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Abstract

The Dutch and the French schools of data analysis differ in their approaches to the
question: How does one understand and summarize the information contained in a data
set? The commonalities and discrepancies between the schools are explored here with a
focus on methods dedicated to the analysis of categorical data, which are known either
as homogeneity analysis (HOMALS) or multiple correspondence analysis (MCA).
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1. Introduction
In the 1960s two currents of research emerged in the spirit of Tukey’s exploratory data analysis
(Tukey 1962): the French school and the Dutch school. Researchers in these schools were
outliers in the statistical landscape of the time, in which most research was performed in
the framework of probability models. What can be highlighted is that many of the modern
arguments about data sciences, machine learning, statistics (see Donoho 2015, for a nice
overview), and inference (see for instance the ASA statement on p-values in Wasserstein and
Lazar 2016) were already debated. We feel that the way both schools tackled problems and
data was a bit ahead of its time.
The French school of “analyse des données” (data analysis) was led by Jean-Paul Benzécri,
a mathematician and linguist, who encouraged the idea of “letting the data speak for them-
selves”. One of his famous quotes (Benzécri 1973, p 6, Tome 2) starts with, “The model must
follow the data, not the other way around,” and ends with, “What we need is a rigorous
method which extracts structures from the data.”1 He described “statistical analysis as a tool

1In French: “Le modèle doit suivre les données, non l’inverse . . . ce dont nous avons besoin, c’est d’une
méthode rigoureuse qui extraie des structures à partir des données.”

http://dx.doi.org/10.18637/jss.v073.i06


2 Jan de Leeuw and the French School of Data Analysis

to make patterns emerge from data (Benzécri 1986).” When presenting methods of “analyse
des données”, we say that such methods allow description, exploration and visualization of
the data. Furthermore, they involve reducing data dimensionality in order to provide a sub-
space that best represents the data in the sense of maximizing the variability of the projected
points. A great importance is attached to graphical displays and often the representation
of rows is as interesting as the representation of the columns. Methods based on principal
component analysis have roughly similar aims, such as studying similarities between rows,
similarities between columns, and associations between rows and columns, but they differ
with respect to the nature of the data: principal components analysis for continuous data,
correspondence analysis for contingency tables, and multiple correspondence analysis for cat-
egorical data. An intrinsic characteristic of the approaches is that they are presented using
geometrical considerations without any references to a probabilistic model2. From a techni-
cal point of view, the core of all these methods is the singular value decomposition (SVD)
of certain matrices with specific row and column weights and metrics (used to compute the
distances). In the words of Benzécri, “all in all, doing a data analysis, in good mathematics,
is simply searching eigenvectors; all the science (or the art) of it is in finding the right matrix
to diagonalize.”3 Although many contributions in the French school were never translated to
English, many references are available and include Benzécri (1982); Le Roux and Rouanet
(2004); Murtagh (2005); Holmes (2008); Lebart (2008); Lebart and Saporta (2014); Lebaron
and Le Roux (2015). One feature that can be mentioned is the strong connection between
J-P. Benzécri and P. Bourdieu (Lebaron and Le Roux 2015) which has a role in explaining
the popularity of such methods in the social sciences. However, this popularity is mainly due
to the prevalence of categorical data in this area.
It is of course more difficult for us to talk about the Dutch school and to reflect on Jan’s views
of statistics, models, and inference without taking the risk of misrepresenting his thoughts.
In addition, his views may have evolved through the years. So we would advise the reader
to consider two articles we really enjoyed and that may reflect some of his current ideas:
“Models of Data” (De Leeuw 2005) and “Statistics and the Sciences” (De Leeuw 2011b). We
also refer the reader to the interview of De Leeuw (De Leeuw 2011a) given on the occasion of
the International Conference on Correspondence Analysis and Related Methods (CARME)
in 2011. We see there many similarities with our day to day practice of statistics, in which
we think about the encoding of the data, the use of statistics “as tools for data analysis”,
concerns about stability, etc. What we can say for sure is that the absence of models is
also a strong characteristic of the Dutch school. In addition, methods of this school known as
Gifi’s methods (Gifi 1990; Michailidis and De Leeuw 1998) also reduce the dimensionality and
respect the nature of the data, whether categorical or ordinal, for instance. For both schools,
coding categorical variables with the indicator matrix of dummy variables and considering
them as Gaussian, for instance, is almost a crime. Another strong feature of both schools
is that the approaches are completely unsupervised in the sense that very often there is no
distinction between explanatory variables and a response variable, or in other words, there is
no Y variable.
What is different between the schools is the manner in which problems are of presented and
solved problems, mainly based on projections in the French school, and on the definition of a

