
HAL Id: hal-01399875
https://hal.science/hal-01399875

Submitted on 21 Nov 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Autonomous Pareto Front Scanning using a Multi-Agent
System for Multidisciplinary Optimization

Julien Martin, Jean-Pierre Georgé, Marie-Pierre Gleizes, Mickaël Meunier

To cite this version:
Julien Martin, Jean-Pierre Georgé, Marie-Pierre Gleizes, Mickaël Meunier. Autonomous Pareto Front
Scanning using a Multi-Agent System for Multidisciplinary Optimization. 16th International Con-
ference on Mathematical Methods, Computational Techniques and Intelligent Systems (MAMECTIS
2014), Oct 2014, Lisbonne, Portugal. pp.20-29. �hal-01399875�

https://hal.science/hal-01399875
https://hal.archives-ouvertes.fr

Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/
Eprints ID : 15233

The contribution was presented at MAMECTIS 2014:
http://wseas.org/cms.action?id=7764

To cite this version : Martin, Julien and Georgé, Jean-Pierre and Gleizes, Marie-
Pierre and Meunier, Mickaël Autonomous Pareto Front Scanning using a Multi-
Agent System for Multidisciplinary Optimization. (2015) In: 16th International
Conference on Mathematical Methods, Computational Techniques and
Intelligent Systems (MAMECTIS 2014), 30 October 2014 - 1 November 2014
(Lisbonne, Portugal).

Any correspondence concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

Autonomous Pareto Front Scanning using a Multi-Agent System for

Multidisciplinary Optimization

J. Martin, J.-P. Georgé, M.-P. Gleizes

IRIT, University of Toulouse

118 Route de Narbonne, Toulouse

FRANCE

{martin, george, gleizes}@irit.fr

Mickaël Meunier

SNECMA Villaroche

Rond Point René Ravaud - Réau

77550 Moissy-Cramayel

FRANCE

mickael.meunier@snecma.fr

Abstract: Multidisciplinary Design Optimization (MDO) problems can have a unique objective or be multi-

objective. In this paper, we are interested in MDO problems having at least two conflicting objectives. This

characteristic ensures the existence of a set of compromise solutions called Pareto front. We treat those MDO

problems like Multi-Objective Optimization (MOO) problems. Actual MOO methods suffer from certain limita-

tions, especially the necessity for their users to adjust various parameters. These adjustments can be challenging,

requiering both disciplinary and optimization knowledge. We propose the use of the Adaptive Multi-Agent Sys-

tems technology in order to automatise the Pareto front obtention. ParetOMAS (Pareto Optimization Multi-Agent

System) is designed to scan Pareto fronts efficiently, autonomously or interactively. Evaluations on several aca-

demic and industrial test cases are provided to validate our approach.

Key–Words: Pareto Front, Adaptive Multi-Agent System, Multi-Objective Optimization

1 Introduction

MDO (Multidisciplinary Design Optimization) prob-

lems, as their name indicate, intricate several disci-

plines in the same problem, each bringing into it its

own objectives and constraints. It can be, for instance,

the design of a car engine, where we want to maximize

the power (mechanics), while minimising the noise

(acoustics). Let us call this problem p1. MDO prob-

lems are not necessarily multi-objective. We can for

instance remove the acoustic objective but still keep

the corresponding discipline present (variables, cal-

culating models). This reformulated problem has a

unique optimal solution, the one that maximizes the

power. But MDO problems that have at least two con-

tradictory objectives possibly admit an infinity of so-

lutions, each solution being a compromise in the ob-

jective search space. This is the case of p1, illustrated

in figure 1. A and C are extrema solutions. Solution

point A represents the most silent engine possible but

also the least powerful. On the contrary, C represents

the most powerful but also the most noisy. The set

of points between them are compromises of these two

objectives, such as the point B.

In general, obtaining the complete set of these so-

lutions is costly in MOO (Multi-Objective optimiza-

tion) [6, 19] as it is necessary to discover and filter,

among a cloud of solutions, those that are part of the

Pareto front. There is a real need in industry for meth-

A

B

C

Engine power

E
n
g
in

e
n
o
is

e

Pareto Front

D

Figure 1: Illustration of the p1 problem

ods enabling to reduce the cost of these calculations.

