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ABSTRACT

Pneumatic muscles have a high potential in industrial use,

as they provide safety, high power over volume ratio, low price

and wide range of pulling effort. Nevertheless, their control is

quite hard to achieve due to the non linearity and hysteresis phe-

nomena, plus the uncertainties in their behavior. This paper

presents the modeling of a two degree of freedom platform ac-

tuated by three pneumatic muscles for control purposes. Three

servovalves are used to supply airflow inside the muscles. The

innovative concept is the modeling of each component including

the static and dynamic muscle behavior. The model of the servo-

valve consists of a look-up table gathering the three variables:

airflow, pressure and voltage applied to the servovalve. In ad-

dition, a thermodynamic and a mechanical study of the system

complete the model. The result is a complete model design hav-

ing as input the voltage applied to the three servovalves, and as

outputs, the two angles of rotation. Simulated and experimental

results permit to validate the complete model for high variation

in static and dynamic conditions. These results will be helpful

for nonlinear control synthesis.

NOMENCLATURE

θ0 Weave angle of the muscle at rest

D0 Diameter of the muscle at rest

l0 Length of the muscle at rest

ε0 Initial contraction of the muscle

α Experimentally determined power coefficient

A Experimentally determined coefficient

B1 Experimentally determined coefficient

B2 Experimentally determined coefficient

k Polytropic index of air (1.4)

r Specific gas constant

T Air temperature

R Distance separating the center of the platform and the mus-

cle application point

J Platform moment of inertia about an horizontal axis

φ1 Angular position of the first muscle

φ2 Angular position of the second muscle

φ3 Angular position of the third muscle

θx Angular position of the platform about x axis

θy Angular position of the platform about y axis

P Absolute pressure inside the muscle

Pg Gauge pressure inside the muscle

u Voltage applied to the servovalve

V Volume of the muscle

q Air flow

ε Contraction of the muscle

F Tension of the muscle

Γ f Friction torque due to the contact in the spherical joint
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FIGURE 1. MUSCLE CHARACTERISTICS BY FESTO

INTRODUCTION

Pneumatic muscles have been widely studied for many en-

gineering and robotic applications, due to their high power over

volume ratio, low price and high pulling efforts they can pro-

duce [4]. The difficulty of dealing with a pneumatic muscle

arises from the non-linearity in its behavior (see Fig. 1) as well

as from the hysteresis phenomena encountered in it. The effort

produced by the muscle depends on both pressure and length

contraction and has a high non linear evolution. Many theoret-

ical models of the pneumatic muscle can be found in the litera-

ture [4–6]. However, the model we adopt is a result of experi-

mental tests [1] that took the hysteresis phenomena into account

and presented a more accurate behavior. In this article, we make

the complete modeling of a platform based on three pneumatic

muscles (see Fig. 3). Our objective is the synthesis of a model

based control law that will allow us to achieve a trajectory track-

ing of the system in a wide operating range of the muscle. The

platform is restrained to move in a certain operating domain due

to physical constraints and to the fact that the muscles generate

only pulling efforts. Furthermore, the system requires a control

allocation strategy to solve the over-actuation. The latter results

from having three control inputs and only two outputs.

A sliding mode controller combined with adaptive fuzzy

CMAC was proposed in [2] for a parallel platform based on

pneumatic muscles. The innovative control approach we take

into consideration is the inverse model of the system and the res-

olution of the over-actuation of this platform.

The paper is structured as follows: first, we present the

model of each component, starting with the kinematic and dy-

namic modeling of the platform, then the quasi-static and dy-

namic model of the muscle and the servovalve model. Exper-

imental validation of the complete system is shown in a third

part. A resolution of the over-actuation is proposed. Finally, the

inverse model control is derived, and some experimental results

of the system controlled using an input-output linearization ap-

proach are given.

FIGURE 2. 3D SKETCH OF THE PLATFORM

MODELING OF THE PLATFORM

The system we are studying consists of a moving platform,

based on a central spherical joint and three pneumatic muscles,

symmetrically disposed (120◦ out of phase around the central

axis). The twist rotation and the vertical displacement of the

platform are constrained by placing a vertical link between the

latter and the fixed base in the center and by imposing only ver-

tical movement to the muscles. Thus, the platform has 2 degrees

of freedom in rotation: the roll and pitch (see Fig. 2).

The assembly of the muscles is as follows: a pivot joint

is implemented between each muscle and the fixed base, and

a spherical joint between each muscle and the moving plat-

form. We will denote by φi, i = 1 · · ·3 the angular positions

of the points bi with respect to x1 axis, where bi is the attach-

ment point of the muscle to the platform in the reference frame

R1(O1,x1, y1, z1) linked to the platform as shown in Fig. 2.

