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Abstract
Leptospirosis is caused by pathogenic spirochetes of the genus Leptospira. Humans can

be infected after exposure to contaminated urine of reservoir animals, usually rodents,

regarded as typical asymptomatic carriers of leptospires. In contrast, accidental hosts may

present an acute form of leptospirosis with a range of clinical symptoms including the devel-

opment of Acute Kidney Injury (AKI). Chronic Kidney Disease (CKD) is considered as a pos-

sible AKI-residual sequela but little is known about the renal pathophysiology consequent to

leptospirosis infection. Herein, we studied the renal morphological alterations in relation

with the regulation of inflammatory cytokines and chemokines, comparing two experimental

models of chronic leptospirosis, the golden Syrian hamster that survived the infection,

becoming carrier of virulent leptospires, and the OF1 mouse, a usual reservoir of the bacte-

ria. Animals were monitored until 28 days after injection with a virulent L. borgpetersenii ser-
ogroup Ballum to assess chronic infection. Hamsters developed morphological alterations

in the kidneys with tubulointerstitial nephritis and fibrosis. Grading of lesions revealed higher

scores in hamsters compared to the slight alterations observed in the mouse kidneys, irre-

spective of the bacterial load. Interestingly, pro-fibrotic TGF-β was downregulated in mouse

kidneys. Moreover, cytokines IL-1β and IL-10, and chemokines MIP-1α/CCL3 and IP-10/

CXCL-10 were significantly upregulated in hamster kidneys compared to mice. These

results suggest a possible maintenance of inflammatory processes in the hamster kidneys

with the infiltration of inflammatory cells in response to bacterial carriage, resulting in alter-

ations of renal tissues. In contrast, lower expression levels in mouse kidneys indicated a

better regulation of the inflammatory response and possible resolution processes likely

related to resistance mechanisms.

PLOS ONE | DOI:10.1371/journal.pone.0156084 May 24, 2016 1 / 20

a11111

OPEN ACCESS

Citation: Matsui M, Roche L, Geroult S, Soupé-
Gilbert M-E, Monchy D, Huerre M, et al. (2016)
Cytokine and Chemokine Expression in Kidneys
during Chronic Leptospirosis in Reservoir and
Susceptible Animal Models. PLoS ONE 11(5):
e0156084. doi:10.1371/journal.pone.0156084

Editor: R. Mark Wooten, University of Toledo College
of Medicine and Life Sciences, UNITED STATES

Received: September 11, 2015

Accepted: May 9, 2016

Published: May 24, 2016

Copyright: © 2016 Matsui et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: All relevant data are
within the paper and its Supporting Information file.

Funding: The research position of M.M. is financed
by the Government of New Caledonia. This program
is co-funded by the French Ministry of Research and
Technology, Institut Pasteur de Nouvelle-Calédonie,
and Institut Pasteur de Paris. The funders had no role
in study design, data collection and analysis, decision
to publish, or preparation of the manuscript.

Competing Interests: The authors have declared
that no competing interests exist.

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0156084&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Introduction
Leptospirosis is a neglected widespread zoonosis caused by pathogenic spirochetes of the genus
Leptospira. More than one million human cases of leptospirosis are estimated to occur world-
wide annually with the highest incidence in the African, Asia-Pacific, Latin America and Carib-
bean regions [1]. Pathogens are transmitted to humans by direct or indirect contact with
contaminated urine from infected Mammals, and animals are most frequently divided into
maintenance or reservoir, and incidental hosts as humans [2].

Severe cases of human leptospirosis present a range of symptoms including fever, multiple
organ failures with renal and hepatic insufficiency, and pulmonary manifestations, possibly
leading to death [2]. Kidney injury is an early manifestation of acute leptospirosis and Acute
Kidney Injury [AKI; formerly named acute renal failure [3]] is commonly reported in leptospi-
rosis [4] with a mean incidence of 36%, of which 12% die as a results [5]. Moreover, oliguria
constitutes an important risk factor for fatality in leptospirosis [6]. Leptospirosis-related AKI is
characterized by acute tubular necrosis and interstitial nephritis with tubular degeneration and
interstitial oedema with cellular infiltration of mononuclear cells [7]. Recovery of renal func-
tions from leptospirosis-related renal failures may take several months [8]. Interestingly,
chronic kidney disease (CKD) was suggested to be a possible long-term outcome of the lepto-
spirosis-related AKI regarding results of a cohort study conducted in Sri Lanka showing that
9% of patients developed CKD [9]. In this study, renal biopsies were done in two patients pre-
senting persistent abnormal renal functions and revealed inflammatory infiltrates, tubular atro-
phy and interstitial fibrosis. Leptospirosis-induced end-stage renal failure (ESRF) was also
reported with tubular atrophy and interstitial fibrosis observed in kidney biopsy [10]. Asymp-
tomatic cases of human leptospirosis were also shown by serological or molecular analysis [11,
12], and prolonged urinary shedding of spirochetes was reported [13, 14] associated with
asymptomatic renal colonization by both pathogenic or intermediate leptospires [15]. More-
over, recent epidemiological survey in Taiwan revealed that chronic human exposure to lepto-
spirosis was associated with prevalence and severity of CKD and highlighted asymptomatic
leptospirosis as an overlooked risk for CKD [16]. Interestingly, recent epidemic of CKD of
unknown etiology named Mesoamerican Nephropathy has emerged in Central America [17]
and was hypothesized to be related to infection with pathogens as Hantavirus and Leptospira
[18]. Contribution of leptospirosis is also evoked as a possible origin for CKD development
with unidentified origin in Asia Pacific region [19]. Thus, better understanding of physiopatho-
logical processes involved in the development of renal failures and possible CKD appearance
related to leptospirosis sequelae is of importance.

