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Abstract

We consider a non-stationary formulation of the stochastic multi-armed bandit
where the rewards are no longer assumed to be identically distributed. For the
best-arm identification task, we introduce a version of SUCCESSIVE ELIMINATION

based on random shuffling of the K arms. We prove that under a novel and mild
assumption on the mean gap ∆, this simple but powerful modification achieves the
same guarantees in term of sample complexity and cumulative regret than its original
version, but in a much wider class of problems, as it is not anymore constrained to
stationary distributions. We also show that the original SUCCESSIVE ELIMINATION

fails to have controlled regret in this more general scenario, thus showing the benefit
of shuffling. We then remove our mild assumption and adapt the algorithm to the
best-arm identification task with switching arms. We adapt the definition of the
sample complexity for that case and prove that, against an optimal policy with
N −1 switches of the optimal arm, this new algorithm achieves an expected sample
complexity ofO(∆−2

√
NKδ−1 log(Kδ−1)), where δ is the probability of failure

of the algorithm, and an expected cumulative regret of O(∆−1
√
NTK log(TK))

after T time steps.

1 Introduction
The theoretical framework of the multi-armed bandit problem formalizes the fun-

damental exploration/exploitation dilemma that appears in decision making problems
facing partial information. At a high level, a set of K arms is available to a player.
At each turn, she has to choose one arm and receives a reward corresponding to the
played arm, without knowing what would have been the received reward had she played
another arm. The player faces the dilemma of exploring, that is playing an arm whose
mean reward is loosely estimated in order to build a better estimate or exploiting, that is
playing a seemingly best arm based on current mean estimates in order to maximize
her cumulative reward. The accuracy of the player policy at time horizon T is typically
measured in terms of sample complexity or of regret. The sample complexity is the
number of plays required to find an approximation of the best arm with high probability.
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In that case, the player can stop playing after identifying this arm. The regret is the
difference between the cumulative rewards of the player and the one that could be
acquired by a policy assumed to be optimal.

The stochastic multi-armed bandit problem assumes the rewards to be generated inde-
pendently from stochastic distribution associated with each arm. Stochastic algorithms
usually assume distributions to be constant over time like with the Thompson Sampling
(TS) [13], UCB [2] or Successive Elimination (SE) [4]. Under this assumption
of stationarity, TS and UCB achieve optimal upper-bounds on the cumulative regret
with logarithmic dependencies on T . SE algorithm achieves near optimal sample
complexity.

In the adversarial multi-armed bandit problem, rewards are chosen by an adversary.
This formulation can model any form of non-stationarity. The EXP3 algorithm [3, 11]
achieves an optimal regret ofO(

√
T ) against an oblivious opponent that chooses rewards

before the beginning of the game, with respect to the best policy that pulls the same
arm over the totality of the game. This weakness is partially overcomed by EXP3.S
[3], a variant of EXP3, that forgets the past adding at each time step a proportion of
the mean gain and achieves controlled regret with respect to policies that allow arm
switches during the run.

The switching bandit problem introduces non-stationarity within the stochastic
bandit problem by allowing means to change at some time-steps. Discounted UCB
[10] and sliding-window UCB [6] are adaptations of UCB to the switching bandit
problem and achieve a regret bound of O(

√
MT log T ), where M − 1 is the number

of distribution changes. EXP3.R [1] combines EXP3 with a switch detector based on
Hoeffding inequality [8] in order to detect switches of best arm. This detector does not
require mean rewards to be constant on the tested interval. This use of the Hoeffding
inequality on nonidentical distributions is extented to SE in this paper to allow the
algorithm to achieve efficient theoretical guarantees on non-stationary distributions of
rewards. EXP3.R achieves a regret bound of O(N

√
T log T ), where N − 1 is the

number of times when the best arm changes. As this is always smaller (and potentially
much smaller) than the number of distribution changes (N ≤M ), EXP3.R appears to
be a strong competitor. It is also worth citing META-EVE [7] that associates UCB with
a mean change detector, reseting the algorithm when a change is detected. While no
analysis is provided, it has demonstrated strong empirical performances.

Stochastic and Adversarial. Several variants combining stochastic and adversarial
rewards have been proposed by Seldin & Slivkins [12]. For instance, in the setting
with contaminated rewards, rewards are mainly drawn from stationary distributions
except for a minority of rewards of means chosen in advance by an adversary. In order
to guarantee their proposed algorithm EXP3++ achieves logarithmic guarantees, the
adversary is constrained in the sense it cannot lowered the gap between arms more than
a factor 1/2. They also proposed another variant called adversarial with gap [12] which
assumes the existence of a round after which an arm persists to be the best. This work
is motivated by the desire to create generic algorithms able to perform bandit tasks
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with various reward types, stationary, adversary or mainly stationary. However, despite
achieving good performances on a wide range of problems, each one needs a specific
parametrization (i.e. an instance of EXP3++ parametrized for stationnary rewards may
not perform well if rewards are choosen by an adversary).

