Myriam Bounhas
email: myriam-bounhas@yahoo.fr

Henri Prade
email: prade@irit.fr

Gilles Richard
email: richard@irit.fr

Analogical classification: A new way to deal with examples

Introduced a few years ago, analogy-based classification methods are a noticeable addition to the set of lazy learning techniques. They provide amazing results (in terms of accuracy) on many classical datasets. They look for all triples of examples in the training set that are in analogical proportion with the item to be classified on a maximal number of attributes and for which the corresponding analogical proportion equation on the class has a solution. In this paper when classifying a new item, we demonstrate a new approach where we focus on a small part of the triples available. To restrict the scope of the search, we first look for examples that are as similar as possible to the new item to be classified. We then only consider the pairs of examples presenting the same dissimilarity as between the new item and one of its closest neighbors. Thus we implicitly build triples that are in analogical proportion on all attributes with the new item. Then the classification is made on the basis of a majority vote on the pairs leading to a solvable class equation. This new algorithm provides results as good as other analogical classifiers with a lower average complexity.

Introduction

It is a common sense idea that human learning is a matter of observation, then of imitation and appropriate transposition of what has been observed [START_REF] Bandura | Social Learning Theory[END_REF]. This may be related to analogical reasoning [START_REF] Holyoak | Mental Leaps: Analogy in Creative Thought[END_REF][START_REF] Kuehne | Modeling infant learning via symbolic structural alignment[END_REF]. It has been shown that a similar idea can be successful for solving progressive Raven matrices IQ tests, where we build the solution (rather than choosing it in a set of candidates) by recopying appropriate observations [START_REF] Correa | When intelligence is just a matter of copying[END_REF]. This process is closely related to the idea of analogical proportion, which is a core notion in analogical reasoning [START_REF]Computational Approaches to Analogical Reasoning: Current Trends[END_REF].

Analogical proportions are statements of the form "A is to B as C is to D", often denoted A : B :: C : D that express that "A differs from B as C differs from D", as well as "B differs from A as D differs from C" [START_REF] Miclet | Handling analogical proportions in classical logic and fuzzy logics settings[END_REF]. In other words, the pair (A, B) is analogous to the pair (C, D) [START_REF] Hesse | On defining analogy[END_REF]. A formalized view of analogical proportions has been recently developed in algebraic or logical settings [START_REF] Lepage | Analogy and formal languages[END_REF][START_REF] Stroppa | Du quatrième de proportion comme principe inductif : une proposition et son application à l'apprentissage de la morphologie[END_REF][START_REF] Miclet | Handling analogical proportions in classical logic and fuzzy logics settings[END_REF][START_REF] Prade | Reasoning with logical proportions[END_REF]. Analogical proportions turn out to be a powerful tool in morphological linguistic analysis [START_REF] Lavallée | Moranapho: un système multilingue d'analyse morphologique basé sur l'analogie formelle[END_REF], as well as in classification tasks where results competitive with the ones of classical machine learning methods have been first obtained by [START_REF] Miclet | Analogical dissimilarity: definition, algorithms and two experiments in machine learning[END_REF].

In classification, we assume here that objects or situations A, B, C, D are represented by vectors of attribute values, denoted a, b, c, d. The analogical proportion-based approach to classification relies on the idea that the unknown class x = cl(d) of a new instance d may be predicted as the solution of an equation expressing that the analogical proportion cl(a) : cl(b) :: cl(c) : x holds between the classes. This is done on the basis of triples (a, b, c) of examples of the training set that are such that the analogical proportion a : b :: c : d holds componentwise for all (or on a large number of) the attributes describing the items.

Building the solution of an IQ test or classifying a new item are tasks quite similar. Indeed, the images in a visual IQ test can be described in terms of features by means of vectors of their corresponding values, and we have to find another image represented in the same way, based on the implicit assumption that this latter image should be associated with the given images, this association being governed by the spatial disposition of images in rows, and maybe in columns. Similarly in a classification task, description vectors are associated with classes in the set of examples, while a class has to be predicted for a new vector. In this paper, this parallel leads us to propose a new, more simple and understandable approach to analogy-based classification, inspired from our approach for solving progressive Raven matrices tests [START_REF] Correa | When intelligence is just a matter of copying[END_REF]. This contrasts with the previous analogical approaches to classification, where all the triples of examples making an analogical proportion with the new item to be classified were considered in a brute-force, blind and systematic manner.

The paper is organized as follows. First, a refresher on analogical proportions both for Boolean and discrete attributes is given in Section 2. Then, in Section 3, a parallel is made between solving IQ tests and classification, where the relevance of analogical proportions for analyzing a set of examples is emphasized. After recalling the existing approaches to analogical proportion-based classification in Section 4, the new approach is presented in Section 5, and results on classical benchmarks are reported in Section 6, together with a general discussion on the merits of the new classifier, which may be related to a new learning paradigm that may be called creative machine learning. Conclusion emphasizes lines for further research.

