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Introduction

This work is concerned with homogenization techniques for correlating the macroscopic viscoplastic response of polycrystalline solids with the flow rules governing microscopic viscoplastic slip. We consider polycrystals consisting of a random aggregate of perfectly bonded single crystals (i.e., grains) of a similar size, much smaller than the specimen size and the scale of variation of the applied loads, distributed in a statistically uniform and ergodic fashion. In the current configuration of the aggregate at a generic stage of deformation, the grain orientations are assumed to take on a set of N discrete values, characterized by rotation tensors Q (r) (r = 1, ..., N ). All grains with a given orientation Q (r) occupy a possibly disconnected domain and are collectively referred to as 'phase' r. For definiteness, we focus on material systems made up of single crystals deforming along K slip systems according to microscopic flow rules of the form

D = ∂u ∂σ (x, σ) with u(x, σ) = N r=1 χ (r) (x)u (r) (σ), u (r) (σ) = K k=1 ψ (r) (k) σ • µ (r) (k) , (1) 
where D and σ are the Eulerian strain rate and Cauchy stress tensors, χ (r) are the characteristic functions of each phase r, ψ

(k) are convex viscoplastic slip potentials, and µ

(k) are the Schmidt tensors indicating slip directions. The macroscopic homogenized response of the polycrystal is then given by (e.g., [START_REF] Liu | Second-order theory for the effective behavior and field fluctuations in viscoplastic polycrystals[END_REF])

D = ∂ u ∂σ (σ) with u(σ) = min σ∈S(σ) u(x, σ) = min σ∈S(σ) N r=1 c (r) u (r) (σ) (r) , (2) 
where D = D and σ = σ , • and • (r) denote volume averages over the aggregate and over phase r, respectively, c (r) is the volume fraction of phase r, and S(σ) is the set of statically admissible stress fields with average σ. Amongst the various quasi-analytical techniques available to estimate the macroscopic potential u in terms of the microscopic properties, the so-called 'generalized-secant technique' proposed by Liu & Ponte Castañeda [START_REF] Liu | Second-order theory for the effective behavior and field fluctuations in viscoplastic polycrystals[END_REF] seems to deliver the most accurate estimates to date -see, for instance, refs. [START_REF] Lebensohn | Dilatational viscoplasticity of polycrystalline solids with intergranular cavities[END_REF][START_REF] Liu | Homogenization estimates for the average behavior and field fluctuations in cubic and hexagonal viscoplastic polycrystals[END_REF][START_REF] Liu | Variational self-consistent estimates for texture evolution in viscoplastic polycrystals[END_REF]. This technique is based on the concept of 'linear-comparison medium' whereby the variational problem (2) 2 is rewritten in terms of linearized microscopic slip potentials so that linear homogenization techniques, such as the well-known Self-Consistent technique [START_REF] Willis | Variational and related methods for the overall properties of composites[END_REF], can be used to approximate the nonlinear macroscopic potential. The resulting estimates are computationally inexpensive relative to full-field simulations, but they still require the numerical resolution of a large set of nonlinear algebraic equations. This fact can become an issue when simulating mechanical processess where deformations are imposed, which require inversion of the above constitutive description in order to express stresses in terms of strain rates; this can be particularly crucial in problems where the material exhibits softening.

The purpose of this work is to derive generalized-secant estimates for the inverted stress-strain-rate relation by applying the strategy of Liu & Ponte Castañeda [START_REF] Liu | Second-order theory for the effective behavior and field fluctuations in viscoplastic polycrystals[END_REF] directly to the dual problem of (2). This problem was not tackled in ref. [START_REF] Liu | Second-order theory for the effective behavior and field fluctuations in viscoplastic polycrystals[END_REF] because the dual potential of u (r) does not exhibit the additive form (1) 2 on which the linearization strategy hinges. However, well-known results of convex analysis (e.g., [START_REF] Van Tiel | Convex Analysis[END_REF]) do permit to write the inverted microscopic flow rule as

σ = ∂w ∂D (x, D) with w(x, D) = N r=1 χ (r) (x)w (r) (D), w (r) (D) = min γ (r) (k) ∈Γ (r) (D) K k=1 φ (r) (k) γ (r) (k) ,( 3 
)
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where