Our contribution. We consider a formalization of the bandit problem where rewards
are drawn from stochastic distributions of arbitrary means defined before the beginning
of the game. In this non-stationary stochastic bandit context, our first contribution is to
introduce and analyze a randomized version of SUCCESSIVE ELIMINATION. We show
that the seemingly minor modification – a randomized round-robin procedure – leads to a
dramatic improvement of the performance over the original SUCCESSIVE ELIMINATION
algorithm. We show for instance in Theorem 1 and Corollary 1 that the proposed
SUCCESSIVE ELIMINATION WITH RANDOMIZED ROUND-ROBIN (SER3) algorithm
achieves a controlled sample complexity and cumulative regret in situations where
SUCCESSIVE ELIMINATION may even suffers from a linear regret in the time horizon
T , as supported by numerical experiments (see Section 5). Our second contribution
is to identify a notion of gap that generalizes the gap from stochastic bandits to the
non-stationary case, and derive gap-dependent (also known as problem-dependent)
sample complexity and regret bounds, instead of the more classical and less informative
problem-free bounds.

This paper is organized as follows. Section 3 starts with the case of non-stationary
stochastic bandits when the best arm does not change during the game. We show that
the sample complexity of SER3 is controlled as O( K∆2 log K

δ∆ ) where ∆ generalizes
the usual notion of stochastic gap from the stationary case. This comes under a mild
assumption (see assumption 1). In Section 4, we then extend the setting to a full-blown
switching problem when the best arm is allowed to change over time. We naturally
extend the definition of sample complexity to allow the optimal arm to change over time
(see Definition 1), and introduce the RANDOMIZED SUCCESSIVE ELIMINATION WITH
RESETS (SER4) algorithm. We show in Theorem 2 and Corollary 2 that this algorithm
achieves an expected sample complexity of O(

√
NK log(K/δ)/(δ∆2)) where N − 1

is the number of arm switches assumed to be known. Corollary 3 extend this result to the
expected cumulative regret with an upper-bound of O(∆−1

√
NTK log(TK)). These

results do not assume any constraint on the behavior of the stochastic distributions and
provide a gap-dependent performance bound in the challenging setting of non-stationary
stochastic bandits competing against switching best arms. We finally illustrate the
proposed approaches on synthetic problems in Section 5.

2 Setting
We consider a generalization of the adversarial setting where the adversary chooses
before the beginning of the game a sequence of distributions instead of directly choosing
a sequence of rewards. This generalizes the setting since choosing arbitrarily a reward
yk(t) is equivalent to drawing this reward from a distribution of mean yk(t) and a
variance of zero.
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The problem. Let [K] = 1, ...,K be a set of K arms. The reward ykt(t) ∈ [0, 1]
obtained by the player after playing the arm kt is drawn from a distribution of mean
µkt(t) ∈ [0, 1]. The instantaneous gap between arms k and k′ at time t is:

∆k,k′(t)
def
= µk(t)− µk′(t) . (1)

Let k∗(t) be the arm played by the optimal policy at time t.
The notion of sample complexity. In the literature [9], the sample-complexity

of an algorithm is the number of samples needed by this algorithm to find a policy
achieving a specific level of performance with high probability. We denote δ ∈ (0, 0.5]
the probability of failure. For instance, for the best arm identification in the stochastic
stationary bandit (that is when ∀k∀t , µk(t) = µk(t + 1) and k∗(t) = k∗(t + 1)), the
sample complexity is the number of sample needed to find, with a probability at least
1 − δ, an arm k∗ of mean reward maxk∈[K] µ

k. In section 3.1 we define the best
arm in the stochastic non-stationary bandit problem without switches and in section 4
we propose a new definition of the sample complexity for the best arm identification
problem with switches.

Analysis in sample complexity are useful for building hierarchical models of con-
textual bandits in a greedy way [5], reducing the exploration space.

The notion of regret. We define the pseudo cumulative regret as the difference of
mean rewards between the arms chosen by the optimal policy and those chosen by the
player:

T∑

t=1

µk∗(t)(t)− µkt(t) . (2)

Usually, in the stochastic bandit setting, the distributions of rewards are stationary
and the instantaneous gap ∆k,k′(t) = µk(t)− µk′(t) is the same for all the time-steps.

3 Best Arm Identification in Non-stationary Stochastic
Bandits.

In this section, we present the algorithm SUCCESSIVE ELIMINATION WITH RANDOM-
IZED ROUND-ROBIN (SER3, see algorithm 1), a randomized version of SUCCESSIVE
ELIMINATION which tackles the best arm identification problem when rewards are
non-stationary.