Indeed, being able to provide the user with the set

of compromise solutions in a reasonable delay allows

him to rapidly select those that correspond to his cur-

rent needs. Automatically obtaining this set of solu-

tions in an efficient way is the scientific challenge of

our study.

We are going to present how MOO problems are

formulated, followed by two notions in relation with

the Pareto concept.

1.1 MOO Problem Formulation

A MOO problem is written under the following form:

Minimize f(x) = (f1(x), . . . , fp(x))

Subject to gi(x) ≤ 0, i = 1, . . . ,m
(1)

A MOO problem is constitued by variables, a

number p of objective functions f (p ≥ 2) and a num-

ber m of constraint functions g. Any of these func-

tions can be non linear, eventually everyone [10]. The

objectives can be dependent or independent, and are

often difficult to compare (a cost and a duration for

instance).

1.2 Pareto Optimality

Using the formulation of equation 1, here is how are

mathematically defined two key Pareto concepts [1].

Definition 1 (Dominance in the Pareto sense) Let

us consider a MOO problem with p minimization

objectives. Let u=(u1,. . . ,up) and v=(v1,. . . ,vp) be

two vectors of the values of the objectives for two

different solutions. It is said that u dominates v in the

sense of Pareto when and only when

∀i ∈ {1, ..., p}, ui ≤ vi ∧ ∃j ∈ {1, ..., p} : uj < vj

The solution point v is dominated by u as there

is no objective for which v is better. If we refer to

problem p1 illustrated in figure 1, B dominated D.

The solution point D represents an engine both more

noisy and less powerful than the solution point B.

Definition 2 (Pareto optimality) A solution xu is

said to be Pareto optimal if and only of there is no

solution xv for which

v = f(xv) = (v1, ..., vp)

dominates u = f(xu) = (u1, ..., up)

As can be seen again in problem p1 in figure 1, D

is not a Pareto optimal solution as it is dominated by

B for instance. The set of Pareto optimal solutions are

the non dominated solutions [9]. Graphically, in the

objective space, this set forms the Pareto front.

The following section (2) discusses existing

MOO problem solving methods. The multi-agent

system dedicated to the autonomous scanning of the

Pareto front is described in section 3 and the results in

section 4. Finally, section 5 presents ongoing work.

2 Existing Methods

There is a huge diversity of methods for treating MOO

problems. In this part, we will present the two most

used groups of methods, namely the ”classical” meth-

ods and the ”intelligent” methods. After a rapid anal-

ysis of their strengths and weaknesses, we will justify

the use of an Adaptive Multi-Agent System to solve

these kind of problems.

2.1 Classical Methods

Classical methods concentrate on the transformation

of the MOO problem in a mono-objective problem, so

as to be able to use a mono-solution solver. There are

several manners to do this transformation. We can ag-

gregate the objective functions in one function. We

can also keep only one objective function and trans-

form the others into constraints. The resulting prob-

lem admits a unique solution (as there is only one ob-

jective). If we want other solutions on the Pareto front

using these techniques, it is necessary to execute them

several times, modifying the formulation each time,

changing how the transformation of an MOO problem

into a mono-objective problem is done. For instance,

it can be the tuning of the weighting inside the aggre-

gation function.

2.1.1 The Weighted Sum Method

The weighted sum method transforms the MOO prob-

lem into an mono-objective problem in the following

way:

• attribution of a weight wj for each objective

function, a weight representing the relative im-

portance for each objective fj in obtaining a so-

lution [18],

• sum of everything,

• minimization of this sum with a mono-solution

solver.

Minimize Z =

p∑

j=1

wjfj(~x)

with wj ≥ 0 and

p∑

j=1

wj = 1

(2)

To find Pareto optimal solutions using this

method, the user needs to choose a set of weights,

find the first solution, modify the weights, relaunch

the mono-objective solving and so on. Without ex-

pert knowledge of the problem, the choice of these

weights wj can be quite hard. Moreover, if some ob-

jective functions are non linear, a modification of a

weights does not guarantee a different solution. It is

also impossible to find solution points in the concave

zones of the front with this method [15]. Finally, it is

hard to control the repartition diversity of the solution

points in the objective space [18, 4]. Work to enhance

this method has been proposed [11, 15]. Neverthe-

less, specific parameters of these algorithms need to

be correctly initialised to obtain satisfactory results.

