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BAYESIAN FUSION OFMULTISPECTRAL AND HYPERSPECTRAL IMAGESWITH
UNKNOWN SENSOR SPECTRAL RESPONSE

Qi Wei, Nicolas Dobigeon, and Jean-Yves Tourneret

University of Toulouse, IRIT/INP-ENSEEIHT, 31071 Toulouse cedex 7, France

ABSTRACT

This paper studies a new Bayesian algorithm for fusing hyperspec-

tral and multispectral images. The observed images are related to the

high spatial resolution hyperspectral image to be recovered through

physical degradations, e.g., spatial and spectral blurring and/or sub-

sampling defined by the sensor characteristics. In this work, we as-

sume that the spectral response of the multispectral sensor is un-

known as it may not be available in practical applications. The re-

sulting fusion problem is formulated within a Bayesian estimation

framework, which is very convenient to model the uncertainty re-

garding the multispectral sensor characteristics and the scene to be

estimated. The high spatial resolution hyperspectral image is then in-

ferred from its posterior distribution. More precisely, to compute the

Bayesian estimators associated with this posterior, a Markov chain

Monte Carlo algorithm is proposed to generate samples asymptot-

ically distributed according to the distribution of interest. Simula-

tion results demonstrate the efficiency of the proposed fusion method

when compared with several state-of-the-art fusion techniques.

Index Terms— Fusion, multispectral and hyperspectral images,

spectral response, Bayesian estimation, Hamiltonian Monte Carlo.

1. INTRODUCTION

Multi-resolution image fusion, also known as super-resolution, has

been a very active research topic during recent years [1]. A proto-

typal fusion task for remote sensing images is the pansharpening,

which generally consists of fusing a high spatial resolution panchro-

matic (PAN) image and a low spatial resolution multispectral (MS)

image. More recently, hyperspectral (HS) imaging, which consists

of acquiring a same scene in several hundreds of contiguous spec-

tral bands, has opened a new range of relevant applications, such as

target detection [2] and spectral unmixing [3]. Naturally, to take ad-

vantage of the newest benefits offered by HS images, the problem of

fusing HS and PAN images has been explored [4]. Capitalizing on

decades of experience in MS pansharpening, several HS pansharp-

ening approaches merely adapt existing algorithms for PAN and MS

fusion [5]. Other methods are specifically designed to the HS pan-

sharpening problem such as [6]. Conversely, the fusion of MS and

HS images has been considered in fewer research works and is still a

challenging problem because of the high dimensionality of the data

to be processed. The fusion of MS and HS differs from traditional

MS or HS pansharpening since both spatial and spectral information

is contained in multi-band images. Therefore, a lot of pansharpen-

ing methods, such as component substitution [7] and relative spectral

contribution [8] are inapplicable or inefficient for the HS/MS fusion
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problem. Since the fusion problem is ill-posed, Bayesian inference

offers a convenient way to regularize the problem by defining an

appropriate prior distribution for the scene of interest. Following

this strategy, Hardie et al. proposed a Bayesian estimator for fus-

ing the co-registered high spatial-resolution MS and high spectral-

resolution HS images [9]. The estimator of [9] was implemented

by Zhang et al. in the wavelet domain to improve denoising per-

formance [10]. More recently, a hierarchical Bayesian model was

proposed in [11, 12] to solve the fusion problem. The Bayesian es-

timators associated with this model were computed from samples

generated from the target posterior distribution using Markov chain

Monte Carlo methods. However, the spectral and spatial sensor re-

sponses were assumed to be fully known in [11] and were exploited

to properly design the spatial and spectral degradations affecting the

image to be recovered (see [13] for more details about these degra-

dations). In practice, the spectral relation between HS and MS im-

ages is not always available as the corresponding spectral responses

highly rely on the sensors.

In this work, we propose to estimate the spectral response of the

MS sensor jointly with the unknown image to be recovered, gen-

eralizing the approach of [11]. Exploiting the intrinsic dimension

of the data to be recovered, the MS characteristics are expressed

in a lower-dimensional subspace, significantly reducing the difficul-

ties inherent to the resulting blind deconvolution problem. Based

on the posterior distribution of the unknown parameters, we pro-

pose to compute the MMSE estimators of the unknown scene and a

so-called pseudo-spectral response by using samples generated by a

hybrid Gibbs sampler. This sampler includes a Hamiltonian Monte

Carlo (HMC) step. The HMC algorithm differs from the standard

Metropolis-within-Gibbs algorithm by exploiting Hamiltonian evo-

lution dynamics to propose states in a high-dimensional space with

higher acceptance ratio, reducing the correlation between successive

samples and thus speeding up the sampler convergence.