3.1 A modified Successive Elimination algorithm
We elaborate on several notions required to understand the behavior of the algorithm

and to relax the constrain of stationarity.
The elimination mechanism The elimination mechanism was introduced by SUC-

CESSIVE ELIMINATION [4]. Estimators of the rewards are built by sequentially sampling
the arms. After τmin turns of round-robin, the elimination mechanism starts to occur. A
lower-bound of the reward of the best empirical arm is computed and compared with an
upper-bound of the reward of all other arms. If the lower-bound is higher than one of
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the upper-bounds, then the associated arm is eliminated and stop being considered by
the algorithm. Processes of sampling and elimination are repeated until the elimination
of all arms except one.

Algorithm 1 SUCCESSIVE ELIMINATION WITH RANDOMIZED ROUND-ROBIN
(SER3)

input: δ ∈ (0, 0.5], ε ∈ [0, 1), τmin = log K
δ

output: an ε-approximation of the best arm
S1 = [K], ∀k, µ̂k(0) = 0, t = 1, τ = 1
While |Sτ | > 1
Shuffle Sτ
For each k ∈ Sτ do
Play k
µ̂k(τ) = τ−1

τ µ̂k(τ − 1) + yk(t)
τ

t = t+ 1
End for
kmax = arg maxk∈S µ̂k(τ)
If τ ≥ τmin

Remove from Sτ+1 all k such as:

µ̂max(τ)− µ̂k(τ) + ε ≥
√

2

τ
log

(
4Kτ2

δ

)

End if
τ = τ + 1

End while

Hoeffding inequality. SUCCESSIVE ELIMINATION assumes that the rewards are
drawn from stochastic distributions that are identical over time (rewards are identically
distributed). However, the Hoeffding inequality used by this algorithm does not require
stationarity and only requires independence. We remember the Hoeffding inequality:

Lemma 1 (Hoeffding inequality [8]). If X1, X2, ..., Xτ are τ independent random
variables and 0 ≤ Xi ≤ 1 for all (i = 1, 2, ..., τ), then for ετ > 0

P

(∣∣∣∣∣
t∑

i=1

Xi

τ
− E

[
t∑

i=1

Xi

τ

]∣∣∣∣∣ ≥ ετ
)
≤ 2 exp

(
−2ε2ττ

)
.

Thus we can use this inequality to calculate confidence bounds of empirical means
computed with rewards drawn from non identical distributions.

Randomization of the Round-Robin. We illustrate the need of randomization with
an example tricking a deterministic algorithm (see figure 1).
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µk(t) t = 1 t = 2 t = 3 t = 4 t = 5 t = 6
k = 1 0.6 1 0.6 1 0.6 1
k = 2 0.4 0.8 0.4 0.8 0.4 0.8

Figure 1: A sequence of mean rewards tricking a deterministic bandit algorithm.

The best arm seem to be k = 1 as µ1(t) is greater than µ2(t) at every time-step t.
However, by sampling the arms with a deterministic policy playing sequentially k = 1
and then k = 2, after t = 6 the algorithm has only sampled rewards from a distribution
of mean 0.6 for k = 1 and of mean 0.8 for k = 2. After enough time following this
pattern, an elimination algorithm will eliminate the first arm. Our algorithm SER3 adds
a shuffling of the arm set after each round-robin cycle to SUCCESSIVE ELIMINATION
and avoids this behavior.

Uniqueness of the best arm. The best arm identification task assumes a criteria
identifying the best arm without ambiguity. We define the optimal arm as:

k∗ = arg max
k∈[K]

T∑

t=1

µk(t) . (3)

As an efficient algorithm will find the best arm before the end of the run, we use
assumption 1 to ensure its uniqueness at every time-step. First, we define some notations.
A run of SER3 is a succession of round-robin. The set [τ ] = {(t1, |S1|), ..., (tτ , |Sτ |)}
is a realization of SER3 and ti is the timestep when the round-robin ith of size |Si|
starts (ti = 1 +

∑i−1
j=1 |Sj |). As arms are only eliminated, |Si| ≥ |Si+1|. We denote

T(τ) the set containing all possible realizations of τ round-robin steps. Now, we can
introduce assumption 1 that ensures the best arm is the same at any time-step.

Assumption 1 (Positive mean-gap). For any k ∈ [K]− {k∗} and any [τ ] ∈ T(τ) with
τ ≥ τmin, we have:

∆∗k ([τ ]) =
1

τ

τ∑

i=1

ti+|Si|−1∑

j=ti

∆k∗,k(j)

|Si|
> 0 . (4)

Assumption 1 is quite weak (see e.g. figure 2(b)) and can tolerate a large noise when
τ is high. As the optimal arm must distinguish itself from others, instantaneous gaps
are more constrained at the beginning of the game. It is quite similar to the assumption
used by Seldin & Slivkins [12] to be able to achieve logarithmic expected regret on
moderately contaminated rewards, i.e., the adversary does not lower the averaged gap
too much. Another analogy can be done with the adversarial with gap setting [12], τmin

representing the time needed for the optimal arm to accumulate enough rewards and to
distinguish itself from the suboptimal arms.

