
HAL Id: hal-01399864
https://hal.science/hal-01399864

Submitted on 21 Nov 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Analogical classification: A new way to deal with
examples

Myriam Bounhas, Henri Prade, Gilles Richard

To cite this version:
Myriam Bounhas, Henri Prade, Gilles Richard. Analogical classification: A new way to deal with
examples. 21st European Conference on Artificial Intelligence (ECAI 2014), Aug 2014, Pragues,
Czech Republic. pp. 135-140. �hal-01399864�

https://hal.science/hal-01399864
https://hal.archives-ouvertes.fr

Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/
Eprints ID : 15180

The contribution was presented at ECAI 2014),:
http://www.ecai2014.org/

To cite this version : Bounhas, Myriam and Prade, Henri and Richard, Gilles
Analogical classification: A new way to deal with examples. (2014) In: 21st
European Conference on Artificial Intelligence (ECAI 2014), 18 August 2014 -
22 August 2014 (Pragues, Czech Republic).

Any correspondence concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

Analogical classification:
A new way to deal with examples

Myriam Bounhas1 and Henri Prade2 and Gilles Richard 3

Abstract. Introduced a few years ago, analogy-based classification

methods are a noticeable addition to the set of lazy learning tech-

niques. They provide amazing results (in terms of accuracy) on many

classical datasets. They look for all triples of examples in the train-

ing set that are in analogical proportion with the item to be classified

on a maximal number of attributes and for which the corresponding

analogical proportion equation on the class has a solution. In this pa-

per when classifying a new item, we demonstrate a new approach

where we focus on a small part of the triples available. To restrict the

scope of the search, we first look for examples that are as similar as

possible to the new item to be classified. We then only consider the

pairs of examples presenting the same dissimilarity as between the

new item and one of its closest neighbors. Thus we implicitly build

triples that are in analogical proportion on all attributes with the new

item. Then the classification is made on the basis of a majority vote

on the pairs leading to a solvable class equation. This new algorithm

provides results as good as other analogical classifiers with a lower

average complexity.

1 Introduction

It is a common sense idea that human learning is a matter of observa-

tion, then of imitation and appropriate transposition of what has been

observed [1]. This may be related to analogical reasoning [7, 9]. It

has been shown that a similar idea can be successful for solving pro-

gressive Raven matrices IQ tests, where we build the solution (rather

than choosing it in a set of candidates) by recopying appropriate ob-

servations [5]. This process is closely related to the idea of analogical

proportion, which is a core notion in analogical reasoning [20].

Analogical proportions are statements of the form “A is to B as

C is to D”, often denoted A : B :: C : D that express that “A
differs from B as C differs from D”, as well as “B differs from A
as D differs from C” [15]. In other words, the pair (A, B) is anal-

ogous to the pair (C, D) [6]. A formalized view of analogical pro-

portions has been recently developed in algebraic or logical settings

[11, 23, 15, 17]. Analogical proportions turn out to be a powerful tool

in morphological linguistic analysis [10], as well as in classification

tasks where results competitive with the ones of classical machine

learning methods have been first obtained by [14].

In classification, we assume here that objects or situations

A, B, C, D are represented by vectors of attribute values, denoted

~a,~b,~c, ~d. The analogical proportion-based approach to classification

1 LARODEC Laboratory, ISG de Tunis, Tunisia & Emirates Col-
lege of Technology, Abu Dhabi, United Arab Emirates, email:
myriam−bounhas@yahoo.fr

2 IRIT, University of Toulouse, France, & QCIS, University of Technology,
Sydney, Australia, email: prade@irit.fr

3 IRIT, University of Toulouse, France, email: richard@irit.fr

relies on the idea that the unknown class x = cl(~d) of a new instance
~d may be predicted as the solution of an equation expressing that

the analogical proportion cl(~a) : cl(~b) :: cl(~c) : x holds between the

classes. This is done on the basis of triples (~a,~b,~c) of examples of the

training set that are such that the analogical proportion ~a : ~b :: ~c : ~d
holds componentwise for all (or on a large number of) the attributes

describing the items.

Building the solution of an IQ test or classifying a new item are

tasks quite similar. Indeed, the images in a visual IQ test can be de-

scribed in terms of features by means of vectors of their correspond-

ing values, and we have to find another image represented in the same

way, based on the implicit assumption that this latter image should

be associated with the given images, this association being governed

by the spatial disposition of images in rows, and maybe in columns.

Similarly in a classification task, description vectors are associated

with classes in the set of examples, while a class has to be predicted

for a new vector. In this paper, this parallel leads us to propose a new,

more simple and understandable approach to analogy-based classi-

fication, inspired from our approach for solving progressive Raven

matrices tests [5]. This contrasts with the previous analogical ap-

proaches to classification, where all the triples of examples making

an analogical proportion with the new item to be classified were con-

sidered in a brute-force, blind and systematic manner.

The paper is organized as follows. First, a refresher on analogi-

cal proportions both for Boolean and discrete attributes is given in

Section 2. Then, in Section 3, a parallel is made between solving

IQ tests and classification, where the relevance of analogical propor-

tions for analyzing a set of examples is emphasized. After recalling

the existing approaches to analogical proportion-based classification

in Section 4, the new approach is presented in Section 5, and results

on classical benchmarks are reported in Section 6, together with a

general discussion on the merits of the new classifier, which may be

related to a new learning paradigm that may be called creative ma-

chine learning. Conclusion emphasizes lines for further research.