Analogical proportion: a brief background

At the origin of analogical proportion is the standard numerical proportion, which is an equality statement between 2 ratios a b = c d , where a, b, c, d are numbers. In the same spirit, an analogical proportion a : b :: c : d stating "a is to b as c is to d", informally expresses that "a differs from b as c differs from d" and vice versa.

As it is the case for numerical proportions, this "analogical" statement is supposed to still hold when the pairs (a, b) and (c, d) are exchanged, or when the mean terms b and c are permuted (see [START_REF] Prade | Homogeneous logical proportions: Their uniqueness and their role in similarity-based prediction[END_REF] for a detailed discussion). When considering Boolean values (i.e. belonging to B = {0, 1}), a simple way to abstract the symbolic counterpart of numerical proportion has been given in [START_REF] Prade | Reasoning with logical proportions[END_REF] by focusing on indicators to capture the ideas of "similarity" and "dissimilarity". For a pair (a, b) of Boolean variables, indicators are defined as:

a ∧ b and ¬a ∧ ¬b : similarity indicators, a ∧ ¬b and ¬a ∧ b : dissimilarity indicators. A logical proportion (see [START_REF] Prade | From analogical proportion to logical proportions[END_REF] for a thorough investigation) is a conjunction of two equivalences between indicators and the best "clone" of the numerical proportion is the analogical proportion defined as:

(a ∧ ¬b ≡ c ∧ ¬d) ∧ (¬a ∧ b ≡ ¬c ∧ d). This expression of analogical proportion, using only dissimilarities, could be informally read as what is true for a and not for b is exactly what is true for c and not for d, and vice versa. As such, a logical proportion is a Boolean formula involving 4 variables and it can be checked on Table 1 that

c : d 0 0 0 0 1 1 1 1 1 1 0 0 1 1 1 1 1 0 0 1 0 1 0 1 1 1 0 1 0 1 Table 1.
Valuations where a : b ::

c : d is true
In terms of generic patterns, we see that analogical proportion always holds for the 3 following patterns: s : s :: s : s, s : s :: t : t and s : t :: s : t where s and t are distinct Boolean values. One of the side products of numerical proportions is the wellknown "rule of three" allowing to compute a suitable 4th item x in order to complete a proportion a b = c x . This property has a counterpart in the Boolean case where the problem can be stated as follows. Given a triple (a, b, c) of Boolean values, does there exist a Boolean value x such that a : b :: c : x = 1, and in that case, is this value unique? There are cases where the equation has no solution since the triple (a, b, c) may take 2 3 = 8 values, while a : b :: c : d is true only for 6 distinct 4-tuples. Indeed, the equations 1 : 0 :: 0 : x = 1 and 0 : 1 :: 1 : x = 1 have no solution. It is easy to prove that the analogical equation a : b :: c : x = 1 is solvable iff (a ≡ b)∨(a ≡ c) holds true. In that case, the unique solution is given by x = a ≡ (b ≡ c).

Back to our 3 analogical patterns s : s :: s : s, s : s :: t : t and s : t :: s : t, solving an incomplete pattern (i.e. where the 4th element is missing) is just a matter of copying a previously seen value s or t (an idea already emphasized in [START_REF] Correa | When intelligence is just a matter of copying[END_REF]).

Objects are generally represented as vectors of attribute values (rather than by a single value). Here each vector component is assumed to be a Boolean value. A straightforward extension to B n is:

a : b :: c : d iff ∀i ∈ [1, n]
, ai : bi :: ci : di All the basic properties (symmetry, central permutation) still hold for vectors. The equation solving process is also valid, but provides a new insight about analogical proportion: analogical proportions are creative. Indeed let us consider the following example where a = (1, 0, 0), b = (0, 1, 0) and c = (1, 0, 1). Solving the analogical equation a : b :: c : x yields x = (0, 1, 1), which is a vector different from a, b and c. In fact, we can extend this machinery from Boolean to discrete domains where the number of candidate attribute values is finite, but greater than 2. Indeed, considering an attribute domain {v1, • • • , vm}, we can binarize it by means of the m properties "having or not value vi". For instance, given a tri-valued attribute having candidate values v1, v2, v3, respectively encoded as 100, 010, 001, the valid analogical proportion v1 : v2 : v1 : v2 still holds componentwise as a B 3 vector proportion: 100 : 010 :: 100 : 010, since the Boolean proportions 1010, 0101 and 0000 hold. It can be checked that the binary encoding acknowledges the analogical proportions underlying the two other patterns v1 : v1 : v2 : v2 and v1 : v1 : v1 : v1 as well. Conversely, a non-valid analogical proportion, e.g. v1 : v2 : v2 : v1, will not be recognized as an analogical proportion in this binary encoding. This remark will enable us to handle discrete attributes directly in terms of the three patterns s : s :: s : s, s : s :: t : t and s : t :: s : t, where s and t are now values of a discrete attribute domain 4 .