Figure 2(a) illustrates assumption 1. In this example the mean of the optimal arm k∗ is
lower than the second one on time-steps t ∈ {5, 6, 7}. Thus even if the instantaneous gap
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(a) Assumption 1 is satisfied as the mean gap remains posi-
tive.

(b) Assumption 1 is not satisfied. This sequence involves a
best arm switch as the mean gap become non positive.

Figure 2: Two examples of sequence of mean rewards.

is negative during these time-steps, the mean gap ∆∗k ([τ ]) stays positive. The parameter
τmin protects the algorithm from local noise at the initialization of the algorithm. In
order to ease the reading of the results, we here assume τmin = log K

δ .
Assumption 1 can be seen as a sanity-check assumption ensuring that the best-arm

identification problem indeed makes sense. In section 4, we consider the more general
switching bandit problem. In this case, assumption 1 may not be verified (see figure
2(b)), and is naturally extended by dividing the game in segments wherein assumption 1
is satisfied.

3.2 Analysis
The sample-complexity is the number of observations needed to find an ε-optimal

arm with high probability. All theoretical results are provided for ε = 0 and therefore
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accept only k∗ as the optimal arm. All proofs are provided in the appendix.

Theorem 1. For K ≥ 2, δ ∈ (0, 0.5], and τmin = log K
δ , the sample-complexity of

SER3 is upper bounded by:

O

(
K

∆2
log(

K

δ∆
)

)

where ∆ = min[τ ],k
1
τ

∑τ
i=1

∑ti+|Si|−1
t=ti

∆k∗,k(t)

|Si| .

Guarantee on the sample complexity can be transposed in guarantee on the cumula-
tive regret. In that case, when only one arm remains in the set, the player continues to
play this last arm until the end of the game.

Corollary 1. For K ≥ 2, and δ = 1/T , and τmin = log(KT ), the expected cumulative
regret of SER3 is upper bounded by:

min

(
O

(
K − 1

∆
log(

KT

∆
)

)
, O

(√
TK log

T

K

))

These guarantees are the same as the original SUCCESSIVE ELIMINATION per-
formed with a deterministic round-robin on arms with stationary rewards. Indeed, when
reward distributions are stationary, we have for all t and all [τ ]:

1

τ

τ∑

i=1

ti+|Si|−1∑

t=ti

∆k∗,k(t)

|Si|
= ∆k∗,k(t) = ∆k∗,k(t+ 1) . (5)

However, in a non-stationary environment satisfying assumption 1 SUCCESSIVE
ELIMINATION will eliminate the optimal arm if the adversary knows the order of its
round-robin before the beginning of the run and exploits this knowledge against the
learner, thus resulting in a linear cumulative regret.

Remark: These logarithmic guarantees result from assumption 1 that allows to
stop the exploration of eliminated arms. They do not contradict the lower bound for
non-stationary bandit whose scaling is in Ω(

√
T ) [6] as it is due to the cost of the

constant exploration for the case where the best arm changes.

4 Non-stationary Stochastic Multi-armed Bandit with
Best Arm Switches

The switching bandit problem has been proposed by Garivier et al. [6] and assumes
means to be stationary between switches. In particular, the algorithm SW-UCB is
built on this assumption. The setting has been extended by Allesiardo and Féraud with
EXP3.R [1] to allow mean rewards to change at every time-steps. We follow this setting
and consider that a best arm switch occurs when the arm with the highest mean change.

Algorithm. In order to allow the algorithm to choose another arm when a switch
occurs, at each turn, estimators of SER3 are reseted with a probability ϕ ∈ [0, 1] and
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a new task of best arm identification is started. We name this algorithm SUCCESSIVE
ELIMINATION WITH RANDOMIZED ROUND-ROBIN AND RESETS (SER4).

The sample complexity of the best arm identification problem with switches.
The optimal policy is the sequence of couples (optimal arm, time when the switch occurred):

{(k∗1 , 1), ..., (k∗N , TN )} , (6)

with k∗n 6= k∗n+1 and ∆k∗n,k(t) > 0 for any k ∈ [K] − {k∗n} and any t ∈ [Tn, Tn+1).
The optimal policy starts playing the arm k∗n at the time-step Tn. Time-steps Tn when
switches occur are unknown to the player.

The cost of switches. A cost associated to the number of iterations after a switch
when the player does not know the optimal arm and does not sample is added to the
usual sample complexity.

Definition 1. Let A be an algorithm. The sample-complexity of A performing a best
arms identification task for a segmentation {Tn}n=1..N of [1 : T ], with T1 = 1 < T2 <

· · · < TN < T , is
∑N
n=1

∑Tn+1−1
t=Tn

(s(t) + 1Jkt 6=k∗nK), where s(t) is a binary variable
equal to 1 if and only if the time-step t is used by the sampling process of A, kt is the
arm identified as optimal by A at time t, k∗n is the optimal arm over the segment n and
TN+1 = T + 1.