2 Analogical proportion: a brief background
At the origin of analogical proportion is the standard numerical pro-

portion, which is an equality statement between 2 ratios a
b

= c
d

,

where a, b, c, d are numbers. In the same spirit, an analogical pro-

portion a : b :: c : d stating “a is to b as c is to d”, informally

expresses that “a differs from b as c differs from d” and vice versa.

As it is the case for numerical proportions, this “analogical” state-

ment is supposed to still hold when the pairs (a, b) and (c, d) are

exchanged, or when the mean terms b and c are permuted (see [18]

for a detailed discussion). When considering Boolean values (i.e. be-

longing to B = {0, 1}), a simple way to abstract the symbolic coun-

terpart of numerical proportion has been given in [17] by focusing

on indicators to capture the ideas of “similarity” and “dissimilarity”.

For a pair (a, b) of Boolean variables, indicators are defined as:

a ∧ b and ¬a ∧ ¬b : similarity indicators,

a ∧ ¬b and ¬a ∧ b : dissimilarity indicators.

A logical proportion (see [19] for a thorough investigation) is a con-

junction of two equivalences between indicators and the best “clone”

of the numerical proportion is the analogical proportion defined as:

(a ∧ ¬b ≡ c ∧ ¬d) ∧ (¬a ∧ b ≡ ¬c ∧ d).

This expression of analogical proportion, using only dissimilarities,

could be informally read as what is true for a and not for b is exactly

what is true for c and not for d, and vice versa. As such, a logical

proportion is a Boolean formula involving 4 variables and it can be

checked on Table 1 that the logical expression of a : b :: c : d
satisfies symmetry (a : b :: c : d → c : d :: a : b) and central

permutation (a : b :: c : d → a : c :: b : d), which are key

properties of an analogical proportion acknowledged for a long time.

Moreover, this Boolean modeling still enjoys the transitivity property

(a : b :: c : d) ∧ (c : d :: e : f) → (a : b :: e : f).

a b c d a : b :: c : d

0 0 0 0 1
1 1 1 1 1
0 0 1 1 1
1 1 0 0 1
0 1 0 1 1
1 0 1 0 1

Table 1. Valuations where a : b :: c : d is true

In terms of generic patterns, we see that analogical proportion always

holds for the 3 following patterns: s : s :: s : s, s : s :: t : t and

s : t :: s : t where s and t are distinct Boolean values.

One of the side products of numerical proportions is the well-

known “rule of three” allowing to compute a suitable 4th item x in

order to complete a proportion a
b

= c
x

. This property has a counter-

part in the Boolean case where the problem can be stated as follows.

Given a triple (a, b, c) of Boolean values, does there exist a Boolean

value x such that a : b :: c : x = 1, and in that case, is this value

unique? There are cases where the equation has no solution since the

triple (a, b, c) may take 23 = 8 values, while a : b :: c : d is true only

for 6 distinct 4-tuples. Indeed, the equations 1 : 0 :: 0 : x = 1 and

0 : 1 :: 1 : x = 1 have no solution. It is easy to prove that the analog-

ical equation a : b :: c : x = 1 is solvable iff (a ≡ b)∨(a ≡ c) holds

true. In that case, the unique solution is given by x = a ≡ (b ≡ c).

Back to our 3 analogical patterns s : s :: s : s, s : s :: t : t and

s : t :: s : t, solving an incomplete pattern (i.e. where the 4th element

is missing) is just a matter of copying a previously seen value s or t
(an idea already emphasized in [5]).

Objects are generally represented as vectors of attribute values

(rather than by a single value). Here each vector component is as-

sumed to be a Boolean value. A straightforward extension to B
n is:

~a : ~b :: ~c : ~d iff ∀i ∈ [1, n], ai : bi :: ci : di

All the basic properties (symmetry, central permutation) still hold

for vectors. The equation solving process is also valid, but provides

a new insight about analogical proportion: analogical proportions

are creative. Indeed let us consider the following example where

~a = (1, 0, 0),~b = (0, 1, 0) and ~c = (1, 0, 1). Solving the analogical

equation ~a : ~b :: ~c : ~x yields ~x = (0, 1, 1), which is a vector different

from ~a,~b and ~c. In fact, we can extend this machinery from Boolean

to discrete domains where the number of candidate attribute values

is finite, but greater than 2. Indeed, considering an attribute domain

{v1, · · · , vm}, we can binarize it by means of the m properties “hav-

ing or not value vi”. For instance, given a tri-valued attribute having

candidate values v1, v2, v3, respectively encoded as 100, 010, 001,

the valid analogical proportion v1 : v2 : v1 : v2 still holds com-

ponentwise as a B
3 vector proportion: 100 : 010 :: 100 : 010,

since the Boolean proportions 1010, 0101 and 0000 hold. It can be

checked that the binary encoding acknowledges the analogical pro-

portions underlying the two other patterns v1 : v1 : v2 : v2 and

v1 : v1 : v1 : v1 as well. Conversely, a non-valid analogical pro-

portion, e.g. v1 : v2 : v2 : v1, will not be recognized as an ana-

logical proportion in this binary encoding. This remark will enable

us to handle discrete attributes directly in terms of the three patterns

s : s :: s : s, s : s :: t : t and s : t :: s : t, where s and t are now

values of a discrete attribute domain4.

