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ABSTRACT

This paper introduces a new technique for compressive

sampling reconstruction of biomedical ultrasound images

that exploits two types of prior information. On the one

hand, our proposed approach is based on the observation

that ultrasound RF echoes are best characterised statistically

using alpha-stable distributions. On the other hand, through

knowledge of the acquisition process, the support of the RF

echoes in the Fourier domain can be easily inferred. Together,

these two facts inform an iteratively reweighted least squares

(IRLS) algorithm, which is shown to outperform previously

proposed reconstruction techniques, both visually and in

terms of two objective evaluation measures.

Index Terms— Compressive sensing, ℓp norm, alpha-

stable distributions, medical ultrasound

1. INTRODUCTION

Recent developments in medical ultrasound (US) imaging

have led to commercial systems with the capability of acquir-

ing Real-Time 3D (RT3D or 4D) image data sets. However,

current scanners can only produce a few volume images per

second, which is fast enough to see a fetus smile but not fast

enough to see heart valves moving. Compressive sensing

(CS) could prove to be a powerful solution to enhance US

images frame rate by decreasing the amount of acquired data.

In this context, in the last four years, a few research groups

worked on the feasibility of compressive sampling in US

imaging and several attempts of applying the CS theory may

be found in the recent literature (for an overview see e.g. [1]).

In particular, in [2], we introduced a novel framework for

CS of biomedical ultrasonic signals based on modeling data

with symmetric alpha-stable (SαS ) distributions. Then, we

proposed an ℓp norm-based minimization approach that em-

ployed the iteratively reweighted least squares (IRLS) algo-

rithm, but in which the parameter p was judiciously chosen

by relating it to the characteristic exponent of the underlying
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alpha-stable distributed data. The results showed a significant

increase of the reconstruction quality when compared with

previous ℓ1 minimization algorithms. On the other hand, the

effect of the random sampling pattern on the reconstruction

quality, when working in the frequency domain (k-space) was

studied in [3]. This was further exploited in [4] for the design

of a US reconstruction technique similar to [2] but operating

in the Fourier domain.

In this contribution, we further extend our techniques de-

scribed in [2, 4] by supplementing the prior information avail-

able to an ℓp norm minimisation algorithm with the support

of the RF echoes in the frequency domain. In ultrasound ap-

plications the latter can be easily inferred through knowledge

of the acquisition frequency and transducer bandwidth.

In the following section, we provide a brief, necessary

overview of the compressive sensing theory and of the heavy-

tailed model that we employ for ultrasound data. Section 3

describes our proposed method that exploits dual prior infor-

mation, while Section 4 illustrates its reconstruction perfor-

mance. Finally, Section 5 summarises the main results.

2. BACKGROUND

2.1. Compressive sensing

It has been demonstrated [5, 6] that if a signal is K-sparse in

one basis (meaning that it can be represented by K elements of

that basis), then it can be recovered fromM= c.K <<N fixed

(non-adaptive) linear projections onto a second basis, called

the measurement basis, which is incoherent with the sparsity

basis, and where c> 1 is a small overmeasuring constant. The

measurement model is

y=Φx (1)

where x is the N×1 discrete-time signal, y is the M×1 vec-

tor containing the compressive measurements, and Φ is the

M×N measurement matrix. Using the M measurements in

the first basis and given the K-sparsity property in the other

basis, the original signal can be recovered by taking a num-

ber of different approaches. In the context of this work, our
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Fig. 1. Example RF signal modelling with SαS distributions.

(a) An RF signal in time domain. (b) The real part of its 1D

Fourier transform.

interest lies in non-convex optimisation (re-weighted ℓp min-

imisation [7, 8]) strategies.

2.2. α-stable distributions as models for RF echoes

The ultrasound image formation theory has been long time

dominated by the assumption of Gaussianity for the return

RF echoes. However, the authors in [9] have shown that ultra-

sound RF echoes can be accurately modelled using a power-

law shot noise model, which in [10] has been in turn shown

to be related to alpha-stable distributions.

By definition, a random variable is called symmetric α-
stable (SαS) if its characteristic function is of the form:

ϕ(ω) = exp( jδω− γ |ω |α), (2)

where α is the characteristic exponent, taking values 0<α ≤
2, δ (−∞< δ <∞) is the location parameter, and γ (γ > 0) is

the dispersion of the distribution. For values of α in the inter-

val (1,2], the location parameter δ corresponds to the mean

of the SαS distribution, while for 0< α ≤ 1, δ corresponds to

its median. The dispersion parameter γ determines the spread

of the distribution around its location parameter δ , similar to

the variance of the Gaussian distribution.

