
HAL Id: hal-01399881
https://hal.science/hal-01399881v1

Submitted on 21 Nov 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the revision of planning tasks
Andreas Herzig, Viviane Menezes, Leliane Nunes de Barros, Renata

Wassermann

To cite this version:
Andreas Herzig, Viviane Menezes, Leliane Nunes de Barros, Renata Wassermann. On the revision of
planning tasks. 21st European Conference on Artificial Intelligence (ECAI 2014), Aug 2014, Prague,
Czech Republic. pp. 435-440. �hal-01399881�

https://hal.science/hal-01399881v1
https://hal.archives-ouvertes.fr

Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/
Eprints ID : 15171

The contribution was presented at ECAI 2014 :
http://www.ecai2014.org/

To cite this version : Herzig, Andreas and Menezes, Viviane and Nunes De
Barros, Leliane and Wassermann, Renata On the revision of planning tasks.
(2014) In: 21st European Conference on Artificial Intelligence (ECAI 2014), 18
August 2014 - 22 August 2014 (Prag, Czech Republic).

Any correspondence concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

On the revision of planning tasks

Andreas Herzig, Viviane Menezes, Leliane Nunes de Barros, Renata Wassermann

Abstract. When a planning task cannot be solved then it can often

be made solvable by modifying it a bit: one may change either the set

of actions, or the initial state, or the goal description. We show that

modification of actions can be reduced to initial state modification.

We then apply Katsuno and Mendelzon’s distinction between update

and revision and show that the modification of the initial state is an

update and the modification of the goal description is a revision. We

consider variants of Forbus’s update and Dalal’s revision operation

and argue that existing belief change operations do not apply as they

stand because their inputs are boolean formulas, while plan task mod-

ification involves counterfactual statements. We show that they can

be captured in Dynamic Logic of Propositional Assignments DL-PA.

1 INTRODUCTION

A classical planning task over a set of state variables P is a tuple

Π = (A, s0, Sg) where A is the set of actions (described in terms of

preconditions and effects), s0 ⊆ P is the initial state, and Sg ⊆ 2P is

the set of goal states. A solution to a classical planning task is a se-

quence of actions—a plan—that leads the agent from s0 to a state in

Sg. Sometimes there is no such plan: the task is unsolvable. The anal-

ysis of unsolvable tasks can help a knowledge engineer when mod-

eling a new planning application. Possible explanations are: (i) the

initial state s0 is wrongly specified; (ii) the goal is over-constrained

(‘over-subscribed’); (iii) the action specifications are not sound. Con-

sider a scenario with a room whose door is locked (¬Open), with the

key in the room (InK), and a robot outside (¬InR) whose goal is to get

into the room (InR) [5]. Several minimal modifications of the initial

situation make the task solvable: the robot could be inside the room,

the door could be open, or the key could be outside the room.

Several authors have recently studied how an unsolvable Π can

be modified in a way such that it becomes solvable [16, 5, 14, 15].

In this paper we propose a powerful yet simple logical framework:

Dynamic Logic of Propositional Assignments, abbreviated DL-PA

[8, 1]. DL-PA is a simple instantiation of Propositional Dynamic

Logic PDL [6]: instead of PDL’s abstract atomic programs, its atomic

programs are assignments of state variables to either true or false,

written p←⊤ and p←⊥. Its models are considerably simpler than

PDL’s Kripke models: valuations of classical propositional logic

(alias states) are enough to interpret its programs and formulas. The

assignment p←⊤ is interpreted as an update of the current state

by p, while the assignment p←⊥ is interpreted as an update by

¬p. These atomic programs can be combined by means of the PDL

program operators: sequential and nondeterministic composition, fi-

nite iteration, and test. In the present paper we moreover make use

of a program operator that is less frequently considered: the con-

verse operator. The action enter whose precondition is ¬InR∧Open

and which adds InR can be captured in DL-PA by the program

pgm(enter) = ¬InR∧Open?; InR←⊤, and the action of opening the

door by pgm(open) = InR↔InK?; Open←⊤. Moreover, all possi-

ble finite combinations of these two actions can be captured by the

DL-PA program
(

pgm(enter)∪pgm(open)
)∗

. The program nondeter-

ministically chooses a finite number of iterations n and chooses one

of the two actions at each step, up to n.

Dynamic logics have not only programs describing the way the

world evolves, but also formulas describing how the world is. When

the set P of state variables is finite then e.g. the initial state s0 of

a planning task can be described by the DL-PA formula Fml(s0) =
(

∧

p∈s0
p
)

∧
(

∧

p∈P\s0
¬p

)

and the set of goal states Sg by Fml(Sg) =
∨

s∈Sg
Fml(s). For our example we have Fml(s0) = ¬InR ∧ ¬InK ∧

¬Open and Fml(Sg) = InR. Beyond such boolean formulas, DL-PA

has modal formulas
〈

π
〉

ϕ and [π]ϕ combining a program π and a for-

mula ϕ. The formula
〈

π
〉

ϕ expresses that ϕ is true after some possible

execution of π, and [π]ϕ expresses that ϕ is true after every possible

execution of π. For instance, that the set of states Sg where InR is true

can be reached from the current state by means of the actions open

and enter, denoted by Reachable(Sg, {open, enter}), is expressed by

the DL-PA formula

Reachable(Sg, {open, enter}) =
〈(

pgm(open) ∪ pgm(enter)
)∗〉

InR,

i.e., InR is true after some possible iteration of the program

pgm(open) ∪ pgm(enter). Then to decide whether our example task

is solvable is the same as deciding validity of the DL-PA formula

(¬InR∧¬InK∧¬Open)→ Reachable(Sg, {open, enter}).