3 From IQ tests to analogical classifiers

A training set TS of examples ~xk = (xk
1, ..., x

k
i, ..., x

k
n) together

with their class cl(~xk), with k = 1, · · · , t can receive an informal

reading in terms of analogical proportions. Namely, “ ~x1 is to cl(~x1)

as ~x2 is to cl(~x2) as · · · as ~xt is to cl(~xt)” (still assuming transitivity

of these analogical proportions). This can be (informally) written as

~x1 : cl(~x1) :: ~x2 : cl(~x2) :: · · · :: ~xt : cl(~xt)

It is important to notice that this view exactly fits with the idea that in

a classification problem there exists an unknown classification func-

tion that associates a unique class with each object, and which is

exemplified by the training set. Indeed ~xk : cl(~xk) :: ~xk : cl′(~xk)

with cl(~xk))= cl′(~xk) is forbidden, since it cannot hold as an ana-

logical proportion. However in practice, we allow noise in TS, i.e.

examples ~xk with a wrong class cl(~xk). The training set is not just

viewed as a simple set of pairs (~x, cl(~x)), but as a set of valid ana-

logical proportions ~x : cl(~x) :: ~y : cl(~y). This is the corner stone of

the approach presented in the following.

A similar view has been recently successfully applied to the solv-

ing of Raven progressive matrix IQ tests [5]. In this type of tests you

have to complete a 3× 3 matrix where the contents of the 9th case is

missing. Then the starting point of the approach was to assume that

(cell(1, 1), cell(1, 2)) : cell(1, 3) ::
(cell(2, 1), cell(2, 2)) : cell(2, 3) ::

(cell(3, 1), cell(3, 2)) : cell(3, 3)
where cell(i, j) is a multiple-attribute, vector-based representation

of the contents of the cell (i, j), cell(3, 3) being unknown. The above

formal expression states that the pair of the first two cells of line 1

is to the third cell of line 1 as the pair of the first two cells of line

2 is to the third cell of line 2, as the pair of the first two cells of

line 3 is to the third cell of line 3 (similar analogical proportions are

also assumed for columns). Here the hidden function f is such that

cell(i, 3) = f(cell(i, 1), cell(i, 2)), and its output is not a class, but

a cell description. Since this approach has been successful for solving

Raven IQ tests, the idea in this paper is to apply it to classification.

Applying central permutation, we are led to rewrite the analogical

proportion ~xi : cl(~xi) :: ~xj : cl(~xj) linking examples ~xi and ~xj as

~xi : ~xj :: cl(~xi) : cl(~xj)

This suggests a new reading of the training set, based on pairs.

Namely, the ways vectors ~xi and ~xj are similar / dissimilar should be

related to the identity or the difference of classes cl(~xi) and cl(~xj).

Given a pair of vectors ~xi and ~xj , one can compute the set of at-

4 However, note that some proportions may be known to hold between at-
tribute values (e.g. “small : medium :: medium : large”), while they do not
match any of the 3 patterns, and as such will not be recognized.

A1 ...Ai−1 Ai ...Aj−1 Aj ...Ak−1 Ak ...Ar−1 Ar ...As−1 As ...An | cl

#xi 1 ... 1 0 ... 0 1 ... 1 0 ... 0 1 ... 1 0 ... 0| cl(#xi)
#xj 1 ... 1 0 ... 0 1 ... 1 0 ... 0 0 ... 0 1 ... 1| cl(#xj)

#
xk 1 ... 1 0 ... 0 0 ... 0 1 ... 1 1 ... 1 0 ... 0| cl(#

xk)
#x0 1 ... 1 0 ... 0 0 ... 0 1 ... 1 0 ... 0 1 ... 1| cl(#x0)

Table 2. Pairing two pairs

tributes A(~xi, ~xj) where they agree (i.e. they have identical attribute

values) and the set of attributes D(~xi, ~xj) where they disagree (i.e.

they have different attribute values). Thus, in Table 2, after a suitable

reordering of the attributes, the vectors ~xi and ~xj agree on attributes

A1 to Ar−1 and disagree on attributes Ar to An. Consider now the

instance ~x0 (see Table 2) for which we want to predict the class.

Suppose, we have in the training set TS, both the pair (~xi, ~xj), and

the example ~xk which once paired with ~x0 has exactly the same dis-

agreement set as D(~xi, ~xj) and moreover with the changes oriented

in the same way. Then, as can be seen in Table 2, we have a per-

fect analogical proportion componentwise, between the four vectors.

Note that although A(~xi, ~xj) = A(~xk, ~x0), the four vectors are not

everywhere equal on this subset of attributes. Besides, note also that

the above view would straightforwardly extend from binary-valued

attributes to attributes with finite attribute domains.

Thus, working in this way with pairs, we can implicitly reconsti-

tute 4-tuples of vectors that form an analogical proportion as in the

triple-based brute force method approach to classification. Before de-

veloping this pair-based approach from an algorithmic point of view,

let us first recall the previously existing approaches that are based on

the systematic use of triples of examples.

4 Triples-based analogical classifiers

Numerical proportions are closely related to the ideas of extrapola-

tion and of linear regression, i.e., to the idea of predicting a new value

on the ground of existing values. The equation solving property re-

called above is at the root of a brute force method for classification. It

is based on a kind of proportional continuity principle: if the binary-

valued attributes of 4 objects are componentwise in analogical pro-

portion, then this should still be the case for their classes. More pre-

cisely, having a binary classification problem, and 4 Boolean objects

~a,~b,~c, ~d, 3 in the training set with known classes cl(~a), cl(~b), cl(~c),

the 4th being the object to be classified in one of the classes, i.e. cl(~d)
is unknown, this principle can be stated as:

~a : ~b :: ~c : ~d

cl(~a) : cl(~b) :: cl(~c) : cl(~d)

Then, if the equation cl(~a) : cl(~b) :: cl(~c) : x is solvable, we can

allocate its solution to cl(~d). Note that this applies both in the case

where attributes and classes are Boolean and in the case where at-

tribute values and classes belong to discrete domains. This principle

can lead to several implementations (in the Boolean case).

