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Abstract

We study the task of maximizing rewards from recommendigm (actions) to users sequentially
interacting with a recommender system. Users are modeledkss mixtures of” many represen-
tative user classes, where each class specifies a mean ggwéfilel across actions. Both the user
features (mixture distribution over classes) and the iteatufres (mean reward vector per class) are
unknown a priori. The user identity is the only contextuébmation available to the learner while
interacting. This induces a low-rank structure on the maifiexpected rewards, , from recom-
mending itenu to userb. The problem reduces to the well-known linear bandit whémeeiuser-
or item-side features are perfectly known. In the settingrgheach user, with its stochastically
sampled taste profile, interacts only for a small number séisas, we develop a bandit algorithm
for the two-sided uncertainty. It combines the Robust TeRsover Method oAnandkumar et al.
(20148 with the OFUL linear bandit algorithm oAbbasi-Yadkori et al(2011). We provide the
first rigorous regret analysis of this combination, showtimay its regret aftef” user interactions is
O(Cv/BT), with B the number of users. An ingredient towards this result is\ehmbustness
property ofOFUL, of independent interest.

Keywords: Multi-armed bandits, online learning, low-rank matrices;ommender systems, rein-
forcement learning.

arXiv:1609.01508v1 [cs.LG] 6 Sep 2016

1. Introduction

Recommender systems aim to provide targeted, personalizednt recommendations to users by
learning their responses over time. The underlying goa lsetable to predict which items a user
might prefer based on preferences expressed by otherdelatrs and items, also known as the
principle of collaborative filtering.

A popular approach to model preferences expressed by usegsdommender systems is via
probabilistic mixture models datent classnodels Hofmann and Puzichd999 Kleinberg and Sandler
2009. In such a mixture model, we have a setbftems (content) that can be recommended to
B users (consumers). Whenever iten's recommended to usér the system gains an expected
reward ofr, ;. The key structural assumption that captures the reldtiprisetween users’ prefer-
ences is that there exists a set of latent sef' sépresentativaiser types or typical taste profiles.


http://arxiv.org/abs/1609.01508v1

Formally, each taste profileis a unique vectoti, = (u,,.), Of the expected rewards that every
item a elicits under the taste profile. Each usds assumed to sample one of the typical profiles
randomly using an individual probability distribution, = (v,.),; its reward distribution across
the items subsequently becomes that induced by the assuwfdd.p

Our focus is to address the sequential optimization of neare gained by the recommender,
without any prior knowledge of either the latent user classeusers’ mixture distributionsAs-
suming that users arrive to the system repeatedly followinginknown stochastic process and
re-sample their profiles over time, according to their reipe unknownmixtures across latent
classes, we seek online learning strategies that can adbiewegret relative to the best single
item that can be recommended to each ubkrte that this is qualitatively different than the task of
estimating latent classes or user mixtures in a batch fashiell-studied by now$utskever et a|.
2009 Anandkumar et a).20144b); the task of simultaneously optimizing net utility in a lon
fashion in complex expression models like these has redéittle or no analytical treatment. Our
work takes a step towards filling this void.

An especially challenging aspect of online learning in motender systems is the relatively
meager number of available interactions with a same useighwib offset to an extent by the
assumption that users can only have a limited number of pasfées (classes). Indeed, if one can
identify the class to which a certain user belongs and agdedgformation from all other users in
that class, then one can recommend to the user the best itdhrefolass. In practice, classes are
latent and not necessarily known in advance, and sever&bn@entile et al.2014 Lazaric et al.
2013 Maillard and Mannar2014 study the restricted situation when each user always belon
to one specific class (i.e., when all mixture distributioasd support sizé). We go two steps
further, since in many situations (a) users cannot be asstionieelong to one class only, such as
when a user account is shared by several individuals (e.aatsTV), and (b) the duration of a
user-session, that is the number of consecutive recomrtieng#o the same individual connected
to a user-account, cannot assumed to bellong

The key challenges that this work addresses are (1) the lakkawledge of “features” on
both the user-side and item-side in a linear bandit problem (is ¢se, both the user mixture
weights and the item class reward profiles) and (2) provagest minimization with very few i.e.
O(1) interactions with every usérhaving a specific taste profile, as opposed to a large number of
interactions such as in transfer learnihg@faric et al.2013.

Contributions and overview of results. We consider a setting when users are assumed to
come from arbitrary mixtures across classes (they are sohasd to fall perfectly in one class as
was the assumption in works I&yentile et al.(2014; Maillard and Mannoi(2014). We develop
a novel bandit algorithm (Algorithr8) that combines (a) the Optimization in the Face of Uncer-
tainty Linear banditOFUL algorithm (Abbasi-Yadkori et al2011) for bandits with known action
features, and (b) a variant of the Robust Tensor Power (RIg®rithm (Anandkumar et al2014h
that uses only bandit (partial) estimates of latent usessés with observations coming from a mix-
ture model.More specifically, we introduce a subroutine (Algoritiithat makes use of the RTP
method to extract item-side attributd$)(and, contributing to its theoretical analysis, show a re-
covery property (Theorer). Note that the RTP method ideally requires (unbiasedjnedés of
the 2nd and3rd order moments of actions’ rewards, but with bandit infation the learner can
access only partial reward information, i.e., a single relsample from an action. To overcome
this, we devise an importance sampling scheme adaesgcessive time instants to build thed
and3rd order moment tensor estimates that RTP uses. For theftesluong recommendations, we
develop an algorithm (sectiaf), essentially based dbFUL, instantiated per user, using for each
a theestimatedatent class vectorgu,, . }. (obtained via the RTP subroutine) as arm features, and
uncertain parameter vector to be learngd

1. Itis also unlikely to be very short, say, less than 3.



We carry out a rigorous analysis of the algorithm and showitlzehieves regre(f)(ZC\/ﬁ)
in T' rounds of interaction (Theore#), provided each arriving user interacts with the system for
¢ > 3 rounds with the same profile. In comparison, the regret ofsthategy that completely
disregards the latent mixture structure of rewards and eysph standard bandit strategy (e.g.
UCB (Auer et al, 2002) per user, scales &(B+/TA/B) = O(v/ABT) afterT round$ , which
is considerably suboptimal in the practical case with a Yarge number of items but very few
representative user classes « A). It is also worth noting that the regret bound we achieve,
order-wise, is what would result from applying t&UL or any optimal linear bandit algorithm
assuming priori knowledgeof all latent user class€Siq, c }q.c, that isO(éC’\/ﬁ). In this sense,
our result shows that one caimultaneously estimate features on both sides of a bilireeard
model and achieve regret performance equivalent to that ofe@sided linear modelvhich is
the first result of its kind to the best of our knowledg®ur results are presented for finite time
horizons with explicit details of the constants arisingnfrthe error analysis of RTP, which at this
point are large but possibly improvable.

En route to deriving the regret for our algorithm, we also maknovel contribution that ad-
vances the theoretical understanding@#UL, and which is of independent interest. We show
that in the standard linear bandit setting, where the exgeward of an arm linearly depends

ond featuresQFUL vyields (sub-linear)) (pd\/T) regret even when it makes decisions based on

perturbedor inexact feature vectorrheorems3), wherep quantifies the distortion. This property
holds whenever the perturbation error is small enough, andxplicitly give both (a) a sufficient
condition on the size of the perturbation in terms of the $etctual features, and (b) a bound on
the (multiplicative) distortiorp in the regret due to the perturbation (note that 1 in the ideal
linear case).

2. Setup and notation

For any positive integet, [n] denotes the sdtl, 2, ..., n}.

At eachn € N, nature selects a usky € [B] according to the probability distributiof over
[B], independent of the past, anhd is revealed to the learner. A user classis subsequently
sampled from the probability distribution,, over [C], and¢, (the assumed class of uskr)
interacts with the learner for the nekt> 3 consecutive steps. Such an interaction will often be
termed amini-session

In each steg € [¢] of a mini-session, the learner plays an action (issues ame@mdation)
an, € [A] and subsequently receives rewafg; = ua, ,.c, + 70,1, Wheren, ; is a (centered)
R-sub-Gaussian i.i.d. random variable independent ftom ¢,,, representing the noise in the
reward. We let, € R” represent the vectc@uayc)ce[c] of the mean rewards from actiann each
class. Note thaE[uq, ,.c,|an,] = E[u; ,vs,|a,,]. For convenience, we use the index notation
t = (n,l) and introduce’ = N/, whereN is the total number of mini-sessions, afiche total
number of interactions of the learner with the system. WeotketikewiseY;, a;, ¢, for Y,, 4,

def
An, 1y Cny Mnly and Ietumax = maXaE[A],cE[C] |ua,c|-

We are interested in designing an online recommendatiatesly, i.e., one that plays actions
depending on past observations, achieving (oumulative) regreafterT = (NN, ¢) mini-sessions,
defined asR & Zne[Nj.le[E] Tn.1, Wherer,, def max,e(4) U, Vi, — U, v, . In other words,

Al

we wish to compete against a strategy that plays for evenyamsaction yielding the highest reward
in expectation under its mixture distribution over usessks.

2. Roughly, each UCB per-user plays from a pool 4factions for about?’/B rounds, thus suffering regret

O(/A(T]B)). ,
3. An earlier result oDjolonga et al.(2013 getsO(T*/®) regret while moreover assuming a perfect control of the
sampling process (we can't assume this due to the userlajriva
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3. Recovering latent user classes: The EstimateFeaturestsoutine

In this section, we provide an estimation algorithm for thegtmx U, using the RTP methot.

Estimation of tensors. We assume that in mini-sessianwhen interacting with user,,, the
triplet {a,1}i1<¢ is chosen from a distributiop,, (a, a’, a” |b,). Letting X, b, .n. def Yo =
Ua, ,.c, + M, t0 explicitly indicate the active user and action choser{rat), we form the
importance-weighted estimates

n
- def 1 Z Xai,l,bi7i,1Xai,2abi7ia2

Ta,a’m = — H{ai,l = a,a;2 = a/}a

!
— pia,a’|b;)
i=1
n
~ def al 1,048 1X¢h 2,bi)i 2Xai,3;bi77:a3 / "
Faal a’m = E -~ a1 =a,a;2=0a’,a,3=2a"}.
- pi(a,a’,a”|b;)
P

for the second and third-orde/r\tens‘brs

We introduce the matricell,, » = (Fa,a’,n)a,a’c[a] ANA M2 = (4,07 )q,07 4] With Mg 0/ ef
E[fa,ar,n], and the tensordly, 3 = (Fa,a’,a”,n)a,a’,a7e(a] ANA Mz = (Ma.ar a7 a,ar a7 e(a] With
Ma,a’,a” def E[74.a’.a",n]. The following result decomposes the matfi% and tensorMs as

weighted sums of outer products.