Performance analysis. We now provide the performance guarantees of the SER4
algorithm, both in terms of sample complexity and in cumulative regret.

Theorem 2. For K ≥ 2, δ = 1/T , τmin = log K
δ and ϕ ∈ (0, 1], the expected sample

complexity of SER4 w.r.t. the randomization of resets is upper bounded by:

O

(
ϕK

δ∆2
log(

K

δ∆
) +

N

ϕ

)

with a probability of at least 1− δ.

We tune ϕ in order to minimize the sample complexity.

Corollary 2. For K ≥ 2, δ = 1/T , τmin = log K
δ , ∆ ≥ 1

KT and ϕ =
√

Nδ
K log(Kδ )

,

the expected sample complexity of SER4 w.r.t. the randomization of resets is upper
bounded by:

O


 1

∆2

√
NK log(Kδ )

δ


 .

Remark 2: transposing Theorem 1 for the case where ε ∈ [ 1
KT , 1] is straightforward.

This allows to tune the bound by setting ϕ = ε
√

(Nδ)/(K log(TK)).
This result can also be transposed in bound on the expected cumulative regret. We

consider that the algorithm continues to play the last arm of the set until a reset occurs.

Corollary 3. For K ≥ 2, and δ = 1/T , τmin = log(KT ), ∆ ≥ 1
KT and ϕ =√

N
TK log(KT ) , the expected cumulative regret of SER4 w.r.t. the randomization of
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resets is upper bounded by:

O

(√
NTK log(KT )

∆

)
. (7)

Remark 3: A similar dependency in
√
T∆−1 appears also in EXP3.R (see Corro-

lary 1 in [1]) and in SW-UCB (see Theorem 1 in [6]), and is standard in this type of
results.

5 Numerical Experiments
We compare our algorithms with the state-of-the-art. For each problem, K = 20 and
T = 107. The instantaneous gap between the optimal arm and the others is constant,
∆ = 0.05, i.e. the mean of the optimal arm is µ∗(t) = µ(t)+∆. During all experiments,
probabilities of failure of SUCCESSIVE ELIMINATION (SE), SER3 and SER4 are setted
to δ = 0.05. Constant explorations of all algorithms of the EXP3 family are setted to
γ = 0.05. Results are averaged over 50 runs. On problems 1 and 2, variances are low
(in the order of 103) and thus not showed. On problem 3, variances are plotted as the
grey areas under the curves.

Problem 1: Sinusoidal means. The index of the optimal arm k∗ is drawn before the
game and does not change. The mean of all suboptimal arm is µ(t) = cos(2πt/K)/5 +
0.5.

Figure 3: Cumulative regret of SER3, SE, UCB and EXP3 on the Problem 1.

This problem challenges SER3 against SE, UCB and EXP3. SER3 achieves a low
cumulative regret, successfully eliminating sub-optimal arms at the beginning of the
run. Contrarily, SE is tricked by the periodicity of the sinusoidal means and eliminates
the optimal arm. The deterministic policy of UCB is not adapted to the non-stationarity
of rewards and thus the algorithm suffers from an high regret. The unbiased estimators
of EXP3 enable the algorithm to quickly converge on the best arm. However, EXP3
suffers from a linear regret due to its constant exploration until the end of the game.
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Problem 2: Decreasing means with positive gap. The optimal arm k∗ does
not change during the game. The mean of all suboptimal arms is µ(t) = 0.95 −
min(0.45, 10−7t).

On this problem, SER3 is challenged against SE, UCB and EXP3.
SER3 achieves a low cumulative regret, successfully eliminating sub-optimal arms

at the beginning of the run. Contrarily to problem 1, mean rewards evolve slowly and
SUCCESSIVE ELIMINATION (SE) achieves the same level of performance than SER3.
Similarly to problem 1, UCB achieves an high cumulative regret. The cumulative regret
of EXP3 is low at the end of the game but would still increase linearly with time.

Problem 3: Decreasing means with arm switches. At every turn, the optimal arm
k∗(t) changes with a probability of 10−6. In expectation, there are 10 switches by run.
The mean of all suboptimal arms is µ(t) = 0.95−min(0.45, 10−7(t[mod 106]).

On problem 3, SER4 is challenged against SW-UCB, EXP3.S, EXP3.R and
META-EVE. The probability of reset of SER4 is ϕ = 5−5. The size of the window
of SW-UCB is 105. The historic considered by EXP3.R is H = 4 · 105 and the
regularization parameter of EXP3.S is α = 10−5.

SER4 obtains the lowest cumulative regret, confirming the random resets approach
to overcome switches of best arm. SW-UCB suffers from the same issues as UCB
in previous problems and obtains a very high regret. Constant changes of mean cause
META-EVE to reset very frequently and to obtain a lower regret than SW-UCB. EXP3.S
and EXP3.R achieves both low regrets but EXP3.R suffers from the large size of
historic needed to detect switches with a gap of ∆. We can notice that the randomization
of resets in SER4, while allowing to achieves the best performances on this problem,
involve an highest variance. Indeed, on some runs, a reset may occur latelly after a
best arm switch whereas the use of windows or regularization parameters will be more
consistant.