DL-PA provides an appropriate framework for studying planning

task modification. We are going to take advantage of the recent em-

beddings of various change operations such as Winslett’s and For-

bus’s update and Dalal’s revision into DL-PA programs [7]. There,

the idea is that an update by an input formula A can be captured by a

DL-PA program upd
(

A
)

, in the sense that the interpretation of upd
(

A
)

relates valuations to their update by A. Said differently, the update of

the belief base B by A has the same models as the DL-PA formula
〈

upd
(

A
)−〉

B, where − is the converse operator: being in a state where

B has been updated by A is the same as being in a state that was

attained by upd
(

A
)

, before which B was true. Similarly, revision of

B by A is captured by a program rev(A, B). All the operations satisfy

the success postulate: both
〈

upd
(

A
)−〉

B→ A and
〈

rev
(

A, B)−
〉

B→ A

are DL-PA valid.

We have seen above that a planning task Π = (A, s0, Sg) is unsolv-

able exactly when Fml(s0) → Reachable(Sg, A) is DL-PA invalid.

We will show that the modification of the initial state such that the

task is solvable is described by an update of Fml(s0) by the non-

boolean formula Reachable(Sg, A). So the modified initial states are

described by

〈

upd
(

Reachable(Sg, A)
)−

〉

Fml(s0).

Indeed, the above formula implies Reachable(Sg, A) by the suc-

cess postulate for update, and therefore Sg can be reached from the

modified initial state via A. The modification depends on the up-

date operation. In principle any operation satisfying the Katsuno-

Mendelzon postulates might do. We here choose Forbus’s update op-

eration, which is based on the Hamming distance. Our main reason

for that choice is that there is a closely related revision operation that

is also based on the Hamming distance, viz. Dalal’s revision oper-

ation, which allows for a uniform presentation. Note that the above

formula does not describe a unique state: there might be several min-

imal modifications of s0.

We also show that the modification of the goal such that the plan-

ning task is solvable is described by a revision of Fml(Sg) by the

DL-PA formula

Reachable(s0, A
−) =

〈(

pgm(a1)− ∪ · · · ∪ pgm(an)−
)∗〉

Fml(s0).

In words, we revise by a formula saying that the the actions in A can

be executed ‘the other way round’ such that s0 is reached. Then the

revised goal can be described by the DL-PA formula

〈

rev
(

Reachable(s0, A
−),Fml(Sg)

)−〉

⊤

where rev is a DL-PA program implementing a revision operation.

The rest of the paper is organized as follows. In Section 2 we set

the stage. In Section 3 we formally define three kinds of task modi-

fication problems. In Section 4 we introduce DL-PA. In Section 5 we

embed (variants of) Forbus’s update and Dalal’s revision into DL-PA.

In Section 6 we show how task modification can be done in DL-PA.

2 BACKGROUND

We start by recalling the definitions of distances between states, clas-

sical planning, Forbus revision and Dalal update.

2.1 Propositional logic, distances between states

A valuation, alias a state, associates a truth value to each element of

the finite set of state variables P = {p, q, . . .}. We identify states with

subsets of P and use s, s1, etc. to denote them. The set of all states is

2P. We also write s(p) = 1 when p ∈ s and s(p) = 0 when p < s.

Boolean formulas, also called propositional formulas, are built

from state variables by means of the standard boolean connectives.

We will in particular make use of the exclusive disjunction, noted ⊕.

The set of boolean formulas is Fmlbool and its elements are noted A,

B, C, etc. Contrasting with that, modal formulas—to be defined in

the next section—will be noted ϕ, ψ, etc.

A given state determines the truth value of the boolean formulas.

A state where the boolean formula A is true is called a model of A

or an A-state. The set of A-states is noted ||A||. As P is finite, every

state s can be described by means of a conjunction of literals Fml(s)

as defined above: s is the only model of Fml(s), i.e., ||Fml(s)|| = {s}.

The symmetric difference between two states s1 and s2 is the set

of all those p such that s1(p) , s2(p): s1−̇s2 = (s1 \ s2) ∪ (s2 \ s1).

For example, {p, q}−̇{q, r, s} = {p, r, s}. It is also called the PMA dis-

tance, referring to the so-called ‘Possible Models Approach’ update

operation [17]. The Hamming distance between s1 and s2 is

h(s1, s2) = card(s1−̇s2) = card({p : s1(p) , s2(p)}).

For example, h({p, q}, {q, r, s} = card({p, r, s}) = 3.

2.2 Planning tasks and their modification

An action is a triple a = (prea, adda, dela), where prea ∈ Fmlbool is

the precondition and adda, dela ⊆ P are the add list and the delete

list. A given a determines a relation ||a|| between states:

||a|| =
{

(s, s′) : s ∈ ||prea|| and s′ =
(

s \ dela
)

∪ adda

}

A state s is reachable from a state s0 via a set of actions A if there

is n ≥ 0, a sequence of actions (a1, . . . , an) and a sequence of states

(s0, . . . , sn) such that s0 = s0, sn = s, and (sk−1, sk) ∈ ||ak || for every

k such that 1 ≤ k ≤ n. A classical planning task is a tuple Π =

(A, s0, Sg) where A is a finite set of actions, s0 ⊆ P, and Sg ⊆ 2P. Π

is solvable if at least one of the goal states in Sg is reachable from s0

via A. Else Π is unsolvable.