The paper is organized as follows. Section 2 formulates the fu-

sion problem in a Bayesian framework. In Section 3, we propose a

new hierarchical Bayesian model defined by the joint posterior dis-

tribution of the unknown image, its hyperparameters, the pseudo-

spectral response and the noise variances. Section 4 studies a hybrid

Gibbs sampler based on an HMC method to sample the target joint

posterior distribution of interest. Simulation results are presented in

Section 5 whereas conclusions are reported in Section 6.

2. PROBLEM FORMULATION

In this paper, we consider the problem of fusing HS and MS images.

As mentioned before, the HS imageYH is supposed to be a blurred,

down-sampled and noisy version of the target imageX whereas the

MS image YM is a spectrally degraded and noisy version of X. As

a consequence, the observation models associated with the HS and

MS images can be written as [9, 14, 15]

YH = XBS+NH

YM = RX+NM

(1)



where X = [x1, · · · ,xn] ∈ R
mλ×n is the unknown full resolution

HS image composed of mλ bands and n pixels, YH ∈ R
mλ×m

is the HS image composed of mλ bands and m pixels and YM ∈
R

nλ×n is the MS image composed of nλ bands and n pixels. In (2),

B ∈ R
n×n is a cyclic convolution operator acting on the bands that

models the point spread function of the HS sensor and S ∈ R
n×m

is a downsampling matrix (with downsampling factor denoted as d).
Conversely, R ∈ R

nλ×mλ models the spectral response of the MS

sensor, which is assumed to be unknown. The noise matricesNH ∈
R

mλ×m andNM ∈ R
nλ×n are assumed to be distributed according

to the following matrix Gaussian distributions [16]

NH ∼ MNmλ,m(0mλ,m, s2hImλ
, Im)

NM ∼ MNnλ,n(0nλ,n, s
2
mInλ

, In)
(2)

where 0a,b is the a × b matrix of zeros and I·λ is the ·λ × ·λ iden-

tity matrix. Note that the white Gaussian noise assumption is quite

popular in image processing [17, 18] as it facilitates the formulation

of the likelihood. However, the proposed work could be extended to

handle colored noise, in particular to cope with spectrally correlated

noise. The problem addressed in this work consists of estimating

the high-spatial resolution HS image X from the two available im-

agesYH andYM, using the observation model (2) when the spectral

response matrixR is unknown. The proposed estimation scheme re-

lies on a hierarchical Bayesian model introduced in Section 3.

3. HIERARCHICAL BAYESIANMODEL

3.1. Reformulation in a lower-dimensional subspace

Because the HS bands are spectrally correlated, the HS vector xi

usually lives in a space whose dimension is much smaller than mλ

[19]. This property has been extensively exploited when analyzing

HS data, in particular to perform spectral unmixing [3]. More pre-

cisely, the HS image can be rewritten as X = VU where V ∈
R

mλ×m̃λ has normalized orthogonal columns and U ∈ R
m̃λ×n is

the projection of X onto the subspace spanned by the columns of

V. Incorporating this decomposition of the HS image X into the

observation model (2) leads to

YH = VUBS+NH

YM = R̃U+NM

(3)

where R̃ , RV is the so-called pseudo-spectral response of the MS

sensor. Since V is a full-column rank matrix, the rows of V span

the space Rm̃λ×1, which implies that the rows of R̃ = RV also live

in R
m̃λ×1. Thus, without loss of generality, the estimation of the

full spectral response R can be substituted by the estimation of the

pseudo-response R̃, which significantly decreases the computational

complexity of the fusion algorithm since m̃λ ≪ mλ. In this work,

we assume that the signal subspace denoted as span {V} has been
previously identified, e.g., obtained from available a priori knowl-

edge regarding the scene of interest, or after conducting a principal

component analysis (PCA) of the HS data. Then, the considered

fusion problem is solved in this lower-dimensional subspace, by es-

timating the projected imageU and the pseudo-spectral response R̃.

3.2. Likelihood and prior distributions

Using the statistical properties of the matricesNH andNM, the dis-

tributions ofYH andYM are matrix Gaussian distributions, i.e.,

YH ∼ MNmλ,m(VUBS, s2hImλ
, Im),

YM ∼ MNnλ,n(RVU, s2mInλ
, In).