The alpha-stable tail power law provided one of the ear-

liest approaches in estimating the stability index of real mea-

surements [11]. The empirical distribution of the data, plotted

on a log-log scale, should approach a straight line with slope

α if the data is stable. Maximum likelihood methods devel-

oped by various authors are asymptotically efficient and have

become amenable to fast implementations [12]. In Fig. 1 we

show an example of an ultrasound RF echo modelled using

SαS density functions both in time and in frequency domain.

3. IRLS WITH DUAL PRIOR INFORMATION

In reconstructing an ultrasound RF echo, we would ideally

like to be able to reconstruct a vector x, with the smallest

number of non-zero components, that is,with the smallest ℓ0
norm. Since this is however an NP-hard problem, several sub-

optimal strategies have been proposed with the majority solv-

ing a constrained optimization problem by employing ℓ2 or

ℓ1 norms. CS reconstruction methods were also developed

(e.g. [7, 8]) by employing ℓp norms with p< 1, with the goal

of approximating the ideal ℓ0 case. Specifically, the problem
consists in finding the vector x with the minimum ℓp norm by

minimising

x̂=min‖x‖p subject to Φx= y (3)

In [2] we have devised a principled strategy for choosing the

optimal p by relating the ℓp norm minimisation to the actual

SαS statistics of the RF signals. We achieved that by observ-

ing that for alpha-stable signals, which do not possess finite

second- or higher-order moments, the minimum dispersion

criterion [11] can be defined as an alternative to the classical

minimum mean square error for Gaussian signals. This leads

to a least ℓp norm estimation problem, an approach that we

have shown to enhance the reconstruction of heavy-tailed RF

signals from their measurement projections [2].

Here, our approach to RF signal reconstruction still relies

on SαS-IRLS [2] but is implemented in the frequency domain

as in [4] and modified (following [8]) to incorporate informa-

tion on the support of RF signals.

Specifically, denote by X ∈RN×J an US RF image formed

by J RF signals of length N, x1,x2, . . .xJ . The 1D Fourier

transforms of all individual RF echoes x j can be written as

ξ j =F x j, j ∈ {1,2, . . .J} (4)

where F ∈ CN×N is the 1D Fourier matrix. In the frequency

domain, the measurement model becomes

m j =Φ jξ j =Φ jF x j, j ∈ {1,2, . . . ,J} (5)

where Φ j are Gaussian matrices of size M×N (M≪ N) and
m j ∈ C

M×1.

Now denote by Θ j the subset of points in {1,2, . . .N} that
defines the support of ξ j:

ξ̂ j,k *= 0, ∀k ∈Θ j, j ∈ {1,2, . . . ,J} (6)

Following the arguments in [8], the information represented

by (6) can be added to the IRLS algorithm for the minimisa-

tion of the lp norm by solving the following problem instead

of (3) (or its frequency domain equivalent)

min
ξ̂

1

2

N

∑
k=1
k/∈Θ

∣

∣

∣
ξ̂ j,k

∣

∣

∣

p

subject toΦ jξ j =m j, j∈{1,2, . . . ,J} (7)

Intuitively, (7) will offer a better solution than (3) because it

will attempt to minimise the number of nonzero elements in

ξ only outside the set Θ.
To solve (7) we use the modified IRLS algorithm pro-

posed in [8]. Following the arguments in [2], the parame-

ter p is set as α − 0.01, where α is obtained by fitting an

alpha-stable distribution to the data. Finally, the reconstructed

RF lines are obtained by inverting the corresponding Fourier

transforms:

x̂ j =F
−1ξ̂ j, j ∈ {1,2, . . . ,J} (8)



4. RECONSTRUCTION RESULTS

In this section we present reconstruction experiments con-

ducted using real data corresponding to an in vivo healthy

thyroid. The image was acquired with a Siemens Sonoline

Elegra scanner using a 7.5 MHz linear probe and a sampling

frequency of 50 MHz. Various sections of the original image

were cropped and patches of size 256× 512 were obtained.