2.1.2 The ε-Constraint Method

This method has been created so as to find the Pareto

front by optimising only one objective and treating

the others as constraints. Similar to the weighted sum

methods, the front is obtained by repeatedly using the

method, the user being required to modify the con-

straint bounds between each execution. By noting Ω
for the decision space, this method is formalised as:

Minimize fk(~x), ~x ∈ Ω
with fi(~x) ≤ εi and gj(~x) ≤ 0

i = 1, 2, . . . , p ; i 6= k

j = 1, 2, . . . ,m

(3)

This is again a simple technique to implement, but

very costly in calculation time, especially as there is

no guarantee that the obtained solutions are globally

Pareto optimal [16, 4].

We are here limited to the presentation of

the two most popular classical approaches. There

are others such as the Benson method [2], goal-

programming [3], interactive methods such as

iMOODs [20] and NIMBUS [14]. . .

These approaches show their limits as soon as the

user wants to extract the Pareto optimal solutions in

their entirety:

• The majority of them can at best find a unique

Pareto optimal solution point for each execution.

To find several, the algorithm needs to be exe-

cuted several times, without any guarantee con-

cerning the diversity of the points in regard to the

objective space.

• Some of these approaches are incapable of find-

ing solutions in the zones where the Pareto front

is non convex, as is the case for the weighted sum

method. Some research was done to fix this [15],

but only for problems with two objectives, the

scaling up still needs to be demonstrated.

• All these approaches require user information,

on which depend the quality of the solutions.

These are the weights for the pondered sum

method or the bounds for the ε-contraint method.

The choice of those informations is generally dif-

ficult and requires from the user expert knowl-

edge on the application domain or the algorithm,

or even both.

The intelligent approaches appeared to tackle

these problems. They are part of the a posteriori ap-

proaches, for which the user intervenes afterwards the

solving to choose the solution point.

2.2 The intelligent methods

Contrary to the classical approaches, these methods

try to generate the Pareto front by considering each

objective as it is. Progress in calculation power and

the development of population based algorithms con-

tributed to their emergence. One of the advantages

over classical methods is that they manage to evalu-

ate several solutions at each iteration. Moreover, they

bring a greater ease of use, particularly when no a

priori knowledge is available, which is the case for

most real-world industrial problems. The evolution-

ary methods are part of the intelligent methods [5].

They simulate a biological process of evolution in a

population of candidate solutions so as to guide them

towards the Pareto front. These solutions are sub-

jected to mutation and crossing operations, produc-

ing a new generation of solutions at each iteration,

and only a set of the best are kept during execution.

The difficulty is to manage to guide them towards the

front while guaranteeing the repartition diversity on

the whole front. The evolutionary methods regroup

genetic algorithms, evolutionary algorithms, as well

as evolution strategies. These three categories differ

on the way the solutions are evaluated as well as on the

mutation and crossing operators they use. To illustrate

the intelligent methods, we are going to present the

NSGA genetic algorithm, which has the particularity

to directly integrate Pareto concepts in its functioning.

2.2.1 Non-Dominated Sorting Genetic Algorithm

(NSGA)

NSGA is a genetic algorithm based on the idea pro-

posed by Goldberg to sort the solutions by their

dominance ranking in the Pareto sense [7]. Srini-

vas and Deb used Goldberg’s work and implemented

NSGA [17] so as to use the non dominance rank to

evaluate the quality of the solutions: the less there

exists solutions dominating s1 among the candidate

population, the more favourably s1 is evaluated.

To run a genetic algorithm, it is necessary to have

an initial solution population. We are going to sim-

ulate the execution of NSGA starting from the popu-

lation illustrated in figure 2. The initial population is

composed of 8 solutions. The Pareto front is also rep-

resented. An iteration of NSGA is composed of the

following phases:

• sorting of the solutions based on their non domi-

nance rank,

• use of this information in the application of the

evaluation function,

• selection, mutation and crossing (3 common op-

erations in genetic algorithms).