2It does not mean that the concepts of stability, replicability, etc. are not covered.
3From our point of view, specific choices of weights and metrics can be seen as inducing specific models for

the data under analysis.
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loss function solved by an alternating least squares (ALS) algorithm and transformation of the
variables in the Dutch school. The difference between these points of view implies different
research focuses and developments. It is very interesting to see how the way a problem is
written influences the stream of ideas. As we will see in what follows, the projections point
of view facilitates the introduction of supplementary elements to enhance the interpretation
of the graphical outputs whereas the ALS point of view easily enables the introduction of
constraints in the optimization problem.
In this paper, to illustrate the commonalities and discrepancies between the French and Dutch
schools we focus on the method dedicated to analyse categorical data, known either as multiple
correspondence analysis (MCA) or homogeneity analysis (HOMALS). We start by reviewing
both approaches and by presenting how these methods have been extended to deal with
missing values. Then, we illustrate the approaches on a survey data set describing genetically
modified organisms. Finally, we show how Jan’s developments influenced the French school.

2. HOMALS and multiple correspondence analysis
HOMALS and MCA have been successfully applied to describe the relationship between
categorical variables in many fields such as the social sciences, marketing, health, psychology,
educational research, political science, genetics, etc. (Greenacre and Blasius 2006). They are
often used to analyse survey data where participants answer many questions. Let us consider
a dataset with n rows and J categorical variables, vjj=1,...,J with Kj categories each. The
data are coded using the indicator matrix of dummy variables denoted Gn×K , K = ∑

j Kj

with gijk = 1 if person i selects category k of variable j and gijk = 0 otherwise as illustrated
below for three variables with respectively three, three and two categories.

G = [G1|G2|G3] =



1 0 0 1 0 0 1 0
0 1 0 0 1 0 0 1
1 0 0 0 0 1 0 1
1 0 0 1 0 0 0 0
0 1 0 1 0 0 0 1
1 0 0 1 0 0 0 1
0 0 1 1 0 0 0 1
1 0 0 1 0 0 0 0



2.1. Classical MCA presentation

Historically, Lebart (Lebart and Tabard 1973) had the idea to apply correspondence analysis
(CA) to the indicator matrix G (Lebart and Saporta 2014). This strategy yields very in-
teresting results with new properties: this is how MCA was born, and this remains its most
common definition. Another nearly-equivalent way to perform MCA consists of applying CA
on the Burt matrix B = G>G, which is the matrix of all pairwise associations between the
variables. Note that in this table, the information on rows is lost. The final common pre-
sentation of MCA consists of performing PCA onto the indicator matrix G with specific row
and column weights. The choice of weights ensures the properties of the method such as the
Chi-square interpretation of the distances between rows as well as the fact that the principal
components are “new” variables that are maximally related to the set of variables, with the
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relationship measured here by the squared correlation ratio (η2) of analysis of variance. More
precisely, let us denote a matrix Xn×S which represents the principal components (scaled to
1) also known as the normalized scores, i.e., the normalized coordinates of the n observations
on the S axes. They satisfy the following property (Saporta 1988a):