φ (r) (k) (γ) = sup τ τ γ -ψ (r) (k) (τ ) (4) 
is the Legendre transform of the slip potentials ψ (r) (k) and

Γ (r) (D) = γ (r) (k) (k = 1, ...K) such that K k=1 γ (r) (k) µ (r) (k) = D , (5) 
and to invert the macroscopic constitutive relation [START_REF] Idiart | Macroscopic behavior and field statistics in viscoplastic composites[END_REF] to

σ = ∂ w ∂D (D) with w(D) = min D∈K(D) w(x, D) = min D∈K(D) N r=1 c (r) w (r) (D) (r) , (6) 
where K(D) is the set of kinematically admissible strain-rate fields with average D. Thus, the form (3) 2 for the dual potential w (r) exhibits an additive form analogous to that of u (r) , except for an additional minimum operation. This fact is exploited next to derive generalized-secant estimates for the potential w.

The accuracy of the resulting estimates is then preliminarily assessed in the context of a model material system.

2. A strain-rate formulation of the generalized-secant scheme

An estimate for the effective potential

Following the strategy of Liu & Ponte Castañeda [START_REF] Liu | Second-order theory for the effective behavior and field fluctuations in viscoplastic polycrystals[END_REF], we begin by expressing the slip potentials φ

(r) (k) in the alternative form φ (r) (k) (γ) = stat α (r) (k) ≥0 φ(r) (k) γ; α (r) (k) + v (r) (k) α (r) (k) , (7) 
where the functions φ(r) (k) denote comparison slip potentials given by φ(r)

(k) γ; α (r) (k) = φ (r) (k) γ(r) (k) + φ (r) ′ (k) γ(r) (k) γ - γ(r) (k) + 1 2 α (r) (k) γ - γ(r) (k) 2 , (8) 
and

v (r) (k) α (r) (k) = stat γ(r) (k) φ (r) (k) (γ (r) (k) ) - φ(r) (k) γ(r) (k) ; α (r) (k) . (9) 
In these expressions, α

(k) and γ(r) (k) represent uniform-per-phase slip viscosities and reference slip rates, respectively, the stat denotes a stationary operation, and the prime denotes differentiation. Expression ( 7) is valid provided the correct stationary point is chosen in v (r) (k) . The reader is referred to [START_REF] Liu | Second-order theory for the effective behavior and field fluctuations in viscoplastic polycrystals[END_REF] for details on the derivation of analogous expressions in terms of the stress potentials ψ

(r) (k) .
Introducing the representation [START_REF] Liu | Second-order theory for the effective behavior and field fluctuations in viscoplastic polycrystals[END_REF] for the slip potentials in expression (3) we obtain the alternative representation for the phase potentials

w (r) (D) = stat α (r) (k) ≥0 ẘ(r) D; α (r) (k) + K k=1 v (r) (k) α (r) (k) , (10) 
where the functions ẘ(r) are comparison phase potentials given by ẘ

(r) D; α (r) (k) = min γ (r) (k) ∈Γ (r) (D) K k=1 φ(r) (k) γ (r) (k) . (11) 
In deriving [START_REF] Van Tiel | Convex Analysis[END_REF] we have commuted the stationary and the minimum operations based on the same arguments of ref. [START_REF] Liu | Second-order theory for the effective behavior and field fluctuations in viscoplastic polycrystals[END_REF]. Introducing expression [START_REF] Van Tiel | Convex Analysis[END_REF] in ( 6) and commuting, once again, the stationary and minimum operations gives the approximate stationary estimate

w(D) = stat α (r) (k) ≥0 ˚ w(D; α (r) (k) ) + N r=1 K k=1 c (r) v (r) (k) α (r) (k) , (12) 
where ˚ w(D; α

(r) (k)
) is the effective potential of a comparison polycrystalline solid with the same microstructure as the original solid but with slip potentials φ(r) (k) as given by ( 8). Thus, this expression provides a nonlinear estimate given any linear homogenization estimate for the comparison potential ˚ w.