Before introducing the existing analogical classifiers, let us

first restate the classification problem. We consider a universe U
where each object is represented as a vector of n feature val-

ues ~x = (x1, ..., xi, ..., xn) belonging to a Cartesian product

T = Πi∈[1,n]Xi. When considering only binary attributes, it simply

means T = B
n. Each vector ~x is assumed to be part of a group of

vectors labeled with a unique class cl(~x) ∈ C = {c1, ..., cK}, where

K is finite and there is no empty class in the data set. If we suppose

that cl is known on a subset TS ⊂ T (TS is the training set or the

example set), given a new vector ~y = (y1, ..., yi, ..., yn) /∈ TS, the

classification problem amounts to assigning a plausible value cl(~y)
on the basis of the examples stored in TS.

Learning by analogy as described in [2], is a lazy learning tech-

nique which uses a measure of analogical dissimilarity between

4 objects. It estimates how far 4 objects are from being in ana-

logical proportion. Roughly speaking, the analogical dissimilarity

ad between 4 Boolean values is the minimum number of bits that

have to be switched to get a proper analogy. Thus ad(1, 0, 1, 0) =
0,ad(1, 0, 1, 1) = 1 and ad(1, 0, 0, 1) = 2. Thus, a : b :: c : d
holds if and only if ad(a, b, c, d) = 0. Moreover ad differentiates

two cases where analogy does not hold, namely the 8 cases with an

odd number of 0 and an odd number of 1 among the 4 Boolean val-

ues, such as ad(0, 0, 0, 1) = 1 or ad(0, 1, 1, 1) = 1, and the two

cases ad(0, 1, 1, 0) = ad(1, 0, 0, 1) = 2. When we deal with 4

Boolean vectors in B
n, adding the ad evaluations componentwise

generalizes the analogical dissimilarity to Boolean vectors, and leads

to an integer AD belonging to the interval [0, 2n]. This number es-

timates how far the 4 vectors are from building, componentwise, a

complete analogy. It is used in [2] in the implementation of a classi-

fication algorithm where the input parameters are a set TS of classi-

fied items, an integer k, and a new item ~d to be classified. It proceeds

as follows:

Step 1: Compute the analogical dissimilarity AD between ~d and all

the triples in TS3 that produce a solution for the class of ~d.

Step 2: Sort these n triples by the increasing value of AD.

Step 3: Let p be the value of ad for the k-th triple, then find k′ as

being the greatest integer such that the k′-th triple has the value p.

Step 4: Solve the k′ analogical equations on the label of the class.

Take the winner of the k′ votes and allocate this winner to cl(~d).

This approach provides remarkable results and, in several cases,

outperforms the best known algorithms [14]. Other options are avail-

able that do not use a dissimilarity measure but just apply in a

straightforward manner the previous continuity principle, still adding

flexibility by allowing to have some components where analogy does

not hold. A first option [17, 21] is to consider triples (~a,~b,~c) such

that the class equation cl(~a) : cl(~b) :: cl(~c) : x is solvable and

such that card({i ∈ [1, n]| ai : bi :: ci : di holds}) is maxi-

mal. Then we allocate to ~d the label solution of the corresponding

class equation. A second option [16] is to fix an integer p telling us

for how many components we tolerate the analogical proportion not

to hold. In that case, a candidate voter is just a triple (~a,~b,~c) such

that the class equation cl(~a) : cl(~b) :: cl(~c) : x is solvable and

card({i ∈ [1, n]| ai : bi :: ci : di holds} ≥ n − p). In both options

[21, 16], a majority vote is applied among the candidate voters. The

main novelty wrt the previous approach [2] is that we do not differen-

tiate the two cases where analogy does not hold. In terms of accuracy

there is no significant differences between these three algorithms.

5 A pair-based approach

In this section, we investigate a new approach to analogical classi-

fication, simpler that the known ones. The main idea is first to look

for the items in TS that are the most similar to the new item ~d to be

classified, then to look for pairs in TS2 that present the same dissim-

ilarity as the one existing between ~d and the chosen nearest neighbor.

We thus build triples used for final prediction. Let us detail the idea.

Step 1: Use of similarity. We look for the most similar examples

to ~d. Let ~c be a nearest neighbor of ~d in TS. If ~c = ~d, (i.e. ~d belongs

to TS), its label is known and there is nothing to do. In the opposite

case ~c)= ~d, ~c differs from ~d on p values (i.e. the Hamming distance

between ~c and ~d, H(~c, ~d) equals to p). Since ~c is a nearest neighbor

of ~d w.r.t. H , there is no example ~c′ differing from ~d on less than p
values. However, unlike 1-nn algorithm, we do not allocate the label

of ~c to ~d: this is the exact point where analogical learning differs from

the k-NN family of algorithms.

Step 2: Use of dissimilarity. Now, we search in TS a pair (~a,~b)

of examples dissimilar in the same way as ~c and ~d are dissimilar.