xs = arg max
xs∈Rn

1
J

J∑
j=1

η2(xs,vj) (1)

with the constraint that xs (the sth column of X) has norm equal to 1 and is orthogonal to
x′s for all s′ < s. This expression strengthens the presentation of MCA as an extension of
PCA. It also strengthens the practice of performing a clustering method, such as k-means
or a hierarchical clustering algorithm onto the S first principal components of MCA. Indeed,
it allows both working with continuous variables that summarize the categorical variables
and also removes some noise (assuming that the last dimensions are restricted to noise),
which stabilizes the clustering (Husson, Lê, and Pagès 2010). Note that the complementarity
between clustering and principal components methods is usual in the French school of data
analysis.
That three presentations of MCA can be seen as a strength of the method (Husson and Josse
2014). Whatever the point of view used, the MCA solution can be obtained by perform-
ing the generalized SVD (Greenacre 1984) of the triplet data, column weights, row weights(
G−M, J−1DΣ

−1/2, n−1In

)
with DΣ, the diagonal matrix of the column margins of the ma-

trix and M the matrix where each row is equal to the vector of the means of each column of G.
It boils down to performing the following SVD: G −M = UΛ1/2V> with U>(n−1In)U = I
and V>(J−1D−1/2

Σ )V = I.
MCA can also be defined as finding the best low rank approximation of G−M with a matrix
of rank S according to the Hilbert-Schmidt norm ‖ T ‖2

J−1D−1/2
Σ , 1

n
In

= tr
(
TJ−1D−1/2

Σ T> 1
nIn

)
:

LMCA(X,A) = ‖(G−M)−XA>‖2
J−1D−1/2

Σ , 1
n
In

with A> = [A>1 | . . . |A>J ] and Aj the Kj×S matrix representing the Kj categories of variable
j. The solution is given by A = VΛ1/2 and X = U truncated at order S.
MCA analysis mainly consists of interpreting the graphical outputs where rows are repre-
sented with UΛ1/2D1/2

Σ and categories are represented with VΛ1/2D1/2
Σ . There are different

choices regarding the graphical representations; the previous system is known as the French
coordinates. In addition, we usually emphasize the (pseudo) barycentric principle which helps
in interpreting simultaneous graphical displays: a column category point is, apart from scal-
ing factors, the centroid of observations belonging to that category and a row point is, also
apart from scaling factors, at the barycenter of the categories it belongs to. This property
is at the origin of an additional way to introduce MCA known as “dual scaling” and popu-
larized by Nishisato (1980). Note also that examing both rows as well as columns of a data
set is already a step away from the classical inferential framework, where the rows are often
a sample from a larger population and useful only in that they provide information on the
relationship between variables.

2.2. Classical HOMALS presentation
HOMALS (De Leeuw and Van Rijckevorsel 1980; Gifi 1990; Michailidis and De Leeuw 1998)
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is defined using the concept of “quantification”. The quantification of the rows is represented
with a matrix Xn×S and the quantification of the categories is represented with the matrix
YS×K = (Y1, . . . ,YJ) and the quantification of each variable is GjYj of size n× S.
Homogeneity analysis is defined using a loss function which represents a criterion of departure
of homogeneity:

L(X,Y) =
J∑

j=1
‖X−GjYj‖2 (2)

The HOMALS solution minimizes criterion (2):

(X,Y) = arg min
X,Y

L(X,Y)

with the constraint that xs has norm equal to 1 and is orthogonal to x′s for all s′ < s.
Contrary to MCA which is solved by SVD, homogeneity analysis uses an alternating least-
squares algorithm where at step ` there are three substeps (at iteration ` = 0, arbitrary rows
scores X0 is used):

1. Y`
j = (G>jGj)−1G>j X; it corresponds to the centroid of row quantifications.

2. Z` = 1
J

∑
j GjY`

j ; it corresponds to the centroid of category quantifications.