Lemma 1 When the user arrivals are i.i.d. according to the lawi.e.,b; LB vie [n], it holds that

Ma.a'n = Z V3,cUa,cUa’ ¢y and
ce[C]

Ma.a’,a"n = § V3,cUa,cUa’ ,cUa! c -
ce[C]

Having shown the unbiasedness of the empir2cal and3rd moment tensorﬁf/[\n,g andﬁw,
we next turn to showing concentration to their respectivamse

Lemma 2 Assuming thap;(a,a’|b;) > g2,; andp;(a,a’,a”|b;) > g¢s, for deterministicgs i, gs,;, for all
i € N,a,a’,a"” € [A], then for alln < N, with probability higher thanl — 4, it holds simultaneously for all

a,a’,a” that
7 _olog(4A2/§
Fasin = ] < || 322U
i=1
7 _,log(4A3/5
|7’a,a/_’n - maya/_’a/,_’n| < 2 3 3%

An immediate corollary is the following one:

Corollary 1 Provided thalgs ; = vi ) A? andgs; = 7 /A3 for somey; > 0, then on an event of probability
higher thanl — 4, the following hold simultaneously:

def 77 2 logld A/
et F || Mz — My < A? Z%Z(QT/)’
i=1
def |77 2 lostiAY/e
o) Ty Myl < 472, |32 B0A0)

i=1

4. We considef = 3to describe the algorithnf; > 3 is easily handled by repeating the 3-wise samptig a’, a”’) for
|¢/3] times and discarding the remaining @) steps in the mini-session during exploration (leading tegligible
regret overhead).

5. An alternative is thémplicit explorationmethod due tdKocak et al.(2014).
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Algorithm 1 EstimateFeatures

1:

Input: #sessions n; #mini-sessions /; (user, action, reward) tuples
(bis @ity Xag ) b)) 1<i<n, 1<i<0-

Compute thed x A matrix ]\/4\”’2 = (Taa’n)aaecla and thed x A x A tensor]\?n,g =
(?a,a’,a”,)a,a’,a”e[A} .

Compute aA x C whitening matrixW of J\//.Tn 2

{TakeW = U,D, 12 whereD,, is theC' x C diagonal matrix with the tog’' eigenvalues of
Mn », andU, the A x C matrix of correspondlng elgenvectc}rs

4: FormtheC x C x C tensorTn = Mn 3(Wn, Wn, W ).

Apply the RTP algorithmAnandkumar et al20140 to T, and compute its robust eigenvalues

(An.c)eejc) With eigenvectors oy, c) ce(cy-
{The paper oAnandkumar et al(2014h Sec. 4) defines eigenvalues/eigenvectors of terjsors.

Compute for each € [C], Uy, = )\n,C(WJ)T@n,C andv, . = X2

7: Output: Estimate of latent classes/: The A x C matrixU,, obtained by stacking the vectors

1, € R4 side by side.

Reconstruction algorithm. The EstimateFeatures algorithm (Algoritinemploys a whiten-
ing matrian, of the empirical estimate of the matrid,, to build the empirical tensd?n. This
tensor is then used to recover the columns of the mafri (uq,c)ac(a,ce[c) Via the RTP al-
gorithm. For the sake of completeness, we also introdlicea whitening matrix ofM, (i.e.,

WTMQW = 1), the corresponding tens@t = M3 (W, W, W), and finally the estimation error

dcf
T =T

Reconstruction guarantee. Our next result makes use of the following proposition from
Anandkumar et al2014h Theorem 5.1), restated here for completeness.

Proposition 1 (Theorem 5.1 ofAnandkumar et al. (20148) LetT = T + E € RE*XCxC whereT is a
symmetric tensor with orthogonal decompositibn= chzl Aep®3, where each\. > 0, {©vc}eeic is an
orthonormal basis, an& is a symmetric tensor with operator nor1111E|| < e Letnin = Inin{)\ tc €
[CT}, Amax = max{). : ¢ € [C]}. Run the RTP algorithm with inp(t for C iterations. Let{(\., 3. )}eelc

be the corresponding sequence of estimated eigenvalealaigtor pairs returned. Then, there exist universal
constantsCy, C, > 0 for which the following is true. Fixy € (0,1) and run RTP with parameters (i.e.,
number of iterations)., N with L = poly(C)log(1/n), and N > Cg(log((}) + log log ( m“)). If e <

Ch % then with probability at least — 7, there exists a permutatian € S such that

Ve e [C] : |/\C - A7r(c)| < be, ||(pc - @T((C)H < 85~/Aca
C
and |7 — ) A@¥%|| < 55e.
Lemmal gives a decomposition of the (symmetric) tensdds, but it may be not orthogonal;

standard transformatio\andkumar et al.2014h Sec. 4.3) gives an orthogonal decomposition
for the tensdt Ms (W, W, W), with W a matrix that whitens\/,. We can thus use Propositidn

6.

For a 3rd order tensot € R**“** and 2nd order tensor or matri2 € R**", A(B, B, B) € R****" s the 3rd

order tensor defined by (B, B, B)li, is.is Lof > Ajy jo.js By iy Bia,ia Bis,is- SeeAnandkumar et al.

- x 142,33 €[n
(2014b for more details on notation and results. pe



with T = Ms(W, W, W), T="T,ec=en andn = ¢ in order to prove the following guarantee
(Theoreml) on the recovery error between columnd.dand their estimate.

We now introduce mild separability conditions on the migtuveightsv, and the spectrum
of the 2nd moment matrid/, needed for the reconstruction guarantee to hold, simildhdse
assumed fotazaric et al(2013 Theorem 2).

Assumption 1 There exist positive constant$y,, omin, omax andl’ such that

min vy 2 Umin,

be[B],ce[C]

Ve e [O], O, = )\C(MQ) S [amin,amax] and
min  |o.—ou| 2T,

c#c €[C]x[C]

where).(A) denotes the!” top eigenvalue oft.

Theorem 1 (Recovery guarantee for online estimation of useclassed/) Let Assumptiod hold, and let
d € (0,1). If the number of mini-session satisfies

n? < {2A6 log(4A2/6) A%(1 + 10(% + ?1“)(1 + Uax))*C° log(4A4% /9) }
> max

)

Z?:l 71_2 min{F7 Umin}2 ’ 20120'3

then with probability at least — 24, there exists some permutatianc Sc such that for alle € [CT], the
outputl,, of theEstimateFeaturealgorithm satisfies

_ ", Clog(4A3/%)
3 2
||uc - un,ﬂ(C)H <OA ;%‘ o2 :

1)

whereu, = (uq,c)qc(4)- Here, the constant (we use the "diamond” symbol to dengis it

3/2
o= ( cA ) <131/—0mm + 4v/2min{T, opmin }

Omin

20mam

n 20maz n 1 1
R e
2CA

+ 5\/%(\/m+ min{F,Umin}/Q) <0

max 1 .
+5 (UF + > m1n{F,Umin}>N

min

3
) N2 min{T, omin},
with the notation® = 1 + 10(% + =) (1 + ud,,,).

The proof strategy follows that dfazaric et al (2013 Theorem 2) and is detailed in the ap-
pendix for clarity. It consists in relating, on the one hatith estimation errorsﬁf’) of M5 and
6513) of M3 from Corollary1 to the conditiore < C} Arg“, and, on the other hand, relating the
reconstruction error on the columnsiéto the control on the ternja.. — X,,(C)| and||¢e — Pr (o)l
coming from Propositiori. We note that the bound appearing in the condition on the rurob
mini-sessions is potentially large (due to the teuisC?, etc.). This is due to the combination of
the RTP method with the importance sampling scheme, andhiires unclear if the bound can be
significantly improved within this framework.




4. Recovering latent mixture distributions (v,): robustness of the OFUL algorithm

In order to recover the weights vectors € R® and thus the matri¥’, it would be tempting to
use again an instance of the RTP method but this time to agtgregross actions, i.e., by forming
aB x BandB x B x B tensor. Unfortunately, aggregation of element&/dkils for two reasons:
First, we do not have different views across udgrsontrary to what we have for actions It is
thus hopeless to be able to form an estimate of the 2nd and @nekmt tensors as before. Second,
and rather technically, convex combinations of {hg . },c.4) need not be positive. This prevents
the application of the RTP method which requires positivegivs to work.

We thus consider a different strategy that uses an algoudsigned for linear bandits. How-
ever since the feature matriX is unknown a priori and can only be estimated, we need to work
with perturbed features. A first solution is to propagatedtiditional error resulting from the error
on the features in the standard proof@FUL. However, this leads to a sub-optimal regret that
is no longer scaling a®(v/T) with the time horizon. We overcome this hurdle by showing in
Theorem3 a robustness property @FUL of independent interest, which aids us in controlling
the regret of the overall latent class algorithm (AlgoritBm

ConsiderOFUL run with perturbed (not necessarily linearly realizabyards. Formally,
consider a finite action set = {1,2, ..., A} and distinct feature vectofsi, € RE*'},c 4. Let
UT :=[a; uy ... us] € RE*A, The expected reward when playing actién = a at timet is
denoted byn, := E [Yt | A = a], withm := (ma)aeA' Let us assume that there exists a unique
optimal action for the expected rewards i.e.,argmax,c 4 m, = {a*}, with the regret at time
n beingR,, := Y1, (mqe+ —ma,). The key point here is thah need not be linearly realizable
w.r.t. the actions’ features — we will not require thain, czc |m — Uv|| be0.

Algorithm 2 OFUL (Optimism in Face of Uncertainty for Linear bandité§)bpasi-Yadkori et al.
201))
Require: Arms’ features/, regularization parametey, norm parameteReo
for all timest > 1 do
1. FormtheC x (t — 1) matrix Uy,;_1 := [014, G4, ... 04, ,] consisting of all arm features
played up to timg — 1, andY ;1 := (Y1,...,Y;_1)T. SetV,_; := A[ + S\t ay )
2. Choose the action

A; € argmax max u
acA veCy_q

Ct—l = {V c RC : HV — {’\t—lu‘/},l < Dt—1}7

1/2\—C/2
Dis ::R\/2log<det(vt_125 4 >+A1/2R@

K]

Iv, where

o~ L _1 el
Vie1 =V, U1 Y11

end for

OFUL Regret with linearly realizable rewards. The OFUL algorithm is stated for the sake
of clarity as Algorithm2. Before studying the linearly non-realizable case, we netoe well-
known regret bound for it in the unperturbed case, that isnthec [A], m, = 1u, v* for some
unknownv*.