Moreover ~a and ~b should be identical on the same attributes where

~c and ~d are identical. For instance, if ~c = (1, 0, 1, 1, 1, 0), ~d =

(0, 1, 1, 0, 1, 0), ~a and ~b should be similar (i.e. identical) on at-

tributes 3, 5 and 6 and dissimilar on attributes 1, 2 and 4, ex-

actly as ~c and ~d are dissimilar. In that particular case, the pair

~a = (1, 0, 0, 1, 0, 0),~b = (0, 1, 0, 0, 0, 0) satisfies the previous re-

quirement. Clearly, ~a : ~b :: ~c : ~d is a valid analogical proportion.

In the case where the class equation cl(~a) : cl(~b) :: cl(~c) : x has a

solution, we allocate to cl(~d) the solution of this equation. If not, we

search for another pair (~a,~b). Obviously, in the case where we have

more than one nearest neighbor ~c or several pairs (~a,~b), leading to

different labels for ~d, we implement a majority vote for the final label

of ~d. In case there are ties, i.e. several classes get the same maximal

number of votes, we consider the set of neighbors ~c at distance p+1,

and we repeat the same procedure restricted to the subset of winning

classes. We iterate the process until having a unique winner.

Let us now state these ideas with formal notations in the Boolean

case (the extension to the discrete case is easy). Given 2 distinct vec-

tors ~x and ~y of B
n, they define a partition of [1, n] as

• A(~x, ~y) = {i ∈ [1, n]| xi = yi} capturing the similarities,

• D(~x, ~y) = {i ∈ [1, n]| xi)= yi} = [1, n] \A(~x, ~y) capturing the

dissimilarities. The cardinal of D(~x, ~y) is exactly the Hamming

distance H(~x, ~y) between the 2 vectors.

Given J ⊆ [1, n], let us denote ~x|J the subvector of ~x made of

the xj , j ∈ J . Obviously, ~x|A(1x,1y) = ~y|A(1x,1y) and, in the binary

case, when we know ~x|D(1x,1y), we can compute ~y|D(1x,1y). The pair

(~x, ~y) allows us to build up a disagreement pattern Dis(~x, ~y) as

a list of pairs (value, index) (value ∈ B
n, index ∈ D(~x, ~y))

where the 2 vectors differ. In the binary case, with n = 6, ~x =
(1, 0, 1, 1, 0, 0), ~y = (1, 1, 1, 0, 1, 0), Dis(~x, ~y) = (02, 14, 05). It

is clear that having a disagreement pattern Dis(~x, ~y) and a vector ~x
(resp. ~y), we can get ~y (resp. ~x). In the same way, the disagreement

pattern Dis(~y, ~x) is deducible from Dis(~x, ~y). For the previous ex-

ample, Dis(~y, ~x) = (12, 04, 15).

The previous explanation can now be described with the pseudo-

code of Algorithm 1, where the unique(value, Array) function re-

turns a Boolean value true iff the value value appears exactly once

in the array Array, false otherwise.

Let BH(~d, r) = {~c ∈ TS | H(~d,~c) = r} be the ball in TS with

center ~d and radius r w.r.t. the Hamming distance H . The algorithm

stops as soon as we have a label for ~d, and we do not investigate

other balls with bigger radius where we could find other options.

Note that these balls do not overlap by construction. If we do not

find any label for ~d, the algorithm stops when r = n + 1 and returns

not classified. We cannot classify in the case there is a 50/50 vote:

from a probability viewpoint, this situation is extremely unlikely and

did not happen for the benchmarks we have dealt with.

We have to note that an offline pre-processing can be done on the

training set TS: for each r ∈ [1, n], we can build up the subset of

TS × TS constituted with the pairs (~a,~b) such that H(~a,~b) = r:

this will speed up the online process within the internal FOR loop.

Due to the two nested FOR loops, it is clear that the worse case

complexity is cubic (as the other analogy-based algorithms) since

Algorithm 1 Analogical classifier

Input: ~d /∈ TS a new instance to be classified

r = 1; classified = false;

while not(classified) AND (r ≤ n) do

build up the set BH(~d, r) = {~c ∈ TS|H(~c, ~d) = r}

if BH(~d, r))= ∅ then

for each label l do CandidateV ote(l) = 0 end for

for each ~c in BH(~d, r) do

for each pair (~a,~b) such that: Dis(~a,~b) =

Dis(~c, ~d) AND cl(~a) : cl(~b) :: cl(~c) : x has solution l
do

CandidateV ote(l) + +
end for

end for

maxi = max{CandidateV ote(l)}
if maxi)= 0 AND unique(maxi, CandidateV ote(l))
then

cl(~d) = argmaxl{CandidateV ote(l)}
classified = true

end if

end if

r + +
end while

if classified then

return (cl(~d))

else

return (not classified))

end if

the search space is just TS × TS × TS. Nevertheless, in average,

we will find a solution within the ball BH(~d, r) with r < n, thus

pruning a large part of the search space. Besides, one may think of

the pre-processing step working only on a subset of TS.

It is important to remark that the cardinality of a Hamming ball

depends on the data representation. Let us illustrate the problem

with only 2 attributes a1 and a2 where a1 is binary and a2 is

nominal with 3 possible distinct values. Given 2 distinct exam-

ples ~d = (1, v1) and ~d′ = (1, v2) respectively represented as
~d = (1, 1, 0, 0) and ~d′ = (1, 0, 1, 0) when binarized. With discrete

coding, H(~d, ~d′) = 1, i.e. ~d′ ∈ BH(~d, 1), but with the binary cod-

ing, H(~d, ~d′) = H((1, 1, 0, 0), (1, 0, 1, 0)) = 2 i.e. ~d′ /∈ BH(~d, 1).

Ultimately, the number of voters will not be the same and we can

anticipate different results depending on the coding method.