3. X` is defined as the orthonormalized version of Z`.

The homogeneity analysis framework makes it easy to add constraints. It is common, for
instance, to impose a rank constraint on the Yj ; often rank 1 is chosen. It can be done
simply by adding after step (1) in the algorithm a step where Y`

c is defined as the best rank 1
approximation to Y`. De Leeuw and Mair (2009) highlighted the fact that such a constraint
may make the interpretation easier since it leads to a more parsimonious representation. In
addition, such a constraint can be a way to avoid horseshoe effects if such effects are not
desirable. In addition to a rank constraint, a level constraint can be imposed to reflect the
data type, i.e., ordinal or numerical variables. The idea is to respect the nature of the variables
by preserving the original order of the categories, for instance. Thus, the categories of an
ordinal variable will be ordered as well on the low-dimensional graphical representation.
Note also that the HOMALS frameworks allows definition of variable transformations with
other restrictions on the quantification matrix YJ , which gives new methods such as non
linear version of PCA (De Leeuw 2014).
We should mention that Jan was aware of the work of Benzécri and was influenced by Van
De Geer’s books on multivariate analysis from a graphical perspective. So he gave an extra
perspective by including the optimization framework and this point of view was favored by
the Dutch school.

2.3. Connection between HOMALS and MCA

Both HOMALS and MCA are dedicated to the analysis of categorical data and represent the
data in a lower dimensional space with row coordinates X and category coordinates Y. The
connection between both criteria (1) and (2) is straightforward by plugging-in the centroid
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of the X points assigned to each level of variable j, Yj = (G>j Gj)−1G>j X back into the
objective function (2) for a dimension s as follows:

arg min
‖xs‖=1

L(X,Y) = arg max
‖xs‖=1

1
J

J∑
j=1

X>Gj(G>j Gj)−1G>j X = arg max
‖xs‖=1

1
J

J∑
j=1

η2(Xs,vj)

Thus, MCA and HOMALS (in its simplest form without constraints) lead to exactly the same
graphical representations and analysis.
However, due to the difference of starting points, we feel that the algorithms as applied in
practice are more different than they initially appear. The strongest point of the Gifi methods
is their use of advanced optimization techniques and Jan is a pioneer in this domain; one can
mention his works on majorization algorithms known as majorization by minorization (MM)
algorithms (De Leeuw and Heiser 1977), for instance. On the other hand, the extensive use
of SVD has led to the developments in the matrix completion framework as illustrated in
Section 2.4. Once again, this highlights the very modern aspects of these schools since both
optimization techniques and the SVD have gained huge popularity in the past decade due to
their ability to address problems involving high dimensional data.
In the next section, we discuss missing values. HOMALS and MCA approach missing values
differently, which can be explained by the differing formulation of the methods.

2.4. Handling missing values in HOMALS and MCA

A first possibility to manage missing values consists of adding an additional column to the
indicator matrix for each variable with missing data. In this case, missing values for a variable
are considered as a new category and not as one of the observed categories. Then, classical
HOMALS or MCA can be applied on this new complete data set. Note that this strategy
makes sense for missing not at random data (MNAR) (Little and Rubin 1987, 2002), for
instance, or to inspect the missing data pattern (Josse, Chavent, Liquet, and Husson 2012).
Other ways are available and they differ in HOMALS and MCA with respect to their strategy
and their results.

Missing values in HOMALS

In HOMALS, missing observations are simply coded as zero rows in the matrix G; if object
i is missing on variable j, then row sum i of Gj is 0, otherwise row sum becomes 1 since the
category entries are disjunctive. Then, whatever the coding, all row sums of Gj are collected
in a diagonal matrix Mj and the criterion L(X,Y) is written by introducing these matrices
(Mj)j=1,...,J :

arg min
X,Y

L(X,Y) = 1
J

J∑
j=1

tr(X−GjYj)>Mj(X −GjYj).