φ1 =−
π

2
rad for the first muscle, φ2 =

π

6
rad for the second mus-

cle and φ3 = 5
π

6
rad for the third one.

The inclination of the platform is measured using an incli-

nometer placed at its center. Pressure values inside the muscles

are measured by three pressure sensors, and the muscles are con-

trolled by three servovalves. The assembly of the platform is

represented in Fig. 3. Table 1 gives the values of some experi-

mental parameters, while the characteristics of the inclinometer,

the pressure sensor and the servovalve are given in Tab. 2.

Kinematic Modeling

The rotation matrix from the reference frame R1 linked to

the platform to the fixed horizontal basis R0 is:

R1→0 =





cosθy sinθx sinθy −sinθy cosθx

0 cosθx sinθx

sinθy −sinθx cosθy cosθx cosθy



 (1)
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FIGURE 3. PLATFORM EXPERIMENTAL STRUCTURE

TABLE 1. EXPERIMENTAL DATA OF THE SYSTEM

Platform material Aluminium

Platform diameter 30 cm

Platform thickness 5 mm

R 0.1 m

J 0.0054 kg.m2

D0 0.01 m

l0 0.2 m

θ0 0.3979 rad

The points bi are assumed to only move in a vertical direc-

tion. Their displacements through z1 axis are obtained by mul-

tiplying their coordinate vectors by the third row of the matrix

R1→0. Thus, the length contraction of each muscle can be writ-

ten as:

εi =
R

l0i

(cosφi sinθy − sinφi sinθx cosθy)+ ε0i
(2)

The contraction velocity of each muscle is the time deriva-

tive of εi

ε̇i =
R

l0i

[

−θ̇x sinφi cosθx cosθy

+θ̇y (cosφi cosθy + sinφi sinθx sinθy)
]

(3)

TABLE 2. INCLINOMETER AND PRESSURE SENSOR CHAR-

ACTERISTICS

Inclinometer Characteristics

Type G-NSDOG2-001

Resolution 12 bit

Measuring range −90◦ +90◦

Uncertainty 0.15◦

Pressure sensor Characteristics

Type SDET-22T-D10-G14-U-M12

Output voltage range 0.1 - 10 V

Measuring range 0 - 10 bar

where the following assumptions are made:

{

l0i
= l0 i = 1 · · ·3

ε0i
= ε0 i = 1 · · ·3.

Direct Dynamic Modeling

Considering the Lagrangian formalism [3], virtual work and

generalized forces, the direct dynamic model of the platform can

be derived, giving the expression of the angular accelerations in

terms of the efforts exerted by the muscles on the platform.

[

θ̈x

θ̈y

]

= M (θx,θy)





F1

F2

F3



−
1

J
Γ f

(

θ̇x, θ̇y

)

(4)

where the matrix M (θx,θy) is given in equation (5).

The friction term will not be modeled in this article. It will

be considered as a disturbance.

Quasi-Static Model Of The Muscle

The aim of the quasi-static model of the muscle is to repre-

sent the expressions of the traction force F and the muscle vol-

ume V as functions of the contraction ε , the gauge pressure inside

the muscle and some of its intrinsic characteristics. Theoretical

formulations can be found in [4–6]. In these articles, the mus-

cle had been considered a lossless system with no energy stor-

age, and by adopting the energy conservation approach, the vir-

tual work argument yields to the theoretical expressions. How-

ever, the errors encountered in the theoretical modeling result

3 Copyright c© 2016 by ASME



M (θx,θy) =
R

J





−sinφ1 cosθx cosθy −sinφ2 cosθx cosθy −sinφ3 cosθx cosθy

cosφ1 cosθy + sinφ1 sinθx sinθy cosφ2 cosθy + sinφ2 sinθx sinθy cosφ3 cosθy + sinφ3 sinθx sinθy



 (5)

from considering the muscle as a continuous cylindrical shape,

whereas the ends take a conical shape when contracted [6]. To

overcome this side effect, a parameter that amplifies the correc-

tion ratio was introduced in [6], and an exponential function with

two constants was suggested for this factor in [7]. In this article,

we will refer to [1], where the evolution of F and V had been de-

termined experimentally. Assuming a linear dependency on the

pressure, the following form was suggested for the effort expres-

sion:

F(Pg,ε) = H(ε)Pg +L(ε), (6)

where

L(ε) = A
ε (ε −B1)

ε +B2
(7)

and

H(ε) =
πD2

0

4

[

3(1− ε)α

tan2 θ0
−

1

sin2 θ0

]

(8)

with α > 2.

