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ABSTRACT

The identification of texture changes is a challenging problem

that can be addressed by considering local regularity fluctu-

ations in an image. This work develops a procedure for lo-

cal regularity estimation that combines a convex optimization

strategy with wavelet leaders, specific wavelet coefficients re-

cently introduced in the context of multifractal analysis. The

proposed procedure is formulated as an inverse problem that

combines the joint estimation of both local regularity expo-

nent and of the optimal weights underlying regularity mea-

surement. Numerical experiments using synthetic texture in-

dicate that the performance of the proposed approach com-

pares favorably against other wavelet based local regularity

estimation formulations. The method is also illustrated with

an example involving real-world texture.

Index Terms— Local regularity, variational approach,

convex optimization, wavelet leaders

1. INTRODUCTION

Wavelet decompositions are now well recognized as sparsify-

ing transforms and have been widely used in contexts of im-

age compression and restoration [1, 2]. Another very useful

property of wavelet transforms found, so far, less widespread

use in the field of image processing: their ability to evidence

and measure scale invariance (cf., e.g., [3, 4, 5, 6, 7]). No-

tably, wavelet transforms have been shown to be relevant tools

for the estimation of local regularity [5]. The earliest contri-

bution to this subject traces back to [3], where the skeleton

(maxima lines across scales) of the continuous wavelet trans-

form is shown to enable practitioners to identify irregular (i.e.,

non-smooth) behavior in signals. By imposing an additional

monotonicity constraint on the skeleton, the wavelet trans-

form modulus maxima (WTMM) formalism has been further

developed in, e.g., [4] to precisely measure Hölder exponents

h. These constitute the canonical theoretical quantities for the

measurement of local regularity and for performing multifrac-

tal analysis. More recently, it has been shown that accurate es-

timates of local regularity can be obtained using wavelet lead-

ers (WL), specific multiresolution quantities that have been

demonstrated to precisely reproduce Hölder exponents theo-

retically [5, 6]. Wavelet leaders are defined as local suprema
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of the coefficients of the dyadic wavelet transform and inherit

their computational efficiency, see, e.g., [6, 7] and Section 2

below for more precise definition.

Both the WTMM and the WL have been extensively used

to perform multifractal analysis of real-world signals and im-

ages (see [8, 6, 9, 10] and references therein for examples

of successful applications). In contrast to local regularity es-

timation, multifractal analysis does not aim at the time- or

space-resolved estimation of h but rather provides a global

and geometric description of the fluctuations of h in an image

in terms of the so-called multifractal spectrum. However, for

certain applications, the central information of interest is pre-

cisely the evolution along time or space of the Hölder expo-

nent. In this case, multifractal analysis is not directly relevant.

Instead, direct estimation of the local regularity evolution,

sometimes referred to as multifractional analysis, needs to be

performed. Yet, the estimation of h at a precise time/space

location suffers from poor performance that impairs its actual

practical use. Consequently, the estimation of the time/space

evolution of local regularity remains barely used in applica-

tions (see, a contrario, [11, 12]). In particular, local estima-

tion of regularity suffers from a large variance and common

post-processing techniques for variance reduction, such as lo-

cal smoothing, induce significant bias in the estimation of h
and inaccuracies in the localization of changes in regularity.

In a previous contribution [13], we have proposed an orig-

inal two-step procedure that addresses the bias-variance trade-

off difficulty in the specific context of images with piece-wise

constant regularity: (i) Unbiased estimation of the Hölder ex-

ponent for every position in the image using a patch-based

wavelet leaders approach, (ii) Extraction of areas with uni-

form Hölder exponent from these local estimates using a vari-

ational procedure relying on total-variation (TV) [14]. In

the present contribution, we elaborate on this approach and

propose a one-step procedure that directly yields piece-wise

constant local regularity estimates. The originality of the ap-

proach resides in combining estimation of h and the TV de-

noising in a single-step. Through this formulation, an effi-

cient local regularity estimation procedure is designed, yield-

ing significantly increased estimation quality for images with

piece-wise constant texture.