From IQ tests to analogical classifiers

A training set T S of examples x k = (x k 1, ..., x k i, ..., x k n) together with their class cl(x k), with k = 1, • • • , t can receive an informal reading in terms of analogical proportions. Namely, " x 1 is to cl(x 1) as x 2 is to cl(x 2) as • • • as x t is to cl(x t)" (still assuming transitivity of these analogical proportions). This can be (informally) written as

x 1 : cl(x 1) :: x 2 : cl(x 2) :: • • • :: x t : cl(x t)
It is important to notice that this view exactly fits with the idea that in a classification problem there exists an unknown classification function that associates a unique class with each object, and which is exemplified by the training set. Indeed x k : cl(x k) ::

x k : cl ′ (x k) with cl(x k) = cl ′ (x k
) is forbidden, since it cannot hold as an analogical proportion. However in practice, we allow noise in T S, i.e. examples x k with a wrong class cl(x k). The training set is not just viewed as a simple set of pairs (x, cl(x)), but as a set of valid analogical proportions x : cl(x) :: y : cl(y). This is the corner stone of the approach presented in the following.

A similar view has been recently successfully applied to the solving of Raven progressive matrix IQ tests [START_REF] Correa | When intelligence is just a matter of copying[END_REF]. In this type of tests you have to complete a 3 × 3 matrix where the contents of the 9th case is missing. Then the starting point of the approach was to assume that

(cell(1, 1), cell(1, 2)) : cell(1, 3) :: (cell(2, 1), cell(2, 2)) : cell(2, 3) :: (cell(3, 1), cell(3, 2
)) : cell(3, 3) where cell(i, j) is a multiple-attribute, vector-based representation of the contents of the cell (i, j), cell(3, 3) being unknown. The above formal expression states that the pair of the first two cells of line 1 is to the third cell of line 1 as the pair of the first two cells of line 2 is to the third cell of line 2, as the pair of the first two cells of line 3 is to the third cell of line 3 (similar analogical proportions are also assumed for columns). Here the hidden function f is such that cell(i, 3) = f (cell(i, 1), cell(i, 2)), and its output is not a class, but a cell description. Since this approach has been successful for solving Raven IQ tests, the idea in this paper is to apply it to classification.

Applying central permutation, we are led to rewrite the analogical proportion x i : cl(x i) :: x j : cl(x j) linking examples x i and x j as

x i : x j :: cl(x i) : cl(x j)
This suggests a new reading of the training set, based on pairs. Namely, the ways vectors x i and x j are similar / dissimilar should be related to the identity or the difference of classes cl(x i) and cl(x j). Given a pair of vectors x i and x j , one can compute the set of at-

A1 ... A i-1 A i ...A j-1 A j ... A k-1 A k ...Ar-1 Ar ...As-1 As ...An | cl x i 1 ... 1 0 ... 0 1 ... 1 0 ... 0 1 ... 1 0 ... 0| cl(x i) x j 1 ... 1 0 ... 0 1 ... 1 0 ... 0 0 ... 0 1 ... 1| cl(x j) x k 1 ... 1 0 ... 0 0 ... 0 1 ... 1 1 ... 1 0 ... 0| cl(x k) x 0 1 ... 1 0 ... 0 0 ... 0 1 ... 1 0 ... 0 1 ... 1| cl(x 0)
Table 2. Pairing two pairs tributes A(x i , x j) where they agree (i.e. they have identical attribute values) and the set of attributes D(x i , x j) where they disagree (i.e. they have different attribute values). Thus, in Table 2, after a suitable reordering of the attributes, the vectors x i and x j agree on attributes A1 to Ar-1 and disagree on attributes Ar to An. Consider now the instance x 0 (see Table 2) for which we want to predict the class. Suppose, we have in the training set T S, both the pair (x i , x j), and the example x k which once paired with x 0 has exactly the same disagreement set as D(x i , x j) and moreover with the changes oriented in the same way. Then, as can be seen in Table 2, we have a perfect analogical proportion componentwise, between the four vectors. Note that although A(x i , x j) = A(x k , x 0), the four vectors are not everywhere equal on this subset of attributes. Besides, note also that the above view would straightforwardly extend from binary-valued attributes to attributes with finite attribute domains. Thus, working in this way with pairs, we can implicitly reconstitute 4-tuples of vectors that form an analogical proportion as in the triple-based brute force method approach to classification. Before developing this pair-based approach from an algorithmic point of view, let us first recall the previously existing approaches that are based on the systematic use of triples of examples. x is solvable, we can allocate its solution to cl(d). Note that this applies both in the case where attributes and classes are Boolean and in the case where attribute values and classes belong to discrete domains. This principle can lead to several implementations (in the Boolean case).