Theorem 2 (OFUL regret (Abbasi-Yadkori et al., 2011)) Assume thafjv*||» < Re, and that for alla €
A, |[a,ll2 < Rx, [(T,, v*)| < 1. Then with probability at least — §, the regret ofOFUL satisfies:vn > 0,
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R, < 4y/nClog(l +nR3/(AC) x

(\2Re + Ry/2108(1/8) + Clog(1 + nR% /(AC))
provided that the regularization parametgiis chosen such that > max {1, R3., l/R%_)}.

Regret of OFUL with Perturbed Features. We make a structural definition to present the
I(é € RAHCIXC A s istheC x C
submatrix ofA formed by picking rows/, and.J ranges over all sizé€* subsets of full-rank rows
of A. We will require for our purposes thatU") is not too large. For intuition regarding we
refer toForsgren(1999 (the final 3 paragraphs of p. 770, Corollary 5.4 and sectjoiWe remark
that the condition that(UT) be small is analogous to-gincoherence type property commonly
used in prior work Bresler et al.2014 Assumption A2), stating that two distinct feature vectors
u. andu., ¢ # ¢/, must have a minimum angle separation.

Letv° € RY be arbitrary with/> norm at mostRe (it helps to think ofUv° as an approxima-
tion of m), £, := m, — 1) v°, ¢ := (£4)aca € RA. We now state a robustness result @FUL
potentially of independent interest.

result. Leta(U) := maxJ||A}1||2, whereA =

Theorem 3 (OFUL robustness property) Supposélv°||o < Re, A>max{l, R}, 1/4RE},Vac A, |[,]]2 <
R and|m,| < 1. If the deviation from linearity satisfies
_ al,ve—alve
= —Uv°®||, < mi a a ’
el Hm v H2 glélari 20(U7) [8ar — al,

(2)
then, with probability at least — § forall 7' > 0,

TR2 1 TR2
< / s 4 1/2 - X
mT\8p\/T010g(1+ AO)(A Re+R\/210g5+Clog<1+ Y )>,

wherep’ := max {1, MaXg£a* %}

Theorem3 essentially states that when the deviation of the actuahmeaard vector from
the subspace spanned by the feature vectors is smalQfi algorithm continues to enjoy a
favorableO(v/T) regret up to a factos’ > 1. The quantityy’ in the result is a geometric measure
of the distortion in the arms’ actual rewardswith respect to the (linear) approximatioh°. We
control this quantity in the next paragraph. (Note that= 1 in the perfectly linearly realizable
cases = 0, and this gives back the stand@&UL regret up to a universal multiplicative constant.)

Applying the Robust analysis of OFUL to the Low-rank Bandit setup. In this paragraph,
we translate Theorefito our Low Rank Bandit (LRB) setting in which OFUL uses featuectors
with noisy perturbations (estimated by, say, a Robust TeRewer (RTP) algorithm). Throughout
this section, we fix a uséx

We can now translate Theoredrthanks to the correspondence with the perturbed OFUL set-
ting: In our low-rank bandit setting, the matiix = U,, depends on the reconstruction algorithm at
mini-sessiom. Moreover, the optimal actiom* = a; now depends on the uskr We denote for

a user € [B] the minimum gap across suboptimal actions tcybg%f MiNgza: (Wap — u,) "ve.
Likewise, the error vectar depends oh, n. Its norm||z||> appears in the conditio( and the def-
inition of p, and is controlled by the reconstruction error of Theofertt decays with the number
of mini-sessions..

We definen,, %' a(U,), ax ef a(U) and usanax, ||vy|| for Re, Using these notations, and
adapting the proof of TheoreBito handle a variablé,,, we can now translate the result of the
perturbedOFUL to our LRB setting:



OFUL LRB

v° Vi = (Ue) e ] € R
U U, € RAXC
m my, = Uv, € R4
a* ay := arg maxaqrA] ul'v,
Ea (ua - ﬁ@,a) Vb

€= (Ea)aEA (U - Un)vb

Table 1: Correspondences betwg&@RUL and Low Rank Bandit (LRB) quantities at timeand
for userb

Lemma 3 Let0 < § < 1 andb € [B]. Provided that the number of mini—sessior@ssatisfies% >

Zi,: Yi
Op,5, Where we introduced the nojation '
5 N 2A%log(4A?/6)
=max{ ————~
b0 min{T, oyin }2
AV (1+10(F + 72)(1 + ud,,))?C% log(44° /5)
O2ACC? log(4A3/6)  x
8A 2 27a2Cu? 2 1
. {20[37 volly 27eiCubml vl _} |
9p 9p 2
then with probability at least — 26, ||e||2 = ||[(U — U, )vs||2 is small enough that for any > no,
condition(2) is satisfied. Consequently, Theor8rapplies with
VA
Rg = ml?x||vb||2, Ry = I;leaj(HuaHQ + S0, and

p=pny <2

Thus, provided that the total number of mini-sessions adraxttion (not necessarily corre-
sponding to interactions with usgyis large enough, then th@FUL algorithm run during interac-
tions with use will achieve a controlled regret. However, we want to warat theo, s resulting

from the RTP method, especially the second term of the may,begotentially large, although
being a constant.

5. Putting it together: Online Recommendation algorithm

This section details our main contributions for recommeiotia in the context of mini-sessions of
interactions with unknown mixtures of latent profiles: firdgorithm 3 that combines RTP with
OFUL, and then a regret analysis in Theorém

The recommendation algorithm we propose (Algorit)mses the RTP method to estimate the
matrix U and then applie©FUL to determine an optimistic action. Importantly, it finallytputs
a distribution that mixes the optimistic action with a umifoexploration. The mixture coefficient
goes to0 with the number of rounds, thus converging to play@BUL only. It ensures that the
importance sampling weights are bounded away fédmthe beginning.

Main analytical result: Regret bound



Theorem 4 (Regret of Algorithm 3) With Assumptiorl holding, leté € (0, 1), O = max,e[p] Op,s5 (from
Lemma3), and letny be the first mini-session at whi n,f§7,2 > Q5. The regret of Algorithn3 at time

T = N/ (acting for N mini-sessions of lengtf) using internal instances @FUL parameterized by > 0
satisfies

3 2
E[%R7] <16\/BT01og <1 + %) </\1/2R@ + R\/2 log% + Clog (1 - TRX))

AC

N
+lng— 14 > )+ 36T,

n=ngo
provided that\ > min{1, R%,1/R%}, with Rg > max, ||[ve||2, Ry > maxeea |[uqllz + %. Conse-

quently, choosing = 1/T and~,, = y/log(n + 1)/n,n € N, say, yields the ordéi[R] = O (C\/BTlog T) .

Discussion.(1) The regret of Algorithn8 scales withil” similar to that of arOFUL algorithm
run with perfect knowledge of the feature mattix O(C'v/ BT'). This is a non-trivial result a&
is not assumed to be known a priori and is estimated by Algari using tensor methods.

Algorithm 3 Per-uselOFUL with exploration
Require: Parameters, Reo for OFUL, exploration rate parametets, n > 1.
1. for mini-sessiom =1,..., N do
2.  Getusem,.
3. Letp, ~ Bernoulli(~,)
4: if p, = 0then
5: {Carry out arESTIMATE mini-sessiof
6: for stepk =1,2,...,/do
7
8
9

Outputa, , ~ Uniform([A]).
end for
LetU,, = EstimateFeatures(Algorithm 1) with input (b;, a; 1, Xa, , b:.i.1) 1<i<n, 19<,prd
{Update feature estimates using samples from pre\iSIEIMATE mini-session}
10: else

11 {Carry out arOFUL mini-session

12: for stepk =1,2,...,/do

13: Run one iteration oOFUL (Algorithm 2) with features,,, parameters. and Rg, and
past actions and rewards; ;, X, , »;,i,1), 1 < i <n,1 <1< ¢ forwhichp; =1and
b; = by

{An instance ofOFUL for each user using current feature estimates, and observed
actions and rewards from previo@~UL mini-sessions

14 Output actior,, ;, returned byOFUL
15: end for

16:  end if

17: end for

(2) One can also compare the result with the regret of igigdhie mixture (low-rank) structure
and simply running an instance of UCB per user, which wouldesasO(v/ ABT'). This becomes
highly suboptimal when the number of actions/itefgs much larger than the number of user
typesC, demonstrating the gain from leveraging the mixed linearcstire of the problem. Note
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also that we do not need a specific user to interact for a lomgltiut for as few aé > 3 consecutive
steps, contrary for instance to the transfer meth@téric et al. 2013, where a large number of
consecutive interaction steps with the same user is redjuire

(3) It is worthwhile to contrast the result and approach wfitht in Djolonga et al. (2013 —
the authors there incur an additional regret term due to tirge 81 approximately estimating the
low-rank matrix, which requires additional tuning ending with a regret ofO(7*/%). On the
other hand, we avoid this approximation error by showing exmloiting the robustness property
of OFUL, which guaranteegT regret as soon as the estimated featUrese within a small radius
of the actual ones.

The result (and analysis) does come with a caveat that thelrt@phendent termyg, although
being independent on the time horiz@h is potentially large. Withy, set as in Theorem, it
appears as an additive exponential constant term in thetfegiis arises from the RTP method,
and it is currently unclear if this term can be significantguced with the current line of analysis.
Numerical evidence, however, indicates that no such ladgéige constant enters into the regret
(Sectionb). Also, on the bright side, note thas does not need to be known by the algorithm.

Numerical Results. The performance of the low-rank bandit strategy (AlgoritBnis shown
in Figure 1, simulated for20 users arriving uniformly at randon,user classes ar0 actions.
Both the latent class matri¥aggx 3 the mixture matrixiag« 3 are random one-shot instantiations.
The proposed algorithm (AlgorithB), with two different exploration rate schedu@ﬁn—m) and
O(n~1/3) (RTP+OFUL(sqrt)’ and 'RTP+OFUL (cuberoot)’ in the figuréy compared with (a) ba-
sic UCB ('UCB'’ in the figure) ignoring the linear structuretbie problem (i.e., UCB per-user with
200 actions), (bJOFUL per-user with complete knowledge of the user classegand 1 always,
i.e., no exploration mini-sessions, and (c) An implemeatedf the Alternating Least Squares esti-
mator (Takacs and Tikk2012 Mary et al, 2014 for the matrixU along withOFUL per-user. The
proposed algorithm, with the theoretically suggestedcﬂmioné(nfm), is observed to exploit
the latent structure considerably better than simple UCH|, ia not too far from the unrealistic
OFUL strategy which enjoys the luxury of latent class informatidt is also competitive with
performing Alternating Least Squares, which does not coritie analytically sound performance
guarantees in the bandit learning setting. Also, the ladgéiae constants in the theoretical bounds
for Algorithm 3 do not manifest here.

