
HAL Id: hal-01399870
https://hal.science/hal-01399870v1

Submitted on 21 Nov 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Restoration of Ultrasound Images Using A Hierarchical
Bayesian Model with A Generalized Gaussian Prior
Ningning Zhao, Adrian Basarab, Denis Kouamé, Jean-Yves Tourneret

To cite this version:
Ningning Zhao, Adrian Basarab, Denis Kouamé, Jean-Yves Tourneret. Restoration of Ultrasound
Images Using A Hierarchical Bayesian Model with A Generalized Gaussian Prior. IEEE International
Conference on Image Processing (ICIP 2014), Oct 2014, Paris, France. pp. 4577-4581. �hal-01399870�

https://hal.science/hal-01399870v1
https://hal.archives-ouvertes.fr


  
   

Open Archive TOULOUSE Archive Ouverte (OATAO)  
OATAO is an open access repository that collects the work of Toulouse researchers and 
makes it freely available over the web where possible.  

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/ 
Eprints ID : 15170 

The contribution was presented at ICIP 2014:  
https://icip2014.wp.mines-telecom.fr/ 

 

To cite this version : Zhao, Ningning and Basarab, Adrian and Kouamé, Denis 
and Tourneret, Jean-Yves Restoration of Ultrasound Images Using A 
Hierarchical Bayesian Model with A Generalized Gaussian Prior. (2015) In: 
IEEE International Conference on Image Processing (ICIP 2014), 27 October 
2014 - 30 October 2014 (Paris, France). 

Any correspondence concerning this service should be sent to the repository 

administrator: staff-oatao@listes-diff.inp-toulouse.fr 



RESTORATION OF ULTRASOUND IMAGES USING A HIERARCHICAL

BAYESIAN MODEL WITH A GENERALIZED GAUSSIAN PRIOR

Ningning Zhao1,2, Adrian Basarab 2, Denis Kouame2, Jean-Yves Tourneret1,3

1 University of Toulouse, INP/ENSEEIHT-IRIT, 2 rue Charles Camichel, BP 7122, 31071 Toulouse Cedex 7, France
2 University of Toulouse, IRIT, CNRS UMR 5505, Université Paul Sabatier, Toulouse, France
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ABSTRACT

This paper addresses the problem of ultrasound image
restoration within a Bayesian framework. The distribution of
the ultrasound image is assumed to be a generalized Gaussian
distribution (GGD). The main contribution of this work is
to propose a hierarchical Bayesian model for estimating the
GGD parameters. The Bayesian estimators associated with
this model are difficult to be expressed in closed form. Thus
we investigate a Markov chain Monte Carlo method which
is used to generate samples asymptotically distributed ac-
cording to the posterior of interest. These generated samples
are finally used to compute the Bayesian estimators of the
GGD parameters. The performance of the proposed Bayesian
model is tested with synthetic data and compared with the
performance obtained with the expectation maximization
algorithm.

Index Terms— Generalized Gaussian distribution, ul-
trasound imaging, Bayesian inference, Gibbs sampler.

1. INTRODUCTION

Ultrasound imaging (UI) is widely used for the visualization
of anatomical structures, tissue characterization and for the
analysis of blood flow measurements. The popularity of UI
is mainly due to its efficiency, low cost and safety for human
body [1] compared to other medical imaging modalities such
as Computed Tomography (CT) or Magnetic resonance imag-
ing (MRI). However, ultrasound images are degraded by a so-
called speckle noise caused by tissue inhomogeneities. Several
strategies can be found in the literature to remove the speckle
noise, which is very interesting for many image processing ap-
plications such as image segmentation [2,3]. However, despite
the negative effect of speckle, it also contains useful textural
information. Therefore, finding methods for restoring ultra-
sound images using the statistical properties of speckle noise
is also an interesting research track [4,5].

Under the first order Born approximation which is clas-
sically assumed for soft tissues, ultrasound radio frequency
(RF) images can be modeled as the 2D convolution between
a blurring operator/point spread function (PSF) and the tis-
sue reflectivity image [4, 5]. The corresponding linear model
can be written using a matrix-vector formulation,

y = Hx + n (1)

where y, x, and n are obtained after lexicographical ordering
the corresponding images, i.e., the RF image, the tissue re-
flectivity (the image to be recovered from the observed data)
and the additive white Gaussian noise respectively. Note that
these vectors belong to R

N×1 (where N = m× n is the num-
ber of pixels of the image of size m× n). We assume in this
work that the matrix H ∈ R

N×N is a known and invariant
circulant matrix associated with the PSF.