The remainder of this work is organized as follows. Sec-

tion 2 recalls the notion of Hölder exponent, defines wavelet

leaders and the state-of-the-art Hölder exponent estimation



procedure. Section 3 formalizes the estimation of local reg-

ularity explicitly as an inverse problem and details the pro-

posed variational procedure. Section 4 reports experimen-

tal results illustrating the performance of the proposed piece-

wise constant regularity estimation/segmentation procedure.

2. HÖLDER EXPONENT AND WAVELET LEADERS

Loosely speaking, the Hölder exponent h(x) is a positive

quantity that measures the regularity of a function at location

x ∈ R
2 by comparing the evolution along scale of multireso-

lution quantities (cf. (2)) around x against a local power law

behavior (see [5] for a precise definition). Qualitatively, a

small value of the Hölder exponent indicates a locally highly

irregular behavior, close to discontinuous, of the function,

while a large value indicates local smoothness. A simple, ef-

ficient and theoretically well grounded solution to practically

compute h(x) relies on the use of wavelet leaders [6], which

we define in what follows. Note that it has recently been

proven [5] that wavelet leaders enable to measure the Hölder

exponent for much more general classes of bi-dimensional

functions than wavelet coefficients, and with a significantly

improved accuracy [5, 6, 7, 13].

Let f denote the bi-dimensional function taking bounded

values (i.e, the image) to be analyzed. Let φ and ψ denote

respectively the scaling function and mother wavelet defining

a 1D multiresolution analysis. The corresponding 2D ten-

sor product wavelets are defined, for every x = (x1, x2) ∈
R

2, as: ψ(0)(x) = φ(x1)φ(x2), ψ(1)(x) = ψ(x1)φ(x2),
ψ(2)(x) = φ(x1)ψ(x2), and ψ(3)(x) = ψ(x1)ψ(x2). The

collection ψ
(m)
j,k (x) = 2−jψ(m)(2−jx − k) of dilated (to

scales 2j) and translated (to space positions 2jk) templates

of ψ(m) form a basis of L2(R2) for well chosen functions

ψ. The (L1-normalized) discrete wavelet transform (DWT)

coefficient at scale j, location k and subband m ∈ {1, 2, 3} is

defined as d(m)(j, k) = 〈f, 2−jψ
(m)
j,k 〉.

The wavelet leader coefficient L(j, k) is defined, for each

scale j and location k, as the local supremum of all wavelet

coefficients taken within a spatial neighborhood across all

finer scales j′ ≤ j

L(j, k) = sup
m={1,2,3}
λj′,k′⊂Λj,k

|d(m)(j′, k′)|, (1)

where λj,k = [k2j , (k+1)2j) and Λj,k =
⋃

p∈{−1,0,1}2 λj,k+p

[5, 6]. For every x ∼ 2jk, the wavelet leaders reproduce the

Hölder exponent h(x) as follows:

L(j, k) ≃ C(x)2jh(x) (2)

when 2j → 0 and where C(x) denotes a constant. This rela-

tion can be rewritten as:

lnL(j, k) ≃ jh(x) + lnC(x), (3)

which naturally leads to the use of linear regressions across

scales at each location k ∼ 2−jx for the estimation of h(x),
i.e.,

ĥ(x) =
∑

j

w(j, k) lnL(j, k). (4)

Taking the expectations of (3) and (4) above yields

Eĥ(x) = h(x)
∑

j

jw(j, k) + lnC(x)
∑

j

w(j, k), (5)

thus showing that the constraints∑

j

w(j, k) ≡ 0 and
∑

j

jw(j, k) ≡ 1, (6)

ensure an unbiased estimation of h. Due to their local nature

involving only a small number of coefficients, the estimates

(4) have large variance. A straightforward attempt to reduce

the variance consists in local spatial averaging (smoothing)

of h(x). However, local smoothing induces bias and prevents

from accurately locating changes of h in the image. To over-

come this difficulty, a total variation (TV) optimization pro-

cedure, naturally favoring sharp edges, has been proposed in

[13]. It requires the use of estimates of h(x), which are ob-

tained using (4) with fixed pre-defined weights w(j, k). Al-

though this approach yields relevant results, it does not enable

to distinguish areas with Hölder exponents that are too close

in value because the variance of (4) is too large.