These patches were then sampled line by line using linear

projections of random Gaussian bases at two levels. The two

levels correspond to the number of samples taken from the

original signal (the echo lines); these are 33% and 50% (i.e.

M = 0.33N and M = 0.5N).

Reconstruction of the samples was achieved by using

the proposed ℓp-norm minimization scheme (as described

in Section 3) and for comparison, reconstructions using ℓp-
norm minimization with SαS -IRLS [2] and SαS-IRLS in the

Fourier domain (FD-SαS-IRLS) [4] are shown (Table I). The

values of α for each line and so that of p (which is derived

from α), were estimated directly from the ultrasound RF sig-

nal while for our new approach (IRLS-DP) the support was

inferred through knowledge of the frequency of acquisition

and transducer bandpass as detailed above.

An analysis of the results was undertaken in terms of re-

construction quality, which was measured by means of the

structural similarity index (SSIM) [13] and normalised root

mean squared error (NRMSE) of the reconstructed echoes

ensemble compared with the original ensemble. SSIM resem-

bles more closely the human visual perception, and as such, it

is often preferred than the commonly used MSE-based met-

rics. For a given image I and its reconstruction Î the SSIM is

defined by:

SSIM=
(2µIµÎ+ c1)(2σIÎ+ c2)

(µ2
I +µ

2
Î
+ c1)(σ2

I +σ
2
Î
+ c2)

, (9)

where µI, σI are the mean and standard deviation of I (simi-

larly for Î), σIÎ denotes the correlation coefficient of the two

images, and c1, c2 stabilize the division with a weak denom-

inator. In particular, when SSIM equals 0 the two images are

completely distinct, while when the two images are matched

perfectly SSIM is equal to 1.

It can be seen in Table I that according to both metrics

employed, the best results are obtained using the proposed

reconstruction algorithm, which exploits two types of prior

information. The results support the fact that reconstructing

ultrasound RF echoes in the Fourier domain produces better

results than directly in time domain. We attribute this to the

sparser representations that can be achieved for RF lines in

the Fourier domain. Taking into account prior information

of the signal in the form of its support is also confirmed to

optimise reconstruction. We should note however that, unlike

the observation made in [8], reducing further the order p leads

actually to worse reconstruction results. The optimal value

M
N
% Metric

Method

SαS-IRLS FD-SαS-IRLS IRLS-DP

33
NMSRE 0.697 0.540 0.249

SSIM 0.208 0.586 0.908

50
NMSRE 0.518 0.291 0.158

SSIM 0.377 0.844 0.944

Table 1. Objective evaluation of three IRLS-based methods

for reconstructing ultrasound images from RF frames with

sampling rates of 33% and 50% relative to the original.
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Fig. 3. Reconstruction errors for one RF line sampled at 33%.

Top to bottom: original signal and reconstructed using SαS-

IRLS, SαS-IRLS in the Fourier domain, and IRLS with dual

prior respectively. Left column: RF lines; right column: the

corresponding errors.

of p is thus confirmed to be related to the underlying alpha-

stable distribution of the data.

For a qualitative analysis, reconstruction results obtained

with the three schemes discussed in this paper, with M =
0.33N measurements are also presented in Fig. 2. Visually,

it can be seen that the IRLS-DP reconstruction introduces the

least distortion, clearly producing the best result compared

to the original and confirming the results indicated by the

NMRSE and SSIM values obtained.

5. CONCLUSIONS

In this paper, we extended our previously proposed frame-

work for compressive ultrasound imaging. We have shown

through simulations that RF echoes can be best reconstructed

by driving an ℓp-norm minimisation problem with dual prior

information: the value of the characteristic exponent of the

RF line and its sparse support in the frequency domain. The

latter plays certainly a central role in allowing a significant

reduction in both the number of required measurements and
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Fig. 2. Reconstruction results for a thyroid ultrasound image using 33% of the number of samples in the original. (a) B-mode

ultrasound image. (b) SαS-IRLS reconstruction. (c) SαS-IRLS in the Fourier domain. (d) Fourier domain IRLS with dual prior.

computational cost. Nevertheless, our experiments strongly

suggest that the optimal value of p in a ℓp-norm minimisa-

tion procedure shouldn’t be arbitrarily small but rather close

to the characteristic exponent of the underlying alpha-stable

distribution of the data. Our results are general but have been

illustrated through only one example dataset due to space lim-

itations.
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