The objective of image restoration is to estimate the clean
original image x from the noisy measurements y. Some recent
works have shown that the statistical properties of the tissue
reflectivity image can be described accurately by a general-
ized Gaussian distribution (GGD) [4, 6]. This prior allows a
robust ultrasound image restoration, providing the parame-
ters of the prior model can be estimated accurately. Estima-
tion methods based on the expectation maximization (EM)
algorithm have been proposed to handle this problem [4, 6].
However, the EM algorithm is known to have several short-
comings including its convergence to local minima of the like-
lihood yielding sometimes inaccurate estimates. This paper
introduces a new hierarchical Bayesian model with a gener-
alized Gaussian prior for the ultrasound tissue reflectivity x.
The posterior distribution of x is too complicated to com-
pute closed-form expressions of the corresponding Bayesian
estimators. As a consequence, we consider a Markov chain
Monte Carlo (MCMC) method based on a classical Gibbs
sampler which generates samples asymptotically distributed
according to the posterior of interest and estimates the GGD
parameters using these generated samples.

The paper is organized as follows. Section 2 introduces
the proposed hierarchical model to solve the ultrasound im-
age restoration problem. Section 3 studies a hybrid Gibbs
sampler to sample the posterior distribution of the proposed
model and thus to compute the Bayesian estimators of the
unknown model parameters. Simulation results obtained on
synthetic data are presented in Section 4. Conclusions are
reported in Section 5.

2. HIERARCHICAL BAYESIAN MODEL

Bayesian inference assumes that the vector containing the
unknown model parameters (denoted as θ) is a realization
of a random vector with an appropriate prior distribution.
Combining this prior distribution with the likelihood of the
observation model allows the posterior distribution of θ to
be computed. The unknown parameter vector θ can then



be estimating by computing the mean or the maximum of
this posterior distribution. The resulting Bayesian estima-
tors are referred to as minimum mean-squared error (MMSE)
and maximum a posteriori (MAP) estimators. This section
defines the likelihood of model (1) and the priors assigned to
the unknown parameters of this model.

2.1. Likelihood function

The noise n in (1) is additive white Gaussian with covariance
matrix σ2

nIN×N (where IN×N is the N ×N identity matrix).
Consequently, the likelihood function of y is

p(y|x, σ2
n) =

1

(2πσ2
n)N/2

exp
(

−
1

2σ2
n
‖y−Hx‖2

2

)

(2)

where || · ||2 is the usual ℓ2-norm.

2.2. Prior Distributions

2.2.1. Reflectivity image

Following [4,6], we assume that each pixel of the ultrasound
image is distributed according to a GGD. Moreover, we as-
sume that the ultrasound image is divided into K classes of
homogeneous regions. Specifically, the pixels in one homo-
geneous region are independent and identically distributed
according to a GGD with the same shape and scale parame-
ters. Denote the pixels in the kth homogeneous region as

xi ∼ GGD(ξk, γk)

where i ∈ {1, ..., Nk}, k ∈ {1, ..., K}, ξk, γk and Nk are the
shape parameter, scale parameter and total number of pixels
of region k respectively. The regions can be represented by
labels z ∈ R

N . More specifically, zi = k if the corresponding
pixel xi belongs to the class k. Given the pixel labels, we can
obtain the following prior

p(x|z) =

K
∏

k=1

Nk
∏

i=1

ak exp

(

−
|xi|

ξk

γk

)

=

K
∏

k=1

aNk
k exp

(

−

∑Nk

i=1
|xi|

ξk

γk

)

(3)

where ak = 1

2γ
1/ξk
k

Γ(1+1/ξk)
. This paper assumes that the

pixel labels are known (they are for instance obtained by
a pre-segmentation or by manual annotations). As a conse-
quence, the prior of the reflectivity image (3) is p(x) = p(x|z).