Before introducing the existing analogical classifiers, let us first restate the classification problem. We consider a universe U where each object is represented as a vector of n feature values x = (x1, ..., xi, ..., xn) belonging to a Cartesian product T = Π i∈ [1,n] Xi. When considering only binary attributes, it simply means T = B n . Each vector x is assumed to be part of a group of vectors labeled with a unique class cl(x) ∈ C = {c1, ..., cK }, where K is finite and there is no empty class in the data set. If we suppose that cl is known on a subset T S ⊂ T (T S is the training set or the example set), given a new vector y = (y1, ..., yi, ..., yn) / ∈ T S, the classification problem amounts to assigning a plausible value cl(y) on the basis of the examples stored in T S.

Learning by analogy as described in [START_REF] Bayoudh | Learning by analogy: A classification rule for binary and nominal data[END_REF], is a lazy learning technique which uses a measure of analogical dissimilarity between 4 objects. It estimates how far 4 objects are from being in analogical proportion. Roughly speaking, the analogical dissimilarity ad between 4 Boolean values is the minimum number of bits that have to be switched to get a proper analogy. Thus ad(1, 0, 1, 0) = 0, ad(1, 0, 1, 1) = 1 and ad(1, 0, 0, 1) = 2. Thus, a : b :: c : d holds if and only if ad(a, b, c, d) = 0. Moreover ad differentiates two cases where analogy does not hold, namely the 8 cases with an odd number of 0 and an odd number of 1 among the 4 Boolean values, such as ad(0, 0, 0, 1) = 1 or ad(0, 1, 1, 1) = 1, and the two cases ad(0, 1, 1, 0) = ad(1, 0, 0, 1) = 2. When we deal with 4 Boolean vectors in B n , adding the ad evaluations componentwise generalizes the analogical dissimilarity to Boolean vectors, and leads to an integer AD belonging to the interval [0, 2n]. This number estimates how far the 4 vectors are from building, componentwise, a complete analogy. It is used in [START_REF] Bayoudh | Learning by analogy: A classification rule for binary and nominal data[END_REF] in the implementation of a classification algorithm where the input parameters are a set T S of classified items, an integer k, and a new item d to be classified. It proceeds as follows:

Step 1: Compute the analogical dissimilarity AD between d and all the triples in T S 3 that produce a solution for the class of d.

Step 2: Sort these n triples by the increasing value of AD.

Step 3: Let p be the value of ad for the k-th triple, then find k ′ as being the greatest integer such that the k ′ -th triple has the value p.

Step 4: Solve the k ′ analogical equations on the label of the class. Take the winner of the k ′ votes and allocate this winner to cl(d).

This approach provides remarkable results and, in several cases, outperforms the best known algorithms [START_REF] Miclet | Analogical dissimilarity: definition, algorithms and two experiments in machine learning[END_REF]. Other options are available that do not use a dissimilarity measure but just apply in a straightforward manner the previous continuity principle, still adding flexibility by allowing to have some components where analogy does not hold. A first option [START_REF] Prade | Reasoning with logical proportions[END_REF][START_REF] Prade | Enforcing regularity by means of analogy-related proportions-a new approach to classification[END_REF] [START_REF] Moraes | Classification based on homogeneous logical proportions[END_REF] is to fix an integer p telling us for how many components we tolerate the analogical proportion not to hold. In that case, a candidate voter is just a triple (a, b, c) such that the class equation cl(a) : cl(b) :: cl(c) : x is solvable and card({i ∈ [1, n]| ai : bi :: ci : di holds} ≥ np). In both options [START_REF] Prade | Enforcing regularity by means of analogy-related proportions-a new approach to classification[END_REF][START_REF] Moraes | Classification based on homogeneous logical proportions[END_REF], a majority vote is applied among the candidate voters. The main novelty wrt the previous approach [START_REF] Bayoudh | Learning by analogy: A classification rule for binary and nominal data[END_REF] is that we do not differentiate the two cases where analogy does not hold. In terms of accuracy there is no significant differences between these three algorithms.

A pair-based approach

In this section, we investigate a new approach to analogical classification, simpler that the known ones. The main idea is first to look for the items in T S that are the most similar to the new item d to be classified, then to look for pairs in T S 2 that present the same dissimilarity as the one existing between d and the chosen nearest neighbor. We thus build triples used for final prediction. Let us detail the idea.