Hamsters and guinea pigs are the standard models used to produce an acute infection
modeling severe human leptospirosis [2]. However, these particular animals can also face
chronic leptospirosis after experimental infection with L. interrogans Pomona or Grippoty-
phosa [20, 21] or L. borgpeterseniiHardjo or Ballum [22, 23]. In contrast, rats and mice are
considered as major maintenance hosts, and different host–serovar associations seem to be
ubiquitous as observed for rats (commonly Rattus norvegicus and Rattus rattus) with serogroup
Icterohaemorrhagiae, and mice (Mus musculus and otherMus species) with the serogroup Bal-
lum [24]. Others mammals are also considered as reservoirs of virulent leptospires, as cattle
with the serovars Hardjo or Pomona, and dogs with the serovar Canicola. Carrier hosts mostly
present asymptomatic leptospirosis, and the subsequent clearance of the pathogens from all
organs except the kidneys is related to the urinary shedding of the bacteria [25]. Indeed, bacte-
ria are maintained in the renal proximal tubules and excreted in the urine for several months.
Renal lesions during chronic leptospirosis were reported in reservoir animals as dogs, rats, pigs
and cattle infected with their associated leptospires [25]. Though asymptomatic, carrier hosts
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showed morphological changes of kidneys as observed in experimentally infected rats or wild
infected carnivores mainly presenting chronic interstitial nephritis [26–28].

Pathogenesis of renal dysfunction and development of kidney injury during leptospirosis
still needs to be clarified. Considering host-pathogen interaction aspect, leptospiral outer mem-
brane proteins (OMPs) were shown to activate important transcription factor as the nuclear
transcription factor kappa B (NF-κB) and the activator protein-1 (AP-1) in medullary thick
ascending limb cells or in proximal tubules isolated from mice [29, 30]. Consequently, down-
stream genes, including the pro-inflammatory cytokine tumor necrosis factor-α (TNF-α) and
the chemokine monocyte chemoattractant protein-1 (MCP-1/C-C-type chemokine ligand 2,
CCL2), were overexpressed, and it was hypothesized that cellular damage in renal tissue could
be related to the induction of these inflammatory mediators through the NF-κB signaling path-
way. Interestingly, expression of the inducible nitric oxide synthase (iNOS) is also induced by
inflammatory TNF-α [31], and nitric oxide produced by iNOS seems to have beneficial effects
in ureteral obstruction [32] reported in leptospirosis-related AKI in human case [33]. More-
over, triggering of iNOS up-regulation and the resulting NO production seems crucial in the
survival against acute leptospirosis as injection of iNOS inhibitor increased the mortality rate
in vivo during experimental infection [34]. In contrast, Leptospira-induced renal fibrosis has
been shown to be reduced in transgenic C57BL/6J mice lacking iNOS enzyme, suggesting that
the regulation of nitric oxide pathway could participate in the induction of renal fibrosis [35].
In this latter study, expression of renal Transforming Growth Factor (TGF)-β was also investi-
gated as being one of the most potent inducers of extracellular matrix and involved in develop-
ment of renal fibrosis [36] but no regulation was shown.

Herein, we aim at studying regulation of major inflammatory cytokine gene expression in
relation with development of renal lesions during chronic leptospirosis. Using the comparison
between experimentally infected classical reservoir, the mouse, and unusual carrier animal, the
golden Syrian hamster, we studied the regulation of the expression of pro-fibrotic TGF-β, of
the inflammatory iNOS and cytokines interleukin-(IL-)1β, IL-10 and TNF-α, and of the che-
mokines gamma interferon-inducible protein 10 kDa (IP-10/ C-X-C-type chemokine ligand
10, CXCL10) and macrophage inflammatory protein-1 (MIP-1α/C-C-type chemokine ligand
3, CCL3) in the kidneys of animals that became chronic carriers of virulent leptospires. Con-
comitant development of renal inflammatory lesions, fibrosis and bacterial load were also stud-
ied. Interestingly, chronic carriage of Leptospira was characterized by significant differences in
cytokine and chemokine gene expression profiles depending on animal models that could
explain the differential and pronounced progression of renal lesions observed in hamsters com-
pared to mice.

Materials and Methods

Animals and ethical concerns
OF1 mice (M.musculus) and golden Syrian hamsters (Mesocricetus auratus), whose genitors
originated from Charles River Laboratories were bred in a restricted-access room at Institut
Pasteur in New Caledonia. Animal manipulations were conducted according to the guidelines
of the Animal Care and Use Committees of the Institut Pasteur of Paris and of New Caledonia,
and followed European Recommendation 2007/526/EC. Protocols and experiments were
approved by the Animal Care and Use Committees of the Institut Pasteur in New Caledonia.

Strain of leptospires
Virulent Leptospira borgpetersenii serogroup Ballum isolate B3-13S was cultured from kidneys
of a wild mouse (M.musculus) captured in 2009 in New Caledonia [37]. Characterization of its
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virulence was previously described, and intraperitoneal injection of 1 x 108 bacteria led to
chronic carriage of leptospires until 28 days postinfection [23]. Leptospires were cultured in
liquid Ellinghausen-McCullough-Johnson-Harris (EMJH) medium at 30°C under aerobic con-
ditions [38]. The bacterial cell concentration was determined using a Petroff-Hausser counting
chamber (Hausser Scientific). Virulence was maintained by monthly passages in hamsters after
intraperitoneal injection before re-isolation from blood.