First, the algorithm sorts the whole population de-

pending on their non dominance rank. No solution

dominates points 1, 2 and 3, and so they constitute

front 1. The algorithm will now ignore points 1, 2, 3

and find the new non dominated solution : 4, 5 and 6

(front 2). Front 3, composed by solutions 7 and 8 is

determined using the same manner. We obtain mutu-

ally exclusive solution classes, each class being con-

tained in a distinct front, as illustrated in figure 2.

f2

f1

1

2 3

4

5 6

7

8

front 1

front 2

front 3

Pareto Front

Figure 2: The different front ranks

After this sorting phase, NSGA evaluates the so-

lutions. This algorithm favours the solutions which

are nearer to the Pareto front, so it is important to

note that any solution in a front ranked n will have

a lower score that one from a front ranked n-1, and

this in a transitive manner. In a second time, NSGA

will diminish the score of the solutions depending of

the number of other solutions in their neighbourhood.

This choice from Srinivas and Deb is related to the

work of Goldberg and Richardson [8] who proposed

to degrade the score of similar solution rather than

merge them. The user have to choose the parameters

for calculating the neighbourhood. It has been shown

that the performance of NSGA are impacted by this

choice [17].

These methods require, as with the classical

methods, to fix specific parameters required for the

functioning (neighbourhood, but also population size,

selection, mutation and crossover rates, etc.). More-

over, calculation costs increase enormously with the

increase in the number of objectives and population

size. The aim of the use of an Adaptive Multi-Agent

System to obtain the Pareto front is to remove the need

for algorithm parameters, these systems being able to

learn during the solving. Moreover, the multi-agent

system, by taking control of an underlying solver with

a set of specific characteristics, is able to move along

the Pareto front and scan for new solutions in an au-

tonomous and efficient way.

3 The ParetOMAS system

The algorithm scanning the Pareto front is consti-

tuted by an Adaptive Multi-Agent System we call

ParetOMAS (Pareto Optimization Multi-Agent Sys-

tem). This system makes use of an underlying mono-

solution solver1 that it will control so as to automat-

ically build the Pareto front of any given problem,

without the need of human intervention (but allowing

interaction if convenient).

Graphical tools have been developed so as to vi-

sualize the Pareto front building as it is occurring in

the objective space. ParetOMAS allows interaction:

the user can at any time request a search direction for

the following solutions. The user can also modify its

preferences concerning solution precision as well as

solution spacing. ParetOMAS is able to take into ac-

count these changes during execution.

As a result, the underlying solver needs to satisfy

specific criteria:

• being able to signal that it has converged under a

given precision,

• being able to bestow more or less importance to

objectives during the solving,

• being able to accept the modification of the de-

scription of a problem, for instance the transfor-

mation of a minimization in a maximization ob-

jective, during solving.

During the ID4CS2 project, a mono-solution

multi-agent system solver has been developed [13,

12]. It constitutes a solver compatible with Pare-

tOMAS and will be used to obtain the results pre-

sented in section 4.

ParetOMAS can be activated or deactivated at any

time by the user without stopping the solver. Fig-

ure 3 represents the interaction diagram between Pare-

tOMAS, the solver and the user.

When it is activated, its role is to efficiently ori-

ent the search of new solution points in the objective

space, so as to obtain a solution set constituting the

Pareto front, in accord with the preferences of the user

concerning precision, distribution, number of points,

etc. The solver finds a solution point, ParetOMAS

detects this and sends a new request to the solver so

that it can find a new solution point. The coupled sys-

tem {ParetOMAS, solver} constitutes a new adaptive

multi-solution solver.

1Solver that provides a unique solution, in opposition to a

solver that provides a set of solutions
2Integrative Design for Complex Systems - www.irit.fr/id4cs

ParetoSolution

agents

notifications

preferences

observation

interactions

User

ParetoGuide

agent
Solver

pre
fer
en
ce
s

ParetOMAS

Figure 3: Interaction diagram of ParetOMAS

ParetOMAS is composed of two types of agents:

a ParetoGuide agent and ParetoSolutions agents. The

user has access to a dedicated interface to input its

preferences (distance between solution points, choice

of a search direction . . .). The two following sub-

sections present the roles of these two agent types,

describe their behaviour, interaction and life-cycle.