6 Experiments
This section provides experimental results obtained with our new al-

gorithm. The experimental study is based on six data sets taken from

the U.C.I. machine learning repository [13].

- Balance and Car are multiple classes databases.

- TicTacToe, Monk1, Monk2 and Monk3 data sets are binary

class problems. Monk3 has noise added (in the training set only).

A brief description of these data sets is given in Table 3.

Table 3. Description of datasets

Datasets Instances Nominal Att. Binary Att. Classes

Balance 625 4 20 3
Car 743 7 21 4
TicTacToe 958 9 27 2
Monk1 432 6 15 2
Monk2 432 6 15 2
Monk3 432 6 15 2

Table 4 provides the accuracy results for the proposed algorithm

obtained with a 10-fold cross validation for these six datasets. The

best results are highlighted in bold. Several comments arise:

Table 4. Accuracy results (means and standard deviations)

non binarized binarized

r=1 r=2 r=3 r=1 r=2 r=3

Balance 86 ± 4 88 ± 2 72 ± 5 84 ± 4 87 ± 3 74 ± 5
Car 95 ± 3 89 ± 3 72 ± 6 95 ± 3 94 ± 5 77 ± 6

TicTacToe 98 ± 5 96 ± 5 98 ± 5 98 ± 5 97 ± 5 98 ± 5
Monk1 99 ± 1 99 ± 1 90 ± 4 99 ± 1 99 ± 1 99 ± 1
Monk2 99 ± 1 97 ± 3 91 ± 5 60 ± 7 99 ± 1 94 ± 5
Monk3 99 ± 1 97 ± 2 91 ± 5 99 ± 1 99 ± 1 98 ± 2

• In Table 4 it is clear that the results are not code-sensitive (except

for Monk2 dataset): whatever the way we code the data, keeping

the discrete values or moving to a binary code, we get the same

accuracy (the difference is not statistically significant). Regarding

the case of Monk2, it is known that the underlying function (“hav-

ing exactly two attributes with value 1”) is more complicated than

the functions underlying Monk1 and Monk3, and involves all the

attributes (while in the two other functions only 3 attributes among

6 are involved). Then we may conjecture that more examples are

needed in Monk2 for predicting the function. For Monk2, in the

Hamming ball of radius 1, the average number of voters is 220 in

the discrete case while it is only 64 in the binarized case which

might be not enough to accurately predict this complex function.

• Roughly speaking, our best results are obtained for small values

of r (often the smallest one, r = 1), at least in the discrete case,

since in the binary case, we observe on some datasets that a very

good accuracy result may be obtained with a higher value of r
in the case of binary coding, which is consistent with the above

analysis.

• From a practical perspective, these results suggest that we might

consider that the pairs differing on one attribute are sufficient to

classify new items ~d and that we have just to explore BH(~d, 1) for

associating a label to ~d. This rule of thumb will drastically reduce

the size of the search space and then the average complexity of the

algorithm, but it has to be investigated in a broader experimenta-

tion. This value of r is also likely to be connected with the size of

the training set (a too small training set may lead to an empty ball

for r = 1).

• Let us also mention that for the 6 considered datasets, we did not

get any “not classified items”. This means that in practice, there

always exists a ball BH(~d, r) where a majority vote can take place.

It is interesting to figure out the numbers of pairs (~a,~b) that are

built from the training set (in pre-processing step) that differ on r
attributes for 1 ≤ r ≤ n. Let us consider the case of Monk2 (with

a discrete coding), when TS is equal to 90% of the whole data set.

The number of pairs (~a,~b) is:

r = 1 : 3946; r = 2 : 17346; r = 3 : 39630; r = 4 : 49580;

r = 5 : 32068; r = 6 : 8362. The sum of these numbers equals the

numbers of pairs that can be built from the used part of the data set.

As expected, this number first increases with r and then decreases.

When considering a particular item ~d, and a neighbor ~c ∈ BH(~d, r)

the number of voters (~a,~b) is a small subset of the set of pairs dif-

fering on r attributes, due to the fact that two constraints have to be

satisfied: the pairs (~a,~b) and (~c, ~d) differ on the same attribute(s) and

the associated class equation should be solvable. For instance, in the

Monk2 case (with a discrete coding), for r = 1, the average number

of voters is 220, for r = 2, 350, for r = 3, 270. However with the

binary coding, for r = 2 and r = 3, the average number of voters

would be smaller as it is the case for r = 1.

In order to compare analogical classifiers with existing classifica-

tion approaches, Table 5 includes classification results of some ma-

chine learning algorithms: the SVM, k-Nearest Neighbors IBk for

k=1, k=10, JRip an optimized propositional rule learner, C4.5 deci-

sion tree and finally WAPC, the weighted analogical classifier (us-

ing analogical dissimilarity) presented in [14]. Accuracy results for

SVM, IBk, JRip and C4.5 are obtained by applying the free imple-

mentation of Weka software.

Table 5. Classification results of well-known machine learning algorithms

Datasets SVM IBk(k=1, k=10) JRip C4.5 WAPC

Balance 90 84, 84 72 64 86
Car 92 92, 92 88 90 n/a
Tic tac toe 98 99, 99 98 85 n/a
Monk1 75 99,96 94 96 98
Monk2 67 60, 63 66 67 100
Monk3 100 99, 98 99 100 96

We draw the following conclusions from this comparative study:

• As expected, our results are very close to, and as good as, those

obtained by the other analogical based-approach WAPC.