(4)

The unknown parameters to be estimated are the projected scene

U, the pseudo-spectral response R̃ and the vector of noise variances

s2 = {s2h, s
2
m}. The appropriate prior distributions assigned to

these parameters are presented below.

Scene prior: Gaussian prior distributions are assigned to the pro-

jected vectors ui (i = 1, · · · , n) that are assumed to be a priori

independent, i.e.,

ui|µui
,Σui

∼ N
(
µ

ui
,Σui

)
(5)

whereµ
ui

are fixed using the interpolated HS image in the subspace

of interest following the strategy in [9] andΣui
are unknown hyper-

parameters. To reduce the number of parameters to be estimated,

Σui
are assumed to be identical, i.e.,Σu1

= · · · = Σun
= Σu.

The Gaussian prior has been used successfully in many image

processing applications including image denoising [20] and image

restoration [21]. Moreover, it has the advantage of being a conjugate

distribution relative to the likelihood function, leading to simple

computations of the Bayesian estimators derived from the posterior

distribution of interest.

Pseudo-spectral response prior: A matrix Gaussian prior is cho-

sen for R̃, i.e., p
(
R̃|R̄, σ2

R

)
= MNnλ,m̃λ

(R̄, σ2
RInλ

, Im̃λ
). In

absence of additional knowledge, the mean response R̄ is set to the

zero matrix and σ2
R is set to a large value to ensure a non-informative

prior for R̃.

Noise variance priors: A non-informative Jeffreys’ prior is assigned

to the noise variances s2h and s2m, i.e., f
(
s2h

)
∝ 1

s2
h

1R+

(
s2h

)
and

f
(
s2m

)
∝ 1

s2
m

1R+

(
s2m

)
, where 1R+ (·) is the indicator function

defined on R+ (see [22] for motivations).

3.3. Hyperparameter priors

The hyperparameter vector associated with the parameter priors

defined above is Φ = {Σu}. The quality of the fusion algorithm

investigated in this paper clearly depends on the value of this hyper-

parameter. Instead of fixing the hyperparameter a priori, we propose

to estimate it from the data by defining a hierarchical Bayesian

model. This approach requires to define prior for the this hyperpa-

rameter (usually referred to as hyperprior) which is detailed below.

Hyperparameter Σu: Assigning a conjugate inverse-Wishart (IW)

distribution to the covariance matrixΣu has provided interesting re-

sults in the signal/image processing literature [23]. Following these

works, an IW distributionΣu ∼ IW(Ψ, η) has been chosen, where
the parameters (Ψ, η)T are fixed to provide a non-informative prior

forΣu.

3.4. Posterior distribution

The unknown parameter vector θ associated with the proposed hier-

archical Bayesian fusion model is composed of the projected scene

U, the pseudo-spectral response R̃ and the noise variances s2, i.e.,

θ =
{
U, R̃, s2

}
. Defining Y = {YH,YM} the set of the ob-

served images, the joint posterior distribution of the unknown pa-

rameters and hyperparameters can be computed using the following

hierarchical structure

f (θ,Φ|Y) ∝ f (Y|θ) f (θ|Φ) f (Φ) (6)



where the parameter and hyperparameter priors are given by

f (θ|Φ) = f (U|Σu) f(R̃)f
(
s2h

)
f
(
s2m

)

f (Φ) = f (Σu) .
(7)

Computing the posterior distribution of the projected scene f (U|Y)

requires to marginalize out the parameters Φ, R̃ and s2 from

the joint posterior. As this marginalization is clearly not easy to

perform, computing the MMSE and MAP estimators of the pro-

jected scene U analytically from the posterior (6) is difficult. In-

stead, this paper proposes to generate a collection of NMC samples{
(θ,Φ)(1), . . . , (θ,Φ)(NMC)

}
that are asymptotically distributed

according to the posterior of interest (6). The Bayesian estima-

tors of the parameters of interest can then be computed using

these generated samples. For instance, the MMSE estimator of

U can be approximated by an empirical average of the generated

samples ÛMMSE ≈ 1
NMC−Nbi

∑NMC
t=Nbi+1 U

(t), where Nbi is the

number of burn-in iterations required to reach the sampler conver-

gence. The highly-resolved HS image can finally be computed as

X̂MMSE = VÛMMSE. In order to sample according to the joint

posterior f (θ,Φ|Y), we propose to design a Metropolis-within-

Gibbs sampler whose main steps are described in the next section.