Experimental infections
Animals were individually housed in plastic cages with wood shaving bedding. Six- to eight-
week-old hamsters or mice were injected intraperitoneally with B3-13S at 1 x 108 leptospires in
500 to 800 μL EMJH medium for establishment of chronic infection. Non-infected animals
were injected an equal volume of sterile EMJH and served as control animals. Survival and
body weight were monitored during the experiments and animals were observed for any signs
of clinical illness (loss of appetite or reactivity, prostration, ruffled fur, external hemorrhage).
Animals were killed by atlanto-occipital dislocation after anesthesia with chloroform or sacri-
ficed by inhalation of CO2 when moribund or at 14, 21 or 28 days postinfection. Blood from
infected animals was collected in EDTA tube by cardiac puncture and rapidly processed for
quantification of bacteremia. After dissection, tissues (kidneys, lungs, liver) were rapidly col-
lected for molecular bioassays (within 5 minutes of euthanasia) and for histology. For extrac-
tion of total DNA from organs, ca. 25 mg samples were placed into MagNA Lyser Green Beads
tubes (Roche Applied Sciences) containing 360 μL lysis buffer (QIAamp DNAMini kit, Qia-
gen) and stored at 4°C until extraction. For total RNA, tissue samples were stored in 1,500 μL
RNAlater (Sigma-Aldrich) for stabilization of nucleic acids at room temperature for 2 h before
conservation at -20°C until extraction. For histology, kidneys were fixed in 10% buffered for-
malin for 24 to 48 h and paraffin-embedded.

Histology and staining
Three-μm serial sections were stained with hematoxylin-erythrosin (HE) and Masson’s tri-
chrome stain to show collagen structures typical of fibrosis [39]. Morphological changes in
renal tissue were described according to criteria commonly reported for acute or chronic lepto-
spirosis in animal models, i.e. haemorrhage, oedema, inflammatory infiltration, necrosis and
fibrosis [22, 28, 40]. Lesions were scored blindly in interstitial, glomerular or tubular structures
and using an individual scale of 0 to 28 for extend of histology [40]. Each section was assigned
a score between 0 and 4 as follow: 0 (no lesion), 1 (weak), 2 (moderate and localized), 3 (severe
and localized), and 4 (severe and diffuse). Criteria scores were assigned for the following crite-
ria: presence of hemorrhage (i), edema (ii), necrosis (iii) or fibrosis (iv), infiltration of lympho-
cytes (v), macrophages (vi) or polynuclear cells (vii). Scores were then totalized to calculate the
structural scores for each individual. Average score for all renal lesions was also calculated for
each individual. Leptospires were visualized after silver impregnation following the Warthin-
Starry (WS) protocol modified with pyrocatechol [41].

Immunohistological staining
Immunohistochemical staining of renal leptospires was carried out using an automated stainer
(Dako Autostainer Plus) and commercial reagents and kits from Dako system (EnVision
FLEX, High pH) according to manufacturer’s instructions. Staining was performed with anti-
leptospiral Loa22 monoclonal antibody produced in rabbit (clone E21-4; 1/1000; Antibody
Engineering Platform, Institut Pasteur, Paris). Following deparaffinization and rehydration,
tissues sections were pre-treated with commercial reagents at pH 9 and incubated with anti-
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leptospiral antibodies during 20 min. Sections were then incubated with secondary HRP-cou-
pled anti-rabbit antibodies during 20 min. Peroxidase activity was revealed by diaminobenzi-
dine. Slides were counterstained with Harris hemaroxylin solution.

Purification of DNA
Total DNA was extracted using QIAamp DNAMini kit (Qiagen). Tissue samples in MagNA
Lyser Green Beads tubes were disrupted and homogenized using the MagNA Lyser Instrument
(Roche Applied Science) during 50 s at 7,000 r/min. Lysates were incubated at 56°C for 1 h
with 190 μL of PBS and 50 μL of proteinase K. After washing steps, the eluted DNA was quanti-
fied by spectrophotometry (NanoDrop 2000, ThermoFisher).

Total RNA extraction and reverse transcription
Total RNA isolation was performed with kits and instruments from Roche Applied Science
[42]. Briefly, tissue was placed into MagNA Lyser Green Beads tubes with 400 μL cold lysis
buffer and submitted to 2 pulses of 50 s at 800 X g in the MagNA Lyser instrument. Total RNA
was isolated from lysates using the spin column-based High Pure RNA Tissue kit. After purifi-
cation, 50 μL of RNA were treated for 30 min at 37°C with DNase (Turbo DNA-free kit;
Ambion, Applied Biosystems). Total RNA (1 μg) was reverse-transcribed into cDNA using
random hexamers from Transcriptor First Strand cDNA synthesis kit (Roche Applied Science).
The activation step at 25°C for 10 min was followed by the reverse transcription at 55°C for 30
min and enzyme inactivation at 85°C for 5 min.

Quantitative PCR
Primers and probes (Table 1) were purchased from Eurogentec. Renal DNA was amplified
using the LightCycler FastStart DNAMaster SYBR Green I and targeted the lfb1 gene [43] on a
LightCycler 2.0 (Roche Applied Science). Alternatively, bacterial load was assessed using the
LightCycler 480 Probe Master targeting lipL32 gene on a LightCycler 480 II instrument (soft-
ware v.1.5.0; Roche Applied Science) [44]. Genomic DNA from corresponding leptospires was
used as a positive control. Quantitative PCR for transcripts of the cytokines IL-1β, IL-10, TNF-
α, TGF-β, iNOS, the chemokines IP-10/CXCL10 and MIP-1α/CCL3, and for reference genes
glyceraldehyde-3-phospho-deshydrogenase (GAPDH) and β–actin were conducted from
cDNA on a LightCycler 480 II using the LightCycler 480 SYBR Green I Master. Each qPCR
was carried out with 2 μL of cDNA or gDNA in 20 μL final volume following gene-specific
amplification programs (detailed in Table 1) and the specificity of SYBR Green I-based qPCR
assays was verified by the melting temperature (Tm) of the amplicon as calculated by the
instrument software (see Table 1). Results were validated only when threshold cycle (Ct) values
were under the limit value of 40 cycles and with an acceptable reproducibility between qPCR
replicates (less than 5% of variation).

Quantification of leptospires
A standard curve obtained from serial 10-fold dilutions of known numbers of leptospires was
used for absolute quantification. Results were expressed as the number of Leptospira equivalent
genomes per μg of kidney tissue DNA.

Quantification of cytokine gene expression
The normalization of target gene expression was processed using qBase PLUS software (Bioga-
zelle, Belgium) by extracting the expression levels of the reference genes. The relative
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Table 1. Details and sequence of primers used for qPCR assays.