Related work. The popular low-rank matrix completion problem studiesrbeoveryU and
V given a small number of entries sampled at random ftév’ with both U and V' being tall
matrices, see for instandain et al (2013 and citations therein. However, its setting is different
than ours for several reasons. It typically deals with batata arising from a sampling process
that is not active but uniform across entrieddf 7. Further, it requires sensing operators having
strong properties (such as the RIP property), and most itaptly, the performance metric is not
regret but reconstruction error (Frobeniugemorm).

In the linear bandit literatureApbasi-Yadkori et al.2011, Rusmevichientong and Tsitsiklis
201Q Dani et al, 2008, the key constraining assumption is that either user digeof item side
(U) features are precisely and completely known a priori. Intast, the problem of low regret
recommendation across users with latent mixtures doedfootl aus the luxury of knowing either
U or V, and so they must be learnt “on the fly”. Another related waorthie context of bandit type
schemes for latent mixture model recommender systemstistiigresler et al(2014, in which,
under the very specific uniform mixture model for all usengytexhibit strategies with good regret.

Nguyen et al(2014 consider an alternating minimization type scheme in lirbeandit models
with two-sided uncertainty (an alternative model involyiatent “factors”). However no rigorous
guarantees are given for the bandit schemes they presergpwas, it is not known if alternating
minimization finds global minima in general. Another rethteork is in the transfer learning setting

7. With additional prior knowledge of,,, the dependence of the additive term can be made polynomiat ichoosing
Yn = min{1, \/Os/n}, it holds that/(no — 1 + ZnN:no Yn) < 2¢/Os0T + L.

11
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-=-OFUL
-=-ALS+OFUL
5 |==UCB
~+—RTP+OFUL(cuberoot)
——RTP+OFUL(sqrt)

Expected Regret

6 8 10 12
Number of iterations (3 X Number of mini-slots) 4

Figure 1. Regret of the proposed algorithm (‘RTP+OFUL og@dithm 3) for two different explo-
ration rate schedules, compared with (a) independent UCBg®r, (b)OFUL per-user
with perfect knowledge of latent class€s and (c) Alternating Least Squares estimation
for the matrixU, along withOFUL per-user. HereB = 20 users,C = 3 classes, and
A = 200, with randomly generatetf andV'. Plots show the sample mean of cumulative
regret with time, withl standard deviation-error bars oviér sample experiments.

from Lazaric et al.(2013: The method combines the RTP methdkhé&ndkumar et al.2014h
2012 essentially with a standard UCB\(@er et al, 2002, but however works in the setting of a
large number interactions with a same user, without assyiagoess to “user ids”. As a result, the
regret bound in this setting scales linearly with the nuntbeounds. Our result in this paper shows
that with additional access to just user identifiers, we eamtuce the regret rate to be sublinear in
time.

The RTP method has been used as a processing step to the Efithalgiom crowdsourcing
(Zhang et al.2014), but only convergence properties are considered, whiclignough to pro-
vide regret guarantees.

On the theoretical side, our contribution generalizesétieng) ofclustered banditéMaillard and Mannaor
2014 Gentile et al. 2014 in which a hard clustering model is assumed (one user ig@adi
to one class, or equivalently mixture distributions canydmhve support sizé). In particular,
Maillard and Manno 2014 specifically highlight the benefit of a collaborative gasr@ss users
against using a vanilla UCB for each user. However theiirggis less general than assuming a soft
clustering of users (one user corresponds to a mixture séely across various “representative”
taste profiles as we study here.

The Alternating Least-Squares (ALS) methdeékacs and Tikk2012 Mary et al, 2014 has
been shown to yield promising experimental results in sinslettings where botti and V" are
unknown. However, no theoretical guarantees are knowrhfsraigorithm that may converge to a
local optimum in general.

The work ofValko et al.(2014) studies stochastic bandits with a linear model over a lamkr
(graph Laplacian) structure. However, they assume comniedwledge of the graph and hence
knowledge of the eigenvectors of the Laplacian, converitingto a bilinear problem with only
onesided uncertainty. This is in contrast to our setup whoata U, V' are completely uncertain.

12



Perhaps the closest work to ours is thaDgdlonga et al (2013 where the authors develop a
flexible approach for bandit problems in high dimension bithww-dimensional reward depen-
dence. They use a two-phase algorithm: First a low-rankixne@mpletion technique (the Dantzig
selector) estimates the feature-reward map, then a GauBsigess-UCB (GP-UCB) bandit algo-
rithm controls the regret, and show that if afteiterations the approximation error between the
feature matrix and its estimate is less thgrthe final regret is given by the sum of the regret of
GP-UCB when given perfect knowledge of the features and-6fn(7 — n) (due to the learning
phase and approximation error). This results in an oveegllat scaling wittO(7%/°). We depart
from their results in two fundamental ways: Firstly, they@#he possibility of uniformly sampling
the entries (a common assumption in low-rank matrix conmgotetechniques). We do not have this
luxury in our setting as we do not control the process of usavads, that is not constrained to
be uniform. Secondly, we prove and exploit a novel robustipesperty (see TheoreB) of the
bandit subroutine we us®©FUL in our case instead of GP-UCB), which allows us to effecyivel
eliminate the approximation error in their work and obtaifi(a/T") regret bound (see Theorefh

6. Conclusion & Directions

We consider a full-blown latent class mixture model in whicders are described by unknown
mixtures across unknown user classes, more general arldrafiab than when users are assumed
to fall perfectly in one classGentile et al.2014 Maillard and Mannqgr2014.

We provide the first provable sublinear regret guarante#dssrsetting, when both the canon-
ical classes and user mixture weights are completely unknavich we believe is striking when
compared to existing work in the setting, e.g., alternateimization typically gets stuck in local
minima. We currently use a combination of noisy tensor fazétion and linear bandit techniques,
and control the uncertainty in the estimates resulting feanh one of these techniques. This
enables us to effectively recover the latent class stractur

Future directions include reducing the numerical consfamat. using an alternative to RTP),
and studying how to combine our work with the aggregation séruparameters suggested in
Maillard and Mannof2014).
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Appendix A. Proofs of Lemmas1 and 2

Proof of Lemma 1 This result holds by construction of the estimatgs, ,, and, /. . Note
that

~ ai,1,b; 11)((1I bi,i,2
E[’f‘a@/’n} = —Z Z E|: L (a,a’|b3 H{ai,l =a,q;2 =

i=1 be[B]

Xai, ,byi, Xai, ,b,1,
- iy vy S

=1 be([B] ce[C]

= = Z Z Z E _Xa,b,i,lXa’,b,i.,Q

1=1 be[B] ce[C]

@ lvy s Ex

1=1 be[B] ce[C]

_Z Z Z Uq,cUa’ cvbcﬂ( )

1=1 be[B] ce[C]

= § § Uy, cB ua,cua/,c

ce[C] be[B]

= § V3,clUa,clUa’ c 5

ce[C]

- b} 50)

bi =b,ci = C} vp,3(b)

bi =b,ci = C} vp,c3(b)

b; = b,c; = C:|E|:Xa',b,i.,2

bi = b, Cc; = C] Ub,cﬂ(b)

where(a) holds by independence of the sample generated bybwsleen in the same clags Note
thatc; is the same for alt = 1, 2, 3 interaction steps, thatis = ¢;1 = ¢; 2 = ¢; 3, wherec; ¢ is

the class corresponding to samgig ; ; .. This is the reason why we get, cu, vy, and not a
productu, cuar v} . for instance.

Proof of Lemma 2 Since the rewards generated by each souréeare i.i.d., the estimate
Ta,a’,n 1S @ sum of i.i.d. random variables boundeddnl], re-weighted by the probability weights
pi(a, a’|b;), which are measurable functions of the past. Assuming ttleaetexists some determin-
istic g2,; > 0 suchtha¥i € N, p;(a, a’|b;) > ¢2;, we can thus apply a version of Azuma-Hoeffding
inequality for bounded martingale difference sequencé.usaecall that by this inequality, for a
deterministic times, and(Y;,)m<s € [0, 1] being a bounded martingale difference sequence, then

forall 6 € (0,1) it holds
log(2/6
|—ZY| VB <5

Xag 16,01 Xa; 50,02
pi(a,a’|b;)

In our casey; = {a;1 = a,a;2 = a'} — mg 4, and we deduce that

—plog(2/9)

P(Wa,a’,n - ma,a’| 2 92 ; 2
p 2n

) <6.

Likewise, we get that

_Qlog(2/5)) <5,

P(|Fa,a,07 0 — Ma,a 0| > ds; 2
— 2n
i—
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Taking a union bound over the actions in each case, and theritoy two events concludes the
proof. ]

Proof of Corollary 1 From Lemma2, we deduce that on an event of probability higher than
1 — 4, it holds simultaneously that

_o log(4A2/9)

def s Y
e = || Mya— M| < A$ 2m™ 9,2 ) and

n
m=1

" 2n?

def > " log(4A43/68
NOBRC ||Mn,3—M3||<A3/2Jqu,;M>.

m=1

This indeed holds by relating the norm of the matrix (tensdgth each of the elements. We
conclude by replacing the values@f; andgs ;.

Appendix B. Proof of Theorem 1

We prove in this section a slightly more detailed result, absrthe following:

n

Theorem 1. Assume thafy;};>; are chosen such thait—> Do 772 5 0. Let A\, be the
minimum robust eigenvalue of the tengoe= M3 (W, W, W). Letd € (0,1). Provided that

)

n? N 248 log(4A2/8) A?(1+10(5 + 72=) (1 + u0)) CP log(44% /)
ST e min{T, omin}? ’ 20%X2 . o3

with probability higher tharl — 24, there exists some permutatiore S such that for alke € [C],

", Clog(4A43/6§ o
||uc—ﬂn7ﬂ.(6)||<AA3\lZ% 2L/)+O(n QZ%‘ 2)1
=1

‘ 2n?
i=1

where we introduced the problem-dependent constant

L BN
Y1+ ) ) + (T

A = 13y oA )3/2(1+10(% +

2
Omin Omin Omaz " VUnin

For general{~;};>1 (not necessarily such that23""" ;2 5% 0), it holds with same probability
that

Xn:%ﬁ C'log(4A3/9)

g 2n? ’

||uc - ﬁn.,7'r(c)|| < <>A3$
i=1

where, using the notation = 1 + 10(% + —)(1 + u3 ), we have introduced the constant

A \3/2 max 1 .
O = ( ¢ ) (13\/crmaz +4+/2min{T, omin} + 5(0 T + 5 ) min{T, amin}) N
Omin Omax