Step 1: Use of similarity. We look for the most similar examples to d. Let c be a nearest neighbor of d in T S. If c = d, (i.e. d belongs to T S), its label is known and there is nothing to do. In the opposite case c = d, c differs from d on p values (i.e. the Hamming distance between c and d, H(c, d) equals to p). Since c is a nearest neighbor of d w.r.t. H, there is no example c ′ differing from d on less than p values. However, unlike 1-nn algorithm, we do not allocate the label of c to d: this is the exact point where analogical learning differs from the k-N N family of algorithms.

Step 2: Use of dissimilarity. Now, we search in T S a pair (a, b) of examples dissimilar in the same way as c and d are dissimilar. Moreover a and b should be identical on the same attributes where c and d are identical. For instance, if c = (1, 0, 1, 1, 1, 0), d = (0, 1, 1, 0, 1, 0), a and b should be similar (i.e. identical) on attributes 3, 5 and 6 and dissimilar on attributes 1, 2 and 4, exactly as c and d are dissimilar. In that particular case, the pair a = (1, 0, 0, 1, 0, 0), b = (0, 1, 0, 0, 0, 0) satisfies the previous requirement. Clearly, a : b :: c : d is a valid analogical proportion.

In the case where the class equation cl(a) : cl(b) :: cl(c) : x has a solution, we allocate to cl(d) the solution of this equation. If not, we search for another pair (a, b). Obviously, in the case where we have more than one nearest neighbor c or several pairs (a, b), leading to different labels for d, we implement a majority vote for the final label of d. In case there are ties, i.e. several classes get the same maximal number of votes, we consider the set of neighbors c at distance p + 1, and we repeat the same procedure restricted to the subset of winning classes. We iterate the process until having a unique winner.

Let us now state these ideas with formal notations in the Boolean case (the extension to the discrete case is easy). Given 2 distinct vectors x and y of B n , they define a partition of [1, n] as where the 2 vectors differ. In the binary case, with n = 6, x = (1, 0, 1, 1, 0, 0), y = (1, 1, 1, 0, 1, 0), Dis(x, y) = (02, 14, 05). It is clear that having a disagreement pattern Dis(x, y) and a vector x (resp. y), we can get y (resp. x). In the same way, the disagreement pattern Dis(y, x) is deducible from Dis(x, y). For the previous example, Dis(y, x) = [START_REF] Mcsherry | Case-based reasoning techniques for estimation[END_REF]04,[START_REF] Miclet | Handling analogical proportions in classical logic and fuzzy logics settings[END_REF]. The previous explanation can now be described with the pseudocode of Algorithm 1, where the unique(value, Array) function returns a Boolean value true iff the value value appears exactly once in the array Array, f alse otherwise.

• A(x, y) = {i ∈ [1, n]| xi = yi} capturing the similarities, • D(x, y) = {i ∈ [1, n]| xi = yi} = [1, n] \ A(x,
Let d,c) = r} be the ball in T S with center d and radius r w.r.t. the Hamming distance H. The algorithm stops as soon as we have a label for d, and we do not investigate other balls with bigger radius where we could find other options. Note that these balls do not overlap by construction. If we do not find any label for d, the algorithm stops when r = n + 1 and returns not classif ied. We cannot classify in the case there is a 50/50 vote: from a probability viewpoint, this situation is extremely unlikely and did not happen for the benchmarks we have dealt with.

BH (d, r) = { c ∈ T S | H(
We have to note that an offline pre-processing can be done on the training set T S: for each r ∈ [1, n], we can build up the subset of T S × T S constituted with the pairs (a, b) such that H(a, b) = r: this will speed up the online process within the internal FOR loop.

Due to the two nested FOR loops, it is clear that the worse case complexity is cubic (as the other analogy-based algorithms) since CandidateV ote(l) + + end for end for maxi = max{CandidateV ote(l)} if maxi = 0 AND unique(maxi, CandidateV ote(l))

then cl(d) = argmax l {CandidateV ote(l)} classif ied = true end if end if r + + end while if classif ied then return (cl(d)) else return (not classif ied)) end if
the search space is just T S × T S × T S. Nevertheless, in average, we will find a solution within the ball BH (d, r) with r < n, thus pruning a large part of the search space. Besides, one may think of the pre-processing step working only on a subset of T S.

It is important to remark that the cardinality of a Hamming ball depends on the data representation. Let us illustrate the problem with only 2 attributes a1 and a2 where a1 is binary and a2 is nominal with 3 possible distinct values. Given 2 distinct examples d = (1, v1) and d ′ = (1, v2) respectively represented as d = (1, 1, 0, 0) and

d ′ = (1, 0, 1, 0) when binarized. With discrete coding, H(d, d ′) = 1, i.e. d ′ ∈ BH (d, 1), but with the binary cod- ing, H(d, d ′) = H((1, 1, 0, 0), (1, 0, 1, 0)) = 2 i.e. d ′ / ∈ BH (d, 1
). Ultimately, the number of voters will not be the same and we can anticipate different results depending on the coding method.