While the standard model considers only the first part of the

right hand side of eq. (6) with α = 2, a second term L(ε) (de-

scribed in eq.(7)) had been added in order to model the material

(elastomeric membrane) stiffness that contributes in the effort ex-

erted and in the hysteresis phenomena. Besides, since L(ε) is

independent of the pressure, it is then equal to the effort exerted

by the muscle at zero gauge pressure.

Eq. (8) is quite similar to the theoretical expression, how-

ever, the exponent of (1− ε) is taken as a parameter α instead

of 2. The parameters α, A, B1 and B2 had been experimentally

identified. Figures 4 and 5 show the matching of the experimen-

tal characteristics of the relationship (F,P,ε) [1] with the chosen

model.

A compensation strategy for the hysteresis in the nonlinear

force characteristic of pneumatic muscles is proposed in [1]. The

method is to consider the mean effort curve of the two curves ob-

tained in both inflating and deflating for each pressure for identi-

fication.

FIGURE 4. EXPERIMENTAL CHARACTERISTICS OF THE RE-

LATIONSHIP (F , P, ε)

FIGURE 5. PLOTS OF THE EXPERIMENTALLY DETERMINED

EXPRESSION OF THE QUASI-STATIC MODEL OF THE MUSCLE

An adjusted model of the volume can also be found in [1],

where the rubber deformation influence on the volume had been

taken into account. Furthermore, it has been shown that the vol-

ume of the muscle is nearly independent of the pressure in the air

4 Copyright c© 2016 by ASME



chamber of the muscle, it is rather a function of the contraction.

The experimentally found expression is written as follows

V (ε) =
π

4
D2

0l0

[

1

sin2 θ0

−
(1− ε)α

tan2 θ0

]

(1− ε) . (9)

Dynamic model Of The Muscle

In order to get the variation of the pressure as a function of

the different variables, we assume the following: (i) the mus-

cle can be considered as a variable volume chamber containing a

compressible fluid (air), (ii) the thermodynamic variables (pres-

sure, temperature and density) of the gas are uniform inside the

muscle, (iii) the inlet and outlet flow is quasi-stationary (transient

state negligible), (iv) a polytropic model of the gas behavior takes

place in the chamber, (v) the height difference between pressur-

izing point and exhaust point is negligible and (vi) there is no air

leakage through the muscle.

The pneumatic model can then be written as follows [1]

dP

dt
=

1

1+ kP
V (P,ε)

∂V (P,ε)
∂P

[

−
kP

V (P,ε)

∂V (P,ε)

∂ε
ε̇ +

krT

V (P,ε)
q(P,u)

]

(10)

Nevertheless, since the volume is related only to the contraction,

i.e.
∂V (P,ε)

∂P
= 0 [1], the thermodynamic model derived in equa-

tion (10) can therefore be reformulated as follows

Ṗ =
krT

V (ε)

[

q(P,u)−
P

rT

∂V (ε)

∂ε
ε̇

]

(11)

where

∂V

∂ε
(ε) =

π

4
D2

0l0

[

−
1

sin2 θ0

+(α +1)
(1− ε)α

tan2 θ0

]

. (12)

Model Of The Servovalve

The main advantage of using a servovalve instead of an

ON/OFF valve is the possibility of regulating the desired flow

inside the muscle and thus the pressure in the air chamber by con-

trolling the voltage applied to the servovalve. The servovalve we

are using (type MPYE-5-M5-010-B) is globally modeled in [8],

where the characterization is carried out by experimental mea-

surements.

The flow depends on the voltage applied to the servovalve,

the supply pressure, which is kept constant during the tests, the

pressure inside the muscle and the exhaust pressure which is

equal to the atmospheric pressure. The temperature during the

tests is assumed to be constant (ambient temperature). The char-

acterization of the servovalve is a 3D graph that represents the

FIGURE 6. CHARACTERISTICS OF THE SERVOVALVE [8]

mass flow rate q evolution as function of the electrical input of

the electronic stage u and the pressure P inside the muscle for a

set supply and exhaust pressures (see Fig. 6).

The dynamic model of the servovalve is a second order

transfer function, with a bandwidth of 100 Hz, and a damping

coefficient equal to 1.