3.1 The ParetoGuide Agent

The ParetoGuide agent constitutes an interaction hub

between the user, the solver and the ParetoSolution

agent. There is only one ParetoGuide per instance of

ParetOMAS. Its role is to take into account the pref-

erences of the user and those of the ParetoSolution

agents during execution. Its nominal behaviour is de-

scribed by the algorithm 1. Each time a solution point

is found by the solver, ParetoGuide creates a Pare-

toSolution agent representing this new point.

The user can inform the system of a direction

preference for the scanning of the front. The Pare-

toSolution agents can do the same. If the user is mak-

ing a choice, ParetoGuide ignores the requests from

the ParetoSolutions agents and takes into account the

one from the user. If this is the case but there is an im-

possibility (boundaries of the problem for instance),

ParetoGuide then defaults on the preferences of the

ParetoSolution agents while signalling to the user why

it could not comply. In any case, ParetoGuide then

sends a corresponding request to the solver so that it

is able to find a new solution in the chosen direction.

This behaviour is illustrated in figure 4.

3.2 The ParetoSolution Agents

The role of the ParetoSolution agents is to orient Pare-

toGuide in the objective space so as to obtain an effi-

cient scanning and a relevant resulting front. These

if Solver has found a solution then

Creation of a ParetoSolution agent;

if User is forcing a direction then

Send a request to the solver favouring this

direction;

else

Inquire of direction preferences from the

ParetoSolution agents;

Send a request to the solver favouring

this direction;

end

end

Algorithm 1: Nominal behaviour of the ParetoGuide

agent

agents are created dynamically by ParetoGuide as de-

scribed previously. Each ParetoSolution agent pos-

sesses, in the objective space, a neighbourhood of

other ParetoSolution agents. This neighbourhood is

defined, for each ParetoSolution agent, by the set of

ParetoSolution agents being located at or under a eu-

clidean distance d, defined by the user (as it will rep-

resent the structure of the front at the end)3.

A ParetoSolution agent sends requests to Pare-

toGuide so as to obtain a neighbourhood that satisfies

it. This is translated by ParetoGuide into a direction

in which to scan the objective space. The user, by

diminishing d, increases the sampling of the Pareto

front, and the other way round. d can be modified

any time during execution. A ParetoSolution agent

can also send a request to be ”shifted” in the objective

space so as to enhance the homogeneity of the sam-

pling (if the user wants a perfect ”grid” as a Pareto

plan for instance).

Information given to a ParetoSolution agent at

creation are:

• its coordinates in the objective space,

• the state of the corresponding input variables,

• the objective values initially aimed at by Pare-

toGuide,

• the calculation time needed to obtain this solu-

tion,

• its neighbourhood of ParetoSolution agents (pos-

sibly empty),

• the calculation time of the neighbourhood.

Each time a new ParetoSolution agent is created,

it notifies the agents situated in its neighbourhood for

3It can be noted that contrary to the evolutionary methods, this

distance has no direct impact on the solving, only on the end result

Agent

Pareto Solution A

notifications
preferences

observation

interactions

User

Agent

Pareto Guide
Solver

pref
ere

nce
s

ParetOMAS

A

B

C

Objective 1

O
b
je

ct
iv

e
2

direction

Agent

Pareto Solution B

Agent

Pareto Solution C

Figure 4: ParetOMAS during execution, three solutions points have been found

them to update their knowledge. It then adopts a nom-

inal behaviour as described in algorithm 2.

if Unsatisfactory neighbourhood then

Send a request to ParetoGuide for a chosen

search direction;

else if Non homogeneous placement then

Send a request to ParetoGuide for a chosen

shift direction

end

Algorithm 2: Nominal behaviour of the ParetoSolu-

tion agents

4 Implementation And Feasibility

Proof

ParetOMAS is currently in a prototype state. The user

is provided with a temporary graphical interface for

him to input its preferences, such as the distance be-

tween solution points and optional search direction

preferences. The Pareto front scanning is observable

in real time for problem with two or three objectives.

ParetOMAS has been tested on continuous and dis-

continuous Pareto fronts.