6 Conclusion
We studied the benefit of random shuffling in the design of sequential elimination
bandit algorithms. We showed that the use of random shuffling extends their range of
application to a new class of best arm identification problems involving non-stationary
distributions, without requiring new parameter, while achieving the same level of
guarantees than SE with stationary distributions. We introduced SER3 and extended it
to the switching bandit problem with SER4 by adding a probability of restarting the best
arm identification task. Up to our knowledge, we proved the first sample complexity
based upper-bound for the best arm identification problem with arm switches. The
upper-bound over the cumulative regret of SER4 depends only of the number N − 1 of
arm switches, as opposed to the number of distribution changes M − 1 in SW-UCB
(M ≥ N can be of order T in our setting).
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A Technical results

A.1 Proof of Theorem 1
The proof consists of three main steps. The first step makes explicit the conditions
leading to the elimination of an arm from the set. The second step shows that the optimal
arm will not be eliminated with high probability. Finally, the third step shows that a
sub-optimal arm will be eliminated after at most a critical number of steps τ∗, which
then allows to derive an upper-bound on the sample complexity.

Step 1. Conditions for the elimination of an arm.
From Hoeffding’s inequality, for any deterministic round-robin length τ and arm k we
have:

P (|µ̂k − E[µ̂k]| ≥ ετ ) ≤ 2 exp
(
−2ε2ττ

)
.

where E denotes the expectation with respect to the distribution Dy . By setting

εt =

√
1

2τ
log

(
4Kτ2

δ

)
, we have:

P (|µ̂k − E[µ̂k(τ)]| ≥ εt) ≤ 2 exp


−2

√
1

2τ
log

(
4Kτ2

δ

)2

τ2


 =

δ

2Kτ2
.

Applying Hoeffding’s inequality for each round-robin size τ ∈ N?, applying a
standard union bound and using that

∑∞
τ=1 1/τ2 = π2/6, the following inequality

holds simultaneously for any τ with a probability at least 1− δπ2

12K :

µ̂k(τ)− ετ ≤ E[µ̂k] ≤ µ̂k(τ) + ετ . (8)

Let Si ⊂ {1, . . . ,K} be the set containing all the arms that are not eliminated by
the algorithm at the start of the ith round-robin. By construction of the algorithm, an
arm k′ remains in the set of selected arms as long as for each arm k ∈ Sτ − {k′}:

µ̂k(τ)− ετ < µ̂k′(τ) + ετ and τ ≥ τmin (9)

Combining (8) and the left inequality of (9), it holds on an event Ω of high probability

E[µ̂k(τ)]− 2ετ < E[µ̂k′(τ)] + 2ετ . (10)

We denote tτ , the time-step where the τ th round-robin starts (tτ = 1 +
∑τ−1
i=1 |Si|).

Let us remind that T(τ) is the set containing all possible realizations of τ sequences of
round-robin. Each arm k is played one time during each round-robin phase and thus τ
observations per arm are available after τ th round-robin phases. The empirical mean
reward µ̂k(τ) of each arm k after the τ th round-robin is:

µ̂k(τ) =
∑

r∈T(τ)

1Jr=[τ ]K
τ

tτ+|Sτ |−1∑

j=1

yk(j)1Jk=kjK . (11)
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Decomposing the second sum in round-robin phases and taking the expectation with
respect to the reward distribution Dy we have:

EDy [µ̂k(τ)] =
∑

r∈T(τ)

1Jr=[τ ]K
τ

τ∑

i=1

ti+|Sτ |−1∑

j=ti

µk(j)1Jk=kjK . (12)

Taking the expectation of equation (12) with respect to the randomization of the
round-robin we have:

E[µ̂k(τ)] =
∑

r∈T(τ)

1Jr=[τ ]K
τ

τ∑

i=1

ti+|Sτ |−1∑

j=ti

µk(j)

|Si|
. (13)

Now, under the event Ω for which (10) holds for k and k′, we deduce by using (13)
that

∑

r∈T(τ)

1Jr=[τ ]K
τ




τ∑

i=1

ti+|Sτ |−1∑

j=ti

µk(j)

|Si|
−

τ∑

i=1

ti+|Sτ |−1∑

j=ti

µk′(j)

|Si|


 < 4ετ . (14)

Let us introduce the following mean-gap quantity

∆k,k′([τ ]) =
∑

r∈T(τ)

1Jr=[τ ]K
τ




τ∑

i=1

ti+|Sτ |−1∑

j=ti

µk(j)

|Si|
−

τ∑

i=1

ti+|Sτ |−1∑

j=ti

µk′(j)

|Si|


 .