The comparison polycrystal

The potential (8) can be written in the alternative form

φ(r) (k) γ; α (r) (k) = 1 2 α (r) (k) γ 2 + e (r) (k) γ + f (r) (k) , (13) where e (r) 
(k) = φ (r) ′ (k) γ(r) (k) -α (r) (k) γ(r) (k) and f (r) 
(k) = φ (r) (k) γ(r) (k) -φ (r) ′ (k) γ(r) (k) γ(r) (k) + 1 2 α (r) (k) γ(r) 2 (k) . (14) 
Performing the minimization in [START_REF] Willis | Variational and related methods for the overall properties of composites[END_REF] we obtain

ẘ(r) D; α (r) (k) = 1 2 D • L (r) D + τ (r) • D + f (r) , (15) 
where

L (r) = K k=1 (α (r) (k) ) -1 µ (r) (k) ⊗ µ (r) (k) -1 , (16) 
τ (r) = L (r) K k=1 (α (r) (k) ) -1 e (r) (k) µ (r) (k) , (17) 
f (r) = 1 2 τ (r) • (L (r) ) -1 τ (r) + K k=1 f (r) (k) - 1 2 (α (r) 
(k) ) -1 (e (r) (k) ) 2 . ( 18 
)
Thus, the effective potential ˚ w can be written as

˚ w(D; α (r) (k) ) = ˚ w(D; α (r) (k) , e (r) 
(k) , f (r) (k) ) = 1 2 D • LD + τ • D + f (19)
where L, τ and f are the effective properties of the linear comparison polycrystal. Their expressions in terms of the local properties L (r) , τ (r) and f (r) will depend on the linear homogenization scheme employed.

The stationarity conditions

The stationarity conditions in ( 9) and ( 12) lead to a system of nonlinear equations for the set of variables α (r) (k) and γ(r) (k) given by

φ (r) ′ (k) (γ (r) (k) ) -φ (r) ′ (k) (γ (r) (k) ) = α (r) (k) (γ (r) (k) - γ(r) (k) ), (20) (γ (r) 
(k) - γ(r) (k) ) 2 = 2 c (r) ∂ ˚ w ∂α (r) (k) (D; α (r) (k) ) ≡ (γ (r) (k) - γ(r) (k) ) 2 (r) , (21) 
with k = 1, ..., K and r = 1, ..., N . The first set of equations (20) states that the optimal slip viscosities α

(k) are given by generalized secant linearizations of the nonlinear functions φ (r) ′ (k) passing through the points γ(r) (k) and γ(r) (k) , while the second set of equations states that the optimal γ(r) (k) are related to the intraphase fluctuations of the slip rates γ (r) (k) about γ(r) (k) in the linear comparison polycrystal. The last identity follows from well-known results for field statistics in heterogeneous media (e.g., [START_REF] Idiart | Field statistics in nonlinear composites[END_REF]). We refer to [START_REF] Liu | Second-order theory for the effective behavior and field fluctuations in viscoplastic polycrystals[END_REF] for further discussions on these type of conditions.

The reference slip rates

The estimate (12) is valid for any choice of reference strain rates γ(r) (k) . Thus far, no stationarity condition has been found for these parameters, and only physically motivated prescriptions are considered.

The simplest choice is

γ(r) (k) = 0. (22) 
In this case, the linearization (20) becomes a secant condition through the γ(r) (k) , and the estimate (12) can be shown to reduce to the dual version of the secant estimate of deBotton & Ponte Castañeda [START_REF] Debotton | Variational estimates for the creep behavior of polycrystals[END_REF]. These estimates are only exact to first order in the heterogeneity contrast.

Another possible choice is to identify the reference slip rates with the corresponding phase averages of the slip rates in the linear comparison polycrystal:

γ(r) (k) = γ (r) (k) (r) ≡ γ (r) (k) , (23) 
which can be computed from ˚ w making use of the identity (e.g., [START_REF] Idiart | Field statistics in nonlinear composites[END_REF])

γ (r) (k) = 1 c (r) ∂ ˚ w ∂e (r) (k) (D; α (r) (k) , e (r) (k) , f (r) (k) ). ( 24 
)
This is analogous to the choice employed by Liu & Ponte Castañeda [START_REF] Liu | Second-order theory for the effective behavior and field fluctuations in viscoplastic polycrystals[END_REF] in their stress formulation, and can be shown to deliver estimates that are exact to second order in the contrast. Despite the analogy, it can be shown that there is a duality gap between the resulting estimate (12) and its stress formulation, in general. However, the results provided below show that this gap is very small and can even vanish in some limiting cases. With the choice (24), expressions (20), ( 21) and (24) constitute a system of 3N × K nonlinear algebraic equations for the variables α (r) (k) , γ(r) (k) and γ (r) (k) , which must be solved numerically, in general.