2.2.2. Noise variance

In the presence of an additive white Gaussian noise, it is very
classical to assign a conjugate inverse gamma prior to the
noise variance, i.e.,

σ2
n ∼ IG(α, β). (4)

This prior has two adjustable parameters α, β which makes
it very flexible and thus appropriate for many applications.

2.2.3. Hyperparameter Priors

The priors defined above depend on the shape parameters
ξ = (ξ1, ..., ξK) and the scale parameters γ = (γ1, ..., γK) of
the GGDs, which are usually referred to as hyperparameters.
Following [7], we have chosen independent priors for these
hyperparameters as follow

p(ξ) =

K
∏

k=1

p(ξk) =

K
∏

k=1

1

3
1[0,3](ξk) (5)

p(γ) =

K
∏

k=1

p(γk) =

K
∏

k=1

1

γk
1R+(γk) (6)

where 1A is the indicator function on the set A, [0, 3] covers
all the possible values of ξk and p(γk) is the uninformative
Jeffreys prior for γk.

2.3. Joint posterior distribution

The joint posterior distribution of the unknown parameters
x, σ2

n, ξ, γ obeys the following relationship

p(x, σ2
n, ξ, γ|y) ∝ p(y|x, σ2

n, ξ, γ)p(x, σ2
n, ξ, γ) (7)

where ∝ means “proportional to”. Assuming the prior distri-
butions of x, σ2

n, ξ, γ are independent, the joint posterior of
the unknown parameters can be expressed as

p(x, σ2
n, ξ, γ|y) ∝ 1

(σ2
n)N/2 exp

(

− 1
2σ2

n
||y−Hx||22

)

×

1
(σ2

n)α+1 exp
(

− β

σ2
n

)

×
∏K

k=1

{

1
[

2γ
1/ξk
k

Γ(1+1/ξk)
]Nk

exp

(

−

∑Nk

i=1
|xi|ξk

γk

)

× 1
3
1[0,3](ξk)× 1

γk
1R+(γk)

}

. (8)

The posterior (8) is clearly too complicated to compute
closed-form expressions of the MMSE or MAP estimators of
the unknown parameters x, σ2

n, ξ, γ. In this case, it is very
classical to generate samples distributed according to this
posterior by using MCMC methods. It is the objective of the
next section.

3. HYBRID GIBBS SAMPLER

The principle of MCMC methods is to construct a Markov
chain whose equilibrium distribution is the target distribu-
tion. The basic Gibbs sampler consists of sampling accord-
ing to the conditional distributions of the target distribution.
The proposed sampler is a 4-step procedure whose moves are
detailed below.

3.1. Sampling the noise variance

The conditional distribution of σ2
n|x, ξ, γ, y is

p(σ2
n|y, x, ξ, γ) ∝

1

(2πσ2
n)N/2 exp

(

− 1
2σ2

n
||y−Hx||22

)

× βα

Γ(α)
(σ2

n)−α−1exp
(

− β

σ2
n

)

. (9)

It is the inverse gamma distribution

IG
(

α + N/2, β +
1

2
||y−Hx||22

)

.



3.2. Sampling the hyperparameters

Based on the independence assumption for the hyperparam-
eter priors, the conditional distributions of the hyperparam-
eters of the proposed GGD satisfy the following relations

p(ξk|y, x, σ2
n, γ, ξ−k) ∝ a

Nk
k exp

(

−

∑Nk

i=1
|xi|

ξk

γk

)

1[0,3](ξk)

(10)

p(γk|y, x, ξ, σ2
n, γ−k) ∝ a

Nk
k exp

(

−

∑Nk

i=1
|xi|

ξk

γk

)

1

γk
1R+(γk)

∝ IG

(

Nk

ξk
,

Nk
∑

i=1

|xi|
ξk

)

(11)

where θ = (ξ, γ), θ−k = (θ1, ..., θk−1, θk+1, ..., θK). The
distribution (10) is not easy to sample directly. Thus, we
propose to consider random walk Metropolis Hastings (MH)
moves with appropriate proposals. More precisely, we have
considered zero mean Gaussian random walks (whose vari-
ances are adjusted a priori to obtain a suitable acceptance
ratio). The candidates are then accepted or rejected accord-
ing to the classical MH acceptance ratio [8]. The distribution
(11) is an inverse gamma distribution that is easy to sample.