Replacing the value of εt in (14), it comes

∆k,k′([τ ]) < 4

√
1

2τ
log

(
4Kτ2

δ

)
,

∆k,k′([τ ])2 <
8

τ
log

(
4Kτ2

δ

)
. (15)

An arm will be eliminated if (15) becomes false and if τ ≥ τmin.
Step 2. The optimal arm is not eliminated.

For k′ = k∗ and k 6= k∗, by assumption 1 (∆k,k∗([τ ]) is negative after τmin), (15) is
always true for τ ≥ τmin, implying that the optimal arm will always remain in the set
with a probability of at least 1− δ

K for all τ .
Step 3. The elimination of sub-optimal arms.

If the arm k′ still remain in the set, it will be eliminated if inequality (15) is not satisfied
and if τ∗ ≥ τmin.

Let us consider k = k∗, k′ 6= k∗, and define the quantity

∆k([τ ]) =
∑

r∈T(τ)

1Jr=[τ ]K
τ




τ∑

i=1

ti+|Sτ |−1∑

j=ti

µk(j)

|Si|
−

τ∑

i=1

ti+|Sτ |−1∑

j=ti

µk′(j)

|Si|


 .
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Let us also introduce for convenience the critical value

τ∗ =
64

∆k([τ ])2
log

(
4K

δ∆k([τ ])

)
.

Notice that τ∗ ≥ τmin, satisfying one of the two conditions needed to eliminate an
arm.

We introduce the following quantity

C(t)
def
=

8

τ
log

(
4Kτ2

δ

)
.

For τ = τ∗, we derive the following bound

C(τ∗) =
∆k([τ ])2

8 log 4K
δ∆k([τ ])

(
log

4K

δ
+ 2 log

64K2

∆k([τ ])2
+ 2 log log

4K

δ∆k([τ ])

)
,

=
∆k([τ ])2

8 log 4K
δ∆k([τ ])

(
log

4K

δ
− 4 log ∆k([τ ]) + 12 log 2 + 2 log log

4K

δ∆k([τ ])

)
,

≤ ∆k([τ ])2

8 log 4K
δ∆k([τ ])

(
4 log

4K

δ∆k([τ ])
+ 12 log 2 + 2 log log

4K

δ∆k([τ ])

)
.

We remark that for X > 13 we have

12 log 2 + 2 log logX < 4 logX .

Hence, provided that for K ≥ 2, δ ∈ (0, 0.5] and ∆k([τ ]) > 0, we have 4K
δ∆k([τ ]) >

13 and

C(τ∗) ≤ ∆k([τ ])2

8 log 4K
δ∆k([τ ])

(
8 log

4K

δ∆k([τ ])

)

≤ ∆k([τ ])2 . (16)

As C(τ∗) is strictly decreasing with regard to t, (16) is true for all τ > τ∗ , invali-
dating (15) and involving the elimination of the suboptimal arms k with a probability at
least 1− δ/K.

We conclude the proof by summing over all the arms, taking the union bound and
lower-bounding all ∆k([τ ]) by

∆ = min
[τ ]∈T(τ),k

∑

r∈T(τ)

1Jr=[τ ]K
τ




τ∑

i=1

ti+|Sτ |−1∑

j=ti

µk(j)

|Si|
−

τ∑

i=1

ti+|Sτ |−1∑

j=ti

µk′(j)

|Si|


 .

(17)
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A.2 Proof of Corollary 1
We first provide the proof of the distribution dependent upper-bound.

The cumulated pseudo regret of the algorithm is:

R(T ) =
∑

k 6=k∗

τ∑

i=1

ti+|Si|−1∑

t=ti

∆k∗,k(t)1Jk=ktK . (18)

Taking in each round-robin the expectation of the corresponding random variable kt
with respect to the randomization of the round-robin (denoted by Ekt ), it comes:

E[R(T )] = E
[ ∑

k 6=k∗

τ∑

i=1

ti+|Si|−1∑

t=ti

Ekt [∆k∗,k(t)1Jk=ktK]
]

= E
[ ∑

k 6=k∗

τ∑

i=1

ti+|Si|−1∑

t=ti

∆k∗,k(t)

|Si|

]
.

E[R(T )] = E
[ ∑

k 6=k∗
τ

1

τ

τ∑

i=1

ti+|Si|−1∑

t=ti

∆k∗,k(t)

|Si|
︸ ︷︷ ︸

∆∗k

]
= E

[ ∑

k 6=k∗
τ∆∗k

]
. (19)

The penultimate step of the proof of Theorem 1 allows us to upper-bound τ with
the previously introduced critical value τ∗ on an event of high probability 1− δ, while
the cumulative regret is controlled by the trivial upper bound T on the complementary
event of probability not higher than δ, leading to:

E[R(T )] ≤
∑

k 6=k∗

64

∆2
k

log

(
4K

δ∆k

)
∆k + δT . (20)

We conclude the proof of the distribution dependent upper-bound by setting δ = 1/T
and :