• However, in contrast with WAPC, we do not use any weighting

machinery for improving the basic algorithm.

• Moreover, let us note that, with our new approach, when we

compare with the WAPC algorithm using analogical dissimilarity

(AD), we only use candidate voters with AD = 0 (perfect analogy

on all attributes). Indeed it has been observed in [14] that the num-

ber of triples (~a,~b,~c) such that AD(~a,~b,~c, ~d) = 0 is often large.

Our results show that it is enough to consider these perfect triples

(obtained as the combination of a nearest neighbor ~c and of a pair

(~a,~b) in the new approach) to make accurate predictions.

• As WAPC, the new algorithm provides results which can be favor-

ably compared with classical methods (at least for these datasets),

and even sometimes outperforming their results.

When the Hamming distance r is small, which is usually the case,

~a is quite close to ~b, since ~c is close to ~d. Nevertheless, it has been

checked that in general this is no longer the case that ~a or~b are close

to ~d. This highlights the fact that such classifiers do not work in the

neighborhood of the item to be classified but rather look for pieces

of information far from the target item ~d.

However, as an attempt to make analogical classifiers closer to k-

NN classifiers, we also tested another version of the proposed algo-

rithm that only considers as candidate voters the pairs (~a,~b) that are

equal to the pair (~c, ~d) on the greatest possible number of attributes.

Obtained results for the datasets (discrete coding) are as follows:

r=1 Monk1: 87±8; Monk2: 64±5; Monk3: 91±6; Balance: 78±5;

Car: 88±2.

r=2 Monk1: 88±9; Monk2: 58±7: Monk3: 95±3; Balance: 86±5;

Car: 80±6.

From these results compared to those given in Table 4, it is clear

that this new version is significantly less accurate than the basic one.

We can conclude that considering only pairs (~a,~b) equal to (~c, ~d)
for a maximum number of attributes is not very effective for clas-

sification. This suggests that, doing this, we remain too close to the

spirit of k-NN classifiers for getting the full benefit of the analogical

proportion-based approach.

Lastly, we tested a third version of the proposed approach which

is different from the second one. Instead of classifying the example
~d using the pairs (~a,~b) that are equal to the pair (~c, ~d) on a maxi-

mum number of attributes, we classify the example using pairs (~a,~b)

which are equal to (~c, ~d) on a chosen number r of attributes. This

number r is taken as the one for which the number of pairs (~a,~b) is

maximum, i.e.,

r = argmaxr′{card(E(1c,1d) ∩ E′
(1c,1d)

) | H(~d,~c) = r′}

with E(1c,1d) = {(~a,~b) ∈ TS2|Dis(~a,~b) = Dis(~c,~d)} and

E′
(1c,1d)

={(~a,~b) ∈ TS2|cl(~a) :cl(~b) ::cl(~c) :x is solvable}

The experiment shows that this version has classification results

very close to those given in Table 4 for the basic algorithm.

Thus, in analogical classifiers, contrary to k-NN approaches, we

deal with pairs of examples. Moreover, the two pairs that are involved

in an analogical proportion are not necessarily much similar as pairs,

beyond the fact they should exhibit the same dissimilarity (on a usu-

ally small number of attributes). At least from an experimental view-

point, this way to proceed appears to be effective enough to get good

performances.

Our approach may appear somehow similar to works coming from

the CBR community. Nevertheless our method entirely relies on ana-

logical proportions involving a triple of examples together with an

item to be classified. Instead of considering all candidate triples, we

focus on a subset of triples by choosing one of the three elements

of the triple as a nearest neighbor of the new item. There is no con-

straint on the 2 other elements in the triple which may then be found

far from the immediate neighborhood of the item to be classified. We

are neither bracketing the item between two examples as in [12], nor

using any Bayesian techniques as in [4]. From another viewpoint,

adaptation is crucial in the CBR community and adaptation knowl-

edge can be learned (see [8] for instance), to be applied to the pairs

(new item, a nearest neighbor). In our approach, analogical propor-

tions handle similarity and dissimilarity simultaneously, performing

a form of adaptation in their own way, without the need for any in-

duction step. Finally, it is worth to note that a similar approach for

handling numerical attributes has been investigated in [3], also lead-

ing to promising results.

7 Conclusion
In this paper, we have presented a new way to deal with analogi-

cal proportions in order to design classifiers. Instead of a brute-force

investigation of all the triples ~a,~b,~c to build up a valid proportion

with the new item ~d to be classified, we first look for a neighbor ~c
of ~d. Then, on the basis of the dissimilarities between ~c and ~d, we

find the pairs (~a,~b) with exactly the same dissimilarities. Such pairs,

associated with ~c constitute the candidate voters provided that the

corresponding class equation is solvable. Our first implementation

exhibits very good results on 6 UCI benchmarks and enjoys a lower

average complexity than classical analogical classifiers. This has to

be confirmed on bigger datasets (more attributes, more examples).

As explained in the Monk2 example, a rather small number of

pair-based voters are used to classify. It remains to investigate if this

is a general property and if it is possible to obtain accurate results

by focusing only on a still more restricted number of voters. Such

an approach might be closer to a cognitive attitude where excellent

human experts usually focus directly on the few relevant pieces of

information for making prediction (classification or diagnosis) [22].

Analogical proportions are not only a tool for classifying, but more

generally for building up a 4th item starting from 3 others, thanks

to the equation solving process. As we have seen, this 4th item

could be entirely new. Thus, while classifiers like k-NN focus on

the neighborhood of the target item, analogical classifiers go beyond

this neighborhood, and rather than “copying” what emerges among

close neighbors, “take inspiration” of relevant information possibly

far from the immediate neighborhood. Finally, this way to proceed

with analogical proportions is paving the way to what could be called

“creative machine learning”.