Experiments

This section provides experimental results obtained with our new algorithm. The experimental study is based on six data sets taken from the U.C.I. machine learning repository [START_REF] Mertz | Uci repository of machine learning databases[END_REF].

-Balance and Car are multiple classes databases.

-TicTacToe, Monk1, Monk2 and Monk3 data sets are binary class problems. Monk3 has noise added (in the training set only).

A brief description of these data sets is given in Table 3. Table 4 provides the accuracy results for the proposed algorithm obtained with a 10-fold cross validation for these six datasets. The best results are highlighted in bold. Several comments arise: • In Table 4 it is clear that the results are not code-sensitive (except for Monk2 dataset): whatever the way we code the data, keeping the discrete values or moving to a binary code, we get the same accuracy (the difference is not statistically significant). Regarding the case of Monk2, it is known that the underlying function ("having exactly two attributes with value 1") is more complicated than the functions underlying Monk1 and Monk3, and involves all the attributes (while in the two other functions only 3 attributes among 6 are involved). Then we may conjecture that more examples are needed in Monk2 for predicting the function. For Monk2, in the Hamming ball of radius 1, the average number of voters is 220 in the discrete case while it is only 64 in the binarized case which might be not enough to accurately predict this complex function. • Roughly speaking, our best results are obtained for small values of r (often the smallest one, r = 1), at least in the discrete case, since in the binary case, we observe on some datasets that a very good accuracy result may be obtained with a higher value of r in the case of binary coding, which is consistent with the above analysis. • From a practical perspective, these results suggest that we might consider that the pairs differing on one attribute are sufficient to classify new items d and that we have just to explore B H (d, 1) for associating a label to d. This rule of thumb will drastically reduce the size of the search space and then the average complexity of the algorithm, but it has to be investigated in a broader experimentation. This value of r is also likely to be connected with the size of the training set (a too small training set may lead to an empty ball for r = 1). • Let us also mention that for the 6 considered datasets, we did not get any "not classified items". This means that in practice, there always exists a ball BH (d, r) where a majority vote can take place. In order to compare analogical classifiers with existing classification approaches, Table 5 includes classification results of some machine learning algorithms: the SVM, k-Nearest Neighbors IBk for k=1, k=10, JRip an optimized propositional rule learner, C4.5 decision tree and finally WAPC, the weighted analogical classifier (using analogical dissimilarity) presented in [START_REF] Miclet | Analogical dissimilarity: definition, algorithms and two experiments in machine learning[END_REF]. Accuracy results for SVM, IBk, JRip and C4.5 are obtained by applying the free implementation of Weka software. We draw the following conclusions from this comparative study: • As expected, our results are very close to, and as good as, those obtained by the other analogical based-approach WAPC. • However, in contrast with WAPC, we do not use any weighting machinery for improving the basic algorithm. • Moreover, let us note that, with our new approach, when we compare with the WAPC algorithm using analogical dissimilarity (AD), we only use candidate voters with AD = 0 (perfect analogy on all attributes). Indeed it has been observed in [START_REF] Miclet | Analogical dissimilarity: definition, algorithms and two experiments in machine learning[END_REF] that the number of triples (a, b, c) such that AD(a, b, c, d) = 0 is often large.

Our results show that it is enough to consider these perfect triples (obtained as the combination of a nearest neighbor c and of a pair (a, b) in the new approach) to make accurate predictions. • As WAPC, the new algorithm provides results which can be favorably compared with classical methods (at least for these datasets), and even sometimes outperforming their results.

When the Hamming distance r is small, which is usually the case, a is quite close to b, since c is close to d. Nevertheless, it has been checked that in general this is no longer the case that a or b are close to d. This highlights the fact that such classifiers do not work in the neighborhood of the item to be classified but rather look for pieces of information far from the target item d.

However, as an attempt to make analogical classifiers closer to k-N N classifiers, we also tested another version of the proposed algorithm that only considers as candidate voters the pairs (a, b) that are equal to the pair (c, d) on the greatest possible number of attributes. Obtained results for the datasets (discrete coding) are as follows: r=1 Monk1: 87±8; Monk2: 64±5; Monk3: 91±6; Balance: 78±5; Car: 88±2. r=2 Monk1: 88±9; Monk2: 58±7: Monk3: 95±3; Balance: 86±5; Car: 80±6.