+ (207”% + . ! ) 21 + 5\/3/_8(\/0,“% + \/min{l",amin}/Q) (2Cf

r max min Omi

)3N2 min{T, opmin} -

Proof The proof closely follows that oheshlaghi Azar et a(2013. First, note that by prop-
erty of the rankl decomposition @nandkumar et al.2014h Theorem 4.3)), it holds that. =
(Coers vo,cB(0)) "2 and thuss 2 > Anax = Amin > 1.

min
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We first decompose the following term to make appear the ténons PropositionL:

||uc - ﬁ71,77((:)” < (3)
N T N T N = —~
e = Anr@ [IW T [l + Pai) W = W [[@el] + i) W T e = @rmoy]] -
—_ ™ ————— o~ ™ S — _
RTP.1 b a RTP.3 d 1 RTP.3 c RTP.2

Note thaty., and®,, () are both normalized vectors. Thuys,) is bounded agp.|| < 1. It
holds for(b) that||WTT|| < V/Comaz, and for(c), on thel — § event(2 from Corollary1, that

W < VCBmar < VC(VTman + \ e2)). (4)

The term(d) requires a little more work. It holds that

W™ —WTH| = |ODY*-UD'Y?|
(T — U)DV2|| 4 |T(D/? — D'/2)|
T = U 0mas + | D2 — DV2| V.
—— —_— ———

e f

NN

We use the result of Lemma 5 fro@heshlaghi Azar et a[2013 to control(e) and (f). If
ell) < LT, then it holds

(2) (2)
A en ~ 2\/6611
IDV* =DV < 2= U -V < =5

max

)

from which we deduce that

17 2 max 1
W= W < (B —— Ve (5)
At this point,(RT P.1), (RT P.2) and(RT P.3) are controlled by the perturbation method from
Anandkumar et al(20141), under the condition that, = |7 — T|| < C; ’\"g‘" (where(; is
a universal constant). In this case, with probability- §, the RTP algorithm with well-chosen

parameters achieves

|Ac_An,7'r(c)| < 5HT_TnH
T-T,
”900 - @n,ﬂ(c)” < 8H)\7H .

In order to make the condition explicit in our setting, we tise fact that by Lemma 6 from
Gheshlaghi Azar et a[2013, if e'? < $ min{T’, omin } then

C \3/2 1 1
en < ( ) <65§> +2(1+V2+ 2)e;2>(r— - (et + max ||uc||3)> . (6)

Omin o Omin

The conditioneﬁf) < %min{l“, omin } holds if the number of sessiomsis sufficiently large:
Indeed on an event of probability higher thar- 4, then it is enough that

" Llog(442/6) 1
3 -2 < = .
A J ;:1 N S min{T", omin} ,
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that is, reordering the terms, that
n? - 2A%log(4A%/6)

> 7
> 7;2 min{T", oyin }2 (7)
Now, in order to satisfy the condition, = || — T}, || < Ol win it is enough that
C \3/2 1 Ami
(3) @ 4 = (B < min
(o) (el 20+ VR4 DD + ) 4 max ) < €25
Letus decompose the left-hand-side term: After some sfioglions usingnax.. ||u.||? < A%/2u3,, .
ande(3) A3/2 the previous inequality happens when
Aomino/?
(3) 3/2~,(2) minmin
ey’ + A 0e,; <0705/2
whereo = 2(1+v2 + 2)(£ + —)(1 + ud ). Using the definition ot'Y ande!? then we
deduce that it is enough that
", log(4A3/5) Amino-! 2
9/2 2108 min®min
e JZ;V oz SO
that is, reordering the terms that
2 2015 3
n - A° (1+O) C 10g(4A /6) ®)

Combining the decompositior8) with (4),(5), and using the fact that;fn > A = 1, we
obtain

20 max 1
e = Upriol] < 5enVCOy/Tmax + (Ae + 5en) VO (222 4 e ()

F Umax
+8VC (A + 5en) (v/Trmam + \/ef))i_"
2Umax 1 6512) (2)
< \/5 13\/amaxen+( T + )U2 + 8\ ey e,
Omax min

2Umax

S s a,iagef)en + 40(+/Fomae + e%”)eﬂ '
Now, using ¢) and unfolding the last inequality, it holds with probatyilhigher thanl — 2¢ that

| |uc - ﬁn,ﬂ'(c) ||

< \/5[13\/%“( < ) (€® + e 43/20) 4 (Zmaz 4 °
min Fo- Omaz " VUnin
C \3/2
+8(——) " VelP (e + el 4¥20)
+5(0 : ) ( UF +- )elD (el + (P A3/20) + 40(v/Tmaz + \ € )en}
CA \3/2 20 maz 1 1
< \/
h |:13 Umam(o—min) (1 * O) + ( Fa + Umam)'Urznin:|
- Clog(4A3/6 o
XA3\IZ71 ? 2(n2 /%) +o(n 22%‘ 2)7
i=1 i=1
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which, after some cosmetic simplifications, concludes ttst fiart of the proof of Theorerm

Alternatively, whenn=2>""  ~~ 2 4+ o0, we can always resort to the condition tlaéi) <
1/2 min{T", omin } in order to simplify the previous derivation. We deduce,ikinly, that

| |uc - l_ln,rr(c) ||

< \/5[13«/0,,“”(0_ : ) (el + e[ 43/20) + ( UF + > ;2

+8( c )3/2@(6%3)4_6%2)143/20)

Omin
3/2 20 max 1
+5( - ) (R 4 )@ (el + e AY20) + 40(y/maz + e,?))ei}
Omin o Omax
CA \3/2 CA \3/2
< [(13,/—%”(—) +8( ) Vmin{T, omm /2
Omin Omin
CAN3/2 ,0maz 1 . 20 max 1 1
+5(crmm) (%, 2amam)mm{r’am‘“}>(l+o)+( TR

CA

Omin

+4o(\/m+ min{I‘,omin}/2)( )3(1+O)2min{l",amin}\/3/_8}

n 3
o |32 ClogdA)

, v 2n? ’
=1

where, in order to control the last terf), we used the property that

CAN3/2 o (2) [10g(44%/8) 55 (3
en < ( ) (14‘0)111111{651) W’A ey

Omin

(5r) (1) min{ /37362, 47262}

Omin

Appendix C. Proof of Theorem 3

Proof LetM;; = (ma,,...,my4,) . The argument used to prove Theorem 2 in Yadkori et al,
2011, can be used to show that

Vi1 =V, U1 + Vi Ui My
wheren;.;—1 := (1, ..., 1) is the observed noise sequence. Egt, 1 := (g4, - - -, ea,) =
Mi.i—1 — Uj4_1v°. We then have

Vi1 =V, iU a1 + Vo U 1My
= ‘/t:llﬁl:tflnl:tfl + V,;llﬁmfl (ﬁltqvo + El:tfl)
=V, U0 a1 +V° = AV, v + VT UL By,

Thus, lettingv," | := v° + V,"1U;4—1E1.+—1 and using the above with techniques from
Yadkori et al together witt{v°||, < Re, we have that

+
A\ Ciq
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with probability at least — §.

Now, leta,” , € argmax,c 4 1/ v;~ , be an optimal action corresponding to the approximate
parameter;” ,, and define the instantaneous regret at tinaéth respect to the approximate pa-
rameteras

T?‘ = ﬁaTj 1v;1 — ﬁltvil > 0.
We now bound this approximate regret using arguments albadines of Yadkori et al, 2011.
Consider

e ZﬁZj ) Vil -V
Uy Ve —uy, v,  (since(A,V,) is optimistic)
= I« ( —vi_ 1)
=ay, (Ve = V1) + 0, (Vo1 — vy
< HuAtHv:] 1¥e = Veally,_, + l8a, Vi1 =viZally,, (Cauchy-Schwarz’s inequality)
< 2Dy [[ua,lly- - 9)

Noting thatm,, € [—1, 1] Va, the regret can be written as

T T
= Z(ma* —my,) = Zmin{ma* —ma,,2}

t=1
Mgr — ma 2
=y ZZmln{ I}]I{At—a}
a#a* t=1
<o > me{ al.ve—alve }]I{At =a} (using the definition of)
a#a* t=1 p
@ < + ST+ 21 ®, S ST+ T+ 1
<p Zmln a,.vi, —ay, vy, it 2p Zmln U, Vit WAV
t=1
1 =2 © N2
= 2p'Zmin {r;r, —/} = plz = min {p'r},1} < plz = min{?p'Dt_l [aa, lly-1 ,1}
t=1 P =1 P =1 P -
@ e
<Y 4D min {01}
t=1
T
</ TZ 16D? min{HﬁAtHfﬁl ,1} (by using Cauchy-Schwarz’s inequality)
t—1
t=1

In the derivation above,

e Steps(a) and(b) hold because of the following. By Lemnda(to follow below), ||v;", — v°||, =
V1011 B 1], < a(U) |lell,. Sinceargmaxqc4a, v° is uniquelya* by hypothesis, we
have, thanks to Lemrr&(to follow below), thata . v, — 4/ v/, > M > 0 Va # a*,

establishinga). This in turn shows that the optimal action fef , is uniquelya* at all timest, i.e.,

a | = argmax,e 4 0] v~ | = a*, which is equality(b).

e Inequality(c) holds by @) and(d) holds becausg’ > 1 by definition, andD;_; > A\/?Re > 1/2
by hypothesis, implying thatp’ D; 1 > 1.
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The argument from here can be continued in the same wayAlskiasi-Yadkori et al(2011)

to yield

TR? 1 TR?
< s, x 1/2 = x _
RT\Sp\/TClog<1+ AC’)(A R@+R\/210g5+010g<1+ Yo ))

This proves the theorem.

Lemma 4 (Analysis of the time-varying parameter error V,— 1Ul +-1E1.41) Lete, = m, — u] v° be

the bias in arma’s reward due to model error, and let =

reward biases. Then,

(€a)aca be the|A| dimensional vector of arm

VOB, < (max ]| A7) llell

whereA 44 cyxc =

all subsets of full-rank rows oA.

? } , A yistheC x C submatrix ofA formed by picking rowd, and.J ranges over
d

Proof [Proof of Lemmad] Let z;_; ==V, 1 Uy, 1E1 1 = vi—1 —v° € RY, with | By || <

lelle = [fm — T2

. We have
o0
t—1 1y
21 = <Z ﬁASﬁ—lA;s + /\I) ZaAsﬁAS
s=1
- -1 t—1
A 1
_ _T _
- AN . -
(t— DI ) i1 ;EASUAS

"I{A, =a)

- (Z Uol, fo(t— 1)+ %I)

wheref,(t—1) =

t—1

—1
I) Z €qUq

t—1

S A =a}

acA t=1

-1
Z Eaﬁafa(t - 1)7

acA

fa represents the empirical frequency with which action A has been played

up to and including time — 1. This allows us to equivalently interpret ; as the solution of a
weighted/?-regularized least squares regression problem with- |.A| observations (instead of
the original interpretation with — 1 observations) as follows.