Suppose Π = (A, s0, Sg) is unsolvable. What can be done in such a

situation apart from resigning? According to [5] one may: (i) change

the initial state s0, (ii) change the goal description Sg (typically weak-

ening it), or (iii) augment the set of actions A. Several approaches ex-

ist in the literature in particular for the second kind of modification

(partial satisfaction planning, alias oversubscription planning). None

of them exploits the conceptual framework that is provided by the

belief update and revision literature, which is what we do here. The

next section recalls some basic definitions.

2.3 Update and revision

We now define two belief change operations that generalise Forbus’s

update operation and Dalal’s revision operation. Beyond an initial

belief base and an input formula they have a further argument: a set

of variables P to be minimised (similarly to circumscription). They

coincide with the original operations when P contains all variables

occurring in the input formula.

Forbus’s update operation [4] is based on minimisation of the

Hamming distance between states. Let s0 be a state, S a set of states,

and P a set of variables. The Forbus update of s0 by S w.r.t. P is the

set of states s ∈ S that is closest to s0 w.r.t. the Hamming distance,

where only variables from P can be changed. Formally:

s0 ⋄
forbus
P S =

{

s ∈ S : s−̇s0 ⊆ P and there is no s′ ∈ S such that

h(s0, s
′) < h(s0, s)

}

So s0 ⋄
forbus
P

S is the set of all those states of S that are closest to

s0 w.r.t. the Hamming distance while differing in P. For example,

∅ ⋄forbus
{p,q}

{

{p}, {q}, {p, q}
}

=
{

{p}, {q}
}

. Then the update of a set of

states S 0 by a set of states S w.r.t. P is the collection of the state-wise

updates of each element of S 0: S 0 ⋄
forbus
P

S =
⋃

s0∈S 0
s0 ⋄

forbus
P

S .

Several other update operations have been proposed in the litera-

ture; e.g., the PMA update of s0 by S is the set of states s′ ∈ S closest

to s0 w.r.t. symmetric difference. We refer to [10, 12] for an overview.

Dalal’s belief change operation [2] is not an update operation but

rather a revision operation, according to Katsuno and Mendelzon’s

distinction [11]. Just as Forbus’s operation, Dalal’s is based on the

minimisation of the Hamming distance between states. However, we

now minimise globally over all states and not state-by-state. We fol-

low the usage in the literature and denote Dalal’s revision operation

by ∗dalal (and not by ⋄dalal). Let S 0 and S be sets of states and P a set

of variables. The Dalal revision of S 0 by S w.r.t. P is:

S 0 ∗
dalal
P S =

{

s ∈ S : there is s0 ∈ S 0 such that s0−̇s ⊆ P and

h(s0, s) ≤ h(s′0, s
′) for all s′ ∈ S , s′0 ∈ S 0

}

.

So the revision of an empty set is empty.1

For example, the revision of ||p ⊕ q|| by ||p|| is ||p ∧ ¬q||:

{

{p}, {q}
}

∗dalal
{p,q}

{

{p}, {p, q}
}

=
{

{p}
}

This contrasts with the Forbus update of p ⊕ q by p (which is p) and

illustrates that revision operations satisfy the preservation postulate.

We note that Dalal revision coincides with Forbus update if S 0 is a

singleton: we have {s0}∗
dalal
P

S = s0⋄
forbus
P

S = {s0}⋄
forbus
P

S . Moreover,

∅ ∗dalal
P

S is ∅.2

3 THREE KINDS OF TASK MODIFICATION:
FORMAL DEFINITIONS

We now define initial state change as a particular update problem and

goal change as a particular revision problem. Furthermore, we reduce

the modification of the set of actions to initial state change.

3.1 Changing the initial state

Intuitively, given an unsolvable planning taskΠ = (A, s0, Sg) we want

to change the initial state s0 to a state s′
0

such that Π′ = (A, s′
0
, Sg) is

solvable and such that s′
0

is as close to s0 as possible. It makes sense

here to consider minimal change w.r.t. some given set of relevant

variables. In our example we consider modifications of s0 w.r.t. InK

and Open: to make InR true would be a trivial modification. More

generally, it seems reasonable to exclude variables from the goal de-

scription.

Definition 1. Let Π = (A, s0, Sg) be a planning task and let S′
0

be the

set of initial states s′
0

such that (A, s′
0
, Sg) is solvable, i.e.,

S
′
0 = {s

′
0 : there is sg ∈ Sg such that sg is reachable from s′0 via A}.

Let P ⊆ PA be some of the variables occurring in A. The minimal

modification of s0 w.r.t. P is the set of states from which Sg is reach-

able that only differ from s0 in P and that are closest to s0.

It remains to clarify what closeness means. While in principle any

distance between states can be used, there are some natural starting

points: the PMA distance and the Hamming distance. We choose the

latter because it is one of the most popular update operations and

because it parallels Dalal’s revision operation: it is also based on the

Hamming distance and is the best known concrete revision operation.