3.3. Sampling the reflectivity image

The conditional distribution of the image we want to estimate
is defined as follows

p(x|y, σ2
n, ξ, σ2

x) ∝

exp

(

−
1

2σ2
n
||y−Hx||22 −

K
∑

k=1

∑Nk

i=1
|xi|

ξk

γk

)

. (12)

Sampling according to (12) is the critical point of the pro-
posed algorithm. Due to the high dimensionality of x, classi-
cal Gibbs or MH moves are inefficient. Thus we propose an
efficient sampling strategy referred to as Hamiltonian Monte
Carlo/Hybrid Monte Carlo (HMC). This method makes use
of Hamiltonian dynamics and gradient information in order
to fasten the convergence of the sampler. Some elements al-
lowing the principles of HMC methods to be understood are
provided in the next section. The reader is invited to con-
sult [9] for more details.

3.3.1. Hamiltonian Monte Carlo Algorithm

The main idea of HMC is to introduce a vector of momentum
variables p ∈ R

N and to sample the pair (x, p) instead of just
sampling x. The conditional distribution of (x, p) is

p(x, p|y, σ2
n, ξ, γ) = p(x|y, σ2

n, ξ, γ)p(p).

The Hamiltonian of the system is defined as

H(x, p) = − log p(x, p|y, σ2
n, ξ, γ) = U(x) + K(p)

where K(p) and U(x) are the kinetic and potential energies

K(p) =
1

2
p

T
p and U(x) = − log[p(x|y, σ2

n, ξ, γ)].

At the iteration #t, the HMC consists of two steps: 1)

generate a candidate pair (p(⋆), x(⋆)) from the current state

(p(t), x(t)) using a discretization method, such as Leapfrog
and Euler methods; 2) accept or reject the candidate with
the probability

ρ = min{exp[H(p(t), x
(t))−H(p(⋆), x

(⋆))], 1}. (13)

In our experiments, we have implemented the Leapfrog
method defined below

pi(t + ǫ/2) = pi(t)−
ǫ

2

∂U

∂xi
[x(t)]

xi(t + ǫ) = xi(t) + ǫpi(t + ǫ/2)

pi(t + ǫ) = pi(t + ǫ/2) −
ǫ

2

∂U

∂xi
[x(t + ǫ)]

where ǫ is a so-called stepsize and L is the number of Leapfrog
steps per trajectory. Note that we have not explored other
discretization alternatives since we have obtained interest-
ing results with the Leapfrog scheme. Compared to other

Algorithm 1: Hamiltonian Monte Carlo Algorithm

/* Initialization of the tth iteration */

1 p(⋆) ∼ N(0, I)

2 x(⋆) = y

3 p(t) ← p(⋆)

4 x(t) ← x(⋆)

/* Leapfrog Method */
5 for i = 1 : L do

6 Set p(⋆) = p(⋆) − ǫ
2

∂U
∂x

x(⋆)

7 Set x(⋆) = x(⋆) + ǫp(⋆)

8 Set p(⋆) = p(⋆) − ǫ
2

∂U
∂x

x(⋆)

9 end

/* Accept/Reject Procedure */

10 Compute ρ with (13)

11 Set (x(t+1), p(t+1)) = (x(⋆), p(⋆)) with probability ρ

12 Else set (x(t+1), p(t+1)) = (x(t), p(t))

MCMC algorithms, the HMC method has the noticeable ad-
vantage to generate a candidate x in three steps (detailed in
Algorithm 2) and to accept or reject this candidate using the
acceptance ratio (13).

3.3.2. Tuning the parameters ǫ and L

The performance of the HMC algorithm mainly depends
on the values of parameters ǫ (stepsize) and L (number of
Leapfrog steps). Fortunately, these two parameters can be
tuned independently in most applications [9]. It is recom-
mended to select a random number of Leapfrog steps L to
avoid possible periodic trajectories [9]. In our algorithm, L
is sampled uniformly in the interval [50, 70] [9]. The leapfrog
stepsize ǫ has been adjusted by cross validation in order to
ensure a reasonable acceptance rate.