E[R(T )] = O

(
K − 1

∆
log(

KT

∆
)

)
, (21)

with ∆ = min[τ ],k
1
τ

∑τ
i=1

∑ti+|Si|−1
t=ti

∆k∗,k(t)

|Si| .
We now upper-bound the regret in the worst case in order to derive a distribution

independent bound. To this end, we consider a sequence that ensures that, with high
probability, no suboptimal arm is eliminated by the algorithm at the end of the T rounds,
while maximizing the instantaneous regret. According to (10) an arm is not eliminated
as long as

E[µ̂k(τ)]− E[µ̂k′(τ)] < 4ετ . (22)

By injecting (22) in (19) and replacing ετ by its value
√

2
τ log

(
4Kτ2

δ

)
we obtain:

E[R(T )] <
∑

k 6=k∗
τ4

√
2

τ
log

(
4Kτ2

δ

)
+ δT . (23)
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The non-elimination of sub-optimal arms involves τ = T
K and by setting δ = 1

T we
obtain the distribution independent upper-bound:

E[R(T )] < (K − 1)
T

K
4

√
K

T
log(

4T 3

K
) + 1 , (24)

E[R(T )] = O

(√
TK log

T

K

)
. (25)

A.3 Proof of Theorem 2
In order to prove Theorem 2, we consider the following quantities:

• The expected number of times when the estimators are reseted: Nreset = ϕT .

• The sample complexity needed to find the best arm between each reset is SSER3 =
O
(
K
∆2 log( Kδ∆ )

)
.

• The time before a reset, that follows a negative binomial distribution of parameters
r = 1 and p = 1− ϕ. Its expectation is upper-bounded by 1/ϕ.

• The number of arm switches: N − 1.

The sample complexity of SER4 is the total number of time-steps spent sampling
an arm added to the time between each switch and reset.

Taking the expectation with respect to the randomization of resets, we obtain an
upper-bound on the expected number of suboptimal plays given by

O

(
ϕTK

∆2
log

(
K

δ∆

)
+
N

ϕ

)
. (26)

The first term is the expectation of the total number of time-steps required by the
algorithm in order to find the best arms at its initialization and then after each reset
of the algorithm. The second term is the expected total number of steps lost by the
algorithm when not reseting the algorithm after the N − 1 arm switches.

We obtain the final statement of the Theorem by setting T = 1
δ .

A.4 Proof of Corollary 3
Converting Corollary 2 into a distribution dependent upper-bound on the cumulative
regret is straightforward by setting δ = 1

T , replacing the sample complexity in the proof
of Theorem 2 by the cumulative regret and using the upper-bound of Corollary 1.

E[R(T )] = O

(
ϕTK

∆
log

(
KT

∆

)
+
N

ϕ

)
. (27)
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Setting ϕ =
√

N
TK log(KT ) and assuming ∆ ≥ 1

KT we obtain the final statement of
the theorem:

E[R(T )] = O

(√
NTK log(KT )

∆

)
. (28)

We also derive below a distribution independent upper-bound. We introduce some
notations, Nreset is the number of resets, τ reset

i is the number of round-robin phases
between the ith and the (i+ 1)th resets and Ln is the number of timesteps before a reset
after the nth arm switch.

When the resets are fixed, the expected cumulative regret is:

E[R(T )] < E
[Nreset+1∑

i=1

(K − 1)τ reset
i 4

√
2

τ reset
i

log(
4(τ reset

i )2

δ
) +

N∑

n=1

Ln + δT

]
, (29)

E[R(T )] < E
[Nreset+1∑

i=1

(K − 1)4

√
2τ reset
i log(

4(τ reset
i )2

δ
)

︸ ︷︷ ︸
f(τ reset

i )

]
+E

[ N∑

n=1

Ln

]
+ δT . (30)

At this point, we note that {τ reset
i }i is an i.i.d sequence of random variables and

that Nreset is a random stopping time with respect to this sequence. Moreover, f is a
concave function. We can thus apply Wald’s equation followed by Jensen’s inequality
and deduce that

E[

Nreset+1∑

i=1

f(τ reset
i )] ≤ E[Nreset + 1]E[f(τ reset

1 )]

≤ E[Nreset + 1]f(E[τ reset
1 ]) .

We upper-bound log(
4(τ reset

i )2

δ ) by log( 4T 2

δK2 ) and set δ = 1
T . As E[Nreset] = ϕT ,

E[τ reset
1 ] = 1

ϕK and E[Ln] ≤ 1
ϕ , we have

E[R(T )] < 4(ϕT + 1)

√
2

ϕ
K log

(
4T 3

K2

)
+
N

ϕ
+ 1 . (31)

The previous equation makes appear a trade-off in ϕ, and we set ϕ =
√
N

T 2/3 .
Finally we have shown that

E[R(T )] = O

(
T 2/3

√
NK log

T

K

)
. (32)
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