Let F'/2 be theA x A diagonal matrix with the valuegfi, . . .

Za 1 Ja = 1). With this, we can express_, as

2.1 = arg min
2€RC

= arg min
2€RC

= arg min
zERC

= arg min
2€RC

FU/2(7; — F1/2 H +-

FU2 (U - H

Fﬂ/2

D1/2 H

21

0 LJ({z]z—mf

,v/ fa on the diagonal (note:

A GE

IIZHz

2

(ATDA)"'ATDb,



with D'/2 being a(A + C) x (A + C) diagonal & positive semidefinite matribA " DA =
>aeaUally fo(t —1) + %I positive definite, and\ having full column rankC. A result of
Forsgren1996 Corollary 2.3) can now be applied to yield

|(ATDA) " ATD]|, < max[|A; "],

whereJ ranges over all subsets of full-rank rowsAf andA ; is theC' x C' submatrix ofA formed
by picking rows.J. Thus,||z;_1||, < (max; [|A}"[],) [le]l,. This proves the lemma. [

Lemma 5 (Critical radius) Letu.v°® > ] v° Va # a*. Then, the following are equivalent:

=T 0 =T,0
_ a,.ve—u, v
v —v°l, <a(U) |le]l, = aj.v—a)v> % Va # a*, (10)
and
al.ve — il ve
lell, < min —e Y —YaV (11)

aa* 20(U) [ — all,’

Proof [Proof of Lemmab] Assuming (Ll) observe that when lies in the interior of amv(U ) | ||~
ball aroundv®, we have, for any, # a*

VO + (igr — g) | (v —v°)

_ T _ _ T
a,) v° min (Qge —Tq)
1Pl <e(U)llell,

_ _\T = _ _
= (g —0,) v° —a(U) HEHQHua* - U-aHQ
=T T«,0
— u,.ve—u,Vv
> (Ugr —0g) V° —a(U)]|ug —u oA
( a a) ( )” a aHon&(U) ||ua* _ua||2
al.ve —a] v°
p— 2 5

=T o =T_o
which proves one direction of the lemma. For the other divechote thatif|s |, > %
a* all2
(8. vo—t1, v°)(T,x —Tia)
2|l —all3

for somea # a*, then by settingg = v° — , we have both

—-T —-T — — _ _
v —v°|, = (0 V" =0 v°) (W —Wa) || T Vo — TG v° a(U) |||l
- - — — X
’ 2 [t — alf3 , 20w -, ’
and
=T 0 _ = T0) (3 = — = \T ;0
u,-v - —u,Vv Uy — U * —
(=) v = (e 1) — (e )7 (Y0 (B 0 (e o
2 [[ags — a5
which contradicts10), and we are done. |

C.1 Proof of Lemma3

We begin by establishing some auxiliary technical resultsch together imply Lemma.
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Lemma 6 (Controlling «;,) If n is large enough so thaflf and

" ,log(443/9) 1
<>A3 : 2 g - 12
O\l ;% o2 S, 12)
hold, then with probability at least — 4,
oy < 2ay. (23)

Proof [Proof of Lemma6] The first step is to estimate the facterin the analysis of Perturbed
OFUL. Towards this, note that the quantity= «(U) in our setting becomes

an = an(U,) = max ||(ufz);1H2 ’

whereu? := { (I]" } has rankC', and.J ranges over all combinations of its full-rank rows. For
C

any such subset @ linearly independent rowsg, we have, after denoting® := [ v } that

Ic

€3 Ml < @3, + )5 = @3,

The final term above can be bounded ustagandkumar et al(2012 Lemma E.4) — a version of
Theorem 2.5 irStewart et al(1999. Assuming(u°) s is invertible, and|(u°) ;' ((ug) — (u°))]|, <

n

1, then(u?) s is invertible, and a resulting bound on the norm of its inedess us write

1) — ()l || ()5 |]5
1= [[(w*); " ((ug)s = @)l

Writing J = J,, U J; (v andl stand for “upper” and “lower”) with/; representing the subset of
rows taken from the bottofy rows ofu?, (i.e., ), we have

(ug)g — (u®)s = [ (Un _OU)Ju } _

Thus, with||-|| » denoting the Frobenius norm, and using the dominance ofrthtgefRius norm

over the matrix-norm, with probability at least — 9,

(wl)s = W)y < M) s — @) allp =[O0 = U) sl < |00 = Ul

= [ 2 One = Uell;
]

ce[C

)5l + )5 = @), < @3, +

. OASCJ S lonl1A%/5) (w4

‘ 2n?
i=1

from the RTP error estimatéy
Now, lettinga: = o(U) = max H(u?)_

()5 () s = ()]

! H , the result above implies that for any suitabile
2

()55 I (u5) 5 = ()]l

all(ug)g — (u®) sl

< oA J 3, 2B/

VASV/AN

i 2n2
=1

<1/2
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whenevem is large enough to satisfyL ).
When the conditionX2) above holds, we get, for anyat timen,

1) = (@)l || )5 I

H(un); ||2 < ||(u ); ||2 + 1— H(u<>)31 ((u%)J - (UO)J)HQ

<o+ 20” ||(ug) s — (u)]l,

. log(4A3/68
<a+ 2a2<>A30¢ Z%—?ioggnz /%) [by (14)]

i=1

1
<a+ 20— =2a.
2«

This shows thatv,, = max ||(ufl);1||2 < 2a.
|

Lemma 7 (Sufficient condition for (2)) If n is large enough so thatl}, (12) and

" ,log(4A43/6) : b 9o
CA3C Y; 2217 < min , (15)
JZ 2n? 4\/ZHVbH2 160‘*\/6umaXHVb||2+gb

i=1

hold, then ) is satisfied with probability at leagt— ¢.

Proof [Proof of Lemma7] The term||c||, = || (U — U.,) vs||, is bounded from above by

U = Tall, Ivelly, < U = Tall g Vel

n 3
<VE v, OABJ > 2L oy g

i=1

= \/5|\vb||2Nn,say (16)
For anya # a*,
_ _\T T
(un,a* - U—n,a) vy = (ua* - ua) Vp + OgVp = <aa (17)
with (9; = (ﬁn)a* — U_a*) — (l_lma — U_a), andga = inf||£||2<”3a”2 (ua* — ua)T vy + §TVb.
Also, by (14), we have
max ||t , — Uqll, < VAC max [0, — u|,
a€[A] (€]
", Clog(443/9)
< VACOA® —2 L 0gl4A7/0)
ACOA \l ;7 3
=: N, VAC.
Thus,
> inf (War — ua)T vy + &V = (War — ua)T vy — 28, VAC [[vp 5 - (18)

Ca 2
€, <28, VAC
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By (17) and (L8), for anya # a*,
(Upar — Una) Vo= (Uar —ug) ! vy — 28, VAC ||V, - (19)
We also have

[Uar — ua”z + ”ﬁn-,a* — Ua~ ”2 + Hﬁn-,a - uaHQ

<
< [Juar — ually + 28, VAC (20)

||ﬁn,a* - ﬁn,aHQ

whenever {2) holds. Putting 16), (19), (20) and the conclusion of Lemnttogether, we have that
condition @) in our case, i.e,

_ = . (ﬁn,a* - ﬁn,a)—r Vp
el = | =T wells < it 50 G Sl

is satisfied when

T
VE [vlly R < min Bar =) Vo = 2aVAC|Ivi ],
PRI a#a* 4o, Hua* — uaH2 + 2Nnm

This, in turn, is satisfied if

1
2%, VAC ||V |, < = min (Uar —ua) ' vp = % and

2 a;ﬁa* 2 ’
2
VC [9ly R < 2z
2 SQ*\/aumax + gb/(2 ”VbHQ)
9b
54

N, < .
" 1600 Ciman [ V3, + 96V C

Lemma 8 (Control of the distortion p due to noisy feature estimates)lf n is large enough so thatl, (12)
and (L5) hold, theny’ < 2 with probability at leastl — 4.

Proof [Proof of Lemma3] We begin by considering

(War —u,)' vy (Uar — ) vy
max < max

< imer el 7O
azar (ﬁn,a* - 1in,a)—r A aFa (ua* - ua)T Vp + 0uVp aFta* Ca ,

with 9, := (i, 4+ — Ug+) — (W0 — u,), and

Ca:

. T
= inf (Ug —ugy) v+ vy
€l <l8all,

as in the proof of Lemma. Also, by (L4), we have that with probability at least— 0,

max ||t , — Uqll, < VAC max [0, — u|,
a€lA] ce[C]

< VACoA |3 42 ClostiA/d)

g 2n2
i=1

=:N,VAC, say
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Thus,

. T
Ca = inf (War —1,) v+ €V
€], <28, VAC

= (Ugr —u,) ' vy — 28, VAC v,

LGy 2WATIl 2Tl
(Wgr —uy) vy (Wgr —uy) vy b

whereg, = mingq+ (Ugr — ua)T v, > 0 is the minimum gap for use across suboptimal
actions.
Provided thatT), (12) and (L5) hold, we get that with probability at leabst- 4§, T L So >

a* 7ua)Tvb
1

5 foreachn # a*. Also, by the definition of*, the denominator is positive, i.gu .- — ua)T vp >

0. Hence,
(U —u,) vy
max — — = <2,
aFa (un,a* - un,a) Vi
completing the proof of the result. [ |

Lemma 9 (Bounding Rx) If nis large enough so thailf and (L2) hold, then
VA

Ry < —+m
xS g aeax”uaHQ,
with probability at leastl — .

Proof [Proof of Lemma9d] Conditions () and (L2), together with the estimat@(), imply that for
any actiong,

”ﬁn,aHQ < Hua”z + ”ﬁn,a - ua||2 < Hua”z +N,VAC < ”ua”z + \/Z/(20‘*)-
with probability at least — . ]

In order to conclude the proof of Lemn®& we gather the conditions from Lemn@aand
Lemmay. After some simplifications, both conditions are satisfisd@on as

2 SA 2 9702002 2
n - > <>2A602 1Og(4A3/5) max{2az7 ||‘2’b||2 ay umax||vb||2 + 1/2} )

i1 Vi P 95

Appendix D. Proof of Theorem4

Proof Letng be the first mini-session such that both conditions in Len3rage satisfied, that is
such that

no
no -2
Zi:l Yi

The cumulative regréir = ZL r; of Algorithm 3 satisfies

N Z
fj}‘T = Z Zrn,l

n=1[=1

>0 .