4. HYBRID GIBBS SAMPLER

The Gibbs sampler has received much attention in the statistical

community to solve Bayesian estimation problems [24]. The main

idea of this MCMC method is to sample according to the conditional

distributions of the target distribution (see [24] for more details). The

sampler is defined by a 4-step procedure detailed below.

4.1. Sampling the covariance matrix of the imageΣu

Standard computations yield the following inverse-Wishart distribu-

tion as conditional distribution for the covariance matrixΣu

Σu|U, R̃, s2,Y ∼

IW

(
Ψ+

n∑

i=1

(ui − µ
ui
)T (ui − µ

ui
), n+ η

)
(8)

which is easy to sample.

4.2. Sampling the pseudo-spectral response matrix R̃

The conditional PDF of R̃ can be computed using the likelihood (4)

and the prior defined in Section 3.2. We obtain R̃|Σu,U, s2,Y ∼
MNnλ,m̃λ

(
µ

R̃
, Inλ

,Σ
R̃

)
with

µ
R̃

=
(

1
s2
m

YMU
T + 1

σ2
R

R̄

)
Σ

R̃

Σ
R̃

=
(

1
s2
m

UU
T + 1

σ2
R

Im̃λ

)−1

which can be sampled easily. Note in particular that the matrix

Σ
R̃

∈ R
m̃λ×m̃λ can be computed easily since it has a small size

(m̃λ is generally smaller than 10).

4.3. Sampling the projected imageU

Choosing the prior distribution for the projected imageU defined in

Section 3.2 leads to the conditional log-posterior distribution

− log f(U|Σu, R̃, s2,Y) = 1
2s2

h

‖YH −VUBS‖2F+

1
2s2

m

‖YM − R̃U‖2F + 1
2

n∑
i=1

(ui − µ
ui
)TΣ−1

u
(ui − µ

ui
) + C

where ‖.‖F is the Frobenius norm and C does not depend on U.

Note that the vector obtained by vectorizing U has a Gaussian dis-

tribution. However, f(U|Σu, R̃, s2,Y) is not the PDF of a ma-

trix normal distribution. Therefore, sampling U directly from its

conditional distribution would be computationally intensive, since

it would require the inversion of large matrices. In this paper, we

propose to use an HMC method to generate matrices distributed ac-

cording to the conditional distribution of U. More details about the

proposed HMC method are available in [11] and are omitted here for

space limitations.

4.4. Sampling the noise variance vector s2

The conditional distributions of the noise variances s2h and s2m are

the following inverse-gamma (IG) distributions

s2h|Σu,U, R̃,Y ∼ IG
(

mλm

2
,
‖YH−VUBS‖2

2

2

)

s2m|Σu,U, R̃,Y ∼ IG

(
nλn

2
,
‖YM−R̃U‖2

2

2

)

that are easy to sample.

5. SIMULATION RESULTS

This section presents numerical results obtained with the proposed

Bayesian fusion algorithm. The reference image, considered here

as the high spatial and high spectral resolution image to be re-

covered, is an HS image acquired over Moffett field, CA, in 1994

by the JPL/NASA airborne visible/infrared imaging spectrometer

(AVIRIS) [25]. This image is of size 128 × 64 and was initially

composed of 224 bands that have been reduced to 177 bands after

removing the water vapor absorption bands. A composite color

image of the scene of interest is shown in the bottom right of Fig. 1.

5.1. Simulation scenario

We propose to reconstruct the reference HS image X from two HS

and MS images YH and YM. First, a high-spectral and low-spatial

resolution image YH has been generated by applying a 5 × 5 aver-
aging filter and by down-sampling every 4 pixels in both vertical and
horizontal direction for each band of the reference image. Second,

a 7-band MS image YM has been obtained by filtering X with the

LANDSAT reflectance spectral responses [26].

The HS and MS images have been both contaminated by zero-

mean additive Gaussian noises with signal to noise ratios SNRH =

10 log
(

‖XBS‖2
F

‖NH‖2
F

)
= 30dB and SNRM = 10 log

(
‖RX‖2

F

‖NM‖2
F

)
=

30dB. The observed HS and MS images are shown in the top left

and right of Fig. 1. Note that the HS image has been interpolated for

better visualization and that the MS image has been displayed using

an arbitrary color composition. In order to learn the projection ma-

trix V, we have computed the m̃λ = 10 most discriminant vectors
(associated with the 10 largest eigenvalues of the sample covariance

matrix) of the HS image. These 10 vectors correspond to 99.89% of

the information contained in the HS image.