So we consider that the set of initial states closest to s0 from which

Sg is reachable is s0 ⋄
forbus
P
S
′
0
. In our example there are two candidate

states that only differ from s0 in {InK,Open} and that are closest to

s0, viz. ∅ and {InK,Open}. So the robot’s task is solvable either when

the key is outside or when the door is open.

Our definition also applies when the original task is solvable: in

that case, the only possible update of the initial state s0 is s0 itself.

Observe that instead of Forbus update we could as well have em-

ployed Dalal’s revision, given that the belief base to be modified is a

singleton. Things will differ when it comes to changing the goal.

This is a minor difference with Dalal’s original definition, which distin-
guishes the cases S 0 , ∅ and S 0 = ∅. In the latter case the result of the
update by S is stipulated to be S itself. This guarantees that the result of the
revision is nonempty as soon as S is.

2 As said above, here our definition differs from Dalal’s, where ∅∗dalal
P

S = S .

3.2 Changing the goal

Intuitively, we want to transform an unsolvable Π = (A, s0, Sg) to a

solvable Π′ = (A, s0, S
′
g) where Sg and S′g are as close as possible.

Definition 2. Let Π = (A, s0, Sg) be a planning task and let S′g be the

set of states s′g such that (A, s0, {s
′
g}) is solvable, i.e.,

S
′
g = {s

′
g : s′g is reachable from s0 via A}.

Let P ⊆ PA be some variables occurring in A. The minimal modifi-

cation of Sg w.r.t. P is the set of states reachable from s0 that only

differ from Sg in P and that are closest to Sg.

So we have to deal with the notion of closeness between sets of

states: we have a case of distance-based belief revision. In the rest

of the paper we consider that the set of goal states reachable from s0

that only differ in P and are closest to Sg is Sg ∗
dalal
P
S
′
g.

3.3 Adding actions

Intuitively, given an unsovalble planning taskΠ = (A, s0, Sg) we want

to minimally augment the set A to a set A′ such that Π′ = (A′, s0, Sg)

is solvable. We describe a way of reducing this to initial state update.

Suppose that there is a set of all possible actions A and a set of

currently available actions Au ⊆ A. The elements of Au are currently

available to build plans, and augmenting the set of plan operators

consists in adding to Au some elements of A \ Au. The aim is to add a

minimal number from the latter.

We replace each action a = (prea, adda, dela) in A by the action

a+ = (prea∧ua, adda, dela) where ua is a fresh variable: it does not

occur in any add list or delete list. Let A+ = {a+ : a ∈ A} be the re-

sulting set of actions. Observe that none of the actions in A+ changes

any of the fresh variables ua. Furthermore, we encode in the initial

state s0 that only the actions in Au are available: we replace s0 by

s0 ∪ UAu , for UAu = {ua : a ∈ Au}.

Proposition 1. Let Au ⊆ A be sets of actions. Let UAu = {ua : a ∈ Au}.

Then (Au, s0, Sg) is solvable if and only if (A+, s0∪UAu , Sg) is solvable.

This can be established by showing that each of the two tasks is

solvable iff (Au, s0 ∪ UAu , Sg) is. For the first task this holds because

the variables in UAu are fresh. For the second task, observe that no

plan can contain an a+ < A+
u
: the precondition of a+ fails to be true at

the initial state because ua < s0 ∪ UA, and it keeps on failing because

ua is fresh and does not occur in any add list.

Suppose (Au, s0, Sg) is unsolvable. Finding a minimal set of actions

to be added to Au amounts to finding a minimal modification of the

initial state of the equally unsolvable (A+, s0 ∪ UAu , Sg) that only adds

the usability variables ua. So when computing the minimal distance

we should only consider the new variables ua, for a < Au.
3 In other

words, we minimally modify s0 ∪ UAu w.r.t. A+ \ Au. This results in

zero, one or more new initial states s0 ∪ UAu ∪ U, for some U subset

of {ua : a ∈ A \ Au} such that (A+, s0 ∪ UAu ∪ U, Sg) is solvable. By

Proposition 1, the latter task is solvable iff (Au∪{a : ua ∈ U}, s0, Sg)

is. Therefore each of the above sets U is a candidate for a minimal

augmentation of the set of actions solving the planning task. Note

that contrarily to the two previous kinds of modifications, there is no

guarantee here that we will make the problem solvable.

3 Actually it suffices to only consider making them true. This can also be
implemented in DL-PA.

3.4 The rest of the paper

We have formally defined three different task modification problems.

In the rest of the paper we investigate these problems from a knowl-

edge representation perspective. We therefore do not work with states

but with formulas describing initial state and goal states and with

programs describing actions.

How can we obtain a syntactical representation of the set of can-

didate initial states S′
0

of Definition 1 or of the set of modified goal

states S′g of Definition 2? Can we represent S′
0

and S′g as a boolean

formula? This is not so straightforward: the candidate initial states

s
′
0

are specified indirectly, and as noted in [5], what we update by is

a counterfactual: s′
0

should be such that if we perform an appropri-

ate sequence from A then Sg is achieved. Therefore Forbus’s original

operator cannot be used as it stands: it only allows boolean input

formulas. The situation is the same for the goal modification task.

To tackle the problem we need more linguistic resources. The logic

DL-PA to be introduced next will provide them.

4 DYNAMIC LOGIC OF PROPOSITIONAL
ASSIGNMENTS

Dynamic Logic of Propositional Assignments DL-PA. was studied

in [1], and its applicability to various problems of reasoning about

dynamics was demonstrated in several recent papers [8, 3, 9, 7].

