28) = -1 2 P (-p -1 1 , -p -1 2 , -p -1 3 ) (to compare with r 12 = E{ 2 i=1 [X i -E (X i )]}/ 2 i=1 (E{[X i -E (X i )] 2 }) 1/2 ).
This last result is due to the following equalities :

E (X i ) = λp i, E{[X i -E (X i )] 3 } = 2λp 3 i , E{ 3 i=1 [X i -E (X i )]} = -λp 1 p 2 p 3 P (-p -1 1 , -p -1 2 , -p - 1 
3 ) obtained by derivating L γ (P,λ) (θ) at 0.

For the trivariate multi-factor gamma distribution such that L γ (P,Λ) (θ) = [P (θ)]

-λ 3 i=1 (1 + p i θ i ) -(λi-λ) (λ i λ, i = 1, 2, 3 ), we have C Lγ (P,Λ) (v 1 , v 2 , v 3 ) = v 1 v 2 v 3 [1 -r 12 (1 -v 1 λ 1 1 )(1 -v 1 λ 2 2 ) -r 13 (1 -v 1 λ 1 1 )(1 -v 1 λ 3 3 ) -r 23 (1 -v 1 λ 2 
2 )(1 -v

1 λ 3 
3 ) + 2r 123 (1 -v

1 λ 1 1 )(1 -v 1 λ 2 
2 )(1 -v

1 λ 3 
3 )] -λ , where, for 6 Appendix 6.1 Proof of Theorem 3

X = (X 1 , X 2 , X 3 ) = (Y 1 , Y 2 , Y 3 ) + (Z 1 , Z 2 , Z 3 ) = Y + Z
Let X = (X 1 , X 2 ) and Y = (Y 1 , Y 2 ) be independent random variables. The pdf of Z = (X 1 + Y 1 , X 2 + Y 2 )
where X i has pd γ (p i , λ i -λ) , i = 1, 2 and Y has pd γ (P, λ), is obtained by convolution. By changing

variables 1 -v i /z i = u i , i = 1, 2, and with the notation c = b 12 ( P ) = -p -1 12 + p 1 p 2 p -2 12 , d i = cp 12 p -1 i , i = 1, 2 we obtain the pdf f Z of Z by f Z (z 1 , z 2 ) = 0 if (z 1 , z 2 ) / ∈ (0, ∞) 2 and for (z 1 , z 2 ) ∈ (0, ∞) 2 f Z (z 1 , z 2 ) = z1 0 z2 0 1 [Γ (λ)] 2 p λ 12 e - p 2 p 12 v1+ p 1 p 12 v2 (v 1 v 2 ) λ-1 F 1 (λ; cv 1 v 2 ) × e - z 1 -v 1 p 1 Γ (λ 1 -λ) z 1 -v 1 p 1 λ1-λ e - z 2 -v 2 p 2 Γ (λ 2 -λ) z 2 -v 2 p 2 λ2-λ dv 1 z 1 -v 1 dv 2 z 2 -v 2 = z λ1-1 1 z λ2-1 2 e - p 2 p 12 z1+ p 1 p 12 z2 (Γ (λ)) Γ (λ 1 -λ) Γ (λ 2 -λ) p λ 12 p λ1-λ 1 p λ2-λ 2 k 0 (cz 1 z 2 ) k Γ (λ + k) k! × 1 0 e d1z1u1 u λ1-λ-1 1 (1 -u 1 ) λ+k-1 du 1 1 0 e d2z2u2 u λ2-λ-1 2 (1 -u 2 ) λ+k-1 du 2 . (29) 
As we have, with the notation B (α, β) =

1 0 u α-1 (1 -u) β-1 du = Γ (α) Γ (β) /Γ (α + β), α, β > 0 for the Euler's Beta function, 1 0 e δu u α-1 (1 -u) β-1 du = B (α, β) ∞ n=0 (α) n (α + β) n δ n n! , we obtain f Z (z) = z λ1-1 1 z λ2-1 2 e - p 2 p 12 z1+ p 1 p 12 z2 Γ (λ) Γ (λ 1 -λ) Γ (λ 2 -λ) p λ 12 p λ1-λ 1 p λ2-λ 2 k 0 (cz 1 z 2 ) k Γ (λ + k) k! Γ (λ 1 -λ) Γ (λ + k) Γ (λ 1 + k) × ∞ n=0 (λ 1 -λ) n (λ 1 + k) n (d 1 z 1 ) n n! Γ (λ 2 -λ) Γ (λ + k) Γ (λ 2 + k) ∞ m=0 (λ 2 -λ) m (λ 2 + k) m (d 2 z 2 ) m m! = z λ1-1 1 z λ2-1 2 e - p 2 p 12 z1+ p 1 p 12 z2 Γ (λ 1 ) Γ (λ 2 ) p λ 12 p λ1-λ 1 p λ2-λ 2 ∞ k=0 ∞ n=0 ∞ m=0 (λ 1 -λ) n (λ 2 -λ) m (λ) k (λ 1 ) k+n (λ 2 ) k+m (d 1 z 1 ) n n! (d 2 z 2 ) m m! (cz 1 z 2 ) k k! .
Hence, we have proved the formula (11).