Gene GenBank a Sequence (5’-3’) b Size c Tm d Efficiency e

Hamster β-actin AF046210 (F) TCTACAACGAGCTGCG 357 88.33 1.802±0.04

(R) CAATTTCCCTCTCGGC

Murine β-actin NM_007393 (F) AAGAGAAGCTGTGCTATGTT 251 86.25 1.660±0.09

(R) GTTGGCATAGAGGTCTTTACG

Hamster MIP-1α/CCL3 AY819019.1 (F) CTCCTGCTGCTTCTTCTA 210 84.97 1.856±0.06

(R) TGGGTTCCTCACTGACTC

Murine MIP-1α/CCL3 NM_011337.2 (F) TCAGACACCAGAAGGATAC 159 84.64 1.780±0.03

(R) CTGAGAAGACTTGGTTGC

Hamster IP-10/CXCL10 AY007988.1 (F) CTCTACTAAGAGCTGGTCC 150 83.38 1.900±0.06

(R) CTAACACACTTTAAGGTGGG

Murine IP-10/CXCL10 NM_021274.1 (F) CTTAACCACCATCTTCCCAA 152 76.62 1.581±0.03

(R) GATGACACAAGTTCTTCCA

Hamster GAPDH DQ403055 (F) CCGAGTATGTTGTGGAGTCTA 170 85.67 1.938±0.04

(R) GCTGACAATCTTGAGGGA

Murine GAPDH NM_008084 (F) TCATCCCAGAGCTGAACG 213 86.39 1.853±0.02

(R) GGGAGTTGCTGTTGAAGTC

Hamster IL-1β AB028497.1 (F) ATCTTCTGTGACTCCTGG 156 85.29 1.852±0.04

(R) GGTTTATGTTCTGTCCGT

Murine IL-1β NM_008361 (F) GTGTGGATCCCAAGCAATAC 161 83.35 1.660±0.09

(R) GTTGTTTCCCAGGAAGACAG

Hamster IL-10 AF046210 (F) TGGACAACATACTACTCACTG 308 85.50 1.871±0.05

(R) GATGTCAAATTCATTCATGGC

Murine IL-10 NM_010548 (F) ATTCCCTGGGTGAGAAG 259 83.45 1.891±0.04

(R) CTCTGTCTAGGTCCTGG

Hamster TNF-α AF046215 (F) AACGGCATGTCTCTCAA 278 88.05 1.849±0.03

(R) AGTCGGTCACCTTTCT

Murine TNF-α NM_013693 (F) CAACGGCATGGATCTCA 325 87.80 1.832±0.04

(R) GGACTCCGCAAAGTCT

Hamster iNOS NM_001281644 (F) CCATTCTACTACTATCAGGTCG 274 88.4 1.844±0.04

(R) TGCCCTTGTACTGGTTCAT

Murine iNOS NM_010927.4 (F) CCTCATGCCATTGAGTTC 349 88.5 1.920±0.04

(R) AGTCATGTTTGCCGTC

Hamster TGF-β1 AF046214 (F) ACGGAGAAGAACTGCT 245 89.7 1.859 ±0.04

(R) ACGTAGTACACGATGGG

Murine TGF-β1 NM_011577.2 (F) ACCGCAACAACGCCATCTAT 200 86.01 1.788±0.03

(R) GTA ACG CCA GGA ATT GTT GC

Leptopira lfb1 f LA0322 (F) CATTCATGTTTCGAATCATTTCAAA f 331 83.40 1.735±0.03

(R) GGCCCAAGTTCCTTCTAAAAG f

Leptospira lipL32 g - (F) AAG CAT TAC CGC TTG TGG TG 242 - 1.788±0.03

(R) GAACTCCCATTTCAGCGATT

(P) AAAGCCAG GACAAGCGCCG

a Accession Number of mRNA sequence in GenBank (NCBI) used for primer design.
b (F), (R) and (P) indicate forward and reverse primer and probe sequences, respectively.
c PCR product size in base pairs.
d PCR product melting temperature (Tm) in °C.
e Efficiency for PCR was determined by elaboration of standard curves as described in Materials and Methods.
f, g As described by Mérien et al. [43] and Stoddard et al. [44], respectively.

doi:10.1371/journal.pone.0156084.t001
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normalized expression ratio of target gene was then calculated as the ratio of the expression
level in infected individuals to the expression level in control non infected animals used as
calibrators.

Statistical analysis
Statistical studies were performed using GraphPad Prismv4 (GraphPad Software Inc.).
Unpaired t-test was used for analysis of significant differences in renal Leptospira concentra-
tions, grading of histological lesions and cytokine gene expression between animals.

Results

Clinical signs, survival and body weight variation in animals infected with
virulent B3-13S leptospires
B3-13S-infected mice did not show any signs and symptoms of illness while some hamsters
presented prostration, loss of appetite and decreased reactivity during the onset of infection.
Survival and variation in body weight in infected animals were monitored to measure clinical
signs of the disease until 28 days after inoculation (Fig 1). Survival of mice was confirmed
while hamsters presented lethality until 14 dpi with 67% of survival and the highest number of
deaths recorded during the acute state of leptospirosis between D4 and D6 postinfection (Fig
1A). Body weight in murine model was not affected by infection compared to initial weight

Fig 1. Survival and body weight parameters in hamsters andmice infected with virulent L.
borgpetersenii serogroup Ballum isolate B3-13S. Six- to eight-week-old hamsters or mice were injected
with B3-13S isolate at 1 x 108 leptospires and survival (A) and body weight (B) were monitored until 28 days
postinfection as described in Materials and Methods. (A) Data represent mean of three independent
experiments (N = 6, 9, 17). (B) Values represent mean ± SD for hamsters (N = 15) and mice (N = 10).
Significant difference between animals was evaluated using an unpaired t-test. ***P<0.0005.

doi:10.1371/journal.pone.0156084.g001
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contrasting with variations in hamsters reaching a maximum weight loss of 18% at 12 days post-
infection (82 ± 7% of initial weight; Fig 1B). Interestingly, weight variation in hamsters was sig-
nificantly different compared to mice between D11 and D14 after inoculation (P value< 0.0005;
Fig 1B). Body weight in hamsters was then restored to initial weight with no difference in varia-
tion after 15 days postinfection compared to mice until D28 postinfection.