COMPLETE MODEL SIMULATION AND EXPERIMEN-
TAL VALIDATION

At least, seven state variables have to be considered in the

system we described. The global model of the platform can be

summarized as follows

d

dt

[

θx

θy

]

=

[

θ̇x

θ̇y

]

(13)

d

dt

[

θ̇x

θ̇y

]

= M (θx,θy)





F1

F2

F3



−
1

J
Γ f

(

θ̇x, θ̇y

)

(14)

dPi

dt
=

krT

V (εi)

[

q(Pi,ui)−
Pi

rT

∂V (εi)

∂εi

ε̇i

]

, i = 1 · · ·3 (15)

Using the different models presented above, we can build

a Simulink scheme that simulates our system consisting of the

platform, three pneumatic muscles and three servovalves. Figure

7 is a representation of this scheme. The inputs of the system are

the voltage supplied to the servovalve, and the outputs are the two

angles of rotation, θx and θy, of the platform. It is important to

notice that the variables u, q, Ṗ, P, F, ε, ε̇ are three dimensional

vectors, whereas θ , θ̇ , θ̈ are two dimensional vectors.

Figures 8, 9 and 10 show the response of the platform, i.e.

the two angles θx and θy and the pressure evolution of the muscle

3, in both simulation and experimentation. The input is a ramp

in u1 applied to muscle 1, followed by a ramp in u2 applied to

5 Copyright c© 2016 by ASME



FIGURE 7. SIMULINK MODEL REPRESENTATION

FIGURE 8. SIMULATION AND EXPERIMENTAL RESPONSE

OF θx FOR A RAMP INPUT IN u1 FOLLOWED BY A RAMP IN-

PUT IN u2

the second muscle. Taking into account unmodeled uncertainties

(like the friction), we can confirm, regarding the small errors ob-

served between the simulation and experimental results that the

model shows a good agreement with reality.

INVERSE MODEL CONTROL

Once the model validated, a model based control synthesis

can be defined. As we can see, our system is highly non linear,

and thus non linear control strategies shall be called for stabiliza-

tion, regulation or trajectory generation. One of these strategies

FIGURE 9. SIMULATION AND EXPERIMENTAL RESPONSE

OF θy FOR A RAMP INPUT IN u1 FOLLOWED BY A RAMP IN-

PUT IN u2

is the input-output linearization based on inverse model. Inter-

estingly, this approach can be robust as far as the system is well

modeled, because it strongly relies on the matching of the control

model with the system’s behavior. We proved that the system is

invertible, but the proof will not be detailed in this article, neither

some of the mathematical and analytic derivations. In the sequel,

we will represent the final expressions of the inverse model con-

trol that allow us to generate the required voltage supply to the

servovalve as function of the desired trajectory of the platform

(θx, θy) and their successive derivatives. We proceed as follows:

a resolution of the over-actuation is addressed. Then, having the

6 Copyright c© 2016 by ASME



FIGURE 10. SIMULATION AND EXPERIMENTAL RESPONSE

OF P3 FOR A RAMP INPUT IN u1 FOLLOWED BY A RAMP INPUT

IN u2

desired trajectory and all needed derivatives, each model is an-

alytically inverted, starting from the dynamic model of the plat-

form, then the quasi-static and dynamic model of the muscle, to

finally reach the servovalve model. This provides an expression

of the required voltage inputs. The representation of the control

is illustrated in Fig. 11.

Over-Actuation Resolution
The system is clearly over-actuated, since three inputs are

generated, and only two outputs are being controlled. The over-

actuation can be remarked in eq. (17), where the effort Fd
3 has

to be arbitrarily chosen in order to calculate the other desired ef-

forts Fd
1 and Fd

2 . Therefore, an allocation strategy is addressed by

choosing Fd
3 that makes the muscles perform at a certain range of

desired pressure, and thus regulating the open-loop compliance

of the system (we will also skip the details of resolution in this

article). The method consists of calculating the minimum and

the maximum allowed effort of the muscles at each static posi-

tion (θx and θy) of the platform, and then impose a desired value

of the real time efforts exerted by the muscles by controlling a

parameter λ such that:

F3 = λFmax +(1−λ )Fmin, λ ∈ [0,1]. (16)

Thus, the choice of F3 at each position via the factor λ will

affect the range of operation of the pressure in the muscle by eq.

(6) as well as the desired efforts in the two other muscles, these

efforts being calculated from eq. (17).

As example, in Fig. 12, two values of λ (0.65 and 0.5) are

taken in two different tests for comparison. We can see that as

λ increases, the operating range of the pressure P3 increases and

vice-versa.