Proof of Theorem 7

We start from the Laplace transform of the trivariate gamma distribution γ (λ,P ) associated to (λ, P ).

First, we write

L γ (λ,P ) (θ) = (1 + p 1 θ 1 + p 2 θ 2 + p 3 θ 3 + p 12 θ 1 θ 2 + p 13 θ 1 θ 3 + p 23 θ 2 θ 3 + p 123 θ 1 θ 2 θ 3 ) -λ = (1 + p 3 θ 3 ) -λ 1 + p 1 + p 13 θ 3 1 + p 3 θ 3 θ 1 + p 2 + p 23 θ 3 1 + p 3 θ 3 θ 2 + p 12 + p 123 θ 3 1 + p 3 θ 3 θ 1 θ 2 -λ . Let Q (θ 1 , θ 2 ) = 1+q 1 θ 1 +q 2 θ 2 +q 12 θ 1 θ 2 where q 1 = (p 1 + p 13 θ 3 ) / (1 + p 3 θ 3 ) , q 2 = (p 2 + p 23 θ 3 ) / (1 + p 3 θ 3 ) ,
and q 12 = (p 12 + p 123 θ 3 ) / (1 + p 3 θ 3 ). With these notations, we have 

L γ (λ,P ) (θ) = (1 + p 3 θ 3 ) -λ (1 + q 1 θ 1 + q 2 θ 2 + q 12 θ 1 θ 2 ) -λ . Let p T = -p T /p 123 , b ij = p ij + p i p j ,
( Q) = -q 12 + q 1 q 2 q 2 12 = b 12 + b 123 (θ 3 -p 3 ) + b 13 b 23 (θ 3 -p 3 ) 2 .
Let γ (λ,Q) be the bivariate gamma distribution associated to (λ, Q), its Laplace transform is

(1 + q 1 θ 1 + q 2 θ 2 + q 12 θ 2 θ 3 ) -λ . We have γ (λ,Q) (dx) = q -λ 12 [Γ (λ)] 2 e - q 2 q 12 x1- q 1 q 12 x2 (x 1 x 2 ) λ-1 F 1 [λ, b 1,2 ( Q)x 1 x 2 ]½ (0,∞) 2 (x 1 , x 2 ) dx 1 dx 2 .
Second, we are looking for the unidimensional distribution for which its Laplace transform with respect to the variable θ 3 is equal to

(1 + p 3 θ 3 ) -λ q -λ 12 (Γ (λ)) 2 e -q 2 q 12 x1- q 1 q 12 x2 (x 1 x 2 ) λ-1 F 1 [λ, b 1,2 ( Q)x 1 x 2 ]½ (0,∞) 2 (x 1 , x 2 ) dx 1 dx 2 = p -λ exp( b 13 x 1 + b 23 x 2 θ 3 ) (32) 
From (Hadlik,1986), we have the following equality

L [Γ(λ)] -1 t λ-1 F1(λ,at)½ (0,∞) (t) dt (s) = s -λ exp a s (33) 
We utilize the equality (33) in (32) and we obtain the following unidimensional distribution