REFERENCES

[1] A. Bandura, Social Learning Theory, Prentice Hall, 1977.
[2] S. Bayoudh, L. Miclet, and A. Delhay, ‘Learning by analogy: A clas-

sification rule for binary and nominal data’, Proc. Inter. Joint Conf. on

Artificial Intelligence IJCAI07, 678–683, (2007).
[3] M. Bounhas, H. Prade, and G. Richard, ‘Analogical classification: Han-

dling numerical data’, Technical Report RR–2014-06–FR, Institut de
Recherche en Informatique de Toulouse (IRIT), (May 2014).

[4] W.w. Cheng and E. Hüllermeier, ‘Combining instance-based learn-
ing and logistic regression for multilabel classification’, Mach. Learn.,
76(2-3), 211–225, (Sep 2009).

[5] W. Correa, H. Prade, and G. Richard, ‘When intelligence is just a matter
of copying’, in Proc. 20th Eur. Conf. on Artificial Intelligence, Mont-

pellier, Aug. 27-31, pp. 276–281. IOS Press, (2012).
[6] M. Hesse, ‘On defining analogy’, Proceedings of the Aristotelian Soci-

ety, 60, 79–100, (1959).
[7] K. J. Holyoak and P. Thagard, Mental Leaps: Analogy in Creative

Thought, MIT Press, 1995.
[8] J. Jarmulak, S. Craw, and R. Rowe, ‘Using case-base data to learn adap-

tation knowledge for design’, in Proceedings of the 17th International

Joint Conference on Artificial Intelligence - Volume 2, IJCAI’01, pp.
1011–1016, San Francisco, CA, USA, (2001). Morgan Kaufmann Pub-
lishers Inc.

[9] S. E. Kuehne, D. Gentner, and K. D. Forbus, ‘Modeling infant learning
via symbolic structural alignment’, in Proc. 22nd Annual Meeting of

the Cognitive Science Society, pp. 286–291, (2000).
[10] J. F. Lavallée and P. Langlais, ‘Moranapho: un système multilingue

d’analyse morphologique basé sur l’analogie formelle’, TAL, 52(2), 17–
44, (2011).

[11] Y. Lepage, ‘Analogy and formal languages’, Electr. Notes Theor. Com-

put. Sci., 53, (2001).
[12] D. McSherry, ‘Case-based reasoning techniques for estimation’, in IEE

Colloquium on Case-Based Reasoning, pp. 6/1–6/4, (Feb 1993).
[13] J. Mertz and P.M. Murphy, ‘Uci repository of machine learning

databases’, Available at: ftp://ftp.ics.uci.edu/pub/machine-learning-

databases, (2000).
[14] L. Miclet, S. Bayoudh, and A. Delhay, ‘Analogical dissimilarity: defi-

nition, algorithms and two experiments in machine learning’, JAIR, 32,
793–824, (2008).

[15] L. Miclet and H. Prade, ‘Handling analogical proportions in classi-
cal logic and fuzzy logics settings’, in Proc. 10th Eur. Conf. on Sym-

bolic and Quantitative Approaches to Reasoning with Uncertainty (EC-

SQARU’09),Verona, pp. 638–650. Springer, LNCS 5590, (2009).
[16] R. M. Moraes, L. S. Machado, H. Prade, and G. Richard, ‘Classification

based on homogeneous logical proportions’, in Proc. of AI-2013, The

Thirty-third SGAI International Conference on Innovative Techniques

and Applications of Artificial Intelligence, Cambridge, England, UK,,
eds., M. Bramer and M. Petridis, pp. 53–60. Springer, (2013).

[17] H. Prade and G. Richard, ‘Reasoning with logical proportions’, in Proc.

12th Int. Conf. on Principles of Knowledge Representation and Rea-

soning, KR 2010, Toronto, May 9-13, 2010 (F. Z. Lin, U. Sattler, M.

Truszczynski, eds.), pp. 545–555. AAAI Press, (2010).
[18] H. Prade and G. Richard, ‘Homogeneous logical proportions: Their

uniqueness and their role in similarity-based prediction’, in Proc. 13th

Int. Conf. on Principles of Knowledge Representation and Reasoning

(KR’12), Roma, June 10-14, eds., G. Brewka, T. Eiter, and S. A. McIl-
raith, pp. 402–412. AAAI Press, (2012).

[19] H. Prade and G. Richard, ‘From analogical proportion to logical pro-
portions’, Logica Universalis, 7(4), 441–505, (2013).

[20] Computational Approaches to Analogical Reasoning: Current Trends,
eds., H. Prade and G. Richard, volume 548 of Studies in Computational

Intelligence, Springer, 2014.
[21] H. Prade, G. Richard, and B. Yao, ‘Enforcing regularity by means of

analogy-related proportions-a new approach to classification’, Interna-

tional Journal of Computer Information Systems and Industrial Man-

agement Applications, 4, 648–658, (2012).
[22] E. Raufaste, Les Mécanismes Cognitifs du Diagnostic Médical : Opti-

misation et Expertise, PUF,Paris, 2001.
[23] N. Stroppa and F. Yvon, ‘Du quatrième de proportion comme principe

inductif : une proposition et son application à l’apprentissage de la mor-
phologie’, Traitement Automatique des Langues, 47(2), 1–27, (2006).