N 14

< (no — 1)[ + Z Z Zrn,lﬂ{bn = b}

be[B] n=no l=1
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wherer; =, def uT* Vb, —u,/ , Vb, isthe instantaneous regret of Algorittiat timet = {n+k
when the current user 115, =b. Usmg the notations of Algorithr8, it holds that

E[Ttﬂ{pn = 1}|bn = b] =+ E[Ttﬂ{pn = O}|bn = b]
E[u T*Vb - u~ Vol (1= n) + Y-

E[r|b, = 0]

NN

Elug, vy, — ;kub] + Yn,

wherea,, 1 is an action output by an instance@FUL for userb,, = b. Thus, we have

E[Rr|b1,...,bN]
N 4 N
<(ng—1¢+E ZZ( *vb—uT vb)]l{bn:b}bl,...,b]v +€Z'yn.
be[B] n=no =1 n=ngo
4 N
=(mo-1¢+ S E| Y Z( *vb—u~)vb) biyeeby [+ (1)
be[B] no<n<N, =1 n=ngp

n=

()

For each useb € [B], the expectation in the right-hand side above correspomdlset cumu-
lative regret of theOFUL strategy when interacting with us&iin mini-sessions:, through N,
and when given at each mini-sessiorthe set of perturbed feature vectdrs,. Let Ny ,, =

Zn — o I{bn = b} count the total number of mini-sessions framin which use is present (note
thatzb6 NM =N andee[B] (N1 = T). Let us denote the terifx) in the above explicitly

using%b,zvb,no {Un} nefno, N bn=b)-

We can now use th@FUL robustness guarantee — a natural technical extehsfarheorens
along with Lemma3 — to obtain that, for a given user sequerge. . ., by, with probability at
least 1 — 25 —§ =1 — 36,

R, Ny g ({Un}neno, N, bn=b) <

(Np o R% 1/2 1 (Np o, R%
16\/€Nb,n0 C’log<1+T AN Re + R 210g5+010g 1+T .

8. Although Theoren3 holds only for a fixed perturbationand feature sei, it is not hard to see that a modification
of it, with time-varyinge:, @; andp’ being the largest; over all timest, yields the same conclusion (regret bound).

We provide this extension in Theoréefin AppendixE below.
9. Although the time horizons played by each OFUL instanceuper,Ns ., , are technically random and unknown to
the instance at the start, conditioning on the sequenceeo$ asriving at each time instant lets us use the conclusion

of Lemmas3.
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This in turn implies that

Y E |:mb,Nb,n0({UW}HG[no,N],bn_b) bi,.. -Jw}
beB
(@) ¢Ny o R 1 (N, R2
< 16 (Np,. Clog (14 —220X ) [ \/2Rg + Ry/2log = + Clog [ 1 + —210—X
beZB b,no og<+ O >< e+ og6+ og + O
+ ) 30Ny,
beB
®) {Np o R 1 (N o R2
< 16 INy o Clog [ 14+ —22—X ) [ \12Rg + Ry[2log = + Clog [ 1 + —2o—&
Z)EZB b,no 0g(+ NG )( o+ 0g5+ og |1+ O
+ 36T.

The last term on the right-hand side (n) is due to the fact that with probability at mo34,
the per-user regre®, v, ., ({Un}nefno, N),b,=b) Can be as large a&Vs ,, (the total number of
time slots for which useb interacts with the system). The corresponding terrfbinis by using
Zbe[B] {Ny,1 = T. Further bounding using the Cauchy-Schwarz inequality. 5 /Ny, n, <

vV BT gives

Z E [%b,m,no ({Un}nefno, N bn=b) b1, - - - bN}
beB
TR? 1 TR?
<16 (Nyn, Clog (14 =—2) [ \'2Rg + Ry/2log = + Clog | 1 X 36T
Z; b,no og(—i-)\c)( o+ og5+ og +/\O +

TR? TR?
< 16\/BTClog (1+%> </\1/2R@+R\/210g%+010g (1+ A}Zj‘)) + 36T

Plugging this estimate int@(), we obtain that

N
E[Rp|by,...by] < ¢ <n0 14+ > %>

n=ngo

2 2
+ 16\/BTOlog (1 + %) (AWR@ + R\/2 log% + Clog <1 + 7}2}“)) + 30T.

Expliciting ng and tuning ~,, The next step is to control the temg — 1 + Zf:[:no Y. TO this
end, we explicit,y and optimizey,,. We writeO = Q5 in the sequel for convenience.
If v, = min{1,0'/2n~1/2}, then

S O+ & me oM
B 20n2
 [o]l20+n(n+1)—[0]([o] — 1)
- 20

1+1/n+ ([0]O)/n?"

Thus, this is higher thao if n2 — n — [0]o > 0, thatis ifn > ng < [1/2 + /[0]0 + 1/4].
Sinceny > [0], we immediately get
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N
—1 1
> < 0yt 2012 (NE - nf)

n=ngo
1
< 1+20Y2(NE - nd).
Thus, we obtain
N
1
ng— 1+ Z Tn < 202Nz + ng —201/271(1)/2
n=ngo

< 20Y2N7 4 ng — 24/0[0]
Using the fact thab > 1, the bound simplifies to

N
no—14+ Y 7n<2VON +1.

n=ngo

If, on the other hand, a bound anis not readily available beforehand, then choosjpng=

log(1+n)/n,n > 1, gives, via a crude bound,

n n \/ﬁ n
Zy;ﬁ: Zm/log(l—l—m)é Zm/log?—i— Z m/log(1 + v/n)
m=1 m=1 m=1 m=y/n
<n/log2+n?/log/n < 2n?/logvn
2 2

ng < ng _logng
S0 yms T 2ng/ log \/no 4

The bound above is at leastprovidedn, > exp(40). Thus, we finally get that, upon setting
§ = 1/4/T, the total expected regret satisfies (as an order-wiseiumet 7")

E[Rr]

N
4 (exp(40) + Z Vl1og(n + 1)/n>

TR% 1/2 TRY
+16(/BTClog (14 —ZF | | \V*Ro + R [log T + Clog ( 14+ 3¢ +3VT
-0 (O\/BTlog T) .

=

Appendix E. Extension of Theorem3: Robustness of OFUL's regret with
time-varying features

We now control the robust regret for u$eRy, v, . ({Tn }neno, N bneb) = Sono<n<N, Sopoy (uaT; \
b,=b

u;n,lvb)' when OFUL is run with evolving feature matric@?n}ne[nowmn:b with decreasing

feature erroe,, = (U — U,,)vs, instead of a fixed/ with fixed errore = (U — U)vy.
We reindex ther € [ng, N1, b, = bast = 1,...,.. and prove the following result.
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Theorem 5 (OFUL robustness result, extension of Theorer for time-varying features) Assume|v®||s <

Re, A > max {1,R%,1/4R%},Va € A t < T, [[ul||2 < Rx and|m,| < 1, and that for allt < T,
arg maxXge 4 allTve = {a*} (i.e., the linearly realizable approximation with respézthe current features

hasa* as its unique optimal action). If

ST o

)T o
U,

_(t
vl —uy’ Vv

Hs(t)Hg = Hm —UWv°|| < min

2 aar 2a(U<t>T)Ha§2 —al
2

, (22)

then with probability at least — 4, for all 7" > 0,

TR? 1 T R2
< / s 4 1/2 . - X
Rr < 8p \/TCIOg <1+ e > (A R0+R\/210g6+010g <1+ e, >>

wherep’ := max; max {1, MaXgter o — }

—(t) T —(t)T
ufl*) v°—ug) ve°

Proof LetM;.; = (ma,,...,m4,) . The argument used to prove Theorem 2 in Yadkori et al,
2011, shows that

Viog = V;;llﬁgt;,)g_lnlzt—l + V}:llfjgf,)g_lMlzt—l

wheren;.;—1 := (m1,...,m:—1) is the observed noise sequence, and wfféifé_l is the matrix
built from the time varying features at timeand the action sequence thus far. E@_l =
(5(2, . ,5SZ)T =M1 — U)_,v°. We then have

Ver = VA OY s + V20O My
(e 1 (t (T _ o t
= ‘/tfllUg:lflnlitfl =+ ‘/tfllUg:z)ffl (Ug:lflv + Egn)ffl)

= VYO e +v0 = AV v + 12100 ES)

Thus, lettingv;t , = v° + V0" | E{")_ | and using the above with techniques from
Yadkori et al together withjv°||, < Re, we have that

+
VvV, 1 € Ciq

with probability at least — §.

QN

Now, leta” | € argmax,e 4 ay v, , be an optimal action corresponding to the approxi-

mate parameter;” , and approximate featunTﬁ(f)T, and define the instantaneous regret at time
with respect to the approximate paramessr



We now bound this approximate regret using arguments aloagdjries of Yadkori et al, 2011 as
follows. Write

T, el

< ﬁszTfr ﬁszij_l (since(A;, v;) is optimistic)

= u(jf (Ve —viy)

= ﬁf:g (Vi — V1) + uXZT (Vt71 - Vt71)

< Hﬁ(j)‘ - Ve = Vially, , + H’(t) L [ve-r - VttleH (Cauchy-Schwarz’s inequality)
t—1

<20, [0l (23)

Noting thatm,, € [—1, 1] Va, the regret can be written as

T
g (Ma» —ma,) gmln{ma* ma,,2}

szm{m‘“ MNa 2/}H{At_a}

a#a* t=1

<y Z min {ﬁfj)Tv" —aPTve, %} I{A; = a} (using the definition op’)

a#a* t=1

@) 1
S min {2 (v -, }<b>zpzmm{utml .
o4
T
1
Vi

1 2 (¢) 2
= 2p'Zmin {T;r, ;} = plz ; min {p’rzr, 1} < plz ; min {2p'Dt1 Hﬁxz
t=1 t=1

t=1
@ X
< pfzzu)t,lmin {HuAt
t=1

)

<y TZ 16D1? Imn{HuAr

, 1} (by using Cauchy-Schwarz’s inequality)

In the derivation above,

e Steps(a) and(b) hold because of the following. By Lemnid) (to follow below), ||v;", — v°||, =
HVt Lol 1E§2_1H < a(0y) [[e®]|,. Sinceargmax,ea 1l v® is uniquelya* by hypothesis,

()T _o_ ()T o
we have, thanks to Lemn thata? v/, — alTvi | > Zs Y-8 Y 5 gvg £ o, es-

tablishing(a). This in turn shows that the optimal action fof_, is uniquelya* at all timest, i.e.,
a; | = argmax,e 4 i)’ v | = a*, which is precisely equalityb).
e Remark.In the above, Lemmab is written for generica,, ¢, SO in particular applies to each time

varyinga!’, e®. We also used an extended version of Lemeiéo the case of varying”, £(*),
which we state and prove below as Lemrh@a

e Inequality(c) holds by @3) and(d) holds becausg’ > 1 by definition, andD, ; > A\'/?Rg > 1/2
by hypothesis, implying thatp’ D; 1 > 1.
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The argument from here can be continued in the same wayAlshiasi-Yadkori et al(2011],
proof of Theorem 3) to yield

T R? 1 TR>
<], x 1/2 L x _
RT\Sp\/TClog<1+ /\C')()\ R@+R\/210g5+010g<1+ Yo ))

This proves the theorem.