Other prescriptions are certainly possible but will not be considered here for brevity. 

Alternative form of the estimate

Making use of the stationarity conditions (20) and ( 21), it can be shown that the estimate (6) admits the alternative form

w(D) = N r=1 K k=1 c (r) φ (r) (k) (γ (r) (k) ) -φ (r) ′ (k) (γ (r) (k) ) γ(r) (k) -γ (r) (k) , (25) 
which proves more convenient for computational purposes.

Sample results for a model crystalline solid with second-phase inclusions

Problem setting and formulae

By way of example we consider a special class of two-phase crystalline solids with 'particulate' microstructures, consisting of aligned cylindrical inclusions (r = 2) that are distributed randomly and isotropically in a viscoplastic monocrystalline matrix phase (r = 1). It is assumed that the cylindrical inclusions are aligned with the e 3 direction, and that the crystalline matrix deforms along slip systems with Schmid tensors

µ (k) = 1 2 (n (k) ⊗ e 3 + e 3 ⊗ n (k) ) with n (k) = cos θ (k) e 1 + sin θ (k) e 2 , (26) 
where {e 1 , e 2 , e 3 } forms an orthonormal basis. The slip potentials are taken to be of the power-law form

ψ (k) (τ ) = γ0 τ 0 1 + n τ τ 0 1+n ⇒ φ (k) (γ) = γ0 τ 0 1 + m γ γ0 1+m , (27) 
where τ 0 and γ0 denote the flow stress and the reference strain rate of the slip system, n is a nonlinearity exponent, and m = 1/n is the strain-rate sensitivity such that 0 ≤ m ≤ 1. The limiting values m = 1 and m = 0 correspond to a linearly viscous and a rigid-perfectly plastic behavior, respectively. For simplicity, we assume that all slip systems have the same constitutive constants n, τ 0 and γ0 . The two-phase crystal is subjected to anti-plane loadings so that the relevant viscoplastic boundary value problem becomes a vectorial, two-dimensional problem, where the non-zero components of the stress and strain-rate vectors, namely, σ 13 , σ 23 , D 13 and D 23 , are functions of x 1 and x 2 only.

In order to assess the sensitivity of the predictions on material anisotropy, we consider three different matrix materials with sets of angles θ (k) given by {0, π/2}, {0, ±π/3}, and {0, ±π/4, π/2}, which correspond to square (K = 2), hexagonal (K = 3), and octagonal (K = 4) symmetry, respectively. In the linear case, the anti-plane response of the matrix is actually isotropic for the three families of slip systems. In the nonlinear case, however, the response is anisotropic, such that in the ideally plastic limit it defines a polygonal yield surface in the σ 13 -σ 23 stress space, as shown in figure 1. Note that as the number of slip systems K increases, the potential approaches an isotropic yield surface with flow stress τ 0 .

For brevity, we restrict attention to material systems with either voided or rigid inclusions, which correspond to the cases of extreme heterogeneity contrast and, as such, are particularly relevant for testing the capabilities of the new scheme. In these cases, the macroscopic potential w can be shown to be of the form

w(D) = τ 0 (θ) γ0 1 + m D e γ0 1+m , (28) 
where D e = (D

2 13 + D 2 23
) 1/2 and θ = tan -1 (D 23 /D 13 ) are the macroscopic strain rate magnitude and direction, respectively. Thus, the macroscopic response can be completely characterized by the effective flow stress τ 0 (θ) only. The generalized-secant estimate (25) for w with the prescription (23) leads to the estimate

τ 0 τ 0 (θ) = (1 -c) K k=1      γ (1) 
(k) D e   1+m -(1 + m)   γ (1) (k) 
D e   m   γ (1) 
(k) D e - γ (1) (k) 
D e      (29) 
for the effective flow stress of the material systems under consideration, where c denotes the volume fraction of inclusions. For the case of macroscopic loadings along the direction of a slip system (i.e., θ = θ (k) ) and the effective potential of the linear comparison medium computed by means of the Hashin-Shtrikman estimates of Willis [START_REF] Willis | Variational and related methods for the overall properties of composites[END_REF], the system of equations for the quantities γ(1) (k) /D e and γ