We note that this approach seems a very natural way to “skip” the missing values in the
optimization problem. This strategy is also known as missing passive (Meulman 1982) and
has been extended in the framework of MCA by Escofier (1987) with missing passive modified
margin. Van der Heijden and Escofier (2003) and Josse et al. (2012) discuss the advantages
and drawbacks of both approaches.
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Missing values in MCA

Since MCA can be presented as a particular PCA with some metrics, the approach used to
handle missing values in PCA has been extended to MCA by Josse et al. (2012). In PCA, for
a data matrix Z, it consists of ignoring the missing values by minimizing the reconstruction
error over all non-missing elements. This is done by introducing a weighted matrix W (with
wij = 0 if zij is missing and wij = 1 otherwise) in the PCA least squares criterion:

C = ‖W ∗ (Z−XA>)‖2,

with ∗ the Hadamard product. This criterion can be minimized either using the alternating
weighted least squares algorithm or iterative PCA (Kiers 1997; Josse, Pagès, and Husson
2009). This latter consists of randomly imputing the missing entries, performing PCA on the
completed matrix and then using the principal components and loadings to impute missing
values. The steps of estimation and imputation are repeated until convergence. From this
iterative PCA algorithm, an algorithm called “iterative MCA” has been derived in Josse et al.
(2012) and it takes into account the features of MCA such as updates for the column margins.

Comparison between both strategies

Both approaches aim at skipping missing values by introducing a weighted matrix in the
criterion. However, both approaches lead to very different results as discussed in Josse et al.
(2012). As mentioned in Section 2.3, the criterion and the choice of an algorithm have an
impact on the properties highlighted or sometimes worse, overlooked. For instance iterative
MCA can be seen as a matrix completion method which can be interesting in itself (Audigier,
Husson, and Josse 2016). Of course, imputation is also possible with HOMALS, although it
is less natural since it does not show up in the algorithm.
What can be noted is that the strategy missing passive used in HOMALS was proposed in
Benzécri (1973, p.327) but it has been criticized by the French (Van der Heijden and Escofier
2003; Josse et al. 2012) due to the fact that many MCA properties are lost. On the contrary, in
iterative MCA, the strategy to handle missing values is based on a criterion that is minimized
with an iterative algorithm, which is more in the spirit of the Dutch school.

2.5. Example: Survey on the perception of genetically modified organisms

To illustrate the methods, we use an example of a survey describing genetically modified
organisms (GMOs). These data are described in Husson, Josse, Le, and Mazet (2011) and
are available at Husson, Josse, Lê, and Mazet (2009). The questionnaire contains 16 questions
directly linked to the participants’ opinion of GMOs. For instance “Do you feel implicated
in the debate about GMOs (a lot, to a certain extent, a little, not at all)?”; “What is your
view of GMO cultivation in France (very favourable, favourable, somewhat against, totally
opposed)?” and so on. The questionnaire also contains five socio-demographic variables:
sex, professional status (farmer, student, manual labourer, senior management, civil servant,
accredited professional, technician, retailer, other profession, unemployed, retired), age (–25
years, 25–40 years, 40–60 years, +60 years), “Is your profession or education in any way
linked to agriculture, the food industry or the pharmaceutical industry (Yes/No)?”, “Which
political movement do you most adhere to (extreme left, green, left, liberal, right, extreme
right)?”. The aim of the data analysis is first to characterise the respondents in terms of their
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Figure 1: HOMALS and MCA representation for the active categories