From these results compared to those given in Table 4, it is clear that this new version is significantly less accurate than the basic one. We can conclude that considering only pairs (a, b) equal to (c, d) for a maximum number of attributes is not very effective for classification. This suggests that, doing this, we remain too close to the spirit of k-N N classifiers for getting the full benefit of the analogical proportion-based approach.

Lastly, we tested a third version of the proposed approach which is different from the second one. Instead of classifying the example d using the pairs (a, b) that are equal to the pair (c, d) on a maximum number of attributes, we classify the example using pairs (a, b) which are equal to (c, d) on a chosen number r of attributes. This number r is taken as the one for which the number of pairs (a, b) is maximum, i.e., r = argmax r

′ {card(E (c, d) ∩ E ′ (c, d)) | H(d, c) = r ′ } with E (c, d) = {(a, b) ∈ T S 2 |Dis(a, b) = Dis(c, d)} and E ′ (c, d) = {(a, b) ∈ T S 2 |cl(a) : cl(b) :: cl(c) : x is solvable}
The experiment shows that this version has classification results very close to those given in Table 4 for the basic algorithm.

Thus, in analogical classifiers, contrary to k-N N approaches, we deal with pairs of examples. Moreover, the two pairs that are involved in an analogical proportion are not necessarily much similar as pairs, beyond the fact they should exhibit the same dissimilarity (on a usually small number of attributes). At least from an experimental viewpoint, this way to proceed appears to be effective enough to get good performances.

Our approach may appear somehow similar to works coming from the CBR community. Nevertheless our method entirely relies on analogical proportions involving a triple of examples together with an item to be classified. Instead of considering all candidate triples, we focus on a subset of triples by choosing one of the three elements of the triple as a nearest neighbor of the new item. There is no constraint on the 2 other elements in the triple which may then be found far from the immediate neighborhood of the item to be classified. We are neither bracketing the item between two examples as in [START_REF] Mcsherry | Case-based reasoning techniques for estimation[END_REF], nor using any Bayesian techniques as in [START_REF] Cheng | Combining instance-based learning and logistic regression for multilabel classification[END_REF]. From another viewpoint, adaptation is crucial in the CBR community and adaptation knowledge can be learned (see [START_REF] Jarmulak | Using case-base data to learn adaptation knowledge for design[END_REF] for instance), to be applied to the pairs (new item, a nearest neighbor). In our approach, analogical proportions handle similarity and dissimilarity simultaneously, performing a form of adaptation in their own way, without the need for any induction step. Finally, it is worth to note that a similar approach for handling numerical attributes has been investigated in [START_REF] Bounhas | Analogical classification: Handling numerical data[END_REF], also leading to promising results.

Conclusion

In this paper, we have presented a new way to deal with analogical proportions in order to design classifiers. Instead of a brute-force investigation of all the triples a, b, c to build up a valid proportion with the new item d to be classified, we first look for a neighbor c of d. Then, on the basis of the dissimilarities between c and d, we find the pairs (a, b) with exactly the same dissimilarities. Such pairs, associated with c constitute the candidate voters provided that the corresponding class equation is solvable. Our first implementation exhibits very good results on 6 UCI benchmarks and enjoys a lower average complexity than classical analogical classifiers. This has to be confirmed on bigger datasets (more attributes, more examples).

As explained in the Monk2 example, a rather small number of pair-based voters are used to classify. It remains to investigate if this is a general property and if it is possible to obtain accurate results by focusing only on a still more restricted number of voters. Such an approach might be closer to a cognitive attitude where excellent human experts usually focus directly on the few relevant pieces of information for making prediction (classification or diagnosis) [START_REF] Raufaste | Les Mécanismes Cognitifs du Diagnostic Médical : Optimisation et Expertise[END_REF].

Analogical proportions are not only a tool for classifying, but more generally for building up a 4th item starting from 3 others, thanks to the equation solving process. As we have seen, this 4th item could be entirely new. Thus, while classifiers like k-N N focus on the neighborhood of the target item, analogical classifiers go beyond this neighborhood, and rather than "copying" what emerges among close neighbors, "take inspiration" of relevant information possibly far from the immediate neighborhood. Finally, this way to proceed with analogical proportions is paving the way to what could be called "creative machine learning".

 the logical expression of a : b :: c : d satisfies symmetry (a : b :: c : d → c : d :: a : b) and central permutation (a : b :: c : d → a : c :: b : d), which are key properties of an analogical proportion acknowledged for a long time. Moreover, this Boolean modeling still enjoys the transitivity property (a : b :: c : d) ∧ (c : d :: e : f) → (a : b :: e : f). a b c d a : b ::