(k) /D e can be written as γ(1) where

(k) D e = γ ( 
λ -1 = K k=1 cos 2 θ (k) α (k) , λ -1 ⊥ = K k=1 sin 2 θ (k) α (k) , a = λ λ ⊥ , η = K k=1   1 α (k)   γ (1) (k) D e   m - γ (1) (k) D e   cos θ (k) , (31) 
α (k) = γ(1) (k) /D e m -γ (1) 
(k) /D e m γ(1) (k) /D e -γ (1) 
(k) /D e , (32) 
and the coefficients A and B depend on the inclusion type. For the case of voided crystals:

A = 1 + η 1 + c √ a 2 and B = 1 + η 1 + c √ a ; ( 33 
)
while for the case of rigidly reinforced crystals:

A = a -1 (1 -c) 2 and B = 1 (1 -c) + η. (34) 

Results and discussion

Figure 2 shows plots for the effective flow stress of voided and rigidly reinforced crystals loaded along the direction of a slip system, as a function of the strain-rate sensitivity m, for the choice c = 0.25. The new generalized-secant estimates (GSEC-γ) of the Hashin-Shtrikman type are compared with the elementary bounds of Taylor and Reuss, the corresponding secant estimates (SEC) of deBotton & Ponte Castañeda [START_REF] Debotton | Variational estimates for the creep behavior of polycrystals[END_REF], and the stress-based generalized-secant estimates (GSEC-τ ) of Liu & Ponte Castañeda [START_REF] Liu | Second-order theory for the effective behavior and field fluctuations in viscoplastic polycrystals[END_REF]. Analytical expressions for various estimates applied to this model problem can be found in refs. [START_REF] Idiart | Macroscopic behavior and field statistics in viscoplastic composites[END_REF][START_REF] Idiart | Variational linear comparison bounds for nonlinear composites with anisotropic phases. II. Crystalline materials[END_REF]. In addition, exact results are given for material systems with the infinite-rank, transversely isotropic, sequentially laminated microgeometries (LAM) of Idiart [START_REF] Idiart | Modeling the macroscopic behavior of two-phase nonlinear composites by infinite-rank laminates[END_REF], with matrix behavior given by ( 26)-( 27). It is recalled that the secant estimates provide rigorous upper bounds for all the other estimates considered. It is also recalled that the sequentially laminated microgeometries attain the linear Hashin-Shtrikman estimates, so that any difference between the LAM results and the linear-comparison estimates of the Hashin-Shtrikman type are solely due to the linearization procedure. We emphasize that the GSEC-τ and GSEC-γ are different estimates which can be independently used to estimate material behavior under arbitrary loading conditions.

The main observation in the context of this figure is that the new GSEC-γ estimates give very similar predictions to the dual GSEC-τ estimates for all cases considered; that is, the duality gap is small. Moreover, this duality gap vanishes not only in the linear case (m = 1) but also in the strongly nonlinear limit of ideal plasticity (m = 0). For intermediate values of m, the duality gap is virtually zero except for some range around m = 0.1 in the case of voided crystals. Within that range, the GSEC-γ are found to be less accurate than their GSEC-τ counterparts relative to the exact LAM results. Note that this range seems to widen with increasing number of slip systems.

However, in view of the fact that the material systems considered here exhibit extreme heterogeneity contrasts, it is expected that differences between the GSEC-γ and GSEC-τ estimates will be smaller in the context of fully dense polycrystals with realistic microstructures, even for relatively high crystal anisotropies. Moreover, it is expected that the additional inaccuracies incurred by the use of GSEC-γ estimates in lieu of GSEC-τ estimates, if any, will be entirely compensated by the concomitant computational simplifications for modeling mechanical processes under imposed deformations. Efforts to evaluate this compromise are currently under way and will be reported upon completion. 
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 1 Figure 1. Yield surfaces for square (K = 2), hexagonal (K = 3) and octagonal (K = 4) symmetries.

2 sin 2 θk = 1 ,

 221 (k) + a cos 2 θ (k) ..., K,(30)

Figure 2 .

 2 Figure 2. Effective flow stress τ 0 , normalized by the slip flow stress τ 0 , for a two-phase monocrystal with K slip systems: (a-c) voided inclusion, (d-f) rigid inclusions. The volume fraction of inclusions is c = 0.25.
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