In order to reduce the variance of (4), one can attempt

to optimize the weights w(j, k) which reflect the confidence

granted to the quantities lnL(j, k). The variance of lnL(j, k)
depends on the value of the Hölder exponent h(x) at loca-

tion k ∼ 2−jx and the optimal choice of the weights w(j, k)
thus varies from one location to the other. Therefore, we pro-

pose in this article to formulate the estimation of h(x) as an

inverse problem involving jointly the Hölder exponents h(x)
and the weights w(j, k) (constrained only by (6)) as parame-

ters to be estimated. The inverse problem formulation and the

proposed proximal based minimization procedure for finding

its solution are detailed in the following section.

3. INVERSE PROBLEM BASED LOCAL

REGULARITY ESTIMATION

“Degradation” model From now on, we make use of a
discrete time formalism. Let f = (f [n])1≤n≤N denote the
vector representation of the image to be analyzed, of size
N = N1×N2. The orthonormal wavelet transform is labeled
F ∈ R

N×N and the wavelet coefficients of f are denoted
d = (d[n])1≤n≤N = Ff . At each scale j ∈ {1, . . . , J},

Lj : R
N → R

2−2jN denotes the non-linear transform
that associates the wavelet coefficients to the wavelet lead-
ers Lj = (Lj [k])1≤k≤2−2jN (as defined in (1)) such that
Lj = Lj(Ff). A matrix formulation of (4) leads to:

j2∑

j=j1

WjDj lnLj = h+ ε (7)



with 1 ≤ j1 < j2 ≤ J and where ε models the uncertainties

in the estimation, mostly due to the finite range of available

scales. For each j ∈ {j1, . . . , j2}, Wj ∈ R
N×N denotes

a diagonal matrix whose diagonal values are the regression

weights, i.e, Wj = diag(wj) with wj = (wj [n])1≤n≤N ∈

R
N , and Dj ∈ R

N×2−2jN denotes a matrix that duplicates

the signal such that, for every (u, v) ∈ R
2−2jN × R

N , if we

denote u ∈ R
2−jN1×2−jN2 (resp. v ∈ R

N1×N2 ) the ma-

trix representation of u (resp. v), v = Dju means that, for

every (n1, n2) ∈ {1, . . . , N1} × {1, . . . , N2}, v[n1, n2] =
u
[
⌈2−jn1⌉, ⌈2

−jn2⌉
]
.

The model in (7) underlies an inverse problem in which

h = h([n])1≤n≤N need to be recovered from the logarithm

of the wavelet leaders coefficients (lnLj)j1≤j≤j2 . This in-

verse problem resembles a denoising problem, yet including

the additional challenge that a part of the observations (the

regression weights matrices (Wj)j1≤j≤j2 ) is unknown and

must satisfy constraints (6).

Variational approach We propose to estimate the local

regularity h and the regression weight matrices (Wj)j1≤j≤j2

by solving the following minimization problem:

(
ĥ, Ŵ

)
∈ Argmin

h,W

∥∥∥
j2∑

j=j1

WjDj lnLj − h
∥∥∥
2

2
+ λTV(h)

+ η1

N∑

n=1

dC1
(w[n]) + η2

N∑

n=1

dC2
(w[n]) (8)

where W = (Wj1 , . . . ,Wj2) and thus w[n] = (wj1 [n], . . . ,
wj2 [n]) belongs to R

j2−j1+1. The first term denotes a data

fidelity term. Distances to the convex sets C1 and C2, denoted

dC1
and dC2

, are introduced to provide some flexibility in the

hyperplane constraints C1 and C2:

C1 = {(ωj1 , . . . , ωj2) ∈ R× . . .× R |

j2∑

j=j1

ωj = 0},

C2 = {(ωj1 , . . . , ωj2) ∈ R× . . .× R |

j2∑

j=j1

jωj = 1}.