3.4. Parameter estimation

The Bayesian estimators can be computed using the samples
generated by the proposed MCMC method. For instance, the



MMSE estimator of x can be approximated by an average

of the generated samples x̂MMSE ≈
1

NMC−Nbi

∑NMC

t=Nbi+1
x(t),

where Nbi is the number of burn-in iterations required to
reach the sampler convergence and NMC is the total number
of Monte Carlo iterations.

4. SIMULATIONS

The objective of this section is to evaluate the performance of
the proposed hierarchical Bayesian model (based on a GGD
prior) for the restoration of synthetic ultrasound data. A
comparison with the EM algorithm developed in [4,6] is also
presented. The ultrasound data was simulated by 2D con-
volution between a known PSF and the reflectivity image as
in [5]. The PSF was simulated with Field II [10]. The am-
plitudes of the scatters in the reflectivity image are random
variables distributed according to GGDs. Specifically, xA ∼
(ξ = 1.5, γ = 38.7120) for disk A, xB ∼ (ξ = 0.9, γ = 4.8079)
for disk B, xC ∼ (ξ = 2, γ = 188.9059) for disk C, xD ∼ (ξ =
1, γ = 6.8029) for disk D and xE ∼ (ξ = 0.5, γ = 0.3025) for
the background.

(a) Tissue reflectivity (b) Ultrasound RF im-
age

(c) Ultrasound B-mode
image

(d) Restored image

Fig. 1. (a) Tissue reflectivity map x. (b) Ultrasound RF
image y. (c) Ultrasound B-mode image (i.e., log compressed
envelop of y). (d) Restored image.

The resulting restored image is displayed in Fig. 1(d),
illustrating the good deconvolution performance of the pro-
posed algorithm. In order to provide more quantitative re-
sults, we have considered the results of Part E in Fig. 1 and
have compared the performance of the proposed algorithm
with that of the EM approach studied in [4, 6]1. Note that
the size of Part E is 50× 50 and that the noise power corre-
sponds to a blurred signal to noise ratio BSNR= 40dB (see
e.g. [11] for a definition of BSNR). The histograms of the
parameters generated by the proposed hybrid Gibbs sampler
for the pixels of Part E are displayed in Fig. 2. These his-
tograms are clearly in good agreement with the true values

1The authors would like to thanks M. Alessandrini for sharing
his codes with the authors of this paper.

of the parameters indicated by the vertical lines, which con-
firms the good performance of the proposed method. The im-
provement in SNR (ISNR) (see e.g. in [11]) for the proposed
method is shown in Fig. 2 versus the number of iterations
of the proposed algorithm. Table 1 shows more quantitative
results in terms of ISNR, normalized root mean square error
(NRMSE) [12], structural similarity (SSIM) [13] and peak
SNR (PSNR) [14] which are compared with the results ob-
tained with the EM algorithm of [4, 6]. And the proposed
strategy gives better results than the EM algorithm. Table 2
compares some estimators of the GGD parameters obtained
with the EM and the proposed algorithm. These results con-
firm the good performance of the proposed method.
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Fig. 2. The histograms of the sampled marginal posterior
distributions of σ2

n (top left), the hyperparameters ξ (top
right) and σ2

x (bottom left). Their corresponding ground
truth values (vertical lines). In bottom right, ISNR (dB)
versus Monte Carlo iterations (after the burn-in period) for
part E.

Table 1. Comparison between EM and proposed method.
Methods ISNR(dB) NRMSE(dB) SSIM PSNR(dB)

Proposed 9.5349 0.3429 0.8355 30.4740
EM 1.6781 0.7746 0.3195 22.6172

Table 2. True values of the parameters and their estimations.
Methods σ2

n ξE γE

Proposed 1.1110e-05 0.5388 0.3262
EM 2.6e-3 0.5397 -

true value 1.1434e-05 0.5 0.3021

5. CONCLUSIONS

This paper proposed a Bayesian model with a generalized
Gaussian prior for the deconvolution of ultrasound images.
An MCMC method was proposed to sample according to the
posterior of this model and to estimate the unknown model
parameters. The results obtained on synthetic images are
very promising. However, the limitation of this work is that
the pixel labels of image were supposed to be known. Future
work includes the study of a segmentation algorithm for esti-
mating of the pixels labels and the application of the proposed
algorithm to real data.
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