Histopathological changes in kidneys during chronic leptospirosis
Hamsters and mice were infected with 1 x 108 bacteria of the B3-13S isolate. Kidneys were col-
lected from animals at D14, D21 and D28 postinfection and organ sections were stained with
HE (Fig 2). Histological observations in hamster kidneys (Fig 2A–2C) confirmed inflammatory
foci made of polymorphonuclear neutrophils and lymphocytes surrounding the tubules at D28
postinfection, supporting acute or subacute tubulointerstitial nephritis (Fig 2B). Necrosis of
tubular epithelial cells was also observed. At D28 postinfection, all hamsters had a similar pat-
tern of tubular and glomerular damages with massive inflammatory infiltrates in the intersti-
tium (Fig 2B). Luminal dilatations of proximal tubules were seen with massive hyaline deposit
(Fig 2B). Glomerular congestion with dilatation of Bowman’s space and disorganisation of
mesangial cell structure was also observed (Fig 2C). Excepting weak to moderate interstitial
infiltration of lymphocytes, no lesions were observed in mouse kidneys 28 days postinfection
(Fig 2D and 2E).

Fig 2. Inflammatory lesions were observed in the kidneys of animals during chronic carriage of virulent L. borgpetersenii serogroup Ballum
isolate B3-13S. (A) Normal glomerulus (*) with typical renal tubules (t) were observed in sections of kidneys collected from non-infected control hamster (HE
stain, Magnification, X200). (B) Focal interstitial infiltration of polymorphonuclear cells (filled arrow) and lymphocytes (open arrow) were observed in kidneys
at D28 postinfection. Dilatation of tubules (t) was commonly observed with inflammatory infiltration (i) or hyaline deposit (ε) in the lumen, and congestion (*) of
several glomeruli. (C) Dilatation of the Bowman’s space (*) was also noticed at D28 postinfection in hamster kidneys. (D) Typical renal structures with
glomerulus (*) and tubules (t) in kidneys from control non-infected mouse. (E) Histological observations of renal tissues frommouse at D28 postinfection
showing normal glomerulus (*) and tubules (t). (A-E) HE stain. Scale bar represents 100 μm. (F) Lesion score was calculated for each individual at 14 and
between 21–28 days postinfection. Values are means (horizontal line) and individual score (dots). Significant difference between animals or time
postinfection was evaluated using an unpaired t-test. *P<0.05, ***P<0.0005, ns: not significant.

doi:10.1371/journal.pone.0156084.g002
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To evaluate morphological alterations in animal kidneys, lesions were graded in the differ-
ent renal structures (Fig 2F, S1 Fig) to follow the injury course over time and to compare the
renal histopathology between hamster and mouse. While no difference was observed in inter-
stitium or glomerular structure of hamster kidneys between 14 or 21–28 days postinfection
(S1A and S1B Fig), histopathology score was significantly higher in tubules at the end of exper-
iment (score = 9.8 at D21-28 compared to score = 5.6 at D14; S1C Fig) explaining the increase
of totalized lesion score in hamster kidneys (4.4 and 6.7 at D14 and D21-28, respectively; Fig
2F). In contrast, no evolution of lesions in mouse kidneys was showed during experimental
infection. The comparison of the total histopathology score between animal models is signifi-
cantly higher in hamster compared to mouse kidneys at D14 and D21-28 postinfection (P
value< 0.0005; Fig 2F) reflecting more renal damages in hamsters while weak lesions were
observed in mouse kidneys during chronic leptospirosis.

Development of fibrosis in kidneys of infected animals and regulation of
renal TGF-β expression during chronic leptospirosis
Concomitant to evaluation of inflammatory lesions in kidneys, development of renal fibrosis
was investigated in animals during chronic leptospirosis (Fig 3). Masson’s trichrome staining
showed evidences of interstitial fibrosis in hamster kidneys (Fig 3B) contrasting with no
fibrotic lesion in mouse kidneys except 2 / 7 mice with low score fibrosis at 14 days postinfec-
tion (individual score = 1 and mean score = 0.28; Fig 3E). Scoring of fibrosis in animals
revealed mild fibrosis in hamsters at D14 postinfection that significantly increased between 21
and 28 days postinfection (score = 1.95; Fig 3E). As known to be related to fibrosis, gene
expression of TGF-β was quantified in kidneys of infected animals (Fig 3F). Interestingly,
TGF-β transcript level was poorly regulated in hamsters with no significant difference at D14
and D21-28 postinfection compared to initial level. In contrast, TGF-β gene expression was sig-
nificantly downregulated in mouse kidneys at 28 days postinfection (relative expression
ratio = 0.48) compared to control level.

No difference in bacterial load between infected animals
Presence of leptospires was confirmed in kidneys of hamsters and mice chronically infected with
virulent B3-13S leptospires usingWS and IHC staining (Fig 4A–4D). Leptospires were not seen
in the interstitium or between cells but large clusters of bacteria were localized in the tubules of
infected animals. Quantitative PCR targeting leptospiral genes confirmed the presence of B3-13S
leptospires in mouse and hamster kidneys until 28 days postinfection, and leptospires were quan-
tified in the kidneys of animals at 14, 21 and 28 days after inoculation (Fig 4E). No statistical dif-
ference was observed in the bacterial concentration between hamsters and mice infected with B3-
13S neither at day 14 (approx. 10,400 and 2200 Leptospira equivalent genome / μg of tissue DNA
in hamsters and mice, respectively) nor at between day 21 and 28 after infection (4060 and 1178 /
μg of tissue DNA in hamsters and mice, respectively). High variability was observed in bacterial
load especially in hamster kidneys possibly reflecting disparity in leptospire repartition in tissue.
Leptospiremia and bacterial load were also investigated presenting absence of circulating lepto-
spires in blood, lungs and liver at 14 days postinfection (data not shown).