For every w ∈ R
(j2−j1+1), dC1

(w) = ‖w − PC1
(w)‖, with

PC1
(w) = argminv∈C1

‖w − v‖2, denotes the projection

onto the convex set C1 (resp. dC2
and PC2

). The second

term TV(h) acts as a penalization that forces a solution with

a minimal total variation [14] that is, for every h ∈ R
N ,

TV(h) = ‖Th‖2,1 =

N∑

n=1

√
|(Hh)[n]|2 + |(V h)[n]|2 (9)

where T = [H⊤V ⊤]⊤ with H ∈ R
N×N and V ∈ R

N×N

are matrix representations of, respectively, the horizontal and

vertical first-order discrete differences. The parameters λ, η1,

and η2 will impact directly the solution. One could note that

the choice of parameters λ = 1/η1 = 1/η2 = 0 leads to the

standard estimation procedure, formulated in (4) and (6).

Proximal algorithm The minimization problem (8) is con-

vex but non-smooth. In the recent literature dedicated to non-

smooth convex optimization, several efficient algorithms have

been proposed. For instance, when a Lipschitz data fidelity

term is involved, such as a quadratic data fidelity term, as well

as several regularization terms, such as TV regularization or

distance to convex sets, one suited algorithm is referred to as

CV (for Condat-Vũ) [15, 16]. The corresponding iterations

tailored to solve the problem in (8) are given in Algo. 1, that

ensures convergence of the sequence (h[ℓ],W [ℓ])ℓ∈N to a so-

lution of (8).

Algorithm 1 Algorithm for solving (8)

Initialization

Set σ > 0 and τ ∈
]
0, 1

‖
∑j2

j=j1
Dj lnLj‖2+1+2σ

[
.

Set h[0] ∈ R
N , w[0] = (w

[0]
j1
, . . . , w

[0]
j2
) ∈ R

N(j2−j1+1),

u[0] = (u
[0]
j1
, . . . , u

[0]
j2
) ∈ R

N(j2−j1+1), and y[0] ∈ R
2N .

For ℓ = 0, 1, . . .

For j = j1, . . . , j2⌊
U

[ℓ]
j = diag(u

[ℓ]
j )

W
[ℓ]
j = diag(w

[ℓ]
j )

⋆ Gradient descents steps ⋆

h[ℓ+1] = h[ℓ] − 2τ
(
h[ℓ] −

∑j2
j=j1

W
[ℓ]
j Dj lnLj

)
− τT⊤y[ℓ]

For j = j1, . . . , j2⌊
W̃j

[ℓ]
= W

[ℓ]
j − 2τ

(∑j2
j=j1

W
[ℓ]
j Dj lnLj−

h[ℓ]
)
(Dj lnLj)

⊤ − τU
[ℓ]
j

⋆ Proximity operator step based on dC1
⋆

For every j, we denote w̃
[ℓ]
j the diagonal values of W̃

[ℓ]
j

w[ℓ+1] =
(
proxτη1dC1

(w̃
[ℓ]
j1
[n], . . . , w̃

[ℓ]
j2
[n])

)
1≤n≤N

⋆ Proximity operator step for TV on h ⋆

p[ℓ] = y[ℓ] + σT (2h[ℓ+1] − h[ℓ])

y[ℓ+1] = p[ℓ] − σproxσ−1λ‖·‖2,1
(σ−1p[ℓ])

⋆ Proximity operator step for dC2
⋆

q[ℓ] = u[ℓ] + σ(2w[ℓ+1] − w[ℓ])

u[ℓ+1] = q[ℓ]− σprox η2dC2

σ

(
σ−1(q

[ℓ]
j1
[n], . . . , q

[ℓ]
j2
[n])

)
1≤n≤N

Algo. 1 requires the computation of the proximity oper-

ators associated to the mixed ℓ2,1-pseudo norm and to the

distance to convex sets. Let us recall that the proximity op-

erator associated to a convex, lower semi-continuous convex

function ϕ from H (where H denotes a real Hilbert space) to

]−∞,+∞], denoted proxϕ, is defined as, for every u ∈ H,

proxϕ(u) = argminv∈H
1
2‖u − v‖2 + ϕ(v). When ϕ de-

notes the indicator function of a non-empty closed convex set

C ⊂ H, that is ιC(x) = 0 if x ∈ C and +∞ otherwise,

the proximity operator reduces to the projection, denoted PC ,

onto the convex set.