4.1 Continuous Pareto Front

The test case we show here admits a continuous Pareto

front. It is a topology for which the ParetOMAS

agents have the simplest behaviours.

4.1.1 TurboFan

This test case is provided by Snecma 4 as a study case.

The goal is to optimise output parameters of a classic

double flux turbo-reactor (civil plane engine) as illus-

trated in figure 5. This problem uses thermodynamic

models. The two output parameters to optimise are

the consumption s which needs to be minimized and

the thrust Tdm0 which needs to be maximized, both

being contradictory. The two input variables are the

dilution rate bpr and the pressure ratio pic. The dilu-

tion rate represents the ratio between the air volume

aspirated by the blower and the air volume reaching

the low pressure compressor. The pressure ratio is the

ration between the pressure produced by the compres-

sors and the initial pressure of the environment. bpr
and pic each have their validity range and we want to

obtain all the couples of compromise solutions.

The results obtained by ParetOMAS are seen in

figure 6. The space between the solution points can

be chosen by the user and an arbitrary value has been

used here. This problem is well known by Snecma and

the documentation indicates that all the Pareto front

points have in fact as a corresponding input value the

variable pic at 40, and any value of bpr then gives a

Pareto optimal solution. This is verified by the solu-

tion found by ParetOMAS. Figure 7 superposes these

solutions with a graphical representation of the front

obtained by exhaustive calculation (fixing pic at 40

and adjusting bpr over its complete range).

4.2 Discontinuous Pareto Front

The two following test cases present a discontinuous

Pareto front. This induces a risk that the solver used

4
www.snecma.com

Figure 5: A TurboFan Engine (CC BY-SA K. Aain-

sqatsi)

Figure 6: The set of solutions proposed by Pare-

tOMAS for the TurboFan problem

by ParetOMAS stops in a local minimum. This situa-

tion requires a secondary behaviour for ParetoGuide,

enabling it to guide the solver out of a local minima.

This exploration mechanism will be explained and re-

sults will be shown for a problem with two objectives

and one with three objectives.

4.2.1 A problem With Two Objectives

This problem has been artificially generated to con-

front ParetOMAS to two contradictory objectives with

a discontinuous Pareto front. The problem is consti-

tuted by a unique calculation model that describes the

topology of the front. This model has two input vari-

ables x and y, and two output variables X and Y that

require minimization:

Figure 7: Superposition of the real Pareto front with

the points obtained by ParetOMAS on the TurboFan

problem

X = x

Y = 1
x
+ 30

50(x−.2)(x−.2)+1 + 20
40(x−.6)(x−.6)+1 + y2

The output Y is the sum of 4 functions:

• h(x) = 1
x

• k(x) = 30
50(x−.2)(x−.2)+1

• t(x) = 20
40(x−.6)(x−.6)+1

• w(x) = y2

The sum of h, k and t results in a non-

monotonous function, illustrated figure 8, which ad-

mits 2 local minima, A and B. Finaly, function

w is added to make the search space above h(x) +
k(x) + t(x) admissible. The Pareto optimal solutions

of this problem are situated on the curve described by

h(x) + k(x) + t(x).
Figure 9 shows the solutions obtained by Pare-

tOMAS. Initial values of the input variables have been

chosen such that the first discovered solution point is

C on figure 8. The objective Y is favoured compared

to objective X , thus the scanning direction goes from

left to right. ParetOMAS discovers the solutions be-

tween points C and A. When it arrives at A, the solver

is blocked in a local minimum: it is not possible, lo-

cally, to improve Y by following the curve. Pare-

tOMAS, by a decision of ParetoGuide commutes to an

exploration mode to extract the system from the local

minimum. For this ParetoGuide temporarily redefines

the problem:

• recording of the value of the objective that was

initially favoured,

A

B

A'

B'

C

D

Figure 8: X = x and Y = h(x) + k(x) + t(x)

• inversion of the nature of the other objective

(minimization becomes maximization, and the

other way round),

• inversion of the favouring of objectives,

• surveillance of the evolution each new point cal-

culated by the solver so as to detect the moment

when the value of the objective that was initially

favoured becomes better than the value recorded

before exploration,

• reformulation back to the initial problem.