∞ k=0 1 (λ) k (x 1 x 2 ) k ℓ+m+n=k 1 ℓ!m!n! b ℓ 13 b ℓ 23 b m 123 b n 12 [Γ (λ + 2ℓ + m)] -1 x λ+2ℓ+m-1 3 × F 1 λ + 2ℓ + m, ( b 13 x 1 + b 23 x 2 )x 3 ½ (0,∞) (x 3 ) dx 3 = [Γ (λ)] -1 x λ-1 3 ½ (0,∞) (x 3 ) × (ℓ,m,n)∈N 3 1 (λ) (ℓ+m+n) (λ) (2ℓ+m) ℓ!m!n! ( b 13 x 1 x 3 b 23 x 2 x 3 ) ℓ ( b 123 x 1 x 2 x 3 ) m ( b 12 x 1 x 2 ) n × F 1 (λ + 2ℓ + m, b 13 x 1 x 3 + b 23 x 2 x 3 ) dx 3 = [Γ (λ)] -1 x λ-1 3 ½ (0,∞) (x 3 ) × (ℓ,m,n,p)∈N 4 1 (λ) (ℓ+m+n) (λ) (2ℓ+m+p) ℓ!m!n!p! × ( b 13 x 1 x 3 b 23 x 2 x 3 ) ℓ ( b 123 x 1 x 2 x 3 ) m ( b 12 x 1 x 2 ) n ( b 13 x 1 x 3 + b 23 x 2 x 3 ) p dx 3 = [Γ (λ)] -1 x λ-1 3 F II (λ, λ, b 13 x 1 x 3 b 23 x 2 x 3 , b 123 x 1 x 2 x 3 , b 12 x 1 x 2 , b 13 x 1 x 3 + b 23 x 2 x 3 )½ (0,∞) (x 3 ) dx 3 (34)
We deduce from equality (35)

L γ (P,λ) (θ) = [ T ⊂[n] (-1) |T | P (- 1 p 1 T ) u -1 [n] T u T ] -λ = u [n] -λ [ T ⊂[n] (-1) |T | P (- 1 p 1 T )(1 [n] - 1 u ) T ] -λ = v [n] [1 + T ⊂[n],|T |>1 (-1) |T | P (- 1 p 1 T ) t∈T (1 -v 1 λ t )] -λ = C Lγ (P,λ) (v) .

Proof of Theorem 16

We start from the Laplace transform of the multivariate multi-factor gamma distribution associated to (P, Λ) , Λ = (λ, λ 1 , . . . λ n ), where P is an affine polynomial with respect to θ = (θ 1 , . . . , θ n ) and

λ i λ, for i ∈ [n]
. We use the following notations

u i = (1 + p i θ i ) -λ and v i = (1 + p i θ i ) -λi so that (1 + p i θ i ) -(λi-λ) = v i /u i and (1 + p i θ i ) -1 = u 1/λ i = v 1/λi i
. According to equality 20, we have

L γ (P,Λ) (θ) = [P (θ)] -λ i∈[n] (1 + p i θ i ) -(λi-λ) = u [n] [1 + T ⊂[n],|T |>1 (-1) |T | P (- 1 p 1 T ) t∈T (1 -u 1 λ t )] -λ i∈[n] v i u i = v [n] [1 + T ⊂[n],|T |>1 (-1) |T | P (- 1 p 1 T ) t∈T (1 -u 1 λ t )] -λ = v [n] [1 + T ⊂[n],|T |>1 (-1) |T | P (- 1 p 1 T ) t∈T (1 -v 1 λ t t )] -λ = C Lγ (P,Λ) (v) .
6.5 Proof of Proposition 18

Kendall's tau

By injecting the given copula in formula (22) in formula (23), we obtain

1 -τ 4 = [0,1] 2 u 1 u 2 [1 -r 12 (1 -u 1 λ 1 1 )(1 -u 1 λ 2 2 )] -2λ-2 {1 -r 12 [1 -(1 - λ λ 1 )u 1 λ 1 1 ](1 -u 1 λ 2 2 )}{1 -r 12 [1 -(1 - λ λ 2 )u 1 λ 2 2 ](1 -u 1 λ 1 
1 )} du 1 du 2 . Finally, by using equality (6), we have proved equality (25).

By changing the variables t

i = 1 -u 1/λi i , i = 1, 2,

Spearman's rho

By injecting the given copula in formula (22) in formula ((24), we obtain

̺ S = 12 1 0 1 0 u 1 u 2 [1 -r 12 (1 -u 1 λ 1 1 )(1 -u 1 λ 2 
2 )] -λ du 1 du 2 -3.

(36) By changing the variables v i = u 1 λ i i , i = 1, 2, we obtain

1 0 1 0 u 1 u 2 [1 -r 12 (1 -u 1 λ 1 1 ) (1 -u 1 λ 2 
2 )] -λ du 1 du 2 This gives equality (27).