Differential regulation of the cytokine and chemokine gene expression in
kidneys of infected animals during chronic carriage of Leptospira
Gene expression of cytokines IL-1β, IL-10 and TNF-α and of iNOS was quantified in the kid-
neys of animals 14 and between 21 and 28 days postinfection compared to control animals at
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time of inoculation and using RT-qPCR technique (Fig 5). IL-1β expression was significantly
up-regulated in hamster kidneys at D14 (ratio = 2.5) and D21-28 (5.8) compared to control,
while it was not regulated in mouse kidneys (ratios< 2; Fig 5A). Expression levels of IL-1β
were significantly higher in hamsters compared to mice. TNF-α expression showed significant
increase in both animal models at D21-28 (2.7 and 3.4 in hamster and mouse kidneys, respec-
tively; Fig 5B). No difference was noticed in the expression levels of this cytokine between ham-
sters and mice. Expression profiles of IL-10 presented a high up-regulation in hamster kidneys
at D14 and D21-28 (ratios = 10.8 and 9.7, respectively) contrasting with the absence of regula-
tion in mouse kidneys compared to non-infected animals (Fig 5C). These results correlate with
a significant difference in the regulation of IL-10 expression between animal models. Surpris-
ingly, expression level of iNOS was not significantly regulated in both animal models neither at
14 nor at 21–28 days postinfection (ratios� 0.7 for both models; Fig 5D).

Fig 3. Development of fibrosis in hamster kidneys during chronic leptospirosis.Observation of kidneys
from control non-infected hamster (A) and mouse (C) showing normal staining for interstitial structures. (B)
Intense staining of the collagen was observed in the interstitium (i) of kidneys from hamster inoculated with
B3-13S isolate at D28 postinfection. (C) Intense normal staining of blood vessels (ε) contrasting with no
staining of interstitium (i) in mouse kidneys 28 days after infection with B3-13S leptospires. (A-D) Masson’s
trichrome stain, bar represents 100 μm. (E) Score of renal fibrosis at 14 and between 21 and 28 days
postinfection in hamsters and mice inoculated with virulent B3-13S isolate. (F) Gene expression of cytokine
TGF-β in kidneys from infected animals was quantified by RT-qPCR as described in Materials and Methods.
(E-F) Data are means (horizontal line) and individual value (dots). Significant difference between animals or
time postinfection was evaluated using an unpaired t-test. *P<0.05, *P<0.005, ***P<0.0005, ns: not
significant.

doi:10.1371/journal.pone.0156084.g003
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Fig 4. Detection of leptospires and quantification of bacterial load in the kidneys of experimentally infected animals during
carrier state.Modified Warthin-Starry silver staining was used for spirochetes observation in the kidneys of hamsters (A) and mice (B)
euthanized at 28 days postinfection. Note the typical form of spirochetes with terminal hooks found in tubular structures (arrows).
Magnification, X1,000. Immunohistochemical staining was performed as described in Materials and Methods to confirmed presence of
leptospires in kidneys from infected hamsters (C) and mice (D). Intense brown coloration of leptospires was observed in lumen of tubular
structures (arrows). Magnification, X400. (E) Quantification of bacterial load was quantified in kidneys from hamsters (filled squares) and
mice (open squares) infected intraperitoneally with 1 x 108 virulent isolate B3-13S (L. borgpetersenii serogroup Ballum). Genomic DNA
was extracted from renal tissue collected at 14 and 21–28 days postinfection and leptospires were detected by qPCR assays as
described in Materials and Methods. Results are expressed as Leptospira genomes per μg of kidney tissue DNA. Values are means

Cytokines in Kidneys during Chronic Leptospirosis

PLOS ONE | DOI:10.1371/journal.pone.0156084 May 24, 2016 11 / 20



The expression level of chemokines MIP-1α/CCL3 and IP-10/CXCL10 was also quantified
in kidneys of animals experimentally infected (Fig 5E and 5F). Both chemokines were markedly
overexpressed in hamster kidneys at D14 and D21-28 postinfection compared to control ani-
mals (ratios = 16.82 and 10.7 for MIP-1α/CCL3 and IP-10/CXCL10 in hamsters at D21-28,
respectively). In contrast, while IP-10/CXCL-10 was also up-regulated (ratio = 2.4 at D21-28
postinfection), MIP-1α/CCL3 expression was significantly down-regulated in mouse kidneys
(0.6 at D21-28 postinfection). Comparison between both animal models showed high signifi-
cant differences in expression level at D21-28 for MIP-1α/CCL3 and IP-10/CXCL10 (P
value< 0.0005).