Lemma 10 (Extension of Lemma4 to time-varying feature sets) Lets(t) =My — uff )Tv° be the bias in
arma’s reward due to model error, with respect to the featurgsand let=®) = ( ff)) R Then, we have
ac

—1++(t t t)—1
H%_llUg”)f_lEg”)f_lH2 S (m?XHA‘(]) Hz) Hg(t)Hz’

7(t)
WhereAEQ+C)XC { UI ] Af]t) is theC' x C submatrix ofA®) consisting of rows i/, and.J ranges
d

over all subsets of full-rank rows ().

Proof [Proof of Lemmal(] Letzlg’i)1 = thllUglengz L=V, —v°eRC, thusHE11t 1H <

6@ = [Jm = TU®ve||_.. We now write

- 19
(z 05T m) Zgggagjg
s=1

t—1 —
1 S (T A €D

s=1 s=1
S A, = a} S A, = a)
— Z ﬁ(t)ﬁ(t)T s=1 il E(t)ﬁ(t)M
@ e t—1 t — 1 @ t—1
acA aGA

= alWadTr (t—1)+ LI eWal® f,(t -1
Z a a fa a a .fa )
t—1
acA acA

where f,(t — 1) is the empirical frequency with which actienc A has been played up to and
including timet — 1. This allows us to equivalently interpret_; as the solution of aveighted
¢2-regularized least squares regression problem Wit |.A| observations (instead of the original
interpretation witht — 1 observations) as follows (we suppress the dependentemft as per the
context for clarity of notation).

Let F'/2 be theA x A diagonal matrix with the valueg/f, . .., +/fa on the diagonal (note:
Zle fa = 1). With this, we can express_; as

25 )1:arg min |[FY/20®, — F1/2%¢ t)H —i—

N EE

= arg min Fl/2 (U(t)z - a(t)) H +
2

V4
2€RC t—l
FI/2 0 7 OB R
el o 2 <[ I ]‘{ 0 D
= arg min ||DY/2 (A H (ATDA)"'AT Db,
2€RC
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with D'/2 being a(A + C) x (A + C) diagonal & positive semidefinite matribA " DA =

Y acA ﬁff)ﬁff)Tfa(t —1)+ %I being positive definite, and. having full column rankC. A

result ofForsgren(1996 Corollary 2.3) now gives
T —1 AT —1
|(ATDA) ' ATD[, < max| A},
whereJ ranges over all subsets of full-rank rowsAf andA ; is theC x C' submatrix ofA formed
by picking rows.J. Thus, Z*@lH < (maxy |[AS][,) [[£]],. This proves the lemma. [ |
2

Appendix F. Unregularized Least squares

In our setting where we consider finitely many arms, one wandeo whether it is possible to
remove the regularization parameterFollowing Rusmevichientong and Tsitsikl{010, this is
indeed possible under the assumption that the minimum esdemof)  _ , u,u/ is away from
0. Then, we first play each arm once (once for all ugeysot for each of them) before running

Algorithm 3, whereOFUL is used with\ = 0 and with D,_; redefined to beR? <A log(t) +

1og(A/5)). This leads essentially to similar bounds, with replaced bymax ; ||U;!]|2, as we

show below.

Letid ¢ RC. We receive at time, observationy; = uv* + 7, € R wherev* € R and
us €U.

We make the following

Assumption 2 There existd?x, R, \g € R} such that
1. Vs, ||us|| < Ry
2. VA € R, logEexp(Ans) < A2R?/2.
3. /\min(Zizl ugu)) > Ao.
Assumption2.3 is satisfied for instance when there &fgoints (ug,;);c(c) in R? such that

)\min(ziczluoﬂu&i) = X > 0, anduy = ug, for s € [C]. We consider the least-squares
estimate

t 1 T
N\~
vy = ( E usu, ) E UyYs ,
s=1 s=1

F.1 Preliminary
In case// is finite, one can get the following result

Theorem 6 Let us introduce the confidence set

t
C, = {w eRY:w'Guw < Dt,é} , WhereG; = ZususT
s=1

and D5 = 4R2(|u| log(t) + log(|U| /5)) .

Then, under Assumptidh it holds

]P)<vt—v*€Ct> >1-9.
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In the general case, it holds

Theorem 7 Let us introduce the confidence set

t
Ci = {w eR® :w'Gw < Dy 5} , WhereG, = ZususT

2 2
and D;;=16R? [1 + log (1 + 36}\RX> } [C log (36)\RX t) + log(l/é)} log(t) .
0 0

Then, under Assumptidh and ift > 1232 it holds

]P(Vt—V*ECt> >1-96.

Proof: Indeed, letz; = Z;l ugns. SinceGy is invertible, it holds thav, = v, + G;lzt,
and thus

(v — v*)TGt(vt —v*) = zth_lzt

In the case whety is finite, using the Proof of Theorem B.1 Rusmevichientong and Tsitsiklis
(2010 then we further get for att > 0,

P(zth Yo > 2R2) < |Z/l|t‘u‘e
Thus, choosing = 2+/log(|U/|tI!! /5), we obtain that

]P’(zth 5 > 4R2(|U|1og()+1og(|U|/5))) <9,

which concludes the proof of Theorein
From the Proof of Theorem B.2 Rusmevichientong and Tsitsikl{2010, it holds that for all
> 2,

(zth 2 > e2kER* log(t )) < (36R§(t/)\0)ce_52/4,

whereky = 2/1 + log(1 + 36 R%./\o), which leads to

(Zth z > 4(1 + log(1 4 36R% /Xo)) R* log(t)e ) < (36}33{,5/)\0)06—52/47

Thus, let us use = 2\/1og 362 t//\o)c/5) which satisfieg > 2 as soon as > %, thus
X

in particular ift > Now, introducing the constant= 36?3,/ )\, we obtain

12R2

(zth 2 > 16R*(1 + log(1 + ¢)) log(t )(C’log(ct) +1og(1/5))> <4,

which concludes the proof of theorem(
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F.2 Application to Low-Rank bandits

In order to apply this result to the low-rank bandit probleve, need to show that; is invertible.
In our case, this matrix is at mini-session\/; = 22:1 Upg, 0,
Let us assume that all actions are sample at least once iretfierting. Thus, in this case

)\min(]\?[t) > Amin(4 ) whereA = ZGG[A @,,,4, .. For convenience, let us also introduce the
C x CmatrixA=3" . (4] Ballg T=UTy.
In order to show thaMt is invertible, it us enough to show that,;, (A ) > 0.

Now, by the result of reconstruction of the feature matfvix we know that there exists with
high probability a permutation such that the columns are well estimated:

< OA3 zn:V_QC’log(4A3/5) '

VC ||u7r(c) — Uy, C|| i 202

=1

Thus, we studyZ = A — A. Let X be any eigenvalue df, then it holds

A < tracdE) = » trace(ﬁmaﬁ;a—uau;r)
a€c[A]
< Z ||una||2_ ||ua||2
a€c[A]
< DD e
a€[A] ce[C]
< DD (linae = tae)? + 2ua,cliinac — tac)
a€[A] ce[C]
g Z||unc_uc||2+2z Z Z unac uac2
ce[C] ce[C] \ a€[A] a€c[A]

< Z [[,c = we|[* + 2| [u[[] [, — vl
ce[C]

< (2Umam + 1) Z ||ﬁ"-,0 - uCH :
ce[C]

Thus, provided that is large enough that

Amin(AA) > 2(2umam + 1) Z ||ﬁn,c - uc|| )
ce[C]

we deduce thad/, is invertible. Using the fact that = U T U, This translates to the condition

- log(4A43
Amin(UTU) > 20(2Umaq + 1)C A ZWM

; 2n2
=1
that is
n? - 402 (2 + 1)2C3 A8 log(4A3/5)
Y Aain(UTU)
Thus, assuming that all actions are chosen at least once lretjinning, and that
n? - 402 (2Upmaz + 1)2C3 A% log(443/5)
Z?n:l 77712 A12‘11111((]1—(]) 7
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then)\min(Mt) > Amin(UTU)/2 = \g/2 > 0 and Theoren and Theoren? both apply.
In order to control the regret of the unregularized versibf©O&UL, we now use the proof
of Rusmevichientong and Tsitsikl{201Q Theorem 4.1) combined with the fact that;, (M;) >

Ao/2 to get
~ e 2R% 2R%
Z min{|[t, [[j;-1, 1} < 2max{1, 3 H C'log(max{1, 3 H+(C+1)log(n+1)]).
t=A+1 ! 0 0

A straightforward adaptation of the proof of Theor&rihen gives

R, < p A+16D? in{||tga,|%_.,1
pdm + n,atglmm{nu&nm )

4R? 2R?
< 16p'R%*( Alog(n) + log(A/d) n(? + RX) C'log (1—|— RX) + (C+1) log(n+1)
Ao Ao
+p'VAn .
Following the same steps as for LemBjave finally obtain the result:

Theorem 8 (Unregularized OFUL robustness result) Assumé|v°||s < Re, foralla € A, ||t.]|]2 < Rx

and|m,| < 1, and thatarg max,ec 4 @] v° = {a*} (i.e., the linearly realizable approximation has as its
unigue optimal action). Assume that each action has beeyeflance. Leb < ¢ < 1. Provided that the
number of mini-sessions, is large enough to satisfy

2
TLO é
S "
i=1 Vi

where

Ob s Omin
k) . b
min{T, omin } 2 2C%03

min

- {2A6 log(4A2/5) A?(1+10(F + =) (1 + ud,))*C® log(4A4%/4)
= max

402 (2Upmar + 1)2C3 A8 log(4A43/6)
X_UT0) ’

min

2 T—=2 2 2
O2ASC2 log(443/5) max{zaf, SA”‘;’”Q, 2 O‘*C“";a"”"b“? T 1/2}},
9 9y

then with probability at least — ¢ for all 7 > 0, the regret? 4.1., of theOFUL algorithm from decision
A + 1ton satisfies

—2 —2
Ras1m < 32R? | Alog(n) + 1og(A/5)] \/n (2 + Zlfl\tl) (C’ log (1—1—%) + (C+1) log(n—i—l)),
0 0

where we introduced

_ VA _ -1
RX:?SZ(HuaHg—i—E and a*zm}nHUJ [l

This result enables to get the corresponding variant of fidraal using an unregularized
OFUL.
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