5.2. Hyperparameter Selection

As presented in Section 3, some prior parameters are fixed to gener-

ate a non-informative prior as detailed below:

• σ2
R is equal to 103 to provide a non-informative prior for the

spectral response.

• Ψ is fixed to the identical matrix and η is fixed to be m̃λ + 3
to ensure a non-informative prior forΣu.



Fig. 1. Fusion results. (Top left) HS image. (Top right) MS image.

(Row 2 left) MAP estimator [9]. (Row 2 middle) Wavelet MAP esti-

mator [10]. (Row 2 right) MMSE estimator with knownR. (Bottom

left) MMSE estimator with R+noise. (Bottom middle) Proposed

method. (Bottom right) Reference image.

5.3. Fusion performance

To evaluate the quality of the proposed fusion strategy, three image

quality measures have been investigated. Referring to [10], we pro-

pose to use the reconstruction SNR (RSNR), the averaged spectral

angle mapper (SAM) and the universal image quality index (UIQI)

as quantitative measures. The RSNR is related to the Euclidean

distance between the actual and fused images RSNR(X, X̂) =

10 log10

(
‖X‖22

‖X−X̂‖2
F

)
. The larger RSNR, the better the fusion. The

definition of SAM and UIQI can be found in [10]. The smaller

SAM, the better the fusion and the larger UIQI, the better the fusion.

The experiments compare the proposed hierarchical Bayesian

method with three state-of-the-art fusion algorithms for MS and HS

images [9–11]. Note that the Bayesian method of [11] mainly dif-

fers from the proposed strategy in that the spectral response R was

perfectly known in [11] while it is estimated in this work. Conse-

quently, the algorithm of [11] can be considered as an oracle method

Fig. 2. True pseudo-spectral response R̃ (left) and its estimation

(right).

Table 1. Performance of the fusion methods: RSNR (in dB), UIQI

and SAM (in degree).

Methods RSNR UIQI SAM

Hardie [9] 23.32 0.9913 5.06

Zhang [10] 25.42 0.9955 4.03

MCMC with exactR [11] 26.57 0.9965 3.47

MCMC with noisyR 25.93 0.9957 3.59

MCMC with unknown R 26.56 0.9965 3.46

that can be employed with an exact knowledge of R. Results ob-

tained with the different algorithms are depicted in Fig. 1. The pro-

posed algorithm performs competitively with the other methods for

MS and HS fusion. Quantitative results reported in Table 1 in terms

of RSNR, SAM and UIQI show that the proposed method provides

better results than the methods of [9], [10] and similar performance

when compared to the oracle method [11]. Table 1 also shows that

the performance of the oracle method [11] degrades heavily when

using a spectral response with some uncertainty (obtained by adding

noise with variance σ2
R defined by 10 log10

(
‖R‖2

F
/σ2

R

)
= 10dB).

An advantage of the proposed method is that it allows the pseudo-

spectral response of the MS sensor R̃ to be estimated. Fig. 2 shows

that the resulting estimated R̃ is in good agreement with the true

pseudo-spectral response (obtained by multiplying the spectral re-

sponse of the LANDSAT satellite [26] by the matrix V defined in

Section 5.1). Note that the original spectral response R is not easy

to be estimated from R̃ since the matrixV is not invertible.

6. CONCLUSION

This paper proposed a new hierarchical Bayesian model for the fu-

sion of multispectral and hyperspectral images when the spectral re-

sponse of the multispectral sensor is unknown. The image to be

recovered was assumed to be degraded by physical transformations

included within a forward model. We introduced an appropriate prior

distribution for the high spatial and high spectral resolution image to

be recovered defined in a lower-dimensional subspace. The result-

ing posterior distribution was sampled using a hybrid Gibbs sam-

pler. The particularity of this sampler is to involve a Hamiltonian

Monte Carlo step for sampling the unknown image, which is pro-

jected onto a low dimensional subspace defined by the main vectors

of a principal component analysis of the hyperspectral image. Nu-

merical experiments showed that the proposed method compares fa-

vorably with other state-of-the-art methods, with the advantage of

jointly estimating the spectral response of the multispectral sensor.

Future work will consist of comparing the proposed method with

other non-Bayesian methods, such as [27–30].
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