Discussion
Using a virulent L. borgpetersenii Ballum isolated from a natural mouse reservoir, we studied
the pathophysiology of the renal leptospirosis in infected animal models during the chronic
state of the disease and showed differences in the development of renal lesions between the
hamsters comparatively to the asymptomatic murine reservoir. First, lethality and clinical signs
of the disease with decrease of body weight were observed in infected hamsters until 14 days
postinfection correlating with similar observation in a sublethal murine model of leptospirosis
infection [45] or with body weight variations in hamsters infected with another L; borgpeterse-
nii serovar [46]. Hamsters then apparently regained a clinically healthy state with initial body
weight but histological observations of kidneys revealed pathological changes. Indeed, tubu-
lointerstitial nephritis, glomerular congestion and fibrosis were observed in infected hamsters,
while no or slight lesions (essentially weak interstitial infiltration of lymphocytes) were seen in
mice. Interstitial nephritis is a common morphological alteration observed in classical reser-
voirs as rats [28] and mice [47, 48]. Likewise, commonly susceptible guinea pigs that became
chronic carrier of virulent leptospires showed interstitial nephritis, but also presented glomeru-
lar alterations with atrophy of the normal structures and hyaline deposit in the tubular lumen
[20]. Interstitial nephritis and infiltration of mononuclear cells around the glomeruli were also
reported in chronically infected cattle related to white-spotted pattern of kidneys [49, 50]. This
is in accordance with the interstitial lesions observed in the kidneys of hamsters chronically
infected with B3-13S, associated with necrosis of tubular epithelial cells and glomerular modifi-
cations (Fig 2). Similarly, interstitial inflammation and focal necrosis of tubular epithelium
were observed in kidneys during acute human leptospirosis with tubular hyaline staining [51].
Glomeruli can also be affected with hyperplasia of mesengial cells and infiltration of inflamma-
tory cells [52], and glomerulonephritis was also noticed in human cases [53]. Renal fibrosis was
previously reported in cases of leptospirosis-related human CKD [9, 10]. In our experiments,
renal fibrosis was also observed in hamsters, but not in OF1 mice, contrasting with previous
observations of mild renal fibrosis in C57BL/6J mice infected with L. interrogans serovar Cope-
hageni strain Fiocruz L1-130 [35, 48]. This discrepancy might possibly be due to difference in
Leptospira and mice strains used for experimental infection. Indeed, B3-13S leptospires were
isolated from kidneys of captured reservoir mouse and identified as a Ballum serovar [37].
Moreover, OF1 outbred mice previously showed high resistance to leptospiral infection [54]
underlying specificity in evolution of disease outcome and pathological alterations depending
on precise host-pathogen pair to be considered during chronic leptospirosis. Expression of
pro-fibrotic TGF-β was quantified and showed significant decrease in mouse kidneys while not
regulated in hamster kidneys (Fig 3). Previous studies on Leptospira-induced fibrosis in mouse

(horizontal line) and individual load (dots). Significant difference in the bacterial loads was evaluated using an unpaired t-test. ns: not
significant.

doi:10.1371/journal.pone.0156084.g004
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Fig 5. Cytokine, iNOS and chemokine gene expression in the kidneys depending on infected animals
during Leptospira carrier state.Mice (open squares) and hamsters (filled squares) were infected with a
sublethal dose of L. borgpetersenii serogroup Ballum isolate B3-13S. Total mRNA was extracted from
kidneys at 14 and between 21 and 28 days postinfection and RT-qPCR assays were processed as described
in Materials and Methods. Results are expressed as expression ratio relative to non-infected animal controls
(time 0). Values are means (horizontal line) and individual ratio (dots). Significant difference in the gene
expression levels were evaluated between animals and compared to control individual using an unpaired t-
test. *P<0.05, **P<0.005, ***P<0.0005, ns: not significant.

doi:10.1371/journal.pone.0156084.g005

Cytokines in Kidneys during Chronic Leptospirosis

PLOS ONE | DOI:10.1371/journal.pone.0156084 May 24, 2016 13 / 20



models also reported absence of TGF-β regulation in kidneys during chronic carriage of bacte-
ria [35, 48].

Regarding the differences in the lesions, we quantified the bacterial load of leptospires in the
kidneys during chronic carriage but no difference was observed. Localization of the bacteria
was observed using WS and IHC staining of leptospires with large clusters of spirochetes con-
fined into the tubular lumen in kidneys of infected animals as previously shown in rodent res-
ervoirs [35, 55]. Aggregation of pathogenic leptospires may be assimilated to biofilms as
previously observed in vitro [56] and was proposed as a survival mechanism in the natural
environment [57]. A recent study showed the production of an active collagenase by L. interro-
gans strain Lai in the presence of human renal tubular epithelial cells, that can hydrolyse differ-
ent types of human collagens [58] possibly leading to the activation of tubular cells in the
kidneys and possible induction of inflammatory markers during the chronic carriage of the
bacteria.

Cytokine gene expression was investigated in the kidneys during the carrier state of animals,
and results showed that pro-inflammatory IL-1β and TNF-α were up-regulated in both experi-
mental models. However, expression levels of IL-1β and IL-10 but not TNF-α were signifi-
cantly different between mice and hamsters. Interleukin-10 is known to regulate inflammatory
processes by inhibiting the expression of pro-inflammatory cytokines as TNF-α and IL-1β and,
thus, this cytokine also protects from deleterious tissue lesions related to massive cytokine
expression [59, 60]. Overexpression of IL-10 was previously noticed in kidneys of mice chal-
lenging development of renal fibrosis during chronic leptospirosis [48]. Deficiency in IL-10
expression leads to exacerbate glomerulonephritis in transgenic mice [61]. Consequently, up-
regulation of IL-10 expression may compensate the overexpression of inflammatory cytokines
playing a role against local inflammatory processes and avoiding acute renal lesions in hamster
kidneys. Inflammatory TNF-α was previously investigated in kidneys of three mouse models
challenging renal alterations after leptospirosis infection [62]. Transcript level was shown to be
upregulated following the early days postinfection and maintained until one week after inocu-
lation. However, we also quantified overexpression of inflammatory TNF-α in kidney from
chronically infected animals but no difference was observed between models (Fig 5). Interest-
ingly, though not lethal, mice deficient for production of TNF-α receptor TNFR presented
more renal lesions compared to WT mice when challenging Leptospira infection [63] suggest-
ing a protective effect of this cytokine during chronic leptospirosis. Role of iNOS in resolution
of leptospirosis was previously investigated and suggested its involvement in survival against
leptospirosis [34] but also in appearance of renal fibrosis in infected mice [35]. However, no
regulation of iNOS gene expression in kidneys was observed in hamsters that developed renal
fibrosis during carriage of leptospires (Fig 3).