The language of DL-PA is defined by the following grammar:

ϕ ! p | ⊤ | ⊥ | ¬ϕ | ϕ ∨ ϕ |
〈

π
〉

ϕ

π ! p←⊤ | p←⊥ | π; π | π ∪ π | π∗ | π− | ϕ?

where p ranges over P. So the atomic programs of the language of

DL-PA are of the form p←⊤ and p←⊥. The operators of sequential

composition (“;”), nondeterministic composition (“∪”), finite itera-

tion (“(.)∗”, the so-called Kleene star), and test (“(.)?”) are familiar

from Propositional Dynamic Logic PDL. The operator “(.)−” is the

converse operator. The set of variables occurring in ϕ is noted Pϕ.

The length of a formula ϕ, noted |ϕ|, is the number of symbols

used to write down ϕ, without “〈”, “〉”, and parentheses. For example,

|
〈

q←⊤
〉

(q ∨ r)| = 3+3 = 6. The length of a program π, noted |π|,

is defined in the same way. For example, |p←⊥; p?| = 6. We have

card(Pϕ) ≤ |ϕ| for every ϕ.

We abbreviate the logical connectives ∧,→,↔, and ⊕ in the usual

way. Moreover, [π]ϕ abbreviates ¬
〈

π
〉

¬ϕ. Several program connec-

tives are familiar from PDL. First, skip abbreviates⊤? (“nothing hap-

pens”). Second, the conditional “if ϕ then π1 else π2” is expressed by

(ϕ?; π1) ∪ (¬ϕ?; π2). Third, the loop “while ϕ do π” is expressed by

(ϕ?; π)∗;¬ϕ?. Fourth, we recursively define for n ≥ 0:

πn def
=

skip if n = 0

π; πn−1 if n ≥ 1

π≤n def
=

skip if n = 0
(

skip∪π
)

; π≤n−1 if n ≥ 1

The program πn executes π n times, and π≤n executes π at most n

times. Let us moreover introduce assignments of literals to variables:

p←q = if q then p←⊤ else p←⊥

p←¬q = if q then p←⊥ else p←⊤

The former assigns to p the truth value of q, while the latter assigns

to p the truth value of ¬q. In particular, p←p does nothing (and is

therefore equivalent to skip) and p←¬p flips the truth value of p.

DL-PA programs are interpreted by means of a relation between

states: the atomic programs p←⊤ and p←⊥ update states in the ob-

vious way, and complex programs are interpreted just as in PDL by

mutual recursion. The interpretation of the DL-PA connectives is by

mutual recursion.

For formulas the interpretation function is:

||p|| = {s : p ∈ s}

||⊤|| = 2P

||⊥|| = ∅

||¬ϕ|| = 2P \ ||ϕ||

||ϕ ∨ ψ|| = ||ϕ|| ∪ ||ψ||

||
〈

π
〉

ϕ|| =
{

s : there is s1 s.t. (s, s1) ∈ ||π|| and s1 ∈ ||ϕ||
}

and for programs it is:

||p←⊤|| =
{

(s1, s2) : s2 = s1 ∪ {p}
}

xxx

||p←⊥|| =
{

(s1, s2) : s2 = s1 \ {p}
}

||π; π′|| = ||π|| ◦ ||π′||

||π ∪ π′|| = ||π|| ∪ ||π′||

||π∗|| =
⋃

k∈N0

(||π||)k

||π−|| =
(

||π||
)−1

||ϕ?|| = {(s, s) : s ∈ ||ϕ||}

We say that two formulas ϕ1 and ϕ2 are formula equivalent if

||ϕ1|| = ||ϕ2||. Two programs π1 and π2 are program equivalent if

||π1|| = ||π2||. In that case we write π1 ≡ π2. For example, we have

p?; p←⊤ ≡ p?, and skip ∪ p←¬p ≡ p←⊤∪ p←⊥.

An expression is a formula or a program. When we say that two ex-

pressions are equivalent we mean program equivalence if we are talk-

ing about programs, and formula equivalence otherwise. Equivalence

is preserved under replacement of a sub-expression by an equivalent

expression [1, Proposition 7].

A formula ϕ is DL-PA valid if it is formula equivalent to ⊤, i.e.,

if ||ϕ|| = 2P. It is DL-PA satisfiable if it is not formula equiva-

lent to ⊥, i.e., if ||ϕ|| , ∅. For example, the formulas
〈

p←⊥
〉

⊤

and
〈

p←⊤
〉

ϕ ↔ ¬
〈

p←⊤
〉

¬ϕ are DL-PA valid. Other examples of

DL-PA validities are
〈

p←⊤
〉

p and
〈

p←⊥
〉

¬p. The valid schemas

ϕ → [π]
〈

π−
〉

ϕ and ϕ → [π−]
〈

π
〉

ϕ are inherited from converse PDL

(they are called the conversion axioms). Moreover, ϕ→ [π]ϕ is valid

if and only if
〈

π−
〉

ϕ→ ϕ is valid. (The two senses of the “if and only

if” are called the conversion rules.)

Observe that if p does not occur in ϕ then both ϕ→
〈

p←⊤
〉

ϕ and

ϕ→
〈

p←⊥
〉

ϕ are valid. This is due to the following property.