4

 Triples-based analogical classifiers Numerical proportions are closely related to the ideas of extrapolation and of linear regression, i.e., to the idea of predicting a new value on the ground of existing values. The equation solving property recalled above is at the root of a brute force method for classification. It is based on a kind of proportional continuity principle: if the binaryvalued attributes of 4 objects are componentwise in analogical proportion, then this should still be the case for their classes. More precisely, having a binary classification problem, and 4 Boolean objects a, b, c, d, 3 in the training set with known classes cl(a), cl(b), cl(c), the 4th being the object to be classified in one of the classes, i.e. cl(d) is unknown, this principle can be stated as: a : b :: c : d cl(a) : cl(b) :: cl(c) : cl(d) Then, if the equation cl(a) : cl(b) :: cl(c) :

 is to consider triples (a, b, c) such that the class equation cl(a) : cl(b) :: cl(c) : x is solvable and such that card({i ∈ [1, n]| ai : bi :: ci : di holds}) is maximal. Then we allocate to d the label solution of the corresponding class equation. A second option

 y) capturing the dissimilarities. The cardinal of D(x, y) is exactly the Hamming distance H(x, y) between the 2 vectors. Given J ⊆ [1, n], let us denote x|J the subvector of x made of the xj, j ∈ J. Obviously, x| A(x, y) = y| A(x, y) and, in the binary case, when we know x| D(x, y) , we can compute y| D(x, y) . The pair (x, y) allows us to build up a disagreement pattern Dis(x, y) as a list of pairs (value, index) (value ∈ B n , index ∈ D(x, y))

Algorithm 1

 1 Analogical classifier Input: d / ∈ T S a new instance to be classified r = 1; classif ied = f alse; while not(classif ied) AND (r ≤ n) do build up the set BH (d, r) = { c ∈ T S|H(c, d) = r} if BH (d, r) = ∅ then for each label l do CandidateV ote(l) = 0 end for for each c in BH (d, r) do for each pair (a, b) such that: Dis(a, b) = Dis(c, d) AND cl(a) : cl(b) :: cl(c) : x has solution l do

 It is interesting to figure out the numbers of pairs (a, b) that are built from the training set (in pre-processing step) that differ on r attributes for 1 ≤ r ≤ n. Let us consider the case of Monk2 (with a discrete coding), when T S is equal to 90% of the whole data set. The number of pairs (a, b) is: r = 1 : 3946; r = 2 : 17346; r = 3 : 39630; r = 4 : 49580; r = 5 : 32068; r = 6 : 8362. The sum of these numbers equals the numbers of pairs that can be built from the used part of the data set. As expected, this number first increases with r and then decreases. When considering a particular item d, and a neighbor c ∈ BH (d, r) the number of voters (a, b) is a small subset of the set of pairs differing on r attributes, due to the fact that two constraints have to be satisfied: the pairs (a, b) and (c, d) differ on the same attribute(s) and the associated class equation should be solvable. For instance, in the Monk2 case (with a discrete coding), for r = 1, the average number of voters is 220, for r = 2, 350, for r = 3, 270. However with the binary coding, for r = 2 and r = 3, the average number of voters would be smaller as it is the case for r = 1.

Table 3 .

 3 Description of datasets

	Datasets	Instances Nominal Att. Binary Att. Classes
	Balance	625	4	20	3
	Car	743	7	21	4
	TicTacToe	958	9	27	2
	Monk1	432	6	15	2
	Monk2	432	6	15	2
	Monk3	432	6	15	2

Table 4 .

 4 Accuracy results (means and standard deviations)

			non binarized			binarized	
		r=1	r=2	r=3	r=1	r=2	r=3
	Balance	86 ± 4	88 ± 2	72 ± 5	84 ± 4	87 ± 3	74 ± 5
	Car	95 ± 3	89 ± 3	72 ± 6	95 ± 3	94 ± 5	77 ± 6
	TicTacToe 98 ± 5	96 ± 5	98 ± 5	98 ± 5	97 ± 5	98 ± 5
	Monk1	99 ± 1	99 ± 1	90 ± 4	99 ± 1	99 ± 1	99 ± 1
	Monk2	99 ± 1	97 ± 3	91 ± 5	60 ± 7	99 ± 1	94 ± 5
	Monk3	99 ± 1	97 ± 2	91 ± 5	99 ± 1	99 ± 1	98 ± 2

Table 5 .

 5 Classification results of well-known machine learning algorithms

	Datasets	SVM IBk(k=1, k=10)	JRip C4.5	WAPC
	Balance	90	84, 84	72	64	86
	Car	92	92, 92	88	90	n/a
	Tic tac toe	98	99, 99	98	85	n/a
	Monk1	75	99,96	94	96	98
	Monk2	67	60, 63	66	67	100
	Monk3	100	99, 98	99	100	96

However, note that some proportions may be known to hold between attribute values (e.g. "small : medium :: medium : large"), while they do not match any of the 3 patterns, and as such will not be recognized.