Regulation of chemokines MIP-1α/CCL3 and IP-10/CXCL-10 was also investigated and sig-
nificant differences in the transcript level were reported in the kidneys of animals. MIP-1α/
CCL3 was overexpressed in hamster while significantly down-regulated in mouse kidneys. Pre-
vious study also showed an overexpression of MIP-1α/CCL3 in the kidneys of hamster 4 days
after infection with a virulent Leptospira strain [64]. MIP1-α/CCL3 belongs to the CC chemo-
kine family that act on recruitment of several leukocytes [65], and up-regulation of this chemo-
kine was suggested to be responsible for the recruitment of leukocytes in glomeruli in patients
with glomerulonephritis [66]. Blockade of MIP-1α/CCL3 receptor CC chemokine receptor
CCR1 by antagonist molecule reduced interstitial infiltration of macrophages and T lympho-
cytes and renal fibrosis in kidneys of mice developing adriamycin-induced nephropathy with
tubulointerstitial injury [67]. Thus, overexpression of this chemokine could explain the infiltra-
tion of immune cells observed in tissue lesions in hamster kidneys contrasting with possible
effect of its down-regulation in mice related with slight inflammatory lesions. The chemokine
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IP-10/CXCL10 is a member of the CXC chemokine family [68] and is known to be produced
by glomerular cells, tubular epithelial cells and interstitial fibroblasts [69, 70]. Moreover, its up-
regulation is related to interstitial fibrosis and nephritis in rats [70] and to human glomerulo-
nephritis [71]. IP-10/CXCL-10 transcript level was previously quantified in kidneys from ham-
sters infected with virulent leptospires and showed an increase of the gene expression during
the acute phase of infection [64, 72]. Herein, IP-10/CXCL10 was also overexpressed in the kid-
neys of both animal models during the carrier state, with a higher up-regulation in hamsters
compared to mice. Considering the chemotaxis activity of IP-10/CXCL10 via its receptor
CXCR3 on leucocytes including macrophages recruitment into kidneys [73], IP-10/CXCL10
overexpression may possibly be related to interstitial infiltration of leucocytes in renal tissues
from animals chronically infected with B3-13S. Interestingly, IP-10 neutralization by monoclo-
nal antibody or CXCR3 deficiency in a transgenic mouse model were associated with increased
severity of renal fibrosis in a unilateral ureteral obstruction model related with overexpression
of TGF-β in kidneys [74]. Thus, contrasting with significant downregulation of chemokine
MIP-1α/CCL3, increase in IP-10/CXCL10 transcript level in mice might possibly be related to
protective antifibrotic effect in mouse model through negative regulation of TGF-β expression.
However, similar pattern would not be applicable in hamster model.

Both MIP-1α/CCL3 and IP-10/CXCL10 chemokines are important chemotaxis potents on
leucocytes and murine models of the disease showed infiltration of CD11b+ macrophages and
CD3+ lymphocytes in renal tissues during chronic leptospirosis [35, 45]. However, use of CD3
ko mice presented evidences that T- and B-cells are not involved in progression of fibrotic
lesions in kidneys [35].

Recently, concept of M1/M2 macrophage polarization emerged with macrophages’ unique
ability to make polar-opposite repair/heal (M2) or kill/inhibit (M1) type responses [75]. Furui-
chi and coll. described interesting findings regarding chemokine cascades involved in progres-
sion of CKD from AKI suggesting that IP-10/CXCL10-producing macrophages mediate
regeneration and resolution of tubular necrosis while interstitial fibrosis was related to action
of CXC3R1 (fractalkine receptor) on macrophages [76]. Phenotype of resident and infiltrating
macrophages in kidneys was suggested at playing a major role in progression or resolution of
renal inflammation and fibrosis [77]. Indeed, M1 phenotype was associated with inflammatory
processes and renal necrosis that exacerbate renal cell damage while M2 phenotype was related
to tissue remodeling and profibrotic effects in kidneys. Interestingly, macrophage subtypes
were classified depending on their surface markers and cytokines produced and showed M1
phenotype characterized by TNF-α and IL-1β cytokine production while M2 macrophages
were related to IL-10, TGF-β and TNF-α excretion [78]. Transition from inflammatory M1
phenotype to wound healing/profibrotic M2 phenotype induces the progression from the
inflammation phase to the tissue repair phase and also promote remodeling stage [78]. How-
ever, dysregulation of M2-type cells could potentially display increased production of type I
and type III collagens and participate in fibrotic process. Putting together our findings on dif-
ferential gene expression related to distinct lesion profiles in kidneys of animals during chronic
leptospirosis, possible involvement of particular subset of macrophage might explain resolution
or progression of renal injuries and CKD during leptospirosis. Imbalance in M1 and M2 phe-
notype concentration in renal microenvironment may possibly occur in susceptible host con-
tributing to deleterious inflammatory and fibrotic renal lesions.

To summarize, the present study highlights differential development of histological lesions
in kidneys during the carriage of pathogenic leptospires in animals depending on their com-
mon reservoir (slightly or not affected) or incidental carrier (marked morphological changes)
status. Results suggest adverse evolution in hamster renal pathophysiology associated with an
increase of the gene expression of inflammatory mediators. Thus, variability in the regulation
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of the cytokine and chemokine gene expression could explain the discrepancy observed in the
renal tissues between animal models, possibly favoring local infiltration of inflammatory or
fibrotic macrophages in hamster kidneys leading to lesions corresponding to those observed
during leptospirosis-CKD in human cases.

Supporting Information
S1 Fig. Grading of histological lesions showed differential scores in kidneys of animals
chronically infected with the virulent L. borgpetersenii serogroup Ballum isolate B3-13S.
Sections of kidneys collected from hamsters (filled squares) and mice (open squares) during
the carrier state at D14 or between D21 and D28 postinfection were HE stained for histological
observation. (A—C) Interstitial, glomerular and tubular structures were scored as detailed in
Materials and Methods for haemorrhage, oedema, inflammatory infiltration, necrosis and
fibrosis. Significant difference between animals or time postinfection was evaluated using an
unpaired t-test. �P<0.05, ��P<0.005, ���P<0.0005, ns: not significant.
(TIF)
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