= 1 0 1 0 λ 1 λ 2 v 2λ1-1 1 v 2λ2-1 2 [1 -r 12 (1 -v 1 ) (1 -v 2 )] -λ dv 1 dv 2 = λ 1 λ 2 ∞ k=0 (λ) k k! r k 12 1 0 v 2λ1-1 1 (1 -v 1 ) k dv 1 1 0 v 2λ2-1 2 (1 -v 2 ) k dv 2 = λ 1 λ 2 ∞ k=0 ( 
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Remark 9

 9 If b 12 = b 13 = b 23 = 0, Theorem 7 gives

The function ϕ

 ϕ Xi is a one and onto, and is decreasing of [0, +∞[ onto ]0, 1]. Its inverse function is denoted by ϕ -1Xi . Then the function C L X defined by

, 1 i = j 3 ,

 3 as defined in Proposition 1 with pd γ (P,Λ) , we denote by r ij = -P (-1 p 1 {i,j} ) = 1 -pij pipj the linear correlation coefficient of the random variables Y i , Y j in the trivariate gamma distribution such that L Y (θ) = (P (θ)) -λ , they check 0 r ij 1, and r 123 is defined by equality (28).

( 1 )( 1 ) 2 ( 12 ∞ k=0 ( 2 )

 11212k=02 With the equalityB (α, β) = Γ (α) Γ (β) /Γ (α + β) for α, β > 0, we obtain 1 -τ = ∞ k=0 k (1) k (2λ) k (2λ 1 + 1) k (2λ 2 + 1) k (2) k (2λ + 1) k (2λ 1 + 2) k (2λ 2 + 2) 2λ 1 + 1) (2λ 2 + 1) (λ 1 + 1) (λ 2 + 1) r 2 k (2) k (2λ + 2) k (2λ 1 + 3) k (2λ 2 + 3) k

  and b 123 = p 123 + p 1 p 23 + p 2 p 13 + p 3 p 12 + 2 p 1 p 2 p 3 , then we have b 1,2

  (1 -r 12 t 1 t 2 ) -2λ (1 -t 1 ) 2λ1-1 (1 -t 2 ) 2λ2-1 -λ λ 1 r 12 (1 -r 12 t 1 t 2 ) -2λ-1 (1 -t 1 ) 2λ1 t 2 (1 -t 2 ) -r 12 t 1 t 2 ) -2λ-1 t 1 (1 -t 1 ) 2λ1-1 (1 -t 2 ) -r 12 t 1 t 2 ) -2λ-2 t 1 (1 -t 1 ) 2λ1 t 2 (1 -t 2 ) 2λ2 dt 1 dt 2 .By using equality (1 -r 12 t 1 t 2 )

								we obtain
	1 -τ 4λ 1 λ 2	=		[0,1] 2
								2λ2-1
		-	λ λ 2	r 12 (1 2λ2
		+	λ 2 λ 1 λ 2 12 (1 -2λ = r 2	∞ k=0 (2λ) k	(r k 12 t k 1 t k 2 ) k!	in the last result, we obtain,
	1 -τ 4λ 1 λ 2	=	∞ k=0	(2λ) k	r k 12 k!	B (k + 1, 2λ 1 ) B (k + 1, 2λ 2 )
		-	λ λ 1	r 12	∞ k=0	(2λ + 1) k	r k 12 k!	B (k + 1, 2λ 1 + 1) B (k + 2, 2λ 2 )
		-	λ λ 2	r 12	∞ k=0	(2λ + 1) k	r k 12 k!	B (k + 2, 2λ 1 ) B (k + 1, 2λ 2 + 1)
		+	λ 2 λ 1 λ 2	r 2 12	∞ k=0	(2λ + 2) k	r k 12 k!	B (k + 2, 2λ

1 + 1) B (k + 2, 2λ 2 + 1) .

  By injecting equality (37) in equality (36), we obtain equality (26). We remark that we haveF 3 2 (λ, 1, 1; 2λ 1 + 1, 2λ 2 + 1; r 12 ) -1 =

				λ) k k!	r k 12 B (2λ 1 , k + 1) B (2λ 2 , k + 1)
	=	1 4	∞ k=0	(λ) k (1) 2 k (2λ 1 + 1) k (2λ 2 + 1) k	r k 12 k!
	=	1 4	F 3 2 (1, 1, λ; 2λ 1 + 1, 2λ 2 + 1; r 12 )	(37)
					λ (2λ 1 + 1) (2λ 2 + 1)	r 12	∞ k=0	(k + 1)!	(λ + 1) k (2λ 1 + 2) k (2λ 2 + 2) k	r k 12 .

Proof of Theorem 15

We utilize the following notations, for i ∈

We start from the Laplace transform of the multivariate gamma distribution associated to (P, λ).

From the definition of γ (P,λ) , we obtain

Hence, we have

where u = (u 1 , . . . , u n ) , and

form a basis of the vector space of affine polynomials of degree less or equal to n. Because

we have

consequently

).

Since P is an affine polynomial, we have

in particular α T = 0, if |T | = 1 and α ∅ = 1. Finally we obtain