Proposition 2. Suppose Pϕ ∩ P = ∅, i.e., none of the variables in P

occurs in ϕ. Then s ∪ P ∈ ||ϕ|| iff s \ P ∈ ||ϕ||.

In PDL, all program operators can be eliminated except the Kleene

star. In contrast, all program operators can be eliminated in DL-PA.

Proposition 3 ([1]). Every DL-PA formula is equivalent to a boolean

formula.

In the rest of the section we introduce some DL-PA programs that

are convenient to embed update, revision and task modification.

vary({p1, . . . , pn})
def
= (p1←⊤∪ p1←⊥); · · · ; (pn←⊤∪ pn←⊥)

flip1({p1, . . . , pn})
def
= p1←¬p1∪· · ·∪pn←¬pn

If n = 0 then both programs equal skip. In order to alleviate notation

we drop set parentheses and write vary(p) instead of vary({p}), etc.

The program vary(P) nondeterministically changes the truth value of

some of the variables in P and flip1(P) flips the truth value of exactly

one of the variables in P. The former actually implements the oper-

ation of forgetting the variables in P [13]. Observe that the program

vary(Pϕ);ϕ? relates states s to all ϕ-states where the variables outside

ϕ have the same truth values as in s.

Note that for m ≤ n, the recursively defined programs flip1(P)m

and flip1(P)≤m have length quadratic in n. Moreover, we have

vary(P) ≡ flip1(P)≤n.

Proposition 4 (Proposition 4 of [7]). The following hold:

1. (s1, s2) ∈ ||vary(P)|| iff
{

p : s1(p) , s2(p)
}

⊆ P.

2. (s1, s2) ∈ ||flip1(P)1|| iff h(s1, s2) = 1, for P , ∅.

3. (s1, s2) ∈ ||flip1(P)≤m|| iff h(s1, s2) ≤ m.

Note that the second item cannot be generalised: for m ≥ 2 we

may have (s1, s2) ∈ ||flip1(P)m|| while h(s1, s2) < m.

Proposition 5. The program equivalences
(

vary(P)
)−
≡ vary(P),

(

flip1(P)1
)−
≡ flip1(P)1, and

(

flip1(P)≤m
)−
≡ flip1(P)≤m hold.

Here are some useful DL-PA formulas.

Valid(ϕ)
def
=

[

vary(Pϕ)
]

ϕ

Sat(ϕ)
def
=

〈

vary(Pϕ)
〉

ϕ

H(ϕ,≥m)
def
=

⊤ if m = 0

¬
〈

flip1(Pϕ)
≤m−1

〉

ϕ if m ≥ 1

The formula Valid(ϕ) expresses that the formula ϕ is valid and Sat(ϕ)

expresses that the formula ϕ is satisfiable. The latter is equivalent to
〈

vary(Pϕ);ϕ?
〉

⊤. The formula H(ϕ,≥m) is true at a state s exactly

when the closest ϕ-states in the sense of the Hamming distance differ

in at least m variables from s. For example,

H(p,≥1) = ¬
〈

flip1(p)≤0〉p

↔ ¬p

H(p∨q,≥1) = ¬
〈

flip1(p, q)≤0〉(p∨q)

↔ ¬p ∧ ¬q

H(p∨q,≥2) = ¬
〈

flip1(p, q)≤1〉(p∨q)

↔ ¬
〈

skip ∪ p←¬p ∪ q←¬q
〉

(p∨q)

↔ ¬
(

p∨q ∨
〈

p←¬p
〉

(p∨q) ∧
〈

q←¬q
〉

(p∨q)
)

↔ ¬
(

(p∨q) ∨ (¬p∨q) ∨ (p ∨ ¬q)
)

↔⊥

The first two items of the next proposition establish that both va-

lidity and satisfiability reduce to model checking.

Proposition 6. Let ϕ be a formula and let s be any state.

1. s ∈ ||Valid(ϕ)|| iff ϕ is valid.

2. s ∈ ||Sat(ϕ)|| iff ϕ is satisfiable.

3. s ∈ ||H(ϕ,≥m)|| iff h(s, s1) ≥ m for every state s1 ∈ ||ϕ||.

The length of each of the above formulas is polynomial in the

length of ϕ (linear for the first two and quadratic for the last).

Proposition 7. For m ≤ card(PA), (s1, s2) ∈

||H(A,≥m)?; flip1(PA)m; A|| iff s2 ∈ ||A||, h(s1, s2) = m, and

there is no s′
2
∈ ||A|| such that h(s1, s

′
2
) < m.

5 EXPRESSING FORBUS UPDATE AND
DALAL REVISION IN DL-PA

Following [7], we embed Forbus’s update operation and Dalal’s re-

vision operation into DL-PA. All results are straightforward general-

isations of those in [7].

5.1 Embedding Forbus’s update operation

We polynomially transform update problems of the form B ⋄forbus
P

A into DL-PA: we define a family of update programs updforbus
P

(

A
)

whose length is cubic in the length of A.

Proposition 8. Let A, B be propositional formulas. Let P ⊆ PA. Let

updforbus
P

(

A
)

be the following program:

⋃

0≤m≤card(P)

H(A,≥m)?; flip1(P)m

; A?

Then ||B|| ⋄forbus
P

||A|| = ||
〈

(updforbus
P

(

A
)

)−
〉

B||.