Control Synthesis

We will denote by the superscript (d) the desired variable

that will be calculated in order to get the inputs.

The desired efforts exerted by the muscles to the platform are

found from the inverse dynamic model, that can be written as:

[

Fd
1

Fd
2

]

=E−1
(

θ d
x ,θ

d
y

)

[[

θ̈ d
x

θ̈ d
y

]

−G
(

θ d
x ,θ

d
y

)

Fd
3 +

1

J
Γ f

(

θ̇ d
x , θ̇

d
y

)

]

(17)

where the matrices E and G are given in eq. (18).

The desired pressures inside the muscles are obtained by in-

verting the quasi-static model of the muscle (eq. 6)

Pd
gi =

Fd
i −L(εd

i )

H(εd
i )

, i = 1 · · ·3. (19)

And by differentiating the quasi-static model of the muscle

(eq. 6) w.r.t. time, we can explicit the expression of Ṗd
i as:

Ṗd
i =

Ḟd
i −

∂H(εd
i )

∂εi
ε̇i

dPd
gi −

∂L(εd
i )

∂εi
ε̇i

d

H
(

εd
i

) , i = 1 · · ·3 (20)

Equation (20) is used to calculate the desired flow from equation

(15) by inverting the dynamic model of the muscle:

qd
i =

V
(

εd
i

)

krT
Ṗd

i +
Pd

i

rT

∂V
(

εd
i

)

∂εi

ε̇i
d
, i = 1 · · ·3 (21)

Note that εd
i , ε̇d

i and V (εd
i ) can be directly calculated from

eq. (2), (3) and (9) respectively, Ḟd
i is obtained by differentiating

eq. (17) w.r.t. time.

The last step is to inverse the characteristics of the servo-

valve. Thus, a look-up table, that gives the desired voltage input

ud as function of the mass flow qd and desired pressure Pd is

constructed for each servovalve.

Figures 13 and 14 show two experimental results for a sine

wave of amplitude 5◦ for θx and 2◦ for θy.

We can easily remark a phase difference between the desired

signal and the output. Let us not forget that the inverse model

control generates the open-loop inputs required for a desired tra-

jectory. To overcome the uncertainties of the model, a PID con-

troller controlling the desired angles is added as a feedback loop.

7 Copyright c© 2016 by ASME



FIGURE 11. INVERSE MODEL CONTROL































E (θx,θy) =
R

J





−sinφ1 cosθx cosθy −sinφ2 cosθx cosθy

cosφ1 cosθy + sinφ1 sinθx sinθy cosφ2 cosθy + sinφ2 sinθx sinθy





G(θx,θy) =
R

J





−sinφ3 cosθx cosθy

cosφ3 cosθy + sinφ3 sinθx sinθy





(18)

FIGURE 12. OPERATING RANGE OF P3 WITH TWO DIFFER-

ENT VALUES OF λ

The results of adding a PID regulator to the inverse model are

shown in Fig. 15 and 16, where a desired trajectory, at least three

times differentiable, is given for θy and a sine wave trajectory is

given to θx in another test. A circular movement of the platform

(θy function of θx) is illustrated in Fig. 17 comparing the desired

trajectory and the experimental one.

We can still observe an error of 0.2◦ at the peak points of the

sine trajectory in Fig. 16.

CONCLUSION

In this paper, a complete model of an horizontal platform

actuated by three pneumatic artificial muscles has been derived.

The validity of the complete model has been shown, and an in-

verse model control combined with a PID regulator has been ap-

plied to the system. Experimental results showed the efficiency

of this control approach and an improved performance over a

pure PID controller in the dynamic operating range. As per-

spective, we propose to consider other non linear model based

control, combining inverse model with sliding mode control for

8 Copyright c© 2016 by ASME



FIGURE 13. θx ANGLE RESPONSE FOR A SINE WAVE TRA-

JECTORY WITH INVERSE MODEL CONTROL

FIGURE 14. θy ANGLE RESPONSE FOR A SINE WAVE TRA-

JECTORY WITH INVERSE MODEL CONTROL

example. A further step is to apply the strategy adopted in this

paper for a Stewart platform based on six pneumatic muscles and

having six degrees of freedom.

FIGURE 15. θy ANGLE RESPONSE FOR A SMOOTH STEP TRA-

JECTORY WITH INVERSE MODEL CONTROL AND PID REGU-

LATOR

FIGURE 16. θx ANGLE RESPONSE FOR A SINE WAVE TRA-

JECTORY WITH INVERSE MODEL CONTROL AND PID REGU-

LATOR
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