relationship with GMOs; and on the other hand, to see if this characterisation has any relation
with the sociodemographic variables. Consequently, these latter variables are considered as
supplementary variables. It means that they are not used to build the scores, but only
projected afterward onto the graphical representations that have been obtained. They are
used to enhance the interpretation. Note that introducing supplementary variables is possible
in both approaches, even though, historically, such variables are most used in the French school
due to the prominence of the graphical outputs. In the Dutch school, supplementary points
are refered to as passive variables. HOMALS and MCA are implemented in the R packages
homals (De Leeuw and Mair 2009) and FactoMineR (Lê, Josse, and Husson 2008).
Figure 1 gives the graph obtained by HOMALS and MCA for the active categories (the two
graphs are the same). On the negative side, represented by the first principal component, we
can observe those people who feel implicated by the debate surrounding GMOs and who are
somewhat against their use (through the categories they chose). On the positive side, we can
see those people who do not feel implicated by the debate surrounding GMOs and who are in
favour of their use. Along the second principal component, we can also observe those people
with less distinct opinions who feel somewhat implicated by the debate surrounding GMOs
and who are somewhat against their use. More interpretation is given in Husson et al. (2010).
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The representation of supplementary variables in Figure 2 reveals a strong structure for both
of the variables profession and identification with a political movement, and second, it fails
to identify any particular structure with the variables of age, sex, or profession in relation
to agriculture, the food industry, and the pharmaceutical industry. The categories senior
management, unemployed, and retired are in opposition to the categories technician and
manual labourer to civil servant between the two groups. Similarly, the category right is
opposed to the categories green and extreme left, to, in the middle, left.
Since in the questionnaire, some variables are naturally ordered, we can use HOMALS with
the rank 1 constraint (Figure 3) and with the constraint that the categories are ordered
(Figure 4). As expected, the categories of the ordinal variables are on a straight line and the
order is preserved.
Note also that some attempts have been made in MCA to add constraints; see Benzécri (1973,
p. 261–287) and Beh and Lombardo (2014, Chapter 6). However, the inclusion of constraints
is less straightforward than in HOMALS and they are consequently not as used by the French
school. The lack of use of constraints can also be explained by the fact that they have never
been implemented. Software is an incredibly powerful tool to popularize methods, and the
implementation and availability of methods in software may explain why some practices (even
when flawed) are still in use.

3. Influence of Jan de Leeuw’s work on French works

3.1. Influence on the early works

Jan de Leeuw was well aware of French works in data analysis and especially in correspon-
dence analysis. In his 1973 thesis (De Leeuw 1973), there are several references to Jean-Paul
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Benzécri, Henri Caussinus, and above all to the dissertation of Brigitte Escofier-Cordier en-
titled “l’analyse des correspondances” (Cordier 1965). In turn the influence of Jan de Leeuw
was felt as early as the late 70s in two areas. The main media were the Revue de Statis-
tique Appliquée (Revue de Statistique Appliquée) and Statistique et Analyse des Données
(Statistique et Analyse des Données).
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The two areas in which the influence of De Leeuw was felt were:

• Optimal scaling where categorical variables, either ordinal or nominal are optimally
transformed into discrete numerical variables enabling the use of methods like regres-
sion, PCA and discriminant analysis. De Leeuw’s dissertation was rapidly known in
France and was referred to in Bouroche, Saporta, and Tenenhaus (1975), Saporta (1975),
Tenenhaus (1977). The series of papers by Young, Takane, De Leeuw in Psychometrika
were very influential: see e.g., Dupont-Gatelmand (1979). Nonlinear PCA, which is inti-
mately connected to optimal scaling (De Leeuw 1988; Gifi 1990), inspired many French
works more or less directly till the end of the 90s; see for instance Ferraty (1997).

• Analysis of ordinal data. This area includes multidimensional scaling, preferences anal-
ysis and multicriteria choice. The preprint of Takane, Young, and De Leeuw (1977)
inspired Drouet d’Aubigny (1976) and independently Lemaire (1977) in multivariate
data analysis. Jacquet-Lagreze (1977), Siskos (1980), Jacquet-Lagreze and Siskos (1982)
developed the multicriteria decision method. Recently one may notice Bennani-Dosse
(1995) who gave a generalization of SMACOF, using the majorization algorithm, and
Husson and Pagès (2006) with contributions to multidimensional scaling.