This is how it is translated when the system ar-

rives at point A. The favoured objective is Y , Pare-

toGuide records its value (31.55). X and Y have both

minimization objectives. The objective on X becomes

a maximization objective and becomes the favoured

objective. The minimization objective on Y , while

not favoured compared to X , is still maintained so

that the solver, by taking it into account, tends to-

wards the curve. The problem is temporarily trans-

formed and has a unique solution at point D. Visually,

we can see that the current working point moves from

A to A’ while staying stuck to the curve. When this

point oversteps A’, ParetoGuide detects that the value

of Y becomes better than when it was at point A and

switches back to the initial formulation of the prob-

lem. The objective on X becomes a minimization ob-

jective again and the objective on Y is favoured again

for the solving. ParetOMAS then discovers the solu-

tions between A’ and B, and is blocked again in a local

minimum. Commuting again in exploration mode, it

finds the solutions between B’ and D.

The solutions discovered by ParetOMAS are vis-

ible on figure 9. Figure 10 superposes these solution

to the function h(x)+ k(x)+ t(x) responsible for the

topology of the front. For each point proposed, we

can verify that input variable y is equal to zero, which

shows that the point is indeed on the front and by com-

paring Y that it is a Pareto optimal solution.

Figure 9: Solutions obtained on the non-monotonous

problem with 2 objectives

Figure 10: Superposition of the obtained solutions

with the real curve on which the front is located (the

two ”hills” are not part of the front)

4.2.2 A Problem With Three Objectives

This problem has been artificially generated in the

same spirit as the previous. But this time there are

three objectives, the front is a surface (Pareto plan).

The problem has a unique calculation model respon-

sible for the topology of the front, takes three input

variables x, y and z, as well as three output variables

X , Y and Z requiring minimization:

X = x

Y = y

Z = −20
0.002(x2+y2)+1

− 5

0.05(
√

x2+y2−30)(
√

x2+y2−30)+1
+ z2

output Z is the sum of 3 functions:

• q(x, y) = −20
0.002(x2+y2)+1

• r(x, y) = − 5

0.05
√

x2+y2−30)(
√

x2+y2−30)+1

• c(z) = z2

q(x, y)+r(x, y) is represented in figure 11. Those

two functions have been chosen so as to create a sort

of basin with an infinity of local minima, enabling the

testing of the exploration mode on 3 objectives.

Figure 11: q(x, y) + r(x, y)

Function c is added to make the search space

above q(x, y) + r(x, y) admissible. The Pareto

optimal solutions of this problem are illustrated

figure 12 : it is the colored region of the surface.

Figure 12: Pareto optimal solutions

The solutions discovered by ParetOMAS are visi-

ble on figure 13. For each point proposed, we can ver-

ify that input variable z is equal to zero, which shows

that the point is indeed on the Pareto front.

5 Ongoing Works

ParetoGuide Behavior Refinement The ParetoGu-

Figure 13: Solutions obtained on the three objectives

problem

ide behavior is continuously updated in order to

optimize its operation with the ID4CS solver. The

most challenging part of this work is the translation

of the user and ParetoSolutions directions preferences

into something understandable by ID4CS. Our ap-

proach is generic and would work with compatible

solver. We work on a generic communication protocol

between ParetOMAS and the solver.

ParetoSolution Agents The behavior of those

agents described in subsection 3.2 is not totally

implemented. Those agents don’t use all the informa-

tions they have and so are currently suboptimal. The

precision toward the prefered directions they send

to ParetoGuide will improve with their refinement,

making ParetOMAS more effective.

Problems Generator In order to validate our

approach, a problems generator is developed. The

objective is to be able to automatically generate a

great number of problems having various topologies

(continuous, discontinuous, convexe, concave...). A

metrics system allowing the automatic evaluation of

the obtained solutions is also developed (calculation

time, distance from the pareto front, homogeneous

distribution...).

Academic benchmarks comparison We are

reviewing academic benchmarks in order to compare

our approach with other optimization methods.

Real-World Industrial Problems ParetOMAS

will be tested on real-world industrial problems with

SNECMA problems. This will validate the scalability

of ParetOMAS with problems having 4 or more

objectives.

Acknowledgements: We want to thank Snecma

and the french National Association for Research and

Technology for financing this work.