The proximity operator steps involved in Algo. 1 have a

closed-form expression. Indeed, it is shown in [17], that for

every u = (u[n])1≤n≤N with u[n] ∈ R
2,

proxλ
σ
‖·‖2,1

u =
(
max(0, 1−

λ

σ‖u[n]‖
)u[n]

)
1≤n≤N

(10)
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Moreover, according to [18, Proposition 2.8], if C denotes a

non-empty closed convex subset of R(j2−j1+1) and if η > 0,

for every u ∈ R
(j2−j1+1),

proxηdC
u =

{
u+ η(Pc(u)−u)

dC(u) if dC(u) > η,

PC(u) if dC(u) ≤ η.
(11)

For our purpose, C models the hyperplane constraints C1 and

C2 and one could note that PC1
and PC2

have a closed form

expression given in [19].

4. EXPERIMENTAL VALIDATION

We first evaluate the performance of the proposed estimat-

ing strategy on synthetic data, consisting of 2D multifrac-

tional Brownian fields [20, 21], whose definition has been

slightly modified here to ensure an homogeneous variance

across the image (cf. [13] for details). The synthetic pro-

cess has piece-wise constant regularity according to the mask

shown in Fig. 1-b), with h = 0.5 in the central area and

h = 0.3 for the background. A sample field is displayed in

Fig. 1-a).

Analysis is conducted using a standard 2D DWT with or-

thonomal tensor product Daubechies mother wavelets with 2
vanishing moments. Regularity is estimated using the scal-

ing range (j1, j2) = (2, 4). We compare the performance of

the solution proposed against two other approaches. First, a

standard estimation procedure with a priori fixed weights wj

chosen to achieve ordinary linear regression, labelled ĥo, (re-

sults are plotted in Fig. 1-c)). Second, we evaluate the perfor-

mance of the technique proposed in [13] consisting in com-

puting the proximity operator of the total variation of ĥo, i.e,

proxλTV(ĥo). The solution of this latter method is labelled

ĥλ (cf., Fig. 1-d)) and the parameter λ is empirically tuned

to minimize the normalized mean square error (MSE) in this

second approach. The solution proposed in Section 3, whose

result is depicted in Fig. 1-e), achieves a smaller MSE and

better evidence of the central area.

A second experiment deals with real data, obtained by

mixing textures. The image is generated by inclusion of a

distinct ellipse-shaped zone of cloud texture in a snow tex-

ture background (cf. Fig. 2-a)). First, it is worth noting that

the unbiased local regularity estimation in Fig. 2-c) allows the

edges of the added areas to be identified. However, without

these synthetic edges, the local regularity change is difficult

to identify. Similar observations are made for the solution ob-

tained with [13], shown in Fig. 2-d) and the proposed solution.

However, the proposed solution provides a better discrimina-

tion with sharper edges.

5. CONCLUSION

An efficient local regularity estimation strategy adapted to a

multifractional framework has been devised. It enriches the

classical estimation procedure by including the estimation of

the weights that enter the linear regressions. These extra de-

grees of freedom yield local regularity estimates with signif-

icantly reduced variance. The proposed estimation procedure

is formulated as an inverse problem and is solved using prox-

imal minimization. Numerical experiments indicate that the

proposed procedure significantly outperforms the standard es-

timation procedure and to further improve estimation perfor-

mance compared to an earlier TV based procedure. Moreover,

local regularity is also shown to be efficient to discriminate

between visually similar textures such as cloud and snow.
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