HOMALS, often presented in France as a Dutch version of multiple correspondence analysis
(Desbois 2008), has not been really used in the social sciences, despite having some interesting
features (see the previous sections). This is certainly due to the wide diffusion of software
packages made in France like SPAD (Coheris 2016), XLSTAT (Addinsoft 2016), FactoMineR
and to the leading position of SAS (with proc corresp, SAS Institute Inc. 2011) over IBM
SPSS (IBM Corporation 2016). Jan de Leeuw was invited several times to France, especially
by statisticians from Toulouse in the 80s, and to the conferences “Data Analysis and Infor-
matics” organised by Edwin Diday. Despite the undeniable influence of Jan de Leeuw on the
work of French statisticians, one can find among the numerous collaborations of Jan de Leeuw
only a single publication with a French co-author: Antoine de Falguerolles (Van Der Heijden,
De Falguerolles, and De Leeuw 1989).

3.2. Contribution of optimization methods in recent work

Jan de Leeuw has been a forerunner in developing and using optimisation techniques (see for
instance De Leeuw 2016). The block-relaxation algorithms (De Leeuw 1994) or, in more mod-
ern words, block coordinate descent, together with majorization by minorization (De Leeuw
and Heiser 1977), are used for instance in the regularized generalized canonical correlation
analysis (RGCCA) method (Tenenhaus and Tenenhaus 2011) for multi-block data analysis,
which concerns the analysis of several sets of variables (blocks) observed on the same group
of individuals. The main aims of RGCCA are: (i) to study the relationships between blocks
and (ii) to identify subsets of variables of each block which are active in their relationships
with the other blocks. RGCCA is based on a monotonically convergent iterative algorithm
and has the distinct advantage of being formulated as an explicit optimization problem.
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Appendix4

My first, half-missed, encounter with Jan was in April 1976 on the occasion of a symposium
on Optimal Scaling during the spring meeting of the Psychometric Society. It was my first
trip to the US and, suffering from jet-lag, I collapsed early in my bed. That’s when I got
a phone call from Jan offering to get acquainted. I stammered a few words and then I fell
asleep again. We finally met the next day.
There is an unfortunate typo in the title of my talk: it was about “nominal”, and not about
“normal”, variables.
The European Meeting of Statisticians, organised from 6 to 11 September 1976 in Grenoble
(France) under the auspices of the European Regional Committee of the Bernoulli Society,
gave us the opportunity to form a better relationship. I especially remember a lunch organised
by Gérard Drouet d’Aubigny in Sassenage, a village nearby Grenoble: Jan van Rijckevorsel,
Jean-Marie Bouroche, Michel Tenenhaus, and a few others were there. On the menu there
was a very French, and not very vegetarian special sausage: the “andouillette”, but I do not
remember if Jan de Leeuw tasted it! In the proceedings of the Grenoble meeting, one can find
a paper by Jan (De Leeuw 1977) as well as the one by the French trio (Bouroche, Saporta,
and Tenenhaus 1977), which referred to Jan’s communication at the Spring Meeting of the
Psychometric Society a few months before.
We had many opportunities to see each other afterwards in various meetings as well as at
Ph.D. defenses in the Netherlands. I have a particular remembrance of the International
Conference on Advances in Multivariate Statistical Analysis held in Calcutta in December
1985 at the Indian Statistical Institute in P.C. Mahalanobis’ domain: Jan told me one day

4Written by Gilbert Saporta.

Figure 5: Program of the annual spring meeting of the Psychometric Society (Psychometrika
1976).
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Figure 6: Lunch time, Indian Statistical Institute, Calcutta, December 1985. C. R. Rao
sitting at left.

that it was his 40th birthday. Jan’s paper De Leeuw (1988) cites J. P. Benzécri three times,
and the book by Lebart, Morineau, and Warwick (1984), while my paper Saporta (1988b)
cites Jan’s works three times.
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