References:

[1] A. Ben-Tal. Characterization of pareto and lex-

icographic optimal solutions. In G. Fandel and

T. Gal, editors, Multiple Criteria Decision Mak-

ing Theory and Application, volume 177 of Lec-

ture Notes in Economics and Mathematical Sys-

tems, pages 1–11. Springer Berlin Heidelberg,

1980.

[2] H. Benson. Existence of efficient solutions for

vector maximization problems. Journal of Op-

timization Theory and Applications, 26(4):569–

580, 1978.

[3] A. Charnes and W. Cooper. Goal program-

ming and multiple objective optimizations: Part

1. European Journal of Operational Research,

1(1):39 – 54, 1977.

[4] C. A. C. Coello. A comprehensive survey of

evolutionary-based multiobjective optimization

techniques. Knowledge and Information sys-

tems, 1(3):269–308, 1999.

[5] K. Deb. Multi-objective optimization using evo-

lutionary algorithms, volume 16. John Wiley &

Sons, 2001.

[6] J. Dréo, A. Pétrowski, P. Siarry, and E. Taillard.

Metaheuristics for Hard Optimization: Methods

and Case Studies. Springer, 2006.

[7] D. E. Goldberg et al. Genetic algorithms in

search, optimization, and machine learning, vol-

ume 412. Addison-wesley Reading Menlo Park,

1989.

[8] D. E. Goldberg and J. Richardson. Genetic algo-

rithms with sharing for multimodal function op-

timization. In Genetic algorithms and their ap-

plications: Proceedings of the Second Interna-

tional Conference on Genetic Algorithms, pages

41–49. Hillsdale, NJ: Lawrence Erlbaum, 1987.

[9] J. Horn. Multicriterion decision making. In

T. Back, D. B. Fogel, and Z. Michalewicz, ed-

itors, Handbook of Evolutionary Computation.

IOP Publishing Ltd., Bristol, UK, UK, 1st edi-

tion, 1997.

[10] C. L. Hwang, A. S. M. Masud, et al. Multiple

objective decision making-methods and applica-

tions, volume 164. Springer, 1979.

[11] Y. Jin, M. Olhofer, and B. Sendhoff. Dynamic

weighted aggregation for evolutionary multi-

objective optimization: Why does it work and

how?, 2001.

[12] T. Jorquera. An adaptive multi-agent system

for self-organizing continuous optimization. Phd

thesis, University of Toulouse, Toulouse, France,

septembre 2013.

[13] T. Jorquera, J.-P. Georgé, M.-P. Gleizes, and

C. Régis. A Natural Formalism and a Mul-

tiAgent Algorithm for Integrative Multidisci-

plinary Design Optimization (regular paper).

In IEEE/WIC/ACM International Conference

on Intelligent Agent Technology (IAT), Atlanta,

USA, 17/11/2013-20/11/2013, page (on line),

http://www.computer.org, 2013. IEEE Computer

Society.

[14] M. M. M. Kaisa Miettinen. Interactive multiob-

jective optimization system www-nimbus on the

internet. Computers and Operations Research,

27(7-8):709–723, 2000.

[15] I. Kim and O. de Weck. Adaptive weighted-sum

method for bi-objective optimization: Pareto

front generation. Structural and Multidisci-

plinary Optimization, 29(2):149–158, 2005.

[16] U. Nangia, N. Jain, and C. Wadhwa. Surrogate

worth trade-off technique for multi-objective op-

timal power flows. In Generation, Transmis-

sion and Distribution, IEE Proceedings-, vol-

ume 144, pages 547–553. IET, 1997.

[17] N. Srinivas and K. Deb. Muiltiobjective op-

timization using nondominated sorting in ge-

netic algorithms. Evolutionary computation,

2(3):221–248, 1994.

[18] M. T. Tabucanon. Multiple criteria decision

making in industry. Elsevier Amsterdam, 1988.

[19] E.-G. Talbi. Metaheuristics - From Design to

Implementation. Wiley, 2009.

[20] R. Tappeta, J. Renaud, and J. Rodrı́guez. An

interactive multiobjective optimization design

strategy for decision based multidisciplinary de-

sign. Engineering Optimization, 34(5):523–544,

2002.