The program updforbus
P

(

A
)

nondeterministically selects an integer

m, checks whether the Hamming distance to A is at least m, flips

m variables from P, and checks whether A is true. Via the program

equivalences for the converse operator it follows that

||B|| ⋄forbus
P ||A|| = ||

〈

A?;
(

⋃

0≤m≤card(P)

flip1(P)m; H(A,≥m)?
)

〉

B||.

For example,

updforbus
{p}

(

p
)

=
(

(

H(p,≥0)?; flip1(p)0) ∪
(

H(p,≥1)?; flip1(p)1)
)

; p?

≡
(

(⊤?; skip) ∪
(

¬
〈

flip1(p)≤0〉p?; p←¬p
)

)

; p?

≡
(

skip ∪
(

¬p?; p←¬p
)

)

; p?

≡ p? ∪
(

¬p?; p←¬p; p?
)

≡ p←⊤

Therefore ||B|| ⋄forbus
{p}

||p|| = ||
〈

p←⊤−
〉

B||. Here is another example:

updforbus
{p,q}

(

p∨q
)

≡
(

H(p∨q,≥0)?; flip1(p, q)0; p∨q?
)

∪
(

H(p∨q,≥1)?; flip1(p, q)1; p∨q?
)

∪
(

H(p∨q,≥2)?; flip1(p, q)2; p∨q?
)

≡
(

⊤?; skip; p∨q?
)

∪
(

¬(p∨q)?; (p←¬p ∪ q←¬q); p∨q?
)

∪
(

⊥?; flip1(p, q)2; p∨q?
)

≡ p∨q? ∪
(

¬(p∨q)?; (p←¬p ∪ q←¬q)
)

If P = PA then
〈

(updforbus
P

(

A
)

)−
〉

B → A is DL-PA valid: Forbus’s

operation satisfies the KM success postulate.

Observe that the length of updforbus
P

(

A
)

is cubic in the length of A.

5.2 Embedding Dalal’s revision operation

Our revision program revdalal
P

(

A, B
)

not only depends on the input A,

but also on the base B.

Proposition 9. Let A, B be propositional formulas. Let P ⊆ PA. Let

revdalal
P

(

A, B
)

be the following program:

vary(PB) ; B? ;

⋃

0≤m≤card(P)

[

vary(PB) ; B?
]

H(A,≥m)? ; flip1(P)m

; A?

Then ||B|| ∗dalal
P
||A|| = ||

〈

(revdalal
P

(

A, B
)

)−
〉

⊤||.

The program revdalal
P

(

A, B
)

visits all B-states sB via vary(PB); B?,

failing if there is no such state. It then nondeterministically selects

an integer m such that the Hamming distance between the B-states

and the A-states is at least m, flips m of the variables in P, and checks

whether A is true. For the case of atomic inputs we get:

revdalal
{p}

(

p, B
)

= vary(PB); B? ;
(

([

vary(PB); B?
]

H(p,≥0)? ; flip1(p)0) ∪

([

vary(PB); B?
]

H(p,≥1)? ; flip1(p)1)
)

; p?

≡ vary(PB); B? ;
(

p? ∪
([

vary(PB); B?
]

¬p? ; p←⊤
)

)

and likewise for ||B|| ∗dalal
{p}
||¬p||. So when B∧p is consistent then

revdalal
{p}

(

p, B
)

goes to a B∧p-state, and updates by p otherwise.

Observe that the length of the program revdalal
P

(

A, B
)

is cubic in the

sum of |A| + |B|.

6 PLANNING TASKS AND THEIR
MODIFICATION IN DL-PA

Let us finally embed planning tasks into DL-PA. Let Π = (A, s0, Sg)

be a planning task. To the initial state s0 and the set of goal states

Sg we associate the boolean formulas Fml(s0) and Fml(Sg). Let a =

(prea, adda, dela) be an action with adda = {p1, . . . , pk} and dela =

{q1, . . . , ql}. We associate to a the DL-PA program

pgm(a) = prea?; p1←⊤; · · · ; pk←⊤; q1←⊥; · · · ; ql←⊥

Given a set of actions A = {a1, . . . , an}, the DL-PA program
(

pgm(a1) ∪ · · · ∪ pgm(an)
)∗

describes all possible finite sequences

of actions from A. Similarly,
(

pgm(a1)− ∪ · · · ∪ pgm(an)−
)∗

describes

all possible finite sequences of the converse of actions from A. Con-

sider the formulas

Reachable(Sg, A) =
〈(

pgm(a1) ∪ · · · ∪ pgm(an)
)∗〉

Fml(Sg)

Reachable(s0, A
−) =

〈(

pgm(a1)− ∪ · · · ∪ pgm(an)−
)∗

)

〉

Fml(s0)

The former is true at all those states from which Sg can be reached,

and the latter at all those states that can be reached from s0.

Proposition 10. Let Π = (A, s0, Sg) be a planning task. Π is solvable

if and only if Fml(s0)→ Reachable(Sg, A) is DL-PA valid.

In the rest of the section we focus on task modification.

Proposition 11. Let Π = (A, s0, Sg) be a planning task.

1. The set of states from which Sg is reachable that only differ from

s0 in P and are closest to s0 equals

s0 ⋄
forbus
P

∣

∣

∣

∣

∣

∣Reachable(Sg, A)
∣

∣

∣

∣

∣

∣ =
∣

∣

∣

∣

∣

∣

〈

updforbus
P

(

Reachable(Sg, A)
)−

〉

Fml(s0)
∣

∣

∣

∣

∣

∣

2. The set of states reachable from s0 that only differ from Sg in P

and are closest to Sg equals

Sg ∗
dalal
P

∣

∣

∣

∣

∣

∣〈pgm(a1)− ∪ · · · ∪ pgm(an)−
)∗
〉Fml(s0)

∣

∣

∣

∣

∣

∣ =
∣

∣

∣

∣

∣

∣

〈

revdalal
P

(

Reachable(s0, A
−),Fml(Sg)

)−
〉

⊤
∣

∣

∣

∣

∣

∣

7 CONCLUSION

We have given logical definitions of three kinds of planning task

modification and have shown how they can be embedded into DL-PA.

Instead of Forbus update and Dalal revision we might as well use

other belief change operations, such as Winslett’s Standard Seman-

tics update WSS, Winslett’s Possible Models Approach update PMA,

or Satoh’s revision: each of them can be embedded into DL-PA [7].

We have supposed that the initial state is completely described. A

natural generalisation of our approach is to allow for incomplete ini-

tial state descriptions, as done in conformant planning. The resulting

initial state modification problem has the same characteristics as the

goal modification problem: just as for the former, it can be argued

that update is inappropriate and that it requires revision.

REFERENCES

[1] Philippe Balbiani, Andreas Herzig, and Nicolas Troquard, ‘Dynamic
logic of propositional assignments: a well-behaved variant of PDL’, in
Proc. LICS, ed., O. Kupferman, pp. 143–152. IEEE, (2013).

[2] Mukesh Dalal, ‘Investigations into a theory of knowledge base revi-
sion: preliminary report’, in Proc. 7th Conf. on Artificial Intelligence

(AAAI’88), pp. 475–479, (1988).
[3] Luis Fariñas del Cerro, Andreas Herzig, and Ezgi Iraz Su, ‘Combining

equilibrium logic and dynamic logic’, in LPNMR, eds., Pedro Cabalar
and Tran Cao Son, volume 8148 of Lecture Notes in Computer Science,
pp. 304–316. Springer, (2013).

[4] Kenneth D. Forbus, ‘Introducing actions into qualitative simulation’,
in Proc. 11th Int. Joint Conf. on Artificial Intelligence (IJCAI’89), ed.,
N. S. Sridharan, pp. 1273–1278. Morgan Kaufmann Publishers, (1989).

[5] Moritz Göbelbecker, Thomas Keller, Patrick Eyerich, Michael Bren-
ner, and Bernhard Nebel, ‘Coming up with good excuses: What to do
when no plan can be found’, in ICAPS, eds., R.I. Brafman, H. Geffner,
J. Hoffmann, and H.A. Kautz, pp. 81–88. AAAI, (2010).

[6] David Harel, Dexter Kozen, and Jerzy Tiuryn, Dynamic Logic, MIT
Press, 2000.

[7] Andreas Herzig, ‘Belief change operations: a short history of nearly ev-
erything, told in dynamic logic of propositional assignments’, in Proc.

KR 2014, eds., C. Baral and G. De Giacomo. AAAI Press, (2014).
[8] Andreas Herzig, Emiliano Lorini, Frédéric Moisan, and Nicolas Tro-

quard, ‘A dynamic logic of normative systems’, in Proc. IJCAI, ed.,
T. Walsh, pp. 228–233, Barcelona, (2011). IJCAI/AAAI.

[9] Andreas Herzig, Pilar Pozos Parra, and François Schwarzentruber, ‘Be-
lief merging in Dynamic Logic of Propositional Assignments’, in Proc.

FolKS 2014, eds., C. Beierle and C. Meghini, pp. 381–398. Springer,
LNCS, (2014).

[10] Andreas Herzig and Omar Rifi, ‘Propositional belief base update and
minimal change’, AI Journal, 115(1), 107–138, (1999).

[11] Hirofumi Katsuno and Alberto O. Mendelzon, ‘On the difference be-
tween updating a knowledge base and revising it’, in Belief revision,
ed., Peter Gärdenfors, 183–203, Cambridge University Press, (1992).

[12] Jérôme Lang, ‘Belief update revisited’, in Proc. IJCAI 2007, pp. 2517–
2522, (2007).

[13] Jérôme Lang, Paolo Liberatore, and Pierre Marquis, ‘Propositional in-
dependence: Formula-variable independence and forgetting’, J. AI Re-

search (JAIR), 18, 391–443, (2003).
[14] M Viviane Menezes, Leliane N de Barros, and Silvio do Lago Pereira,

‘Planning task validation’, SPARK 2012, 48, (2012).
[15] Vitaly Mirkis and Carmel Domshlak, ‘Abstractions for oversubscription

planning’, in Proc. ICAPS, eds., D. Borrajo, S. Kambhampati, A. Oddi,
and S. Fratini. AAAI, (2013).

[16] David E. Smith, ‘Choosing objectives in over-subscription planning’, in
ICAPS, eds., Shlomo Zilberstein, Jana Koehler, and Sven Koenig, pp.
393–401. AAAI, (2004).

[17] Mary-Anne Winslett, ‘Reasoning about action using a possible models
approach’, in Proc. 7th Conf. on Artificial Intelligence (AAAI’88), pp.
89–93